Face Image Reflection Removal

Face images captured through glass are usually contaminated by reflections. The low-transmitted reflections make the reflection removal more challenging than for general scenes because important facial features would be completely occluded. In this paper, we propose and solve the face image reflecti...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of computer vision Vol. 129; no. 2; pp. 385 - 399
Main Authors Wan, Renjie, Shi, Boxin, Li, Haoliang, Duan, Ling-Yu, Kot, Alex C.
Format Journal Article
LanguageEnglish
Published New York Springer US 01.02.2021
Springer
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Face images captured through glass are usually contaminated by reflections. The low-transmitted reflections make the reflection removal more challenging than for general scenes because important facial features would be completely occluded. In this paper, we propose and solve the face image reflection removal problem. We recover the important facial structures by incorporating inpainting ideas into a guided reflection removal framework, which takes two images as the input and considers various face-specific priors. We use a newly collected face reflection image dataset to train our model and compare with state-of-the-art methods. The proposed method shows advantages in estimating reflection-free face images for improving face recognition.
AbstractList Face images captured through glass are usually contaminated by reflections. The low-transmitted reflections make the reflection removal more challenging than for general scenes because important facial features would be completely occluded. In this paper, we propose and solve the face image reflection removal problem. We recover the important facial structures by incorporating inpainting ideas into a guided reflection removal framework, which takes two images as the input and considers various face-specific priors. We use a newly collected face reflection image dataset to train our model and compare with state-of-the-art methods. The proposed method shows advantages in estimating reflection-free face images for improving face recognition.
Audience Academic
Author Duan, Ling-Yu
Kot, Alex C.
Shi, Boxin
Wan, Renjie
Li, Haoliang
Author_xml – sequence: 1
  givenname: Renjie
  orcidid: 0000-0002-0161-0367
  surname: Wan
  fullname: Wan, Renjie
  email: rjwan@ntu.edu.sg
  organization: School of Electrical and Electronic Engineering, Nanyang Technological University
– sequence: 2
  givenname: Boxin
  orcidid: 0000-0001-6749-0364
  surname: Shi
  fullname: Shi, Boxin
  email: shiboxin@pku.edu.cn
  organization: National Engineering Laboratory for Video Technology, Department of CS, Peking University, Peng Cheng Laboratory
– sequence: 3
  givenname: Haoliang
  surname: Li
  fullname: Li, Haoliang
  organization: School of Electrical and Electronic Engineering, Nanyang Technological University
– sequence: 4
  givenname: Ling-Yu
  surname: Duan
  fullname: Duan, Ling-Yu
  organization: National Engineering Laboratory for Video Technology, Department of CS, Peking University, Peng Cheng Laboratory
– sequence: 5
  givenname: Alex C.
  surname: Kot
  fullname: Kot, Alex C.
  organization: School of Electrical and Electronic Engineering, Nanyang Technological University
BookMark eNp9kEFLwzAUx4NMcJt-AUEYePLQ-ZK0SXMcw-lgIEw9hzR9KR1dO5tO9NubWUHmYeSQ8PL_vZf8RmRQNzUSck1hSgHkvaeUCR4BgwgolyxKzsiQJpJHNIZkQIagwlUiFL0gI-83AMBSxofkZmEsTpZbU-Bkja5C25VNHY7b5sNUl-Tcmcrj1e8-Jm-Lh9f5U7R6flzOZ6vIcsW6iCdKpBlmMuHIQFEbp8pJl4o4MylSw5wBTjPMrcTcZNLRnDkpQGW5EA5SPia3fd9d27zv0Xd60-zbOozULPSCWMiYh9S0TxWmQl3WrulaY8PKcVvaIMSVoT4TCZWpUpQF4O4ICJkOP7vC7L3Xy5f1cZb1Wds23rfo9K4tt6b90hT0wbHuHevgWP841kmA0n-QLTtzMBheVlanUd6jPsypC2z_vnyC-gZ2po8D
CitedBy_id crossref_primary_10_1109_TCSVT_2024_3405576
crossref_primary_10_1109_TMM_2022_3152390
crossref_primary_10_3390_app132312779
crossref_primary_10_1109_ACCESS_2024_3474032
crossref_primary_10_1109_TCSVT_2021_3103519
crossref_primary_10_1109_TETCI_2024_3359063
crossref_primary_10_1109_TMM_2022_3185929
crossref_primary_10_1109_TCSVT_2023_3270173
crossref_primary_10_3233_IDA_230904
crossref_primary_10_1109_OJSP_2024_3351472
crossref_primary_10_1109_TPAMI_2022_3168560
crossref_primary_10_1109_LSP_2022_3148668
crossref_primary_10_1109_TCSVT_2024_3403932
crossref_primary_10_1007_s11042_023_15313_0
Cites_doi 10.1109/LSP.2016.2603342
10.1109/ICCV.2015.425
10.1109/ICCV.2017.351
10.1109/CVPR.2007.383052
10.1109/TIP.2018.2808768
10.1109/ICCV.2015.316
10.1109/ICCV.2005.166
10.1109/ICME.2017.8019527
10.1109/TPAMI.2019.2921574
10.1109/ICCV.2017.423
10.1109/CVPR.2018.00264
10.1109/TSMCC.2005.848171
10.1109/CVPR.2019.00837
10.1007/978-3-319-25958-1_8
10.1109/ICIP.2016.7532311
10.1007/s11263-006-0029-5
10.1109/ICCV.2013.302
10.24963/ijcai.2017/633
10.1007/978-3-319-24574-4_28
10.1109/CVPR.2018.00502
10.7551/mitpress/7503.003.0069
10.1109/AFGR.2000.840616
10.1109/CVPR.2017.624
10.1109/TIP.2018.2849880
10.1109/CVPR.2018.00566
10.1109/CVPR.2016.278
10.1109/CVPR.2011.5995347
10.1007/978-3-642-33712-3_49
10.1109/ICCV.2019.00253
10.1007/s11263-009-0275-4
10.1109/CVPR.2016.157
10.1109/CVPR.2018.00741
10.1109/ICCV.2017.228
10.1109/CVPR.2013.146
10.1109/CVPR.2018.00503
10.1007/978-3-030-01261-8_17
10.1007/978-3-319-10584-0_4
10.1007/978-3-319-10602-1_48
10.1109/CVPR.2017.190
10.1109/TIFS.2018.2833032
10.1109/TIFS.2017.2763119
10.1109/CVPR.2018.00862
10.1007/s11263-019-01276-z
10.1109/TPAMI.2011.87
10.1109/CVPR.2014.346
10.1007/978-3-540-75225-7_5
10.1007/978-3-030-01219-9_40
ContentType Journal Article
Copyright Springer Science+Business Media, LLC, part of Springer Nature 2020
COPYRIGHT 2021 Springer
Springer Science+Business Media, LLC, part of Springer Nature 2020.
Copyright_xml – notice: Springer Science+Business Media, LLC, part of Springer Nature 2020
– notice: COPYRIGHT 2021 Springer
– notice: Springer Science+Business Media, LLC, part of Springer Nature 2020.
DBID AAYXX
CITATION
ISR
3V.
7SC
7WY
7WZ
7XB
87Z
8AL
8FD
8FE
8FG
8FK
8FL
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
HCIFZ
JQ2
K60
K6~
K7-
L.-
L7M
L~C
L~D
M0C
M0N
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PYYUZ
Q9U
DOI 10.1007/s11263-020-01372-5
DatabaseName CrossRef
Gale In Context: Science
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
Technology Collection
ProQuest One
ProQuest Central Korea
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ABI/INFORM Professional Advanced
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global
Computing Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ABI/INFORM Collection China
ProQuest Central Basic
DatabaseTitle CrossRef
ABI/INFORM Global (Corporate)
ProQuest Business Collection (Alumni Edition)
ProQuest One Business
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ABI/INFORM Complete
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ABI/INFORM China
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Business Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Business (Alumni)
ProQuest One Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
Business Premium Collection (Alumni)
DatabaseTitleList
ABI/INFORM Global (Corporate)

Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Computer Science
EISSN 1573-1405
EndPage 399
ExternalDocumentID A651789912
10_1007_s11263_020_01372_5
GrantInformation_xml – fundername: National Research Foundation Singapore
  funderid: http://dx.doi.org/10.13039/501100001381
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
199
1N0
1SB
2.D
203
28-
29J
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
6TJ
78A
7WY
8FE
8FG
8FL
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFO
ACGFS
ACHSB
ACHXU
ACIHN
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACUHS
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEAQA
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
B0M
BA0
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EAD
EAP
EAS
EBLON
EBS
EDO
EIOEI
EJD
EMK
EPL
ESBYG
ESX
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IAO
IHE
IJ-
IKXTQ
ISR
ITC
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Y
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
KOW
LAK
LLZTM
M0C
M0N
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9O
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
QF4
QM1
QN7
QO4
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TAE
TEORI
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7S
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z83
Z86
Z88
Z8M
Z8N
Z8P
Z8Q
Z8R
Z8S
Z8T
Z8W
Z92
ZMTXR
~8M
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACMFV
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
ICD
PHGZM
PHGZT
AEIIB
PMFND
7SC
7XB
8AL
8FD
8FK
ABRTQ
JQ2
L.-
L7M
L~C
L~D
PKEHL
PQEST
PQGLB
PQUKI
Q9U
ID FETCH-LOGICAL-c392t-35968beb753e2091c489f7f864ba8e1a2fa031bedc7edab7f1d2f7609bd66f083
IEDL.DBID BENPR
ISSN 0920-5691
IngestDate Sat Jul 26 00:00:21 EDT 2025
Tue Jun 10 20:44:32 EDT 2025
Fri Jun 27 04:22:08 EDT 2025
Tue Jul 01 04:30:57 EDT 2025
Thu Apr 24 23:00:16 EDT 2025
Fri Feb 21 02:49:30 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Deep learning
Optical flow
Reflection removal
Face images
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c392t-35968beb753e2091c489f7f864ba8e1a2fa031bedc7edab7f1d2f7609bd66f083
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-6749-0364
0000-0002-0161-0367
PQID 2489046743
PQPubID 1456341
PageCount 15
ParticipantIDs proquest_journals_2489046743
gale_infotracacademiconefile_A651789912
gale_incontextgauss_ISR_A651789912
crossref_primary_10_1007_s11263_020_01372_5
crossref_citationtrail_10_1007_s11263_020_01372_5
springer_journals_10_1007_s11263_020_01372_5
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20210200
2021-02-00
20210201
PublicationDateYYYYMMDD 2021-02-01
PublicationDate_xml – month: 2
  year: 2021
  text: 20210200
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle International journal of computer vision
PublicationTitleAbbrev Int J Comput Vis
PublicationYear 2021
Publisher Springer US
Springer
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer
– name: Springer Nature B.V
References Jaderberg, M., Simonyan, K., Zisserman, A., et al. (2015). Spatial transformer networks. In Proceedings of neural information processing systems (NeurIPS).
Pathak, D., Krahenbuhl, P., Donahue, J., Darrell, T., & Efros, A. A. (2016). Context encoders: Feature learning by inpainting. In Proceedings of computer vision and pattern recognition (CVPR).
Pitie, F., Kokaram, A. C., & Dahyot, R. (2005). N-dimensional probability density function transfer and its application to color transfer. In International Conference on Computer Vision (ICCV).
Lee, D., Yang, M.-H., & Oh, S. (2018). Generative single image reflection separation. arXiv preprintarXiv:1801.04102.
WanRShiBDuanL-YTanA-HGaoWKotACRegion-aware reflection removal with unified content and gradient priorsIEEE Transactions on Image Processing201827629272941378056610.1109/TIP.2018.2808768
Ronneberger, O., Fischer, P., & Brox, T. (2015). U-net: Convolutional networks for biomedical image segmentation. In Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention.
Lyu, Y., Cui, Z., Li, S., Pollefeys, M., & Shi, B. (2019). Reflection separation using a pair of unpolarized and polarized images. In Advances in neural information processing systems.
AmosBLudwiczukBSatyanarayananMOpenface: A general-purpose face recognition library with mobile applications2016PittsburghCMU School of Computer Science
Smola, A., Gretton, A., Song, L., & Schölkopf, B. (2007). A Hilbert space embedding for distributions. In International Conference on Algorithmic Learning Theory.
Li, Y., & Brown, M. (2013). Exploiting reflection change for automatic reflection removal. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.
WuXHeRSunZTanTA light CNN for deep face representation with noisy labelsIEEE Transactions on Information Forensics and Security201813112884289610.1109/TIFS.2018.2833032
Shih, Y., Krishnan, D., Durand, F., & Freeman, W. T. (2015). Reflection removal using ghosting cues. In Proceedings of computer vision and pattern recognition (CVPR).
Wan, R., Shi, B., Duan, L.-Y., Tan, A.-H., & Kot, A. C. (2018a). CRRN: Multi-scale guided concurrent reflection removal network. In Proceedings of computer vision and pattern recognition (CVPR).
Baker, S., & Kanade, T. (2000). Hallucinating faces. In FG.
Fischer, P., Dosovitskiy, A., Ilg, E., Häusser, P., Hazırbaş, C., Golkov, V., Van der Smagt, P., Cremers, D., & Brox, T. (2015). Flownet: Learning optical flow with convolutional networks. arXiv preprintarXiv:1504.06852.
Chang, Y., Jung, C., Sun, J., et al. Siamese dense network for reflection removal with flash and no-flash image pairs. International Journal of Computer Vision, 128, 1673–1698. https://doi.org/10.1007/s11263-019-01276-z.
Jason, J. Y., Harley, A. W., & Derpanis, K. G. (2016). Back to basics: Unsupervised learning of optical flow via brightness constancy and motion smoothness. In Proceedings of European Conference on Computer Vision (ECCV).
Li, Y., & Brown, M. S. (2014). Single image layer separation using relative smoothness. In Proceedings of computer vision and pattern recognition (CVPR).
Arvanitopoulos, N., Achanta, R., & Susstrunk, S. (2017). Single image reflection suppression. In Proceedings of computer vision and pattern recognition (CVPR).
Howard, A. G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T., Andreetto, M., & Adam, H. (2017). Mobilenets: Efficient convolutional neural networks for mobile vision applications. arXiv preprintarXiv:1704.04861.
Liu, Z., Luo, P., Wang, X., & Tang, X. (2015). Deep learning face attributes in the wild. In Proceedings of International Conference on Computer Vision (ICCV).
Chen, Y., Tai, Y., Liu, X., Shen, C., & Yang, J. (2018). FSRNet: End-to-end learning face super-resolution with facial priors. In Proceedings of computer vision and pattern recognition (CVPR).
Li, Y., Swersky, K., & Zemel, R. (2015). Generative moment matching networks. In International Conference on Machine Learning.
Pan, J., Hu, Z., Su, Z., & Yang, M.-H. (2014). Deblurring face images with exemplars. In Proceedings of European Conference on Computer Vision (ECCV).
Yang, J., Gong, D., Liu, L., & Shi, Q. (2018). Seeing deeply and bidirectionally: A deep learning approach for single image reflection removal. In Proceedings of European Conference on Computer Vision (ECCV).
LiuCShumH-YFreemanWTFace hallucination: Theory and practiceSpringer International Journal of Computer Vision200775111513410.1007/s11263-006-0029-5
Zhang, X., Ng, R., & Chen, Q. (2018b). Single image reflection separation with perceptual losses. In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR).
Fan, Q., Yang, J., Hua, G., Chen, B., & Wipf, D. (2017). A generic deep architecture for single image reflection removal and image smoothing. In Proceedings of International Conference on Computer Vision (ICCV).
Wan, R., Shi, B., Duan, L.-Y., Tan, A.-H., & Kot, A. C. (2017a). Benchmarking single-image reflection removal algorithms. In Proceedings of International Conference on Computer Vision (ICCV).
Wei, K., Yang, J., Fu, Y., Wipf, D., & Huang, H. (2019). Single image reflection removal exploiting misaligned training data and network enhancements. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.
ZhangKZhangZLiZQiaoYJoint face detection and alignment using multitask cascaded convolutional networksIEEE Signal Processing Letter201623101499150310.1109/LSP.2016.2603342
Li, X., Liu, M., Ye, Y., Zuo, W., Lin, L., & Yang, R. (2018b). Learning warped guidance for blind face restoration. In Proceedings of European Conference on Computer Vision (ECCV).
Lin, T.-Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., et al. (2014). Microsoft coco: Common objects in context. In Proceedings of European Conference on Computer Vision (ECCV).
Yang, C.-Y., Liu, S., & Yang, M.-H. (2013). Structured face hallucination. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.
Shen, Z., Lai, W.-S., Xu, T., Kautz, J., & Yang, M.-H. (2018). Deep semantic face deblurring. In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.
ZhangSHeRSunZTanTDemeshnet: Blind face inpainting for deep meshface verificationIEEE Transactions on Information Forensics and Security201813363764710.1109/TIFS.2017.2763119
Sun, C., Liu, S., Yang, T., Zeng, B., Wang, Z., & Liu, G. (2013). Automatic reflection removal using gradient intensity and motion cues. In Proceedings of IEEE conference on Computer Vision and Pattern Recognition (CVPR).
Simonyan, K., & Zisserman, A. (2014). Very deep convolutional networks for large-scale image recognition. arXiv preprintarXiv:1409.1556.
Torralba, A., & Efros, A. A. (2011). Unbiased look at dataset bias. In CVPR 2011 (pp. 1521–1528). IEEE.
Gretton, A., Borgwardt, K. M., Rasch, M., Schölkopf, B., & Smola, A. J. (2007). A kernel method for the two-sample-problem. In Proceedings of neural information processing systems (NeurIPS).
Wan, R., Shi, B., Li, H., Duan, L.-Y., Tan, A.-H., & Chichung, A. K. (2019). CoRRN: Cooperative reflection removal network. IEEE Transactions on Pattern Analysis and Machine Intelligence. https://doi.org/10.1109/TPAMI.2019.2921574.
Li, Y., Liu, S., Yang, J., & Yang, M.-H. (2017b). Generative face completion. In Proceedings of computer vision and pattern recognition (CVPR).
Li, P., Xie, J., Wang, Q., & Zuo, W. (2017a). Is second-order information helpful for large-scale visual recognition. In Proceedings of International Conference on Computer Vision (ICCV).
Gai, K., Shi, Z., & Zhang, C. (2014). Robust separation of reflection from multiple images. In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR).
HanB-JSimJ-YGlass reflection removal using co-saliency-based image alignment and low-rank matrix completion in gradient domainIEEE Transactions on Image Processing20182748734888382453610.1109/TIP.2018.2849880
Lin, D., & Tang, X. (2007). Quality-driven face occlusion detection and recovery. In Proceedings of computer vision and pattern recognition (CVPR).
Fan, Q., Yin, Y., Chen, D., Wang, Y., Aviles-Rivero, A., Li, R., Schnlieb, C.-B., Lischinski, D., & Chen, B. (2019). Deep reflection prior. arXiv preprintarXiv:1912.03623.
EveringhamMVan GoolLWilliamsCKIWinnJZissermanAThe Pascal visual object classes (VOC) challengeSpringer International Journal of Computer Vision201088230333810.1007/s11263-009-0275-4
Wang, X., & Tang, X. (2005). Hallucinating face by eigentransformation. In IEEE transactions on systems, man, and cybernetics, part C (applications and reviews) (Vol. 35, no. 3, pp. 425–434). https://doi.org/10.1109/TSMCC.2005.848171.
Ma, D., Wan, R., Shi, B., Kot, A. C., & Duan, L.-Y. (2019). Learning to jointly generate and separate reflections. In Proceedings of the IEEE International Conference on Computer Vision (ICCV).
Wan, R., Shi, B., Tan, A. H., & Kot, A. C. (2016). Depth of field guided reflection removal. In Proceedings of International Conference on Image Processing (ICIPa).
Le, V., Brandt, J., Lin, Z., Bourdev, L., & Huang, T. S. (2012). Interactive facial feature localization. In Proceedings of European Conference on Computer Vision (ECCV).
Li, H., Pan, S. J., Wang, S., & Kot, A. C. (2018a). Domain generalization with adversarial feature learning. In Proceedings of computer vision and pattern recognition (CVPR).
Song, Y., Zhang, J., He, S., Bao, L., & Yang, Q. (2017). Learning to hallucinate face images via component generation and enhancement. arXiv preprintarXiv:1708.00223.
Wan, R., Shi, B., Tan, A., & Kot, A. C. (2017b). Sparsity based reflection removal using external patch search. In Proceedings of International Conference on Multimedia and Expo.
Learned-Miller, E., Huang, G. B., RoyChowdhury, A., Li, H., & Hua, G. (2016). Labeled faces in the wild: A survey. In Proceedings of neural information processing systems (NeurIPS).
Deng, J., Cheng, S., Xue, N., Zhou, Y., & Zafeiriou, S. (2017). UV-GAN: Adversarial fac
K Zhang (1372_CR59) 2016; 23
1372_CR32
1372_CR33
1372_CR34
1372_CR35
1372_CR36
M Everingham (1372_CR7) 2010; 88
1372_CR37
1372_CR38
1372_CR39
C Liu (1372_CR30) 2007; 75
1372_CR31
S Zhang (1372_CR60) 2018; 13
1372_CR43
1372_CR44
1372_CR45
1372_CR46
1372_CR48
1372_CR49
1372_CR40
1372_CR41
1372_CR42
1372_CR18
1372_CR19
X Wu (1372_CR53) 2018; 13
1372_CR10
1372_CR54
1372_CR55
1372_CR12
1372_CR56
K Gai (1372_CR11) 2012; 34
1372_CR13
1372_CR57
1372_CR58
1372_CR15
1372_CR16
1372_CR17
B Amos (1372_CR1) 2016
R Wan (1372_CR47) 2018; 27
1372_CR50
B-J Han (1372_CR14) 2018; 27
1372_CR51
1372_CR9
1372_CR52
1372_CR8
1372_CR5
1372_CR6
1372_CR3
1372_CR4
1372_CR2
1372_CR29
1372_CR21
1372_CR22
1372_CR23
1372_CR24
1372_CR25
1372_CR26
1372_CR27
1372_CR28
1372_CR61
1372_CR20
References_xml – reference: Li, X., Liu, M., Ye, Y., Zuo, W., Lin, L., & Yang, R. (2018b). Learning warped guidance for blind face restoration. In Proceedings of European Conference on Computer Vision (ECCV).
– reference: Wan, R., Shi, B., Duan, L.-Y., Tan, A.-H., & Kot, A. C. (2017a). Benchmarking single-image reflection removal algorithms. In Proceedings of International Conference on Computer Vision (ICCV).
– reference: LiuCShumH-YFreemanWTFace hallucination: Theory and practiceSpringer International Journal of Computer Vision200775111513410.1007/s11263-006-0029-5
– reference: Yang, J., Gong, D., Liu, L., & Shi, Q. (2018). Seeing deeply and bidirectionally: A deep learning approach for single image reflection removal. In Proceedings of European Conference on Computer Vision (ECCV).
– reference: Chang, Y., Jung, C., Sun, J., et al. Siamese dense network for reflection removal with flash and no-flash image pairs. International Journal of Computer Vision, 128, 1673–1698. https://doi.org/10.1007/s11263-019-01276-z.
– reference: WanRShiBDuanL-YTanA-HGaoWKotACRegion-aware reflection removal with unified content and gradient priorsIEEE Transactions on Image Processing201827629272941378056610.1109/TIP.2018.2808768
– reference: ZhangSHeRSunZTanTDemeshnet: Blind face inpainting for deep meshface verificationIEEE Transactions on Information Forensics and Security201813363764710.1109/TIFS.2017.2763119
– reference: Fan, Q., Yin, Y., Chen, D., Wang, Y., Aviles-Rivero, A., Li, R., Schnlieb, C.-B., Lischinski, D., & Chen, B. (2019). Deep reflection prior. arXiv preprintarXiv:1912.03623.
– reference: Li, P., Xie, J., Wang, Q., & Zuo, W. (2017a). Is second-order information helpful for large-scale visual recognition. In Proceedings of International Conference on Computer Vision (ICCV).
– reference: Jaderberg, M., Simonyan, K., Zisserman, A., et al. (2015). Spatial transformer networks. In Proceedings of neural information processing systems (NeurIPS).
– reference: Wan, R., Shi, B., Tan, A., & Kot, A. C. (2017b). Sparsity based reflection removal using external patch search. In Proceedings of International Conference on Multimedia and Expo.
– reference: Pathak, D., Krahenbuhl, P., Donahue, J., Darrell, T., & Efros, A. A. (2016). Context encoders: Feature learning by inpainting. In Proceedings of computer vision and pattern recognition (CVPR).
– reference: Deng, J., Cheng, S., Xue, N., Zhou, Y., & Zafeiriou, S. (2017). UV-GAN: Adversarial facial uv map completion for pose-invariant face recognition. arXiv preprintarXiv:1712.04695.
– reference: Xue, T., Chen, B., Wu, J., Wei, D., & Freeman, W. T. (2017). Video enhancement with task-oriented flow. arXiv preprintarXiv:1711.09078.
– reference: HanB-JSimJ-YGlass reflection removal using co-saliency-based image alignment and low-rank matrix completion in gradient domainIEEE Transactions on Image Processing20182748734888382453610.1109/TIP.2018.2849880
– reference: Gretton, A., Borgwardt, K. M., Rasch, M., Schölkopf, B., & Smola, A. J. (2007). A kernel method for the two-sample-problem. In Proceedings of neural information processing systems (NeurIPS).
– reference: Liu, Z., Luo, P., Wang, X., & Tang, X. (2015). Deep learning face attributes in the wild. In Proceedings of International Conference on Computer Vision (ICCV).
– reference: Simonyan, K., & Zisserman, A. (2014). Very deep convolutional networks for large-scale image recognition. arXiv preprintarXiv:1409.1556.
– reference: Sun, C., Liu, S., Yang, T., Zeng, B., Wang, Z., & Liu, G. (2013). Automatic reflection removal using gradient intensity and motion cues. In Proceedings of IEEE conference on Computer Vision and Pattern Recognition (CVPR).
– reference: Wan, R., Shi, B., Li, H., Duan, L.-Y., Tan, A.-H., & Chichung, A. K. (2019). CoRRN: Cooperative reflection removal network. IEEE Transactions on Pattern Analysis and Machine Intelligence. https://doi.org/10.1109/TPAMI.2019.2921574.
– reference: WuXHeRSunZTanTA light CNN for deep face representation with noisy labelsIEEE Transactions on Information Forensics and Security201813112884289610.1109/TIFS.2018.2833032
– reference: Yang, C.-Y., Liu, S., & Yang, M.-H. (2013). Structured face hallucination. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.
– reference: Zhang, X., Ng, R., & Chen, Q. (2018b). Single image reflection separation with perceptual losses. In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR).
– reference: Chen, Y., Tai, Y., Liu, X., Shen, C., & Yang, J. (2018). FSRNet: End-to-end learning face super-resolution with facial priors. In Proceedings of computer vision and pattern recognition (CVPR).
– reference: Gai, K., Shi, Z., & Zhang, C. (2014). Robust separation of reflection from multiple images. In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR).
– reference: Smola, A., Gretton, A., Song, L., & Schölkopf, B. (2007). A Hilbert space embedding for distributions. In International Conference on Algorithmic Learning Theory.
– reference: Learned-Miller, E., Huang, G. B., RoyChowdhury, A., Li, H., & Hua, G. (2016). Labeled faces in the wild: A survey. In Proceedings of neural information processing systems (NeurIPS).
– reference: Le, V., Brandt, J., Lin, Z., Bourdev, L., & Huang, T. S. (2012). Interactive facial feature localization. In Proceedings of European Conference on Computer Vision (ECCV).
– reference: Li, H., Pan, S. J., Wang, S., & Kot, A. C. (2018a). Domain generalization with adversarial feature learning. In Proceedings of computer vision and pattern recognition (CVPR).
– reference: Lin, T.-Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., et al. (2014). Microsoft coco: Common objects in context. In Proceedings of European Conference on Computer Vision (ECCV).
– reference: AmosBLudwiczukBSatyanarayananMOpenface: A general-purpose face recognition library with mobile applications2016PittsburghCMU School of Computer Science
– reference: Wang, X., & Tang, X. (2005). Hallucinating face by eigentransformation. In IEEE transactions on systems, man, and cybernetics, part C (applications and reviews) (Vol. 35, no. 3, pp. 425–434). https://doi.org/10.1109/TSMCC.2005.848171.
– reference: Howard, A. G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T., Andreetto, M., & Adam, H. (2017). Mobilenets: Efficient convolutional neural networks for mobile vision applications. arXiv preprintarXiv:1704.04861.
– reference: Yang, J., Li, H., Dai, Y., & Tan, R. T. (2016). Robust optical flow estimation of double-layer images under transparency or reflection. In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR).
– reference: Pitie, F., Kokaram, A. C., & Dahyot, R. (2005). N-dimensional probability density function transfer and its application to color transfer. In International Conference on Computer Vision (ICCV).
– reference: Lin, D., & Tang, X. (2007). Quality-driven face occlusion detection and recovery. In Proceedings of computer vision and pattern recognition (CVPR).
– reference: EveringhamMVan GoolLWilliamsCKIWinnJZissermanAThe Pascal visual object classes (VOC) challengeSpringer International Journal of Computer Vision201088230333810.1007/s11263-009-0275-4
– reference: Shih, Y., Krishnan, D., Durand, F., & Freeman, W. T. (2015). Reflection removal using ghosting cues. In Proceedings of computer vision and pattern recognition (CVPR).
– reference: Song, Y., Zhang, J., He, S., Bao, L., & Yang, Q. (2017). Learning to hallucinate face images via component generation and enhancement. arXiv preprintarXiv:1708.00223.
– reference: ZhangKZhangZLiZQiaoYJoint face detection and alignment using multitask cascaded convolutional networksIEEE Signal Processing Letter201623101499150310.1109/LSP.2016.2603342
– reference: Arvanitopoulos, N., Achanta, R., & Susstrunk, S. (2017). Single image reflection suppression. In Proceedings of computer vision and pattern recognition (CVPR).
– reference: Li, Y., Liu, S., Yang, J., & Yang, M.-H. (2017b). Generative face completion. In Proceedings of computer vision and pattern recognition (CVPR).
– reference: GaiKShiZZhangCBlind separation of superimposed moving images using image statisticsIEEE Transactions on Pattern Analysis and Machine Intelligence201234193210.1109/TPAMI.2011.87
– reference: Jason, J. Y., Harley, A. W., & Derpanis, K. G. (2016). Back to basics: Unsupervised learning of optical flow via brightness constancy and motion smoothness. In Proceedings of European Conference on Computer Vision (ECCV).
– reference: Wan, R., Shi, B., Duan, L.-Y., Tan, A.-H., & Kot, A. C. (2018a). CRRN: Multi-scale guided concurrent reflection removal network. In Proceedings of computer vision and pattern recognition (CVPR).
– reference: Fan, Q., Yang, J., Hua, G., Chen, B., & Wipf, D. (2017). A generic deep architecture for single image reflection removal and image smoothing. In Proceedings of International Conference on Computer Vision (ICCV).
– reference: Baker, S., & Kanade, T. (2000). Hallucinating faces. In FG.
– reference: Li, Y., & Brown, M. S. (2014). Single image layer separation using relative smoothness. In Proceedings of computer vision and pattern recognition (CVPR).
– reference: Ronneberger, O., Fischer, P., & Brox, T. (2015). U-net: Convolutional networks for biomedical image segmentation. In Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention.
– reference: Yi, D., Lei, Z., Liao, S., & Li, S. Z. (2014). Learning face representation from scratch. arXiv preprintarXiv:1411.7923.
– reference: Wei, K., Yang, J., Fu, Y., Wipf, D., & Huang, H. (2019). Single image reflection removal exploiting misaligned training data and network enhancements. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.
– reference: Ma, D., Wan, R., Shi, B., Kot, A. C., & Duan, L.-Y. (2019). Learning to jointly generate and separate reflections. In Proceedings of the IEEE International Conference on Computer Vision (ICCV).
– reference: Fischer, P., Dosovitskiy, A., Ilg, E., Häusser, P., Hazırbaş, C., Golkov, V., Van der Smagt, P., Cremers, D., & Brox, T. (2015). Flownet: Learning optical flow with convolutional networks. arXiv preprintarXiv:1504.06852.
– reference: Lee, D., Yang, M.-H., & Oh, S. (2018). Generative single image reflection separation. arXiv preprintarXiv:1801.04102.
– reference: Li, Y., & Brown, M. (2013). Exploiting reflection change for automatic reflection removal. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.
– reference: Shen, Z., Lai, W.-S., Xu, T., Kautz, J., & Yang, M.-H. (2018). Deep semantic face deblurring. In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.
– reference: Li, Y., Swersky, K., & Zemel, R. (2015). Generative moment matching networks. In International Conference on Machine Learning.
– reference: Pan, J., Hu, Z., Su, Z., & Yang, M.-H. (2014). Deblurring face images with exemplars. In Proceedings of European Conference on Computer Vision (ECCV).
– reference: Torralba, A., & Efros, A. A. (2011). Unbiased look at dataset bias. In CVPR 2011 (pp. 1521–1528). IEEE.
– reference: Lyu, Y., Cui, Z., Li, S., Pollefeys, M., & Shi, B. (2019). Reflection separation using a pair of unpolarized and polarized images. In Advances in neural information processing systems.
– reference: Wan, R., Shi, B., Tan, A. H., & Kot, A. C. (2016). Depth of field guided reflection removal. In Proceedings of International Conference on Image Processing (ICIPa).
– volume: 23
  start-page: 1499
  issue: 10
  year: 2016
  ident: 1372_CR59
  publication-title: IEEE Signal Processing Letter
  doi: 10.1109/LSP.2016.2603342
– ident: 1372_CR9
– ident: 1372_CR31
  doi: 10.1109/ICCV.2015.425
– ident: 1372_CR8
  doi: 10.1109/ICCV.2017.351
– ident: 1372_CR28
  doi: 10.1109/CVPR.2007.383052
– volume: 27
  start-page: 2927
  issue: 6
  year: 2018
  ident: 1372_CR47
  publication-title: IEEE Transactions on Image Processing
  doi: 10.1109/TIP.2018.2808768
– ident: 1372_CR10
  doi: 10.1109/ICCV.2015.316
– ident: 1372_CR36
  doi: 10.1109/ICCV.2005.166
– ident: 1372_CR50
  doi: 10.1109/ICME.2017.8019527
– ident: 1372_CR16
– ident: 1372_CR39
– ident: 1372_CR12
– ident: 1372_CR48
  doi: 10.1109/TPAMI.2019.2921574
– ident: 1372_CR45
  doi: 10.1109/ICCV.2017.423
– ident: 1372_CR5
  doi: 10.1109/CVPR.2018.00264
– ident: 1372_CR43
– ident: 1372_CR51
  doi: 10.1109/TSMCC.2005.848171
– ident: 1372_CR52
  doi: 10.1109/CVPR.2019.00837
– ident: 1372_CR19
  doi: 10.1007/978-3-319-25958-1_8
– ident: 1372_CR49
  doi: 10.1109/ICIP.2016.7532311
– volume: 75
  start-page: 115
  issue: 1
  year: 2007
  ident: 1372_CR30
  publication-title: Springer International Journal of Computer Vision
  doi: 10.1007/s11263-006-0029-5
– ident: 1372_CR24
  doi: 10.1109/ICCV.2013.302
– ident: 1372_CR42
  doi: 10.24963/ijcai.2017/633
– ident: 1372_CR32
– ident: 1372_CR37
  doi: 10.1007/978-3-319-24574-4_28
– ident: 1372_CR46
  doi: 10.1109/CVPR.2018.00502
– ident: 1372_CR13
  doi: 10.7551/mitpress/7503.003.0069
– ident: 1372_CR3
  doi: 10.1109/AFGR.2000.840616
– ident: 1372_CR15
– ident: 1372_CR26
  doi: 10.1109/CVPR.2017.624
– ident: 1372_CR40
– volume: 27
  start-page: 4873
  year: 2018
  ident: 1372_CR14
  publication-title: IEEE Transactions on Image Processing
  doi: 10.1109/TIP.2018.2849880
– ident: 1372_CR21
  doi: 10.1109/CVPR.2018.00566
– ident: 1372_CR35
  doi: 10.1109/CVPR.2016.278
– ident: 1372_CR44
  doi: 10.1109/CVPR.2011.5995347
– ident: 1372_CR18
  doi: 10.1007/978-3-642-33712-3_49
– ident: 1372_CR33
  doi: 10.1109/ICCV.2019.00253
– volume: 88
  start-page: 303
  issue: 2
  year: 2010
  ident: 1372_CR7
  publication-title: Springer International Journal of Computer Vision
  doi: 10.1007/s11263-009-0275-4
– ident: 1372_CR57
  doi: 10.1109/CVPR.2016.157
– ident: 1372_CR6
  doi: 10.1109/CVPR.2018.00741
– ident: 1372_CR58
– ident: 1372_CR54
– ident: 1372_CR22
  doi: 10.1109/ICCV.2017.228
– ident: 1372_CR55
  doi: 10.1109/CVPR.2013.146
– ident: 1372_CR61
  doi: 10.1109/CVPR.2018.00503
– ident: 1372_CR23
  doi: 10.1007/978-3-030-01261-8_17
– ident: 1372_CR34
  doi: 10.1007/978-3-319-10584-0_4
– ident: 1372_CR29
  doi: 10.1007/978-3-319-10602-1_48
– ident: 1372_CR2
  doi: 10.1109/CVPR.2017.190
– ident: 1372_CR20
– volume: 13
  start-page: 2884
  issue: 11
  year: 2018
  ident: 1372_CR53
  publication-title: IEEE Transactions on Information Forensics and Security
  doi: 10.1109/TIFS.2018.2833032
– volume-title: Openface: A general-purpose face recognition library with mobile applications
  year: 2016
  ident: 1372_CR1
– ident: 1372_CR27
– volume: 13
  start-page: 637
  issue: 3
  year: 2018
  ident: 1372_CR60
  publication-title: IEEE Transactions on Information Forensics and Security
  doi: 10.1109/TIFS.2017.2763119
– ident: 1372_CR38
  doi: 10.1109/CVPR.2018.00862
– ident: 1372_CR4
  doi: 10.1007/s11263-019-01276-z
– volume: 34
  start-page: 19
  year: 2012
  ident: 1372_CR11
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
  doi: 10.1109/TPAMI.2011.87
– ident: 1372_CR17
– ident: 1372_CR25
  doi: 10.1109/CVPR.2014.346
– ident: 1372_CR41
  doi: 10.1007/978-3-540-75225-7_5
– ident: 1372_CR56
  doi: 10.1007/978-3-030-01219-9_40
SSID ssj0002823
Score 2.4904232
Snippet Face images captured through glass are usually contaminated by reflections. The low-transmitted reflections make the reflection removal more challenging than...
SourceID proquest
gale
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 385
SubjectTerms Artificial Intelligence
Computer Imaging
Computer Science
Face recognition
Image Processing and Computer Vision
Image transmission
Object recognition
Pattern Recognition
Pattern Recognition and Graphics
Vision
SummonAdditionalLinks – databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF60Xrz4FqOtBBE8aCDZJJvkWMTSCnqoFnpb9jHrpU3FtP_f2XTTUl_gLWxm85jdnZmPeRFyreJYoeKEIDFaI0CRNJACRABSaJMaYLmyQPHpmfVHyeM4HbuksKqJdm9ckrWkXie7RbT2OdpAqjhDCLVNdlKL3XEXj2h3JX8RRCwbyCNlyorIpcr8_IwNdfRVKH_zjtZKp3dA9py16HeXy3tItqA8IvvOcvTduaxwqGnO0Iwdk05PKPAHU5QX_hDMpA65KvFyOsPNdUJGvYfX-37geiEECi2YeRCnBcslSEQXQFHHqyQvTGZylkiRQySoEXg8JWiVgRYyM5GmJmNhITVjBu2sU9IqZyWcEV-EhUYiRKeo24GBMCHkwLTOkhxnhh6JGpZw5QqF234VE74ucWzZyJGNvGYjTz1yu5rzviyT8Sf1leU0t_UnShvg8iYWVcUHL0PeZWmUIQaMqEduHJGZ4euVcPkC-BO2ZNUGZbtZMe5OYMUpMii0rVRij9w1q7i-_fvHnf-P_ILsUhvmUgdyt0lr_rGADtopc3lZb8tPDnzbMg
  priority: 102
  providerName: Springer Nature
Title Face Image Reflection Removal
URI https://link.springer.com/article/10.1007/s11263-020-01372-5
https://www.proquest.com/docview/2489046743
Volume 129
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9swDCbW5LLL2j2KZW0DYxiww2bMlm1ZPhXplvS1FkO6AO1J0IPapXXaOvn_pRy5QTesJxsS5QclkfwkigT4ZLLMkOLEOHfWEkDRLNYKVYxaWVc45MJ4oHh2zo9m-cllcRkW3JrgVtnJxFZQ27nxa-TfWC6qxKfGyPZv72KfNcrvroYUGhvQJxEsCHz1D8bnv6aPspgAxSqZPIGkgldpODazOjyXsnYP0ztmZSVBsieq6W8B_c9OaauAJlvwKliO0WjV1a_hBdZvYDNYkVGYow0VdYkaurK3sDdRBqPjG5Id0RTddet-VdPtzZwG2juYTca_vx_FIS9CbMiaWcRZUXGhURPSQEb63hBrXOkEz7USmCrmFE1VjdaUaJUuXWqZK3lSacu5I5trG3r1vMb3EKmkskRESJX0PHJULkGB3NoyF9QyGUDasUSaEDTc5664lutwx56NktgoWzbKYgBfHtvcrkJmPEv90XNa-lgUtXd2-aOWTSOPL6ZyxIu0JDyYsgF8DkRuTq83KpwdoJ_w4aueUO52PSbDbGzkeuwM4GvXi-vq_3_ch-eftgMvmXdxaZ24d6G3uF_iHtkoCz2EDTE5HEJ_9OPs54W_Hl6djodheFLtjI0eAGLA5MY
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB5RemgvpaVFLF3aCFH1UCISJ3GSQ1WhlmWX14GHxM34Me4FstDsCvGn-I0dJw4risqNW-SMnWQ8npkvHs8ArOsk0WQ4MUytMQRQFAuVRBmiksZmFnmhHVA8OOTD03T3LDubg7vuLIwLq-x0YqOozVi7f-SbLC3KyJXGSH5cXYeuapTbXe1KaLRisYe3NwTZ6u-jXzS_XxgbbJ_8HIa-qkCoyReYhElW8kKhIj8dGVlLTQPb3BY8VbLAWDIrSdAVGp2jkSq3sWE251GpDOeWPBYa9wW8TJOkdCuqGOzca36CL23peoJkGS9jf0inPaoXs2bH1IWBJTkBwAeG8F9z8GhftjF3g7fwxvupwVYrWO9gDqtFWPA-a-A1Qk1NXVmIru09rA6kxmB0SZoqOEJ70QR7VXR5OSax_gCnz8KvJZivxhUuQyCj0hAR4WLyKpCjtBEWyI3J04J6Rj2IO5YI7VOUu0oZF2KWXNmxURAbRcNGkfXg232fqzZBx5PUa47TwmW-qFxozW85rWsxOj4SWzyLc0KfMevBV09kx_R4Lf1JBfoIlyzrAWW_mzHh134tZpLag41uFme3__9yK0-P9hleDU8O9sX-6HDvI7xmLrimCR_vw_zkzxRXyTuaqE-NSAZw_txr4C9MQRxo
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB7RRap6KfSlbnk0Qq16aKNNnMRJDghBYcWWdoW2ReLm-jHuBbKULEL8NX4d48RhRSu4cYucsZ2MJzPzxeMZgA86STQZTgxTawwBFMVCJVGGqKSxmUVeaAcUf4z5_lH67Tg7XoDr7iyMC6vsdGKjqM1Uu3_kA5YWZeRKYyQD68MiDneHW2d_Q1dByu20duU0WhE5wKtLgm_15miX1vojY8O9X1_3Q19hINTkF8zCJCt5oVCRz46MLKemSWxuC54qWWAsmZUk9AqNztFIldvYMJvzqFSGc0veC437BBZzQkVRDxZ39saHk1s7QGCmLWRPAC3jZeyP7LQH92LW7J-6oLAkJzh4xyz-axz-26VtjN9wGZ57rzXYbsXsBSxg9RKWvAcbeP1QU1NXJKJrewVrQ6kxGJ2S3gomaE-a0K-KLk-nJOSv4ehROPYGetW0wrcQyKg0REQomXwM5ChthAVyY_K0oJ5RH-KOJUL7hOWubsaJmKdadmwUxEbRsFFkffh82-esTdfxIPWG47RweTAqJ1F_5EVdi9HPidjmWZwTFo1ZHz55Ijul6bX05xboJVzqrDuUq92KCa8JajGX2z586VZxfvv-h3v38Gjv4SnJv_g-Gh-swDPmIm2aWPJV6M3OL3CNXKWZWvcyGcDvx_4MbgCTzSH6
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Face+Image+Reflection+Removal&rft.jtitle=International+journal+of+computer+vision&rft.au=Wan%2C+Renjie&rft.au=Shi%2C+Boxin&rft.au=Li%2C+Haoliang&rft.au=Duan%2C+Ling-Yu&rft.date=2021-02-01&rft.pub=Springer&rft.issn=0920-5691&rft.volume=129&rft.issue=2&rft.spage=385&rft_id=info:doi/10.1007%2Fs11263-020-01372-5&rft.externalDocID=A651789912
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0920-5691&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0920-5691&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0920-5691&client=summon