A Survey on Graph Processing Accelerators: Challenges and Opportunities

Graph is a well known data structure to represent the associated relationships in a variety of applications, e.g., data science and machine learning. Despite a wealth of existing efforts on developing graph processing systems for improving the performance and/or energy efficiency on traditional arch...

Full description

Saved in:
Bibliographic Details
Published inJournal of computer science and technology Vol. 34; no. 2; pp. 339 - 371
Main Authors Gui, Chuang-Yi, Zheng, Long, He, Bingsheng, Liu, Cheng, Chen, Xin-Yu, Liao, Xiao-Fei, Jin, Hai
Format Journal Article
LanguageEnglish
Published New York Springer US 01.03.2019
Springer
Springer Nature B.V
National Engineering Research Center for Big Data Technology and System, School of Computer Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
Services Computing Technology and System Laboratory, School of Computer Science and Technology Huazhong University of Science and Technology, Wuhan 430074, China
Cluster and Grid Computing Laboratory, School of Computer Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China%School of Computing, National University of Singapore, Singapore 117418, Singapore%School of Computing, National University of Singapore, Singapore 117418, Singapore
Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China
Subjects
Online AccessGet full text
ISSN1000-9000
1860-4749
DOI10.1007/s11390-019-1914-z

Cover

Loading…
Abstract Graph is a well known data structure to represent the associated relationships in a variety of applications, e.g., data science and machine learning. Despite a wealth of existing efforts on developing graph processing systems for improving the performance and/or energy efficiency on traditional architectures, dedicated hardware solutions, also referred to as graph processing accelerators, are essential and emerging to provide the benefits significantly beyond what those pure software solutions can offer. In this paper, we conduct a systematical survey regarding the design and implementation of graph processing accelerators. Specifically, we review the relevant techniques in three core components toward a graph processing accelerator: preprocessing, parallel graph computation, and runtime scheduling. We also examine the benchmarks and results in existing studies for evaluating a graph processing accelerator. Interestingly, we find that there is not an absolute winner for all three aspects in graph acceleration due to the diverse characteristics of graph processing and the complexity of hardware configurations. We finally present and discuss several challenges in details, and further explore the opportunities for the future research.
AbstractList Graph is a well known data structure to represent the associated relationships in a variety of applications,e.g.,data science and machine learning.Despite a wealth of existing efforts on developing graph processing systems for improving the performance and/or energy efficiency on traditional architectures,dedicated hardware solutions,also referred to as graph processing accelerators,are essential and emerging to provide the benefits significantly beyond what those pure software solutions can offer.In this paper,we conduct a systematical survey regarding the design and implementation of graph processing accelerators.Specifically,we review the relevant techniques in three core components toward a graph processing accelerator:preprocessing,parallel graph computation,and runtime scheduling.We also examine the benchmarks and results in existing studies for evaluating a graph processing accelerator.Interestingly,we find that there is not an absolute winner for all three aspects in graph acceleration due to the diverse characteristics of graph processing and the complexity of hardware configurations.We finally present and discuss several challenges in details,and further explore the opportunities for the future research.
Graph is a well known data structure to represent the associated relationships in a variety of applications, e.g., data science and machine learning. Despite a wealth of existing efforts on developing graph processing systems for improving the performance and/or energy efficiency on traditional architectures, dedicated hardware solutions, also referred to as graph processing accelerators, are essential and emerging to provide the benefits significantly beyond what those pure software solutions can offer. In this paper, we conduct a systematical survey regarding the design and implementation of graph processing accelerators. Specifically, we review the relevant techniques in three core components toward a graph processing accelerator: preprocessing, parallel graph computation, and runtime scheduling. We also examine the benchmarks and results in existing studies for evaluating a graph processing accelerator. Interestingly, we find that there is not an absolute winner for all three aspects in graph acceleration due to the diverse characteristics of graph processing and the complexity of hardware configurations. We finally present and discuss several challenges in details, and further explore the opportunities for the future research. Keywords graph processing accelerator, domain-specific architecture, performance, energy efficiency
Audience Academic
Author Liao, Xiao-Fei
Chen, Xin-Yu
Gui, Chuang-Yi
He, Bingsheng
Liu, Cheng
Jin, Hai
Zheng, Long
AuthorAffiliation National Engineering Research Center for Big Data Technology and System, School of Computer Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China;Services Computing Technology and System Laboratory, School of Computer Science and Technology Huazhong University of Science and Technology, Wuhan 430074, China;Cluster and Grid Computing Laboratory, School of Computer Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China%School of Computing, National University of Singapore, Singapore 117418, Singapore%School of Computing, National University of Singapore, Singapore 117418, Singapore;Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China
AuthorAffiliation_xml – name: National Engineering Research Center for Big Data Technology and System, School of Computer Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China;Services Computing Technology and System Laboratory, School of Computer Science and Technology Huazhong University of Science and Technology, Wuhan 430074, China;Cluster and Grid Computing Laboratory, School of Computer Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China%School of Computing, National University of Singapore, Singapore 117418, Singapore%School of Computing, National University of Singapore, Singapore 117418, Singapore;Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China
Author_xml – sequence: 1
  givenname: Chuang-Yi
  surname: Gui
  fullname: Gui, Chuang-Yi
  organization: National Engineering Research Center for Big Data Technology and System, School of Computer Science and Technology, Huazhong University of Science and Technology, Services Computing Technology and System Laboratory, School of Computer Science and Technology, Huazhong University of Science and Technology, Cluster and Grid Computing Laboratory, School of Computer Science and Technology, Huazhong University of Science and Technology
– sequence: 2
  givenname: Long
  surname: Zheng
  fullname: Zheng, Long
  email: longzh@hust.edu.cn
  organization: National Engineering Research Center for Big Data Technology and System, School of Computer Science and Technology, Huazhong University of Science and Technology, Services Computing Technology and System Laboratory, School of Computer Science and Technology, Huazhong University of Science and Technology, Cluster and Grid Computing Laboratory, School of Computer Science and Technology, Huazhong University of Science and Technology
– sequence: 3
  givenname: Bingsheng
  surname: He
  fullname: He, Bingsheng
  organization: School of Computing, National University of Singapore
– sequence: 4
  givenname: Cheng
  surname: Liu
  fullname: Liu, Cheng
  organization: School of Computing, National University of Singapore, Institute of Computing Technology, Chinese Academy of Sciences
– sequence: 5
  givenname: Xin-Yu
  surname: Chen
  fullname: Chen, Xin-Yu
  organization: School of Computing, National University of Singapore
– sequence: 6
  givenname: Xiao-Fei
  surname: Liao
  fullname: Liao, Xiao-Fei
  organization: National Engineering Research Center for Big Data Technology and System, School of Computer Science and Technology, Huazhong University of Science and Technology, Services Computing Technology and System Laboratory, School of Computer Science and Technology, Huazhong University of Science and Technology, Cluster and Grid Computing Laboratory, School of Computer Science and Technology, Huazhong University of Science and Technology
– sequence: 7
  givenname: Hai
  surname: Jin
  fullname: Jin, Hai
  organization: National Engineering Research Center for Big Data Technology and System, School of Computer Science and Technology, Huazhong University of Science and Technology, Services Computing Technology and System Laboratory, School of Computer Science and Technology, Huazhong University of Science and Technology, Cluster and Grid Computing Laboratory, School of Computer Science and Technology, Huazhong University of Science and Technology
BookMark eNp9kdFrFDEQxoNUsK3-Ab4t-OrWmU26u_HtOPRaKFRQn8NcbnLNuk3WZK-2_etNWaEgKIFkCN9vvuSbE3EUYmAh3iKcIUD3ISNKDTWgrlGjqh9fiGPsW6hVp_RRqQGg1mV7JU5yHgBkB0odi82q-npId_xQxVBtEk031ZcULefsw75aWcsjJ5pjyh-r9Q2NI4c954rCrrqeppjmQ_Cz5_xavHQ0Zn7z5zwV3z9_-ra-qK-uN5fr1VVtpW7mWnJvnQNJW9ezte6cHDH2HUns2nZL0ICypDtUWvV6xw6pd9BCp_ptqyzKU_F-6fuLgqOwN0M8pFAczZCHH_dDvt8abkoMpRO0Rf5ukU8p_jxwnp_1jS75YCOhKaqzRbWnkY0PLs6JbFk7vvW2BO18uV91qHvU8hwKgAtgU8w5sTNT8reUHgyCeZqHWeZhykPM0zzMY2G6vxjrZ5p9DMXMj_8lm4XMxaXEn54_8W_oNzwGoSA
CitedBy_id crossref_primary_10_1145_3390523
crossref_primary_10_1109_MC_2023_3241692
crossref_primary_10_1007_s11432_019_2807_4
crossref_primary_10_1145_3517141
crossref_primary_10_3389_fdata_2022_828666
crossref_primary_10_1109_TKDE_2024_3393936
crossref_primary_10_1007_s11704_023_3307_2
crossref_primary_10_12677_CSA_2021_112029
crossref_primary_10_14778_3436905_3436914
crossref_primary_10_1007_s11390_024_4150_0
crossref_primary_10_1088_1751_8121_abfa45
crossref_primary_10_1145_3631118
crossref_primary_10_1002_aisy_202300784
crossref_primary_10_1145_3469379_3469384
crossref_primary_10_1109_JSSC_2021_3134897
crossref_primary_10_1109_ACCESS_2020_3008250
crossref_primary_10_1007_s11227_022_04835_3
crossref_primary_10_1007_s41781_024_00117_0
crossref_primary_10_1145_3451214
crossref_primary_10_1145_3524105
crossref_primary_10_1109_ACCESS_2022_3219422
crossref_primary_10_1109_JBHI_2024_3405491
crossref_primary_10_1145_3477141
crossref_primary_10_1145_3597428
crossref_primary_10_1016_j_sysarc_2022_102561
crossref_primary_10_1145_3677035
crossref_primary_10_1145_3568990
crossref_primary_10_3390_jlpea10040030
crossref_primary_10_1109_TPDS_2022_3189390
crossref_primary_10_3389_fdata_2020_598927
Cites_doi 10.1145/3179541.3168817
10.1109/ICCAD.2015.7372635
10.1109/ICDCS.2017.150
10.1145/2741948.2741970
10.1109/NVMSA.2017.8064464
10.1109/HPCC.2011.28
10.1145/2588555.2610518
10.1145/3020078.3021739
10.1109/ASAP.2012.30
10.1109/PACT.2011.14
10.14778/2809974.2809983
10.1145/2872887.2750386
10.1109/IISWC.2015.12
10.1109/FCCM.2006.45
10.1145/3199523
10.23919/DATE.2018.8342150
10.1145/2882903.2882950
10.1109/MICRO.2016.7783710
10.1109/TKDE.2017.2745562
10.1145/2882903.2882959
10.1109/ISCA.2018.00042
10.1145/2847263.2847337
10.1145/3177916
10.1109/MDAT.2017.2779742
10.1145/3243176.3243201
10.1145/2463676.2465295
10.1109/ICDE.2016.7498258
10.1145/2882903.2915204
10.1145/2858788.2688508
10.1145/3097983.3098061
10.1109/MICRO.2016.7783759
10.1145/3174243.3174260
10.1145/3020078.3021737
10.1109/FPL.2015.7293939
10.1145/1807167.1807184
10.14778/2212351.2212354
10.1145/2858788.2688526
10.1145/2458523.2458531
10.1145/2815400.2815410
10.1109/HPEC.2016.7761635
10.1145/3155284.3018756
10.1145/2807591.2807594
10.1145/2541940.2541967
10.1145/2851141.2851145
10.1186/1471-2105-9-70
10.1145/2694413.2694421
10.1109/HPCA.2018.00052
10.1145/2847263.2847339
10.1145/3128571
10.14778/3137765.3137776
10.1145/2858788.2688507
10.1109/ASAP.2015.7245698
10.1109/IPDPSW.2015.130
10.1145/3170434
10.1109/FPT.2011.6132667
10.1109/PACT.2015.22
10.1109/TCAD.2018.2821565
10.1145/2600212.2600227
10.1145/2517349.2522739
10.1109/ICDE.2017.88
10.1145/2487575.2487581
10.1145/2517349.2522740
10.1109/SC.2012.50
10.1109/FPL.2012.6339247
10.1145/3174243.3174252
10.1109/TCAD.2017.2706562
10.1145/3020078.3021743
10.1109/ICCAD.2015.7372588
10.1145/2621934.2621936
10.1109/CCGRID.2017.114
10.1109/SC.2014.38
10.1145/2442516.2442530
10.1109/MM.2016.11
10.1109/HPCA.2018.00053
10.1109/HPCA.2015.7056056
10.1109/JPROC.2012.2190369
10.1145/2807591.2807655
10.1145/3140659.3080228
10.1109/DSN.2014.58
10.1145/3007787.3001155
10.1109/FPL.2016.7577360
10.1007/s11432-017-9226-8
10.1109/MM.2017.7
10.1109/ReConFig.2015.7393332
10.1145/2465351.2465369
10.1109/ReConFig.2015.7393284
10.1109/SC.2014.52
10.1145/3174243.3174245
10.1109/FCCM.2014.15
10.1145/2248487.2151013
10.1109/BigData.Congress.2014.106
10.1109/SBAC-PAD.2017.25
10.1145/3007787.3001154
10.1109/IPDPSW.2014.30
10.1145/3190508.3190544
10.1007/s11227-015-1378-z
10.1145/1326542.1326544
10.1109/HOTCHIPS.2011.7477494
10.1109/IPDPSW.2010.5470817
10.14778/3151113.3151122
10.1109/IPDPS.2014.45
10.1145/3064176.3064191
10.1109/FPT.2010.5681757
10.1145/2872887.2750412
10.1109/HPCA.2017.54
10.1145/316194.316229
10.1109/FCCM.2016.35
10.1109/WAINA.2010.85
10.1145/2847263.2847269
10.1145/2818185
10.1145/2807591.2807626
ContentType Journal Article
Copyright Springer Science+Business Media, LLC & Science Press, China 2019
COPYRIGHT 2019 Springer
Springer Science+Business Media, LLC & Science Press, China 2019.
Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Springer Science+Business Media, LLC & Science Press, China 2019
– notice: COPYRIGHT 2019 Springer
– notice: Springer Science+Business Media, LLC & Science Press, China 2019.
– notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID AAYXX
CITATION
3V.
7SC
7WY
7WZ
7XB
87Z
8AL
8FD
8FE
8FG
8FK
8FL
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
HCIFZ
JQ2
K60
K6~
K7-
L.-
L6V
L7M
L~C
L~D
M0C
M0N
M7S
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PTHSS
Q9U
2B.
4A8
92I
93N
PSX
TCJ
DOI 10.1007/s11390-019-1914-z
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Global (Alumni Edition)
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials - QC
ProQuest Central
Business Premium Collection
Technology Collection
ProQuest One
ProQuest Central Korea
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global
Computing Database
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Engineering Collection
ProQuest Central Basic
Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitle CrossRef
ABI/INFORM Global (Corporate)
ProQuest Business Collection (Alumni Edition)
ProQuest One Business
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ABI/INFORM Complete
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
Engineering Collection
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
ProQuest Computing
Engineering Database
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Business Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Business (Alumni)
ProQuest One Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
Business Premium Collection (Alumni)
DatabaseTitleList
ABI/INFORM Global (Corporate)


Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1860-4749
EndPage 371
ExternalDocumentID jsjkxjsxb_e201902006
A719819350
10_1007_s11390_019_1914_z
GrantInformation_xml – fundername: the National Key Research and Development Program of China under Grant No.2018YFB1003502,and the National Natural Science Foundation of China under Grant Nos.61825202,61832006,61628204 and 61702201
GroupedDBID -4Z
-59
-5G
-BR
-EM
-SI
-S~
-Y2
-~C
.86
.VR
06D
0R~
0VY
1N0
1SB
2.D
28-
29K
2B.
2C0
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5QI
5VR
5VS
5XA
5XJ
67Z
6NX
7WY
8FE
8FG
8FL
8TC
8UJ
92H
92I
92R
93N
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAXDM
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFUIB
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CAJEI
CCEZO
CCPQU
CHBEP
COF
CS3
CSCUP
CUBFJ
CW9
D-I
DDRTE
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
F5P
FA0
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GXS
H13
HCIFZ
HF~
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
IAO
IHE
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
LAK
LLZTM
M0C
M0N
M4Y
M7S
MA-
N2Q
NB0
NDZJH
NF0
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P62
P9O
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
PTHSS
Q--
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCL
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TCJ
TGT
TSG
TSK
TSV
TUC
U1G
U2A
U5S
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z7R
Z7U
Z7X
Z81
Z83
Z88
Z8R
Z8W
Z92
ZMTXR
~A9
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
ICD
IVC
PHGZM
PHGZT
TGMPQ
AEIIB
PMFND
7SC
7XB
8AL
8FD
8FK
ABRTQ
JQ2
L.-
L6V
L7M
L~C
L~D
PKEHL
PQEST
PQGLB
PQUKI
Q9U
4A8
PSX
ID FETCH-LOGICAL-c392t-3e8cff03abf8eccf5afae187a31766ba0204ca97149489def1a8f060748b64c13
IEDL.DBID U2A
ISSN 1000-9000
IngestDate Thu May 29 04:00:16 EDT 2025
Fri Jul 25 12:25:18 EDT 2025
Tue Jun 10 20:52:12 EDT 2025
Tue Jul 01 01:48:56 EDT 2025
Thu Apr 24 23:00:00 EDT 2025
Fri Feb 21 02:40:05 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords domain-specific architecture
performance
graph processing accelerator
energy efficiency
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c392t-3e8cff03abf8eccf5afae187a31766ba0204ca97149489def1a8f060748b64c13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2918612302
PQPubID 326258
PageCount 33
ParticipantIDs wanfang_journals_jsjkxjsxb_e201902006
proquest_journals_2918612302
gale_infotracacademiconefile_A719819350
crossref_primary_10_1007_s11390_019_1914_z
crossref_citationtrail_10_1007_s11390_019_1914_z
springer_journals_10_1007_s11390_019_1914_z
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20190300
PublicationDateYYYYMMDD 2019-03-01
PublicationDate_xml – month: 3
  year: 2019
  text: 20190300
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Beijing
PublicationTitle Journal of computer science and technology
PublicationTitleAbbrev J. Comput. Sci. Technol
PublicationTitle_FL Journal of Computer Science & Technology
PublicationYear 2019
Publisher Springer US
Springer
Springer Nature B.V
National Engineering Research Center for Big Data Technology and System, School of Computer Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
Services Computing Technology and System Laboratory, School of Computer Science and Technology Huazhong University of Science and Technology, Wuhan 430074, China
Cluster and Grid Computing Laboratory, School of Computer Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China%School of Computing, National University of Singapore, Singapore 117418, Singapore%School of Computing, National University of Singapore, Singapore 117418, Singapore
Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China
Publisher_xml – name: Springer US
– name: Springer
– name: Springer Nature B.V
– name: Cluster and Grid Computing Laboratory, School of Computer Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China%School of Computing, National University of Singapore, Singapore 117418, Singapore%School of Computing, National University of Singapore, Singapore 117418, Singapore
– name: Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China
– name: Services Computing Technology and System Laboratory, School of Computer Science and Technology Huazhong University of Science and Technology, Wuhan 430074, China
– name: National Engineering Research Center for Big Data Technology and System, School of Computer Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
References Gonzalez J E, Xin R S, Dave A, Crankshaw D, Franklin M J, Stoica I. GraphX: Graph processing in a distributed dataflow framework. In Proc. the 11th USENIX Symp. Operating Systems Design and Implementation, October 2014, pp.599-613.
FaloutsosMFaloutsosPFaloutsosCOn power-law relationships of the Internet topologyACM SIGCOMM Computer Communication Review199929425126210.1145/316194.3162290889.68050
Zheng L, Liao X, Jin H, Zhao J, Wang Q. Scalable concurrency debugging with distributed graph processing. In Proc. the 2018 Int. Symp. Code Generation and Optimization, February 2018, pp.188-199.
SundaramNSatishNPatwaryMMDulloorSRAndersonMJVadlamudiSGDasDDubeyPGraphMat: High performance graph analytics made productiveProceedings of the VLDB Endowment20158111214122510.14778/2809974.2809983
Zhang J, Khoram S, Li J. Boosting the performance of FPGA-based graph processor using hybrid memory cube: A case for breadth first search. In Proc. the 2017 ACM/SIGDA Int. Symp. Field-Programmable Gate Arrays, February 2017, pp.207-216.
Dai G, Chi Y, Wang Y, Yang H. FPGP: Graph processing framework on FPGA a case study of breadth-first search. In Proc. the 2006 ACM/SIGDA Int. Symp. Field-Programmable Gate Arrays, February 2016, pp.105-110.
Huang T, Dai G, Wang Y, Yang H. HyVE: Hybrid vertexedge memory hierarchy for energy-efficient graph processing. In Proc. the 2018 Design, Automation and Test in Europe Conference and Exhibition, March 2018, pp.973-978.
Shun J, Blelloch G E. Ligra: A lightweight graph processing framework for shared memory. In Proc. the 18th ACM SIGPLAN Symp. Principles and Practice of Parallel Programming, February 2013, pp.135-146.
Ahn J, Hong S, Yoo S, Mutlu O, Choi K. A scalable processing-in-memory accelerator for parallel graph processing. In Proc. the 42nd ACM/IEEE Annual Int. Symp. Computer Architecture, June 2015, pp.105-117.
Thomas D, Moorby P. The Verilog® Hardware Description Language (5th edition). Springer, 2002.
Wang P, Zhang K, Chen R, Chen H, Guan H. Replication-based fault-tolerance for large-scale graph processing. In Proc. the 44th Annual IEEE/IFIP Int. Conf. Dependable Systems and Networks, June 2014, pp.562-573.
Scarpazza D P, Villa O, Petrini F. Efficient breadth-first search on the Cell/B.E. processor. IEEE Trans. Parallel and Distributed Systems, 2008, 19(10): 1381-95.
Zhang J, Li J. Degree-aware hybrid graph traversal on FPGA-HMC platform. In Proc. the 2018 ACM/SIGDA Int. Symp. Field-Programmable Gate Arrays, February 2018, pp.229-238.
Zhou S, Chelmis C, Prasanna V K. High-throughput and energy-efficient graph processing on FPGA. In Proc. the 24th IEEE Annual Int. Symp. Field-Programmable Custom Computing Machines, May 2016, pp.103-110.
Song W S, Gleyzer V, Lomakin A, Kepner J. Novel graph processor architecture, prototype system, and results. In Proc. the 2016 IEEE High Performance Extreme Computing Conference, September 2016, Article No. 59.
Yao P, Zheng L, Liao X, Jin H, He B. An efficient graph accelerator with parallel data conflict management. In Proc. Int. Conf. Parallel Architectures and Compilation Techniques, November 2018, Article No. 8.
Soman J, Kishore K, Narayanan P J. A fast GPU algorithm for graph connectivity. In Proc. the 24th IEEE Int. Symp. Parallel & Distributed Processing, Workshops and PhD Forum, April 2010, Article No. 87.
Umuroglu Y, Morrison D, Jahre M. Hybrid breadth-first search on a single-chip FPGA-CPU heterogeneous platform. In Proc. the 25th Int. Conf. Field Programmable Logic and Applications, September 2015, Article No. 12.
Ham T J, Wu L, Sundaram N, Satish N, Martonosi M. Graphicionado: A high-performance and energy-efficient accelerator for graph analytics. In Proc. the 49th Annual IEEE/ACM Int. Symp. Microarchitecture, October 2016, Article No. 56.
Randles M, Lamb D, Taleb-Bendiab A. A comparative study into distributed load balancing algorithms for cloud computing. In Proc. the 24th IEEE Int. Conf. Advanced Information Networking and Applications Workshops, April 2010, pp.551-556.
AyupovAYesilSOzdalMMKimTBurnsSÖzturkÖA template-based design methodology for graph-parallel hardware acceleratorsIEEE Trans. Computer Aided Design of Integrated Circuits and Systems201837242043010.1109/TCAD.2017.2706562
Dai G, Huang T, Chi Y, Zhao J, Sun G, Liu Y, Wang Y, Xie Y, Yang H. GraphH: A processing-in-memory architecture for large-scale graph processing. IEEE Trans. Computer-Aided Design of Integrated Circuits and Systems. doi:https://doi.org/10.1109/TCAD.2018.2821565.
Zhang M, Zhuo Y, Wang C, Gao M, Wu Y, Chen K, Kozyrakis C, Qian X. GraphP: Reducing communication for PIM-based graph processing with efficient data partition. In Proc. the 2018 IEEE Int. Symp. High Performance Computer Architecture, February 2018, pp.544-557.
Malewicz G, Austern M H, Bik A J, Dehnert J C, Horn I, Leiser N, Czajkowski G. Pregel: A system for large-scale graph processing. In Proc. ACM SIGMOD Int. Conf. Management of Data, June 2010, pp.135-146.
Hennessy J, Patterson D. Domain specific architectures. In Computer Architecture: A Quantitative Approach (6th edition), Merken S, McFadden N (eds.), Elsevier, 2017, pp.540-606.
ZhangTZhangJShuWWuMYLiangXEfficient graph computation on hybrid CPU and GPU systemsThe Journal of Supercomputing20157141563158610.1007/s11227-015-1378-z
Jin H, Yao P, Liao X. Towards dataflow based graph processing. Science China Information Sciences, 2017, 60(12): Article No. 126102.
Zhou S, Prasanna V K. Accelerating graph analytics on CPU-FPGA heterogeneous platform. In Proc. the 29th Int. Symp. Computer Architecture and High Performance Computing, October 2017, pp.137-144.
Kyrola A, Blelloch G E, Guestrin C. GraphChi: Large-scale graph computation on just a PC. In Proc. the 10th USENIX Conf. Operating Systems Design and Implementation, October 2012, pp.31-46.
Ben-Nun T, Sutton M, Pai S, Pingali K. Groute: An asynchronous multi-GPU programming model for irregular computations. In Proc. the 22nd ACM SIGPLAN Symp. Principles and Practice of Parallel Programming, February 2017, pp.235-248.
Chen R, Shi J, Chen Y, Chen H. PowerLyra: Differentiated graph computation and partitioning on skewed graphs. In Proc. the 10th European Conf. Computer Systems, April 2015, Article No. 1.
Nai L, Hadidi R, Sim J, Kim H, Kumar P, Kim H. Graph-PIM: Enabling instruction-level PIM offloading in graph computing frameworks. In Proc. the 2007 IEEE Int. Symp. High Performance Computer Architecture, February 2017, pp.457-468.
Hong S, Oguntebi T, Olukotun K. Efficient parallel graph exploration on multi-core CPU and GPU. In Proc. the 2011 Int. Conf. Parallel Architectures and Compilation Techniques, October 2011, pp.78-88.
Hong S, Chafi H, Sedlar E, Olukotun K. Green-Marl: A DSL for easy and efficient graph analysis. In Proc. the 17th Int. Conf. Architectural Support for Programming Languages and Operating Systems, March 2012, pp.349-362.
Davidson A A, Baxter S, Garland M, Owens J D. Work-efficient parallel GPU methods for single-source shortest paths. In Proc. the 28th IEEE Int. Parallel and Distributed Processing Symp., May 2014, pp.349-359.
Nurvitadhi E, Weisz G, Wang Y, Hurkat S, Nguyen M, Hoe J C, Martínez J F, Guestrin C. GraphGen: An FPGA framework for vertex-centric graph computation. In Proc. the 22nd IEEE Annual Int. Symp. Field-Programmable Custom Computing Machines, May 2014, pp.25-28.
WangLYangXDaiHScratchpad memory allocation for arrays in permutation graphsScience China Information Sciences20135651133067638
Page L, Brin S, Motwani R, Winograd T. The PageRank citation ranking: Bringing order to the web. Technical Report, Stanford InfoLab, 1999. http://ilpubs.stanford.edu:8090/422/1/1999-66.pdf, Jan. 2019.
Sengupta D, Song S L, Agarwal K, Schwan K. GraphReduce: Processing large-scale graphs on accelerator-based systems. In Proc. the 2015 Int. Conf. High Performance Computing, Networking, Storage and Analysis, November 2015, Article No. 28.
Jun S W, Wright A, Zhang S, Xu S, Arvind. GraFBoost: Using accelerated flash storage for external graph analytics. In Proc. the 45th ACM/IEEE Int. Symp. Computer Architecture, June 2018, pp.411-424.
Fu Z, Personick M, Thompson B. MapGraph: A high level API for fast development of high performance graph analytics on GPUs. In Proc. the 2nd International Workshop on Graph Data Management Experiences and Systems, June 2014, Article No. 2.
de Lorimier M, Kapre N, Mehta N et al. GraphStep: A system architecture for sparse-graph algorithms. In Proc. the 14th Annual IEEE Symp. Field-Programmable Custom Computing Machines, April 2006, pp.143-151.
Avery C. Giraph: Large-scale graph processing infrastructure on Hadoop. In Proc. the 2011 Hadoop Summit, June 2011, pp.5-9.
Zhang M, Wu Y, Chen K, Qian X, Li X, Zheng W. Exploring the hidden dimension in graph processing. In Proc. the 12th USENIX Conf. Operating Systems Design and Implementation, November 2016, pp.285-300.
Attia O G, Johnson T, Townsend K, Jones P, Zambreno J. CyGraph: A reconfigurable architecture for parallel breadth-first search. In Proc. the 2004 Int. Parallel and Distributed Processing Symp. Workshops, May 2014, pp.228-235.
ShiXLuoXLiangJZhaoPDiSHeBJinHFrog: Asynchronous graph processing on GPU with hybrid coloring modelIEEE Trans. Knowledge and Data Engineering2018301294210.1109/TKDE.2017.2745562
Betkaoui B, Wang Y, Thomas D B, Luk W. Parallel FPGA-based all pairs shortest paths for sparse networks: A human brain connectome case study. In Proc. the 22nd Int. Conf. Field Programmable Logic and Applications, August 2012, pp.99-104.
Nai L, Xia Y, Tanase I G, Kim H, Lin C Y. GraphBIG: Understanding graph computing in the context of industrial solutions. In Proc. Int. Conf. High Performance Computing, Networking, Storage and Analysis, November 2015, Article No. 69.
Gharaibeh A, Reza T, Santos-Neto E, Costa L B, Sallinen S, Ripeanu M. Efficient large-scale graph processing on hybrid CPU and GPU systems. arXiv:1312.3018, 2013. http://arxiv.org/abs/1312.3018, Dec. 2018.
Wang Y, Davidson A, Pan Y, Wu Y, Riffel A, Owens J D. Gunrock: A high-performance
1914_CR21
1914_CR20
Y Lee (1914_CR22) 2016; 36
1914_CR26
1914_CR25
1914_CR24
1914_CR23
1914_CR29
1914_CR28
1914_CR27
HS Wong (1914_CR35) 2012; 100
1914_CR11
1914_CR99
1914_CR10
1914_CR98
1914_CR96
1914_CR15
1914_CR14
1914_CR13
1914_CR12
1914_CR19
1914_CR105
1914_CR18
1914_CR104
1914_CR17
1914_CR103
1914_CR16
1914_CR102
1914_CR109
1914_CR108
1914_CR107
1914_CR106
1914_CR101
1914_CR100
1914_CR88
1914_CR87
1914_CR86
1914_CR85
T Zhang (1914_CR65) 2015; 71
1914_CR89
1914_CR116
1914_CR115
1914_CR114
1914_CR113
1914_CR119
1914_CR118
1914_CR117
M Sha (1914_CR125) 2017; 11
1914_CR111
1914_CR91
1914_CR90
1914_CR95
1914_CR94
1914_CR93
X Shi (1914_CR9) 2018; 30
1914_CR92
1914_CR77
J Lee (1914_CR97) 2017; 10
1914_CR76
N Sundaram (1914_CR51) 2015; 8
1914_CR75
J Zhong (1914_CR6) 2014; 43
1914_CR74
1914_CR79
1914_CR78
1914_CR126
1914_CR124
1914_CR129
1914_CR128
1914_CR123
1914_CR122
1914_CR121
1914_CR120
1914_CR80
1914_CR84
1914_CR82
1914_CR81
1914_CR66
1914_CR64
1914_CR63
1914_CR69
1914_CR68
1914_CR67
1914_CR136
1914_CR135
1914_CR130
L Wang (1914_CR110) 2013; 56
1914_CR134
1914_CR133
1914_CR132
1914_CR131
1914_CR73
1914_CR72
1914_CR71
1914_CR70
1914_CR55
1914_CR54
1914_CR53
1914_CR52
1914_CR59
1914_CR58
1914_CR57
1914_CR56
M Faloutsos (1914_CR112) 1999; 29
1914_CR1
1914_CR5
1914_CR4
1914_CR3
1914_CR8
1914_CR7
1914_CR62
1914_CR61
1914_CR60
1914_CR44
1914_CR43
1914_CR42
1914_CR41
1914_CR48
1914_CR47
1914_CR46
A Ayupov (1914_CR31) 2018; 37
1914_CR45
1914_CR49
H Chen (1914_CR127) 2016; 59
1914_CR50
1914_CR33
1914_CR32
1914_CR30
1914_CR37
1914_CR36
1914_CR34
Y Low (1914_CR2) 2012; 5
1914_CR39
1914_CR38
MM Ozdal (1914_CR83) 2017; 37
1914_CR40
References_xml – reference: Ozdal M M, Yesil S, Kim T, Ayupov A, Greth J, Burns S, Özturk Ö. Energy efficient architecture for graph analytics accelerators. In Proc. the 43rd ACM/IEEE Annual Int. Symp. Computer Architecture, June 2016, pp.166-177.
– reference: Beamer S, Asanović K, Patterson D. Direction-optimizing breadth-first search. In Proc. the 2012 Int. Conf. High Performance Computing, Networking, Storage and Analysis, November 2012, Article No. 12.
– reference: Dai G, Chi Y, Wang Y, Yang H. FPGP: Graph processing framework on FPGA a case study of breadth-first search. In Proc. the 2006 ACM/SIGDA Int. Symp. Field-Programmable Gate Arrays, February 2016, pp.105-110.
– reference: OzdalMMYesilSKimTAyupovAGrethJBurnsSOzturkOGraph analytics accelerators for cognitive systemsIEEE Micro2017371425110.1109/MM.2017.7
– reference: Betkaoui B, Wang Y, Thomas D B, Luk W. Parallel FPGA-based all pairs shortest paths for sparse networks: A human brain connectome case study. In Proc. the 22nd Int. Conf. Field Programmable Logic and Applications, August 2012, pp.99-104.
– reference: Dai G, Huang T, Chi Y, Xu N, Wang Y, Yang H. Fore-Graph: Exploring large-scale graph processing on multi-FPGA architecture. In Proc. the 2017 ACM/SIGDA Int. Symp. Field-Programmable Gate Arrays, February 2017, pp.217-226.
– reference: Li Z, Liu L, Deng Y, Yin S, Wang Y, Wei S. Aggressive pipelining of irregular applications on reconfigurable hardware. In Proc. the 44th Annual Int. Symp. Computer Architecture, June 2017, pp.575-586.
– reference: Hennessy J, Patterson D. Domain specific architectures. In Computer Architecture: A Quantitative Approach (6th edition), Merken S, McFadden N (eds.), Elsevier, 2017, pp.540-606.
– reference: Zhou J, Liu S, Guo Q, Zhou X, Zhi T, Liu D, Wang C, Zhou X, Chen Y, Chen T. TuNao: A high-performance and energy-efficient reconfigurable accelerator for graph processing. In Proc. the 17th IEEE/ACM Int. Symp. Cluster, Cloud and Grid Computing, May 2017, pp.731-734.
– reference: Ozdal M M. Emerging accelerator platforms for data centers. IEEE Design & Test, 2018, 35(1): 47-54.
– reference: Chen R, Shi J, Chen Y, Chen H. PowerLyra: Differentiated graph computation and partitioning on skewed graphs. In Proc. the 10th European Conf. Computer Systems, April 2015, Article No. 1.
– reference: Scarpazza D P, Villa O, Petrini F. Efficient breadth-first search on the Cell/B.E. processor. IEEE Trans. Parallel and Distributed Systems, 2008, 19(10): 1381-95.
– reference: Narayanan A, Chandramohan M, Venkatesan R, Chen L, Liu Y, Jaiswal S. graph2vec: Learning distributed representations of graphs. arXiv:1707.05005, 2017. https://arxiv.org/abs/1707.05005, Jun. 2018.
– reference: Xu C, Niu D, Muralimanohar N, Balasubramonian R, Zhang T, Yu S, Xie Y. Overcoming the challenges of crossbar resistive memory architectures. In Proc. the 21st IEEE Int. Symp. High Performance Computer Architecture, February 2015, pp.476-488.
– reference: Hong S, Oguntebi T, Olukotun K. Efficient parallel graph exploration on multi-core CPU and GPU. In Proc. the 2011 Int. Conf. Parallel Architectures and Compilation Techniques, October 2011, pp.78-88.
– reference: de Lorimier M, Kapre N, Mehta N et al. GraphStep: A system architecture for sparse-graph algorithms. In Proc. the 14th Annual IEEE Symp. Field-Programmable Custom Computing Machines, April 2006, pp.143-151.
– reference: LeeJKimHYooSChoiKHofsteeHPNamGJNutterMRJamsekDExtraV: Boosting graph processing near storage with a coherent acceleratorProceedings of the VLDB Endowment201710121706171710.14778/3137765.3137776
– reference: LeeYWatermanACookHAn agile approach to building RISC-V microprocessorsIEEE Micro201636282010.1109/MM.2016.11
– reference: Shi X, Zheng Z, Zhou Y, Jin H, He L, Liu B, Hua Q. Graph processing on GPUs: A survey. ACM Trans. Computing Surveys, 2018, 50(6): Article No. 81.
– reference: Gharaibeh A, Reza T, Santos-Neto E, Costa L B, Sallinen S, Ripeanu M. Efficient large-scale graph processing on hybrid CPU and GPU systems. arXiv:1312.3018, 2013. http://arxiv.org/abs/1312.3018, Dec. 2018.
– reference: Ahn J, Hong S, Yoo S, Mutlu O, Choi K. A scalable processing-in-memory accelerator for parallel graph processing. In Proc. the 42nd ACM/IEEE Annual Int. Symp. Computer Architecture, June 2015, pp.105-117.
– reference: Ham T J, Wu L, Sundaram N, Satish N, Martonosi M. Graphicionado: A high-performance and energy-efficient accelerator for graph analytics. In Proc. the 49th Annual IEEE/ACM Int. Symp. Microarchitecture, October 2016, Article No. 56.
– reference: Attia O G, Johnson T, Townsend K, Jones P, Zambreno J. CyGraph: A reconfigurable architecture for parallel breadth-first search. In Proc. the 2004 Int. Parallel and Distributed Processing Symp. Workshops, May 2014, pp.228-235.
– reference: Gao M, Ayers G, Kozyrakis C. Practical near-data processing for in-memory analytics frameworks. In Proc. the 2015 Int. Conf. Parallel Architecture and Compilation, October 2015, pp.113-124.
– reference: Siek J G, Lee L Q, Lumsdaine A. The Boost Graph Library: User Guide and Reference Manual (PAP/CDR edition). Addison-Wesley Professional, 2001.
– reference: Wang Q, Jiang W, Xia Y, Prasanna V. A message-passing multi-softcore architecture on FPGA for breadth-first search. In Proc. the 2010 Int. Conf. Field-Programmable Technology, December 2010, pp.70-77.
– reference: Randles M, Lamb D, Taleb-Bendiab A. A comparative study into distributed load balancing algorithms for cloud computing. In Proc. the 24th IEEE Int. Conf. Advanced Information Networking and Applications Workshops, April 2010, pp.551-556.
– reference: Huang T, Dai G, Wang Y, Yang H. HyVE: Hybrid vertexedge memory hierarchy for energy-efficient graph processing. In Proc. the 2018 Design, Automation and Test in Europe Conference and Exhibition, March 2018, pp.973-978.
– reference: Yao P, Zheng L, Liao X, Jin H, He B. An efficient graph accelerator with parallel data conflict management. In Proc. Int. Conf. Parallel Architectures and Compilation Techniques, November 2018, Article No. 8.
– reference: Nai L, Xia Y, Tanase I G, Kim H, Lin C Y. GraphBIG: Understanding graph computing in the context of industrial solutions. In Proc. Int. Conf. High Performance Computing, Networking, Storage and Analysis, November 2015, Article No. 69.
– reference: Khoram S, Zhang J, Strange M, Li J. Accelerating graph analytics by co-optimizing storage and access on an FPGAHMC platform. In Proc. the 2018 ACM/SIGDA Int. Symp. Field-Programmable Gate Arrays, February 2018, pp.239-248.
– reference: Betkaoui B, Wang Y, Thomas D B, Luk W. A reconfigurable computing approach for efficient and scalable parallel graph exploration. In Proc. the 23rd IEEE Int. Conf. Application-Specific Systems, Architectures and Processors, July 2012, pp.8-15.
– reference: Nguyen D, Lenharth A, Pingali K. A lightweight infrastructure for graph analytics. In Proc. the 24th ACM SIGOPS Symp. Operating Systems Principles, November 2013, pp.456-471.
– reference: Kapre N. Custom FPGA-based soft-processors for sparse graph acceleration. In Proc. the 26th IEEE Int. Conf. Application-Specific Systems, Architectures and Processors, July 2015, pp.9-16.
– reference: Ceze L, Hill M D, Sankaralingam K, Wenisch T F. Democratizing design for future computing platforms. arXiv:1706.08597, 2017. http://arxiv.org/abs/1706.08597, Jun. 2017.
– reference: Fu Z, Personick M, Thompson B. MapGraph: A high level API for fast development of high performance graph analytics on GPUs. In Proc. the 2nd International Workshop on Graph Data Management Experiences and Systems, June 2014, Article No. 2.
– reference: Maass S, Min C, Kashyap S, Kang W, Kumar M, Kim T. Mosaic: Processing a trillion-edge graph on a single machine. In Proc. the 12th ACM European Conf. Computer Systems, April 2017, pp.527-543.
– reference: Kyrola A, Blelloch G E, Guestrin C. GraphChi: Large-scale graph computation on just a PC. In Proc. the 10th USENIX Conf. Operating Systems Design and Implementation, October 2012, pp.31-46.
– reference: Liu H, Huang H H, Hu Y. iBFS: Concurrent breadth-first search on GPUs. In Proc. the 2016 Int. Conf. Management of Data, June 2016, pp.403-416.
– reference: ZhongJHeBMedusa: A parallel graph processing system on graphics processorsACM SIGMOD Record2014432354010.1145/2694413.2694421
– reference: Soman J, Kishore K, Narayanan P J. A fast GPU algorithm for graph connectivity. In Proc. the 24th IEEE Int. Symp. Parallel & Distributed Processing, Workshops and PhD Forum, April 2010, Article No. 87.
– reference: Beamer S, Asanović K, Patterson D. The GAP benchmark suite. arXiv:1508.03619, 2015. http://arxiv.org/abs/1508.03619, May 2017.
– reference: Beamer S, Asanovic K, Patterson D. Locality exists in graph processing: Workload characterization on an ivy bridge server. In Proc. IEEE Int. Symp. Workload Characterization, November 2015, pp.56-65.
– reference: WongHSLeeHYYuSChenYSWuYChenPSLeeBChenFTTsaiMJMetal-oxide RRAMProceedings of the IEEE201210061951197010.1109/JPROC.2012.2190369
– reference: Roy A, Mihailovic I, Zwaenepoel W. X-Stream: Edge-centric graph processing using streaming partitions. In Proc. the 24th ACM SIGOPS Symp. Operating Systems Principles, November 2013, pp.472-488.
– reference: Wang P, Zhang K, Chen R, Chen H, Guan H. Replication-based fault-tolerance for large-scale graph processing. In Proc. the 44th Annual IEEE/IFIP Int. Conf. Dependable Systems and Networks, June 2014, pp.562-573.
– reference: Chi Y, Dai G, Wang Y, Sun G, Li G, Yang H. NXgraph: An efficient graph processing system on a single machine. In Proc. the 32nd IEEE Int. Conf. Data Engineering, May 2016, pp.409-420.
– reference: Rodeh O. B-trees, shadowing, and clones. ACM Transactions on Storage, 2008, 3(4): Article No. 2.
– reference: Sengupta D, Song S L, Agarwal K, Schwan K. GraphReduce: Processing large-scale graphs on accelerator-based systems. In Proc. the 2015 Int. Conf. High Performance Computing, Networking, Storage and Analysis, November 2015, Article No. 28.
– reference: Ozdal M M, Yesil S, Kim T, Ayupov A, Burns S, Ozturk O. Architectural requirements for energy efficient execution of graph analytics applications. In Proc. the 2015 IEEE/ACM Int. Conf. Computer-Aided Design, November 2015, pp.676-681.
– reference: Milenković T, Lai J, Pržulj N. GraphCrunch: A tool for large network analyses. BMC Bioinformatics, 2008, 9: Article No. 70.
– reference: AyupovAYesilSOzdalMMKimTBurnsSÖzturkÖA template-based design methodology for graph-parallel hardware acceleratorsIEEE Trans. Computer Aided Design of Integrated Circuits and Systems201837242043010.1109/TCAD.2017.2706562
– reference: Ribeiro L F, Saverese P H, Figueiredo D R. Struc2vec: Learning node representations from structural identity. In Proc. the 23rd ACM SIGKDD Int. Conf. Knowledge Discovery and Data Mining, August 2017, pp.385-394.
– reference: Jun S W, Liu M, Lee S, Hicks J, Ankcorn J, King M, Xu S, Arvind. BlueDBM: An appliance for big data analytics. In Proc. the 42nd ACM Annual Int. Symp. Computer Architecture, June 2015, pp.1-13.
– reference: Battaglia P W, Hamrick J B, Bapst V et al. Relational inductive biases, deep learning, and graph networks. arXiv:1806.01261, 2018. http://arxiv.org/abs/1806.01261, Jun. 2018.
– reference: Jun S W, Wright A, Zhang S, Xu S, Arvind. GraFBoost: Using accelerated flash storage for external graph analytics. In Proc. the 45th ACM/IEEE Int. Symp. Computer Architecture, June 2018, pp.411-424.
– reference: FaloutsosMFaloutsosPFaloutsosCOn power-law relationships of the Internet topologyACM SIGCOMM Computer Communication Review199929425126210.1145/316194.3162290889.68050
– reference: Gonzalez J E, Xin R S, Dave A, Crankshaw D, Franklin M J, Stoica I. GraphX: Graph processing in a distributed dataflow framework. In Proc. the 11th USENIX Symp. Operating Systems Design and Implementation, October 2014, pp.599-613.
– reference: Zhang J, Li J. Degree-aware hybrid graph traversal on FPGA-HMC platform. In Proc. the 2018 ACM/SIGDA Int. Symp. Field-Programmable Gate Arrays, February 2018, pp.229-238.
– reference: Weisz G, Melber J, Wang Y, Fleming K, Nurvitadhi E, Hoe J C. A study of pointer-chasing performance on shared-memory processor-FPGA systems. In Proc. the 2016 ACM/SIGDA Int. Symp. Field-Programmable Gate Arrays, February 2016, pp.264-273.
– reference: Heidari S, Simmhan Y, Calheiros R N, Buyya R. Scalable graph processing frameworks: A taxonomy and open challenges. ACM Trans. Computing Surveys, 2018, 51(3): Article No. 60.
– reference: Zheng L, Liao X, Jin H, Zhao J, Wang Q. Scalable concurrency debugging with distributed graph processing. In Proc. the 2018 Int. Symp. Code Generation and Optimization, February 2018, pp.188-199.
– reference: Zhu X, Chen W, Zheng W, Ma X. Gemini: A computation-centric distributed graph processing system. In Proc. the 12th USENIX Symp. Operating Systems Design and Implementation, November 2016, pp.301-316.
– reference: Attia O G, Grieve A, Townsend K R, Jones P, Zambreno J. Accelerating all-pairs shortest path using a message-passing reconfigurable architecture. In Proc. the 2015 Int. Conf. Reconfigurable Computing and FPGAs, December 2015, Article No. 5.
– reference: Page L, Brin S, Motwani R, Winograd T. The PageRank citation ranking: Bringing order to the web. Technical Report, Stanford InfoLab, 1999. http://ilpubs.stanford.edu:8090/422/1/1999-66.pdf, Jan. 2019.
– reference: Zheng D, Mhembere D, Burns R, Vogelstein J, Priebe C E, SzalayA S. FlashGraph: Processing billion-node graphs on an array of commodity SSDs. In Proc. the 13th USENIX Conf. File and Storage Technologies, February 2015, pp.45-58.
– reference: Zhou S, Chelmis C, Prasanna V K. High-throughput and energy-efficient graph processing on FPGA. In Proc. the 24th IEEE Annual Int. Symp. Field-Programmable Custom Computing Machines, May 2016, pp.103-110.
– reference: McLaughlin A, Bader D A. Scalable and high performance betweenness centrality on the GPU. In Proc. the 2014 Int. Conf. High Performance Computing, Networking, Storage and Analysis, November 2014, pp.572-583.
– reference: Gu B, Yoon A S, Bae D H, Jo I, Lee J, Yoon J, Kang J U, Kwon M, Yoon C, Cho S, Jeong J, Chang D. Biscuit: A framework for near-data processing of big data workloads. In Proc. the 43rd Int. Symp. Computer Architecture, June 2016, pp.153-165.
– reference: Betkaoui B, Thomas D B, Luk W, Przulj N. A framework for FPGA acceleration of large graph problems: Graphlet counting case study. In Proc. the 2011 Int. Conf. Field-Programmable Technology, December 2011, Article No. 2.
– reference: Jin H, Yao P, Liao X, Zheng L, Li X. Towards dataflow-based graph accelerator. In Proc. the 37th IEEE Int. Conf. Distributed Computing Systems, June 2017, pp.1981-1992.
– reference: Nai L, Hadidi R, Sim J, Kim H, Kumar P, Kim H. Graph-PIM: Enabling instruction-level PIM offloading in graph computing frameworks. In Proc. the 2007 IEEE Int. Symp. High Performance Computer Architecture, February 2017, pp.457-468.
– reference: Thomas D, Moorby P. The Verilog® Hardware Description Language (5th edition). Springer, 2002.
– reference: Zhang M, Wu Y, Chen K, Qian X, Li X, Zheng W. Exploring the hidden dimension in graph processing. In Proc. the 12th USENIX Conf. Operating Systems Design and Implementation, November 2016, pp.285-300.
– reference: Matsumoto K, Nakasato N, Sedukhin S G. Blocked all-pairs shortest paths algorithm for hybrid CPU-GPU system. In Proc. the 13th IEEE Int. Conf. High Performance Computing and Communications, September 2011, pp.145-152.
– reference: Zhang J, Khoram S, Li J. Boosting the performance of FPGA-based graph processor using hybrid memory cube: A case for breadth first search. In Proc. the 2017 ACM/SIGDA Int. Symp. Field-Programmable Gate Arrays, February 2017, pp.207-216.
– reference: Engelhardt N, So H K. GraVF: A vertex-centric distributed graph processing framework on FPGAs. In Proc. the 26th Int. Conf. Field Programmable Logic and Applications, August 2016, Article No. 62.
– reference: Do J, Kee Y S, Patel J M, Park C, Park K, DeWitt D J. Query processing on smart SSDs: Opportunities and challenges. In Proc. the 2013 ACM SIGMOD Int. Conf. Management of Data, June 2013, pp.1221-1230.
– reference: Song W S, Gleyzer V, Lomakin A, Kepner J. Novel graph processor architecture, prototype system, and results. In Proc. the 2016 IEEE High Performance Extreme Computing Conference, September 2016, Article No. 59.
– reference: Davidson A A, Baxter S, Garland M, Owens J D. Work-efficient parallel GPU methods for single-source shortest paths. In Proc. the 28th IEEE Int. Parallel and Distributed Processing Symp., May 2014, pp.349-359.
– reference: Zhou S, Kannan R, Min Y, Prasanna V K. FASTCF: FPGA-based accelerator for stochastic-gradient-descent-based collaborative filtering. In Proc. the 2018 ACM/SIGDA Int. Symp. Field-Programmable Gate Arrays, February 2018, pp.259-268.
– reference: Malicevic J, Lepers B, Zwaenepoel W. Everything you always wanted to know about multicore graph processing but were afraid to ask. In Proc. the 2017 USENIX Annual Technical Conf., July 2017, pp.631-643.
– reference: Khayyat Z, Awara K, Alonazi A, Jamjoom H, Williams D, Kalnis P. Mizan: A system for dynamic load balancing in large-scale graph processing. In Proc. the 8th ACM European Conf. Computer Systems, April 2013, pp.169-182.
– reference: Hong S, Chafi H, Sedlar E, Olukotun K. Green-Marl: A DSL for easy and efficient graph analysis. In Proc. the 17th Int. Conf. Architectural Support for Programming Languages and Operating Systems, March 2012, pp.349-362.
– reference: Sariyüce A E, Kaya K, Saule E, Çatalyürek Ü V. Betweenness centrality on GPUs and heterogeneous architectures. In Proc. the 6th Workshop on General Purpose Processor Using Graphics Processing Units, March 2013, pp.76-85.
– reference: SundaramNSatishNPatwaryMMDulloorSRAndersonMJVadlamudiSGDasDDubeyPGraphMat: High performance graph analytics made productiveProceedings of the VLDB Endowment20158111214122510.14778/2809974.2809983
– reference: Dai G, Huang T, Chi Y, Zhao J, Sun G, Liu Y, Wang Y, Xie Y, Yang H. GraphH: A processing-in-memory architecture for large-scale graph processing. IEEE Trans. Computer-Aided Design of Integrated Circuits and Systems. doi:https://doi.org/10.1109/TCAD.2018.2821565.
– reference: Xie C, Chen R, Guan H, Zang B, Chen H. SYNC or ASYNC: Time to fuse for distributed graph-parallel computation. In Proc. the 20th ACM SIGPLAN Symp. Principles and Practice of Parallel Programming, February 2015, pp.194-204.
– reference: Han W S, Lee S, Park K, Lee J H, Kim M S, Kim J, Yu H. TurboGraph: A fast parallel graph engine handling billion-scale graphs in a single PC. In Proc. the 19th ACM SIGKDD Int. Conf. Knowledge Discovery and Data Mining, August 2013, pp.77-85.
– reference: Zhang J, Jung M. FlashAbacus: A self-governing flash-based accelerator for low-power systems. In Proc. the 13th EuroSys Conf., April 2018, Article No. 15.
– reference: Han L, Shen Z, Shao Z, Huang H H, Li T. A novel ReRAM-based processing-in-memory architecture for graph computing. In Proc. the 6th IEEE Non-Volatile Memory Systems and Applications Symp., August 2017, Article No. 13.
– reference: Malewicz G, Austern M H, Bik A J, Dehnert J C, Horn I, Leiser N, Czajkowski G. Pregel: A system for large-scale graph processing. In Proc. ACM SIGMOD Int. Conf. Management of Data, June 2010, pp.135-146.
– reference: ShaMLiYHeBTanKLAccelerating dynamic graph analytics on GPUsProceedings of the VLDB Endowment201711110712010.14778/3151113.3151122
– reference: Zhang M, Zhuo Y, Wang C, Gao M, Wu Y, Chen K, Kozyrakis C, Qian X. GraphP: Reducing communication for PIM-based graph processing with efficient data partition. In Proc. the 2018 IEEE Int. Symp. High Performance Computer Architecture, February 2018, pp.544-557.
– reference: Ma X, Zhang D, Chiou D. FPGA-accelerated transactional execution of graph workloads. In Proc. the 2017 ACM/SIGDA Int. Symp. Field-Programmable Gate Arrays, February 2017, pp.227-236.
– reference: Wang Y, Davidson A, Pan Y, Wu Y, Riffel A, Owens J D. Gunrock: A high-performance graph processing library on the GPU. In Proc. the 21st ACM SIGPLAN Symp. Principles and Practice of Parallel Programming, March 2016, Article No. 11.
– reference: ZhangTZhangJShuWWuMYLiangXEfficient graph computation on hybrid CPU and GPU systemsThe Journal of Supercomputing20157141563158610.1007/s11227-015-1378-z
– reference: Chen T, Du Z, Sun N, Wang J, Wu C, Chen Y, Temam O. DianNao: A small-footprint high-throughput accelerator for ubiquitous machine-learning. In Proc. the 19th Int. Conf. Architectural Support for Programming Languages and Operating Systems, March 2014, pp.269-284.
– reference: Ashenden P J. The Designer’s Guide to VHDL (3rd edition). Morgan Kaufmann, 2008.
– reference: Shi X, Cui B, Shao Y, Tong Y. Tornado: A system for real-time iterative analysis over evolving data. In Proc. the 2016 Int. Conf. Management of Data, June 2016, pp.417-430.
– reference: Caulfield A M, Chung E S, Putnam A et al. A cloud-scale acceleration architecture. In Proc. the 49th Annual IEEE/ACM Int. Symp. Microarchitecture, October 2016, Article No. 7.
– reference: Song L, Zhuo Y, Qian X, Li H, Chen Y. GraphR: Accelerating graph processing using ReRAM. In Proc. the 2018 IEEE Int. Symp. High Performance Computer Architecture, February 2018, pp.531-543.
– reference: Jouppi N P, Young C, Patil N et al. In-datacenter performance analysis of a tensor processing unit. In Proc. the 44th Annual Int. Symp. Computer Architecture, June 2017, pp.1-12.
– reference: Yuan P, Zhang W, Xie C, Jin H, Liu L, Lee K. Fast iterative graph computation: A path centric approach. In Proc. the 2004 Int. Conf. High Performance Computing, Networking, Storage and Analysis, November 2014, pp.401-412.
– reference: Han L, Shen Z, Liu D, Shao Z, Huang H H, Li T. A novel ReRAM-based processing-in-memory architecture for graph traversal. ACM Trans. Storage, 2018, 14(1): Article No. 9.
– reference: Zhou S, Prasanna V K. Accelerating graph analytics on CPU-FPGA heterogeneous platform. In Proc. the 29th Int. Symp. Computer Architecture and High Performance Computing, October 2017, pp.137-144.
– reference: Zhu X, Han W, Chen W. GridGraph: Large-scale graph processing on a single machine using 2-level hierarchical partitioning. In Proc. the 2005 USENIX Annual Technical Conf., July 2015, pp.375-386.
– reference: Oguntebi T, Olukotun K. GraphOps: A dataflow library for graph analytics acceleration. In Proc. the 2016 ACM/SIGDA Int. Symp. Field-Programmable Gate Arrays, February 2016, pp.111-117.
– reference: Zhou S, Chelmis C, Prasanna V K. Accelerating large-scale single-source shortest path on FPGA. In Proc. the 2015 Int. Parallel and Distributed Processing Symposium Workshop, May 2015, pp.129-136.
– reference: Kim M S, An K, Park H, Seo H, Kim J. GTS: A fast and scalable graph processing method based on streaming topology to GPUs. In Proc. the 2016 Int. Conf. Management of Data, June 2016, pp.447-461.
– reference: Zhou S, Chelmis C, Prasanna V K. Optimizing memory performance for FPGA implementation of PageRank. In Proc. the 2015 Int. Conf. Reconfigurable Computing and FPGAs, December 2015, Article No. 53.
– reference: Seo H, Kim J, Kim M S. GStream: A graph streaming processing method for large-scale graphs on GPUs. In Proc. the 20th ACM SIGPLAN Symp. Principles and Practice of Parallel Programming, February 2015, pp.253-254.
– reference: Zhao Y, Yoshigoe K, Xie M, Zhou S, Seker R, Bian J. LightGraph: Lighten communication in distributed graph-parallel processing. In Proc. the 2004 IEEE Int. Congress on Big Data, June 2014, pp.717-724.
– reference: Avery C. Giraph: Large-scale graph processing infrastructure on Hadoop. In Proc. the 2011 Hadoop Summit, June 2011, pp.5-9.
– reference: Liu H, Huang H H. Enterprise: Breadth-first graph traversal on GPUs. In Proc. Int. Conf. High Performance Computing, Networking, Storage and Analysis, November 2015, Article No. 68.
– reference: Ben-Nun T, Sutton M, Pai S, Pingali K. Groute: An asynchronous multi-GPU programming model for irregular computations. In Proc. the 22nd ACM SIGPLAN Symp. Principles and Practice of Parallel Programming, February 2017, pp.235-248.
– reference: Nurvitadhi E, Weisz G, Wang Y, Hurkat S, Nguyen M, Hoe J C, Martínez J F, Guestrin C. GraphGen: An FPGA framework for vertex-centric graph computation. In Proc. the 22nd IEEE Annual Int. Symp. Field-Programmable Custom Computing Machines, May 2014, pp.25-28.
– reference: WangLYangXDaiHScratchpad memory allocation for arrays in permutation graphsScience China Information Sciences20135651133067638
– reference: Umuroglu Y, Morrison D, Jahre M. Hybrid breadth-first search on a single-chip FPGA-CPU heterogeneous platform. In Proc. the 25th Int. Conf. Field Programmable Logic and Applications, September 2015, Article No. 12.
– reference: Son Y, Choi J, Jeon J, Min C, Kim S, Yeom H Y, Han H. SSD-assisted backup and recovery for database systems. In Proc. the 33rd IEEE Int. Conf. Data Engineering, April 2017, pp.285-296.
– reference: Jin H, Yao P, Liao X. Towards dataflow based graph processing. Science China Information Sciences, 2017, 60(12): Article No. 126102.
– reference: Khorasani F, Vora K, Gupta R, Bhuyan L N. CuSha: Vertex-centric graph processing on GPUs. In Proc. the 23rd Int. Symp. High-Performance Parallel and Distributed Computing, June 2014, pp.239-252.
– reference: Gonzalez J E, Low Y, Gu H, Bickson D, Guestrin C. Power-Graph: Distributed graph-parallel computation on natural graphs. In Proc. the 10th USENIX Symp. Operating Systems Design and Implementation, October 2012, pp.17-30.
– reference: Zhang K, Chen R, Chen H. NUMA-aware graph-structured analytics. In Proc. the 20th ACM SIGPLAN Symp. Principles and Practice of Parallel Programming, February 2015, pp.183-193.
– reference: ShiXLuoXLiangJZhaoPDiSHeBJinHFrog: Asynchronous graph processing on GPU with hybrid coloring modelIEEE Trans. Knowledge and Data Engineering2018301294210.1109/TKDE.2017.2745562
– reference: Kim J, Kim Y. HBM: Memory solution for bandwidth-hungry processors. In Proc. the 26th IEEE Hot Chips Symp., August 2014, Article No. 19.
– reference: Kim G, Kim J, Ahn J H, Kim J. Memory-centric system interconnect design with hybrid memory cubes. In Proc. the 22nd Int. Conf. Parallel Architectures and Compilation Techniques, September 2013, pp.145-155.
– reference: Zheng L, Liao X, Jin H. Efficient and scalable graph parallel processing with symbolic execution. ACM Trans. Architecture and Code Optimization, 2018, 15(1): Article No. 3.
– reference: Shun J, Blelloch G E. Ligra: A lightweight graph processing framework for shared memory. In Proc. the 18th ACM SIGPLAN Symp. Principles and Practice of Parallel Programming, February 2013, pp.135-146.
– reference: Teixeira C H, Fonseca A J, Serafini M, Siganos G, Zaki M J, Aboulnaga A. Arabesque: A system for distributed graph mining. In Proc. the 25th Symp. Operating Systems Principles, October 2015, pp.425-440.
– reference: Pawlowski J T. Hybrid memory cube (HMC). In Proc. the 23rd IEEE Hot Chips Symp., August 2011, Article No. 15.
– reference: Windh S, Budhkar P, Najjar W A. CAMs as synchronizing caches for multithreaded irregular applications on FPGAs. In Proc. the 2015 ACM/IEEE Int. Conf. Computer-Aided Design, November 2015, pp.331-336.
– reference: Satish N, Sundaram N, Patwary M M, Seo J, Park J, Hassaan M A, Sengupta S, Yin Z, Dubey P. Navigating the maze of graph analytics frameworks using massive graph datasets. In Proc. ACM SIGMOD Int. Conf. Management of Data, June 2014, pp.979-990.
– reference: ChenHSunZYiFSuJBufferBank storage: An economic, scalable and universally usable in-network storage model for streaming data applicationsScience China Information Sciences2016591115
– reference: McCune R R, Weninger T, Madey G. Thinking like a vertex: A survey of vertex-centric frameworks for large-scale distributed graph processing. ACM Trans. Computing Surveys, 2015, 48(2): Article No. 25.
– reference: LowYBicksonDGonzalezJGuestrinCKyrolaAHellersteinJMDistributed GraphLab: A framework for machine learning and data mining in the cloudProceedings of the VLDB Endowment20125871672710.14778/2212351.2212354
– ident: 1914_CR134
  doi: 10.1145/3179541.3168817
– ident: 1914_CR114
  doi: 10.1109/ICCAD.2015.7372635
– ident: 1914_CR91
  doi: 10.1109/ICDCS.2017.150
– ident: 1914_CR44
  doi: 10.1145/2741948.2741970
– ident: 1914_CR69
  doi: 10.1109/NVMSA.2017.8064464
– ident: 1914_CR120
  doi: 10.1109/HPCC.2011.28
– ident: 1914_CR18
  doi: 10.1145/2588555.2610518
– ident: 1914_CR28
  doi: 10.1145/3020078.3021739
– ident: 1914_CR86
  doi: 10.1109/ASAP.2012.30
– ident: 1914_CR119
  doi: 10.1109/PACT.2011.14
– ident: 1914_CR116
– volume: 8
  start-page: 1214
  issue: 11
  year: 2015
  ident: 1914_CR51
  publication-title: Proceedings of the VLDB Endowment
  doi: 10.14778/2809974.2809983
– ident: 1914_CR32
  doi: 10.1145/2872887.2750386
– ident: 1914_CR12
  doi: 10.1109/IISWC.2015.12
– ident: 1914_CR24
  doi: 10.1109/FCCM.2006.45
– ident: 1914_CR39
  doi: 10.1145/3199523
– ident: 1914_CR36
– ident: 1914_CR82
  doi: 10.23919/DATE.2018.8342150
– ident: 1914_CR126
  doi: 10.1145/2882903.2882950
– ident: 1914_CR23
  doi: 10.1109/MICRO.2016.7783710
– volume: 56
  start-page: 1
  issue: 5
  year: 2013
  ident: 1914_CR110
  publication-title: Science China Information Sciences
– ident: 1914_CR42
– volume: 30
  start-page: 29
  issue: 1
  year: 2018
  ident: 1914_CR9
  publication-title: IEEE Trans. Knowledge and Data Engineering
  doi: 10.1109/TKDE.2017.2745562
– ident: 1914_CR21
– ident: 1914_CR66
  doi: 10.1145/2882903.2882959
– volume: 59
  start-page: 1
  issue: 1
  year: 2016
  ident: 1914_CR127
  publication-title: Science China Information Sciences
– ident: 1914_CR94
  doi: 10.1109/ISCA.2018.00042
– ident: 1914_CR72
  doi: 10.1145/2847263.2847337
– ident: 1914_CR77
  doi: 10.1145/3177916
– ident: 1914_CR103
  doi: 10.1109/MDAT.2017.2779742
– ident: 1914_CR15
  doi: 10.1145/3243176.3243201
– ident: 1914_CR100
  doi: 10.1145/2463676.2465295
– ident: 1914_CR56
  doi: 10.1109/ICDE.2016.7498258
– ident: 1914_CR68
  doi: 10.1145/2882903.2915204
– ident: 1914_CR113
  doi: 10.1145/2858788.2688508
– ident: 1914_CR131
  doi: 10.1145/3097983.3098061
– ident: 1914_CR16
  doi: 10.1109/MICRO.2016.7783759
– ident: 1914_CR76
  doi: 10.1145/3174243.3174260
– ident: 1914_CR71
  doi: 10.1145/3020078.3021737
– ident: 1914_CR79
  doi: 10.1109/FPL.2015.7293939
– ident: 1914_CR1
  doi: 10.1145/1807167.1807184
– volume: 5
  start-page: 716
  issue: 8
  year: 2012
  ident: 1914_CR2
  publication-title: Proceedings of the VLDB Endowment
  doi: 10.14778/2212351.2212354
– ident: 1914_CR45
– ident: 1914_CR58
  doi: 10.1145/2858788.2688526
– ident: 1914_CR61
  doi: 10.1145/2458523.2458531
– ident: 1914_CR96
– ident: 1914_CR43
  doi: 10.1145/2815400.2815410
– ident: 1914_CR107
  doi: 10.1109/HPEC.2016.7761635
– ident: 1914_CR121
– ident: 1914_CR19
  doi: 10.1145/3155284.3018756
– ident: 1914_CR11
  doi: 10.1145/2807591.2807594
– ident: 1914_CR136
  doi: 10.1145/2541940.2541967
– ident: 1914_CR129
– ident: 1914_CR8
  doi: 10.1145/2851141.2851145
– ident: 1914_CR118
  doi: 10.1186/1471-2105-9-70
– volume: 43
  start-page: 35
  issue: 2
  year: 2014
  ident: 1914_CR6
  publication-title: ACM SIGMOD Record
  doi: 10.1145/2694413.2694421
– ident: 1914_CR40
– ident: 1914_CR70
  doi: 10.1109/HPCA.2018.00052
– ident: 1914_CR26
  doi: 10.1145/2847263.2847339
– ident: 1914_CR38
  doi: 10.1145/3128571
– volume: 10
  start-page: 1706
  issue: 12
  year: 2017
  ident: 1914_CR97
  publication-title: Proceedings of the VLDB Endowment
  doi: 10.14778/3137765.3137776
– ident: 1914_CR52
  doi: 10.1145/2858788.2688507
– ident: 1914_CR84
  doi: 10.1109/ASAP.2015.7245698
– ident: 1914_CR92
  doi: 10.1109/IPDPSW.2015.130
– ident: 1914_CR132
  doi: 10.1145/3170434
– ident: 1914_CR85
  doi: 10.1109/FPT.2011.6132667
– ident: 1914_CR111
  doi: 10.1109/PACT.2015.22
– ident: 1914_CR34
– ident: 1914_CR73
  doi: 10.1109/TCAD.2018.2821565
– ident: 1914_CR7
  doi: 10.1145/2600212.2600227
– ident: 1914_CR50
  doi: 10.1145/2517349.2522739
– ident: 1914_CR106
  doi: 10.1109/ICDE.2017.88
– ident: 1914_CR20
– ident: 1914_CR53
  doi: 10.1145/2487575.2487581
– ident: 1914_CR5
  doi: 10.1145/2517349.2522740
– ident: 1914_CR98
– ident: 1914_CR115
  doi: 10.1109/SC.2012.50
– ident: 1914_CR87
  doi: 10.1109/FPL.2012.6339247
– ident: 1914_CR135
– ident: 1914_CR75
  doi: 10.1145/3174243.3174252
– volume: 37
  start-page: 420
  issue: 2
  year: 2018
  ident: 1914_CR31
  publication-title: IEEE Trans. Computer Aided Design of Integrated Circuits and Systems
  doi: 10.1109/TCAD.2017.2706562
– ident: 1914_CR122
  doi: 10.1145/3020078.3021743
– ident: 1914_CR109
  doi: 10.1109/ICCAD.2015.7372588
– ident: 1914_CR10
  doi: 10.1145/2621934.2621936
– ident: 1914_CR30
  doi: 10.1109/CCGRID.2017.114
– ident: 1914_CR54
  doi: 10.1109/SC.2014.38
– ident: 1914_CR123
– ident: 1914_CR3
  doi: 10.1145/2442516.2442530
– volume: 36
  start-page: 8
  issue: 2
  year: 2016
  ident: 1914_CR22
  publication-title: IEEE Micro
  doi: 10.1109/MM.2016.11
– ident: 1914_CR81
  doi: 10.1109/HPCA.2018.00053
– ident: 1914_CR99
  doi: 10.1109/HPCA.2015.7056056
– volume: 100
  start-page: 1951
  issue: 6
  year: 2012
  ident: 1914_CR35
  publication-title: Proceedings of the IEEE
  doi: 10.1109/JPROC.2012.2190369
– ident: 1914_CR67
  doi: 10.1145/2807591.2807655
– ident: 1914_CR133
  doi: 10.1145/3140659.3080228
– ident: 1914_CR49
  doi: 10.1109/DSN.2014.58
– ident: 1914_CR117
– ident: 1914_CR29
  doi: 10.1145/3007787.3001155
– ident: 1914_CR95
– ident: 1914_CR90
  doi: 10.1109/FPL.2016.7577360
– ident: 1914_CR108
  doi: 10.1007/s11432-017-9226-8
– volume: 37
  start-page: 42
  issue: 1
  year: 2017
  ident: 1914_CR83
  publication-title: IEEE Micro
  doi: 10.1109/MM.2017.7
– ident: 1914_CR93
  doi: 10.1109/ReConFig.2015.7393332
– ident: 1914_CR46
  doi: 10.1145/2465351.2465369
– ident: 1914_CR89
  doi: 10.1109/ReConFig.2015.7393284
– ident: 1914_CR60
  doi: 10.1109/SC.2014.52
– ident: 1914_CR64
– ident: 1914_CR128
– ident: 1914_CR130
– ident: 1914_CR74
  doi: 10.1145/3174243.3174245
– ident: 1914_CR88
  doi: 10.1109/FCCM.2014.15
– ident: 1914_CR41
– ident: 1914_CR63
  doi: 10.1145/2248487.2151013
– ident: 1914_CR48
  doi: 10.1109/BigData.Congress.2014.106
– ident: 1914_CR80
  doi: 10.1109/SBAC-PAD.2017.25
– ident: 1914_CR105
  doi: 10.1145/3007787.3001154
– ident: 1914_CR25
  doi: 10.1109/IPDPSW.2014.30
– ident: 1914_CR102
  doi: 10.1145/3190508.3190544
– volume: 71
  start-page: 1563
  issue: 4
  year: 2015
  ident: 1914_CR65
  publication-title: The Journal of Supercomputing
  doi: 10.1007/s11227-015-1378-z
– ident: 1914_CR124
  doi: 10.1145/1326542.1326544
– ident: 1914_CR33
  doi: 10.1109/HOTCHIPS.2011.7477494
– ident: 1914_CR59
  doi: 10.1109/IPDPSW.2010.5470817
– volume: 11
  start-page: 107
  issue: 1
  year: 2017
  ident: 1914_CR125
  publication-title: Proceedings of the VLDB Endowment
  doi: 10.14778/3151113.3151122
– ident: 1914_CR62
  doi: 10.1109/IPDPS.2014.45
– ident: 1914_CR57
  doi: 10.1145/3064176.3064191
– ident: 1914_CR78
  doi: 10.1109/FPT.2010.5681757
– ident: 1914_CR101
  doi: 10.1145/2872887.2750412
– ident: 1914_CR14
  doi: 10.1109/HPCA.2017.54
– volume: 29
  start-page: 251
  issue: 4
  year: 1999
  ident: 1914_CR112
  publication-title: ACM SIGCOMM Computer Communication Review
  doi: 10.1145/316194.316229
– ident: 1914_CR27
  doi: 10.1109/FCCM.2016.35
– ident: 1914_CR47
  doi: 10.1109/WAINA.2010.85
– ident: 1914_CR55
– ident: 1914_CR4
– ident: 1914_CR104
  doi: 10.1145/2847263.2847269
– ident: 1914_CR37
  doi: 10.1145/2818185
– ident: 1914_CR13
– ident: 1914_CR17
  doi: 10.1145/2807591.2807626
SSID ssj0037044
Score 2.4651074
Snippet Graph is a well known data structure to represent the associated relationships in a variety of applications, e.g., data science and machine learning. Despite a...
Graph is a well known data structure to represent the associated relationships in a variety of applications,e.g.,data science and machine learning.Despite a...
SourceID wanfang
proquest
gale
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 339
SubjectTerms Accelerators
Artificial Intelligence
Computer Science
Computers
Data science
Data structures
Data Structures and Information Theory
Energy consumption
Energy efficiency
Field programmable gate arrays
Graph representations
Hardware
Information Systems Applications (incl.Internet)
Machine learning
Personal computers
R&D
Research & development
Software
Software Engineering
Survey
Surveys
Theory of Computation
SummonAdditionalLinks – databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT8MwDI54XLjwRgwGygGEBIpI2m5NuKAKsU1IwAGQuEVpmiAN1A26obFfT9ylFDjs3DSp7MR27fj7EDoKFKc2tIbEkaAkYqklImOaCBOIVBmb2Qy6kW_v2r2n6Oa59ewTboW_VlnZxNJQZwMNOfLzQDAOUCE0uBy-E2CNguqqp9BYRMvMeRrY4bzTrSxxGNOSzBVS2ATIMauqZtk650IfuJIlCCCckekfv_TfOv8qk5bNPblV-csvP9RZR6s-gMTJTOMbaMHkm2itImfA_qxuoW6CH8Yfn-YLD3LcBVhq7JsC3AI40dr5m7LEXlzgq4pRpcAqz_D9EILycV6CrW6jp87141WPeNYEol2sMyKh4dpaGqrUcqcf21JWGcZjFQIWZKqgG1YrETMAhhGZsUxxS9sulOBpO9Is3EFL-SA3uwjbIDK0rVRsoZiq3Z-ZiaIgZSrQMTcZbyBayUxqDykOzBZvsgZDBjFLJ2YJYpbTBjr9eWU4w9OYN_gEFCHhrLl5tfItA-7rALVKJjETLqIJW7SBmpWupD-Ehay3TAOdVfqrH89Z9tiruB7cL_qvk34xSaUJoP0eMjF78xfdRyswdHZhrYmWRh9jc-AimFF6WG7Tb5_H7JE
  priority: 102
  providerName: ProQuest
Title A Survey on Graph Processing Accelerators: Challenges and Opportunities
URI https://link.springer.com/article/10.1007/s11390-019-1914-z
https://www.proquest.com/docview/2918612302
https://d.wanfangdata.com.cn/periodical/jsjkxjsxb-e201902006
Volume 34
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Pb9MwFH7ajwsX2BiIwqh8ACGBLNlO2tjcwtR2YmJMQKVxshzHntRN2bS0aOyvn19qrxuaJnHKIbEdvecfn_38fQ_gnTCS-cw7WuSK0ZxXnqqaW6qcUJVxvvY1spG_HQ73p_nX48Fx5HG36bZ7Ckl2M_WK7BbACl6iUhQ1yej1OmwOwtYdu_VUlGn6zQrWZXDFc2uKGTFTKPOhKu4tRv9OyXdiox2jp_GmObmz-Iy34GlEjaRcunkb1lzzHJ6ljAwkDtAdmJTk5-Lyj_tLzhsyQS1qEpkAoQFSWhsWmS6u3n4meymNSktMU5PvF4jEF02nsPoCpuPRr719GlMlUBsAzpxmTlrvWWYqL4NT_MB447gsTIYCkJVBCqw1quCoBqNq57mRng0DfpDVMLc8ewkbzXnjXgHxIndsaEzhMYJqw3bM5bmouBG2kK6WPWDJZtpGHXFMZ3GmVwrIaGYdzKzRzPq6Bx9vi1wsRTQe-_gDOkLjAAv1WhN5AuHvUKpKlwVXAcZkA9aD3eQrHUdeq4XiEiVlmOjBp-S_1etHmn0fXbz6eNbOTq9m7VWlnUDOPR6_vP6vWt_AEyy5vLS2Cxvzy4V7G1DMvOrDuhxP-rBZTn4fjMLzy-jw6Ee_68s3lSXtxg
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB6VcoALb0RKAR-okEAWfmyyNhJCUSFJ6YMDrdSb6_XaSKHahG4CbX8UvxHPZk0Kh9x6Xq9tzYxnxp6ZbwBeCqtYkMHTPNOMZrwIVJfcUe2FLqwPZSixGnn_oDc6yj4fd4_X4HeqhcG0yqQTG0VdThy-kb8VmiuECmHiw_QHxa5RGF1NLTQWYrHrL37FK1v9fudj5O-WEINPh9sj2nYVoC76AjMqvXIhMGmLoOL-Q9cG67nKrUSsxMJitaizOucInKJLH7hVgfWiqVVFL3NcxnlvwM1MSo0phGowTJpf5qxpHotP5hSbcaYoalOqF10tTAHTFBHV6OU_dvB_a3AlLNsUE1XBVt-u2L3BPbjTOqykv5Cw-7DmqwdwNzWDIK1ueAjDPvk6P_vpL8ikIkOEwSZtEUJcgPSdi_atCenX78h26uBSE1uV5MsULwHzqgF3fQRH10LPx7BeTSr_BEgQmWc9a_OAwVsXb4I-y0TBrXC58qXqAEs0M66FMMdOGqdmCb6MZDaRzAbJbC478PrvL9MFfseqwa-QEQbPdpzX2bZEIe4OUbJMP-c6elCyyzqwmXhl2kNfm6WIduBN4t_y84plt1oWLweP6_H383F9XhgvsNwfX342Vi_6Am6NDvf3zN7Owe5TuI2_LZLlNmF9djb3z6L3NCueNyJL4OS6z8gfSCsqcg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3faxQxEB60gvhi6y962tY8KIISmmT3bpO-La3X-qsKetC3kM0mwinp0b0rbf96M3uJV0UKPm92ssxskm935vsG4IUwkvnCO1qVitGSN56qlluqnFCNcb71LbKRPx2Pjibl-5PhSepz2uVq95ySXHIaUKUpzHdnrd9dEd8icMGCKkVRn4xe3YY7cTfmWNM1EXXeiouK9d1c8R82xe6YOa35LxN_HEx_b8_X8qQ9uyd4E75fO4jGG3A_IUhSL0P-AG658BDWc3cGkhbrIzisydfF2bm7JKeBHKIuNUmsgDgBqa2NB06fY-_2yH5uqdIRE1ryeYaofBF6tdXHMBm__bZ_RFPbBGoj2JnTwknrPStM42UMkB8abxyXlSlQDLIxSIe1RlUclWFU6zw30rNRxBKyGZWWF09gLZwGtwnEi9KxkTGVx2yqjZ9mrixFw42wlXStHADLPtM2aYpja4ufeqWGjG7W0c0a3ayvBvD69y2zpaDGTYNfYSA0LrZo15rEGYhPh7JVuq64ipCmGLIBbOVY6bQKOy0Ulygvw8QA3uT4rS7fMO3LFOLV4Gk3_XEx7S4a7QTy7_FXzNP_svoc7n45GOuP744_PIN7aGRZy7YFa_OzhduO4Gbe7PQv8C8kdPDh
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Survey+on+Graph+Processing+Accelerators%3A+Challenges+and+Opportunities&rft.jtitle=%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%A7%91%E5%AD%A6%E6%8A%80%E6%9C%AF%E5%AD%A6%E6%8A%A5%EF%BC%88%E8%8B%B1%E6%96%87%E7%89%88%EF%BC%89&rft.au=Chuang-Yi+Gui&rft.au=Long+Zheng&rft.au=Bingsheng+He&rft.au=Cheng+Liu&rft.date=2019-03-01&rft.pub=National+Engineering+Research+Center+for+Big+Data+Technology+and+System%2C+School+of+Computer+Science+and+Technology%2C+Huazhong+University+of+Science+and+Technology%2C+Wuhan+430074%2C+China&rft.issn=1000-9000&rft.volume=34&rft.issue=2&rft.spage=339&rft.epage=371&rft_id=info:doi/10.1007%2Fs11390-019-1914-z&rft.externalDocID=jsjkxjsxb_e201902006
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fjsjkxjsxb-e%2Fjsjkxjsxb-e.jpg