Face Image Reflection Removal
Face images captured through glass are usually contaminated by reflections. The low-transmitted reflections make the reflection removal more challenging than for general scenes because important facial features would be completely occluded. In this paper, we propose and solve the face image reflecti...
Saved in:
Published in | International journal of computer vision Vol. 129; no. 2; pp. 385 - 399 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.02.2021
Springer Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Face images captured through glass are usually contaminated by reflections. The low-transmitted reflections make the reflection removal more challenging than for general scenes because important facial features would be completely occluded. In this paper, we propose and solve the face image reflection removal problem. We recover the important facial structures by incorporating inpainting ideas into a guided reflection removal framework, which takes two images as the input and considers various face-specific priors. We use a newly collected face reflection image dataset to train our model and compare with state-of-the-art methods. The proposed method shows advantages in estimating reflection-free face images for improving face recognition. |
---|---|
AbstractList | Face images captured through glass are usually contaminated by reflections. The low-transmitted reflections make the reflection removal more challenging than for general scenes because important facial features would be completely occluded. In this paper, we propose and solve the face image reflection removal problem. We recover the important facial structures by incorporating inpainting ideas into a guided reflection removal framework, which takes two images as the input and considers various face-specific priors. We use a newly collected face reflection image dataset to train our model and compare with state-of-the-art methods. The proposed method shows advantages in estimating reflection-free face images for improving face recognition. |
Audience | Academic |
Author | Duan, Ling-Yu Kot, Alex C. Shi, Boxin Wan, Renjie Li, Haoliang |
Author_xml | – sequence: 1 givenname: Renjie orcidid: 0000-0002-0161-0367 surname: Wan fullname: Wan, Renjie email: rjwan@ntu.edu.sg organization: School of Electrical and Electronic Engineering, Nanyang Technological University – sequence: 2 givenname: Boxin orcidid: 0000-0001-6749-0364 surname: Shi fullname: Shi, Boxin email: shiboxin@pku.edu.cn organization: National Engineering Laboratory for Video Technology, Department of CS, Peking University, Peng Cheng Laboratory – sequence: 3 givenname: Haoliang surname: Li fullname: Li, Haoliang organization: School of Electrical and Electronic Engineering, Nanyang Technological University – sequence: 4 givenname: Ling-Yu surname: Duan fullname: Duan, Ling-Yu organization: National Engineering Laboratory for Video Technology, Department of CS, Peking University, Peng Cheng Laboratory – sequence: 5 givenname: Alex C. surname: Kot fullname: Kot, Alex C. organization: School of Electrical and Electronic Engineering, Nanyang Technological University |
BookMark | eNp9kEFLwzAUx4NMcJt-AUEYePLQ-ZK0SXMcw-lgIEw9hzR9KR1dO5tO9NubWUHmYeSQ8PL_vZf8RmRQNzUSck1hSgHkvaeUCR4BgwgolyxKzsiQJpJHNIZkQIagwlUiFL0gI-83AMBSxofkZmEsTpZbU-Bkja5C25VNHY7b5sNUl-Tcmcrj1e8-Jm-Lh9f5U7R6flzOZ6vIcsW6iCdKpBlmMuHIQFEbp8pJl4o4MylSw5wBTjPMrcTcZNLRnDkpQGW5EA5SPia3fd9d27zv0Xd60-zbOozULPSCWMiYh9S0TxWmQl3WrulaY8PKcVvaIMSVoT4TCZWpUpQF4O4ICJkOP7vC7L3Xy5f1cZb1Wds23rfo9K4tt6b90hT0wbHuHevgWP841kmA0n-QLTtzMBheVlanUd6jPsypC2z_vnyC-gZ2po8D |
CitedBy_id | crossref_primary_10_1109_TCSVT_2024_3405576 crossref_primary_10_1109_TMM_2022_3152390 crossref_primary_10_3390_app132312779 crossref_primary_10_1109_ACCESS_2024_3474032 crossref_primary_10_1109_TCSVT_2021_3103519 crossref_primary_10_1109_TETCI_2024_3359063 crossref_primary_10_1109_TMM_2022_3185929 crossref_primary_10_1109_TCSVT_2023_3270173 crossref_primary_10_3233_IDA_230904 crossref_primary_10_1109_OJSP_2024_3351472 crossref_primary_10_1109_TPAMI_2022_3168560 crossref_primary_10_1109_LSP_2022_3148668 crossref_primary_10_1109_TCSVT_2024_3403932 crossref_primary_10_1007_s11042_023_15313_0 |
Cites_doi | 10.1109/LSP.2016.2603342 10.1109/ICCV.2015.425 10.1109/ICCV.2017.351 10.1109/CVPR.2007.383052 10.1109/TIP.2018.2808768 10.1109/ICCV.2015.316 10.1109/ICCV.2005.166 10.1109/ICME.2017.8019527 10.1109/TPAMI.2019.2921574 10.1109/ICCV.2017.423 10.1109/CVPR.2018.00264 10.1109/TSMCC.2005.848171 10.1109/CVPR.2019.00837 10.1007/978-3-319-25958-1_8 10.1109/ICIP.2016.7532311 10.1007/s11263-006-0029-5 10.1109/ICCV.2013.302 10.24963/ijcai.2017/633 10.1007/978-3-319-24574-4_28 10.1109/CVPR.2018.00502 10.7551/mitpress/7503.003.0069 10.1109/AFGR.2000.840616 10.1109/CVPR.2017.624 10.1109/TIP.2018.2849880 10.1109/CVPR.2018.00566 10.1109/CVPR.2016.278 10.1109/CVPR.2011.5995347 10.1007/978-3-642-33712-3_49 10.1109/ICCV.2019.00253 10.1007/s11263-009-0275-4 10.1109/CVPR.2016.157 10.1109/CVPR.2018.00741 10.1109/ICCV.2017.228 10.1109/CVPR.2013.146 10.1109/CVPR.2018.00503 10.1007/978-3-030-01261-8_17 10.1007/978-3-319-10584-0_4 10.1007/978-3-319-10602-1_48 10.1109/CVPR.2017.190 10.1109/TIFS.2018.2833032 10.1109/TIFS.2017.2763119 10.1109/CVPR.2018.00862 10.1007/s11263-019-01276-z 10.1109/TPAMI.2011.87 10.1109/CVPR.2014.346 10.1007/978-3-540-75225-7_5 10.1007/978-3-030-01219-9_40 |
ContentType | Journal Article |
Copyright | Springer Science+Business Media, LLC, part of Springer Nature 2020 COPYRIGHT 2021 Springer Springer Science+Business Media, LLC, part of Springer Nature 2020. |
Copyright_xml | – notice: Springer Science+Business Media, LLC, part of Springer Nature 2020 – notice: COPYRIGHT 2021 Springer – notice: Springer Science+Business Media, LLC, part of Springer Nature 2020. |
DBID | AAYXX CITATION ISR 3V. 7SC 7WY 7WZ 7XB 87Z 8AL 8FD 8FE 8FG 8FK 8FL ABUWG AFKRA ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU DWQXO FRNLG F~G GNUQQ HCIFZ JQ2 K60 K6~ K7- L.- L7M L~C L~D M0C M0N P5Z P62 PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI PYYUZ Q9U |
DOI | 10.1007/s11263-020-01372-5 |
DatabaseName | CrossRef Gale In Context: Science ProQuest Central (Corporate) Computer and Information Systems Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni) ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Business Premium Collection Technology Collection ProQuest One ProQuest Central Korea Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database ABI/INFORM Professional Advanced Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ABI/INFORM Global Computing Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ABI/INFORM Collection China ProQuest Central Basic |
DatabaseTitle | CrossRef ABI/INFORM Global (Corporate) ProQuest Business Collection (Alumni Edition) ProQuest One Business Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ABI/INFORM Complete ProQuest Central ABI/INFORM Professional Advanced ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace ABI/INFORM Complete (Alumni Edition) Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global ProQuest Computing ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ABI/INFORM China ProQuest Technology Collection ProQuest SciTech Collection ProQuest Business Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Business (Alumni) ProQuest One Academic ProQuest Central (Alumni) ProQuest One Academic (New) Business Premium Collection (Alumni) |
DatabaseTitleList | ABI/INFORM Global (Corporate) |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Computer Science |
EISSN | 1573-1405 |
EndPage | 399 |
ExternalDocumentID | A651789912 10_1007_s11263_020_01372_5 |
GrantInformation_xml | – fundername: National Research Foundation Singapore funderid: http://dx.doi.org/10.13039/501100001381 |
GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 199 1N0 1SB 2.D 203 28- 29J 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 6TJ 78A 7WY 8FE 8FG 8FL 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFO ACGFS ACHSB ACHXU ACIHN ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACREN ACUHS ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEAQA AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. B0M BA0 BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EAD EAP EAS EBLON EBS EDO EIOEI EJD EMK EPL ESBYG ESX F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IAO IHE IJ- IKXTQ ISR ITC ITM IWAJR IXC IZIGR IZQ I~X I~Y I~Z J-C J0Z JBSCW JCJTX JZLTJ K60 K6V K6~ K7- KDC KOV KOW LAK LLZTM M0C M0N M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P62 P9O PF0 PQBIZ PQBZA PQQKQ PROAC PT4 PT5 QF4 QM1 QN7 QO4 QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TAE TEORI TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7R Z7S Z7V Z7W Z7X Z7Y Z7Z Z83 Z86 Z88 Z8M Z8N Z8P Z8Q Z8R Z8S Z8T Z8W Z92 ZMTXR ~8M ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACMFV ACSTC ADHKG ADKFA AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION ICD PHGZM PHGZT AEIIB PMFND 7SC 7XB 8AL 8FD 8FK ABRTQ JQ2 L.- L7M L~C L~D PKEHL PQEST PQGLB PQUKI Q9U |
ID | FETCH-LOGICAL-c392t-35968beb753e2091c489f7f864ba8e1a2fa031bedc7edab7f1d2f7609bd66f083 |
IEDL.DBID | BENPR |
ISSN | 0920-5691 |
IngestDate | Sat Jul 26 00:00:21 EDT 2025 Tue Jun 10 20:44:32 EDT 2025 Fri Jun 27 04:22:08 EDT 2025 Tue Jul 01 04:30:57 EDT 2025 Thu Apr 24 23:00:16 EDT 2025 Fri Feb 21 02:49:30 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | Deep learning Optical flow Reflection removal Face images |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c392t-35968beb753e2091c489f7f864ba8e1a2fa031bedc7edab7f1d2f7609bd66f083 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-6749-0364 0000-0002-0161-0367 |
PQID | 2489046743 |
PQPubID | 1456341 |
PageCount | 15 |
ParticipantIDs | proquest_journals_2489046743 gale_infotracacademiconefile_A651789912 gale_incontextgauss_ISR_A651789912 crossref_primary_10_1007_s11263_020_01372_5 crossref_citationtrail_10_1007_s11263_020_01372_5 springer_journals_10_1007_s11263_020_01372_5 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20210200 2021-02-00 20210201 |
PublicationDateYYYYMMDD | 2021-02-01 |
PublicationDate_xml | – month: 2 year: 2021 text: 20210200 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | International journal of computer vision |
PublicationTitleAbbrev | Int J Comput Vis |
PublicationYear | 2021 |
Publisher | Springer US Springer Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer – name: Springer Nature B.V |
References | Jaderberg, M., Simonyan, K., Zisserman, A., et al. (2015). Spatial transformer networks. In Proceedings of neural information processing systems (NeurIPS). Pathak, D., Krahenbuhl, P., Donahue, J., Darrell, T., & Efros, A. A. (2016). Context encoders: Feature learning by inpainting. In Proceedings of computer vision and pattern recognition (CVPR). Pitie, F., Kokaram, A. C., & Dahyot, R. (2005). N-dimensional probability density function transfer and its application to color transfer. In International Conference on Computer Vision (ICCV). Lee, D., Yang, M.-H., & Oh, S. (2018). Generative single image reflection separation. arXiv preprintarXiv:1801.04102. WanRShiBDuanL-YTanA-HGaoWKotACRegion-aware reflection removal with unified content and gradient priorsIEEE Transactions on Image Processing201827629272941378056610.1109/TIP.2018.2808768 Ronneberger, O., Fischer, P., & Brox, T. (2015). U-net: Convolutional networks for biomedical image segmentation. In Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention. Lyu, Y., Cui, Z., Li, S., Pollefeys, M., & Shi, B. (2019). Reflection separation using a pair of unpolarized and polarized images. In Advances in neural information processing systems. AmosBLudwiczukBSatyanarayananMOpenface: A general-purpose face recognition library with mobile applications2016PittsburghCMU School of Computer Science Smola, A., Gretton, A., Song, L., & Schölkopf, B. (2007). A Hilbert space embedding for distributions. In International Conference on Algorithmic Learning Theory. Li, Y., & Brown, M. (2013). Exploiting reflection change for automatic reflection removal. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. WuXHeRSunZTanTA light CNN for deep face representation with noisy labelsIEEE Transactions on Information Forensics and Security201813112884289610.1109/TIFS.2018.2833032 Shih, Y., Krishnan, D., Durand, F., & Freeman, W. T. (2015). Reflection removal using ghosting cues. In Proceedings of computer vision and pattern recognition (CVPR). Wan, R., Shi, B., Duan, L.-Y., Tan, A.-H., & Kot, A. C. (2018a). CRRN: Multi-scale guided concurrent reflection removal network. In Proceedings of computer vision and pattern recognition (CVPR). Baker, S., & Kanade, T. (2000). Hallucinating faces. In FG. Fischer, P., Dosovitskiy, A., Ilg, E., Häusser, P., Hazırbaş, C., Golkov, V., Van der Smagt, P., Cremers, D., & Brox, T. (2015). Flownet: Learning optical flow with convolutional networks. arXiv preprintarXiv:1504.06852. Chang, Y., Jung, C., Sun, J., et al. Siamese dense network for reflection removal with flash and no-flash image pairs. International Journal of Computer Vision, 128, 1673–1698. https://doi.org/10.1007/s11263-019-01276-z. Jason, J. Y., Harley, A. W., & Derpanis, K. G. (2016). Back to basics: Unsupervised learning of optical flow via brightness constancy and motion smoothness. In Proceedings of European Conference on Computer Vision (ECCV). Li, Y., & Brown, M. S. (2014). Single image layer separation using relative smoothness. In Proceedings of computer vision and pattern recognition (CVPR). Arvanitopoulos, N., Achanta, R., & Susstrunk, S. (2017). Single image reflection suppression. In Proceedings of computer vision and pattern recognition (CVPR). Howard, A. G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T., Andreetto, M., & Adam, H. (2017). Mobilenets: Efficient convolutional neural networks for mobile vision applications. arXiv preprintarXiv:1704.04861. Liu, Z., Luo, P., Wang, X., & Tang, X. (2015). Deep learning face attributes in the wild. In Proceedings of International Conference on Computer Vision (ICCV). Chen, Y., Tai, Y., Liu, X., Shen, C., & Yang, J. (2018). FSRNet: End-to-end learning face super-resolution with facial priors. In Proceedings of computer vision and pattern recognition (CVPR). Li, Y., Swersky, K., & Zemel, R. (2015). Generative moment matching networks. In International Conference on Machine Learning. Pan, J., Hu, Z., Su, Z., & Yang, M.-H. (2014). Deblurring face images with exemplars. In Proceedings of European Conference on Computer Vision (ECCV). Yang, J., Gong, D., Liu, L., & Shi, Q. (2018). Seeing deeply and bidirectionally: A deep learning approach for single image reflection removal. In Proceedings of European Conference on Computer Vision (ECCV). LiuCShumH-YFreemanWTFace hallucination: Theory and practiceSpringer International Journal of Computer Vision200775111513410.1007/s11263-006-0029-5 Zhang, X., Ng, R., & Chen, Q. (2018b). Single image reflection separation with perceptual losses. In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Fan, Q., Yang, J., Hua, G., Chen, B., & Wipf, D. (2017). A generic deep architecture for single image reflection removal and image smoothing. In Proceedings of International Conference on Computer Vision (ICCV). Wan, R., Shi, B., Duan, L.-Y., Tan, A.-H., & Kot, A. C. (2017a). Benchmarking single-image reflection removal algorithms. In Proceedings of International Conference on Computer Vision (ICCV). Wei, K., Yang, J., Fu, Y., Wipf, D., & Huang, H. (2019). Single image reflection removal exploiting misaligned training data and network enhancements. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. ZhangKZhangZLiZQiaoYJoint face detection and alignment using multitask cascaded convolutional networksIEEE Signal Processing Letter201623101499150310.1109/LSP.2016.2603342 Li, X., Liu, M., Ye, Y., Zuo, W., Lin, L., & Yang, R. (2018b). Learning warped guidance for blind face restoration. In Proceedings of European Conference on Computer Vision (ECCV). Lin, T.-Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., et al. (2014). Microsoft coco: Common objects in context. In Proceedings of European Conference on Computer Vision (ECCV). Yang, C.-Y., Liu, S., & Yang, M.-H. (2013). Structured face hallucination. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Shen, Z., Lai, W.-S., Xu, T., Kautz, J., & Yang, M.-H. (2018). Deep semantic face deblurring. In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. ZhangSHeRSunZTanTDemeshnet: Blind face inpainting for deep meshface verificationIEEE Transactions on Information Forensics and Security201813363764710.1109/TIFS.2017.2763119 Sun, C., Liu, S., Yang, T., Zeng, B., Wang, Z., & Liu, G. (2013). Automatic reflection removal using gradient intensity and motion cues. In Proceedings of IEEE conference on Computer Vision and Pattern Recognition (CVPR). Simonyan, K., & Zisserman, A. (2014). Very deep convolutional networks for large-scale image recognition. arXiv preprintarXiv:1409.1556. Torralba, A., & Efros, A. A. (2011). Unbiased look at dataset bias. In CVPR 2011 (pp. 1521–1528). IEEE. Gretton, A., Borgwardt, K. M., Rasch, M., Schölkopf, B., & Smola, A. J. (2007). A kernel method for the two-sample-problem. In Proceedings of neural information processing systems (NeurIPS). Wan, R., Shi, B., Li, H., Duan, L.-Y., Tan, A.-H., & Chichung, A. K. (2019). CoRRN: Cooperative reflection removal network. IEEE Transactions on Pattern Analysis and Machine Intelligence. https://doi.org/10.1109/TPAMI.2019.2921574. Li, Y., Liu, S., Yang, J., & Yang, M.-H. (2017b). Generative face completion. In Proceedings of computer vision and pattern recognition (CVPR). Li, P., Xie, J., Wang, Q., & Zuo, W. (2017a). Is second-order information helpful for large-scale visual recognition. In Proceedings of International Conference on Computer Vision (ICCV). Gai, K., Shi, Z., & Zhang, C. (2014). Robust separation of reflection from multiple images. In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR). HanB-JSimJ-YGlass reflection removal using co-saliency-based image alignment and low-rank matrix completion in gradient domainIEEE Transactions on Image Processing20182748734888382453610.1109/TIP.2018.2849880 Lin, D., & Tang, X. (2007). Quality-driven face occlusion detection and recovery. In Proceedings of computer vision and pattern recognition (CVPR). Fan, Q., Yin, Y., Chen, D., Wang, Y., Aviles-Rivero, A., Li, R., Schnlieb, C.-B., Lischinski, D., & Chen, B. (2019). Deep reflection prior. arXiv preprintarXiv:1912.03623. EveringhamMVan GoolLWilliamsCKIWinnJZissermanAThe Pascal visual object classes (VOC) challengeSpringer International Journal of Computer Vision201088230333810.1007/s11263-009-0275-4 Wang, X., & Tang, X. (2005). Hallucinating face by eigentransformation. In IEEE transactions on systems, man, and cybernetics, part C (applications and reviews) (Vol. 35, no. 3, pp. 425–434). https://doi.org/10.1109/TSMCC.2005.848171. Ma, D., Wan, R., Shi, B., Kot, A. C., & Duan, L.-Y. (2019). Learning to jointly generate and separate reflections. In Proceedings of the IEEE International Conference on Computer Vision (ICCV). Wan, R., Shi, B., Tan, A. H., & Kot, A. C. (2016). Depth of field guided reflection removal. In Proceedings of International Conference on Image Processing (ICIPa). Le, V., Brandt, J., Lin, Z., Bourdev, L., & Huang, T. S. (2012). Interactive facial feature localization. In Proceedings of European Conference on Computer Vision (ECCV). Li, H., Pan, S. J., Wang, S., & Kot, A. C. (2018a). Domain generalization with adversarial feature learning. In Proceedings of computer vision and pattern recognition (CVPR). Song, Y., Zhang, J., He, S., Bao, L., & Yang, Q. (2017). Learning to hallucinate face images via component generation and enhancement. arXiv preprintarXiv:1708.00223. Wan, R., Shi, B., Tan, A., & Kot, A. C. (2017b). Sparsity based reflection removal using external patch search. In Proceedings of International Conference on Multimedia and Expo. Learned-Miller, E., Huang, G. B., RoyChowdhury, A., Li, H., & Hua, G. (2016). Labeled faces in the wild: A survey. In Proceedings of neural information processing systems (NeurIPS). Deng, J., Cheng, S., Xue, N., Zhou, Y., & Zafeiriou, S. (2017). UV-GAN: Adversarial fac K Zhang (1372_CR59) 2016; 23 1372_CR32 1372_CR33 1372_CR34 1372_CR35 1372_CR36 M Everingham (1372_CR7) 2010; 88 1372_CR37 1372_CR38 1372_CR39 C Liu (1372_CR30) 2007; 75 1372_CR31 S Zhang (1372_CR60) 2018; 13 1372_CR43 1372_CR44 1372_CR45 1372_CR46 1372_CR48 1372_CR49 1372_CR40 1372_CR41 1372_CR42 1372_CR18 1372_CR19 X Wu (1372_CR53) 2018; 13 1372_CR10 1372_CR54 1372_CR55 1372_CR12 1372_CR56 K Gai (1372_CR11) 2012; 34 1372_CR13 1372_CR57 1372_CR58 1372_CR15 1372_CR16 1372_CR17 B Amos (1372_CR1) 2016 R Wan (1372_CR47) 2018; 27 1372_CR50 B-J Han (1372_CR14) 2018; 27 1372_CR51 1372_CR9 1372_CR52 1372_CR8 1372_CR5 1372_CR6 1372_CR3 1372_CR4 1372_CR2 1372_CR29 1372_CR21 1372_CR22 1372_CR23 1372_CR24 1372_CR25 1372_CR26 1372_CR27 1372_CR28 1372_CR61 1372_CR20 |
References_xml | – reference: Li, X., Liu, M., Ye, Y., Zuo, W., Lin, L., & Yang, R. (2018b). Learning warped guidance for blind face restoration. In Proceedings of European Conference on Computer Vision (ECCV). – reference: Wan, R., Shi, B., Duan, L.-Y., Tan, A.-H., & Kot, A. C. (2017a). Benchmarking single-image reflection removal algorithms. In Proceedings of International Conference on Computer Vision (ICCV). – reference: LiuCShumH-YFreemanWTFace hallucination: Theory and practiceSpringer International Journal of Computer Vision200775111513410.1007/s11263-006-0029-5 – reference: Yang, J., Gong, D., Liu, L., & Shi, Q. (2018). Seeing deeply and bidirectionally: A deep learning approach for single image reflection removal. In Proceedings of European Conference on Computer Vision (ECCV). – reference: Chang, Y., Jung, C., Sun, J., et al. Siamese dense network for reflection removal with flash and no-flash image pairs. International Journal of Computer Vision, 128, 1673–1698. https://doi.org/10.1007/s11263-019-01276-z. – reference: WanRShiBDuanL-YTanA-HGaoWKotACRegion-aware reflection removal with unified content and gradient priorsIEEE Transactions on Image Processing201827629272941378056610.1109/TIP.2018.2808768 – reference: ZhangSHeRSunZTanTDemeshnet: Blind face inpainting for deep meshface verificationIEEE Transactions on Information Forensics and Security201813363764710.1109/TIFS.2017.2763119 – reference: Fan, Q., Yin, Y., Chen, D., Wang, Y., Aviles-Rivero, A., Li, R., Schnlieb, C.-B., Lischinski, D., & Chen, B. (2019). Deep reflection prior. arXiv preprintarXiv:1912.03623. – reference: Li, P., Xie, J., Wang, Q., & Zuo, W. (2017a). Is second-order information helpful for large-scale visual recognition. In Proceedings of International Conference on Computer Vision (ICCV). – reference: Jaderberg, M., Simonyan, K., Zisserman, A., et al. (2015). Spatial transformer networks. In Proceedings of neural information processing systems (NeurIPS). – reference: Wan, R., Shi, B., Tan, A., & Kot, A. C. (2017b). Sparsity based reflection removal using external patch search. In Proceedings of International Conference on Multimedia and Expo. – reference: Pathak, D., Krahenbuhl, P., Donahue, J., Darrell, T., & Efros, A. A. (2016). Context encoders: Feature learning by inpainting. In Proceedings of computer vision and pattern recognition (CVPR). – reference: Deng, J., Cheng, S., Xue, N., Zhou, Y., & Zafeiriou, S. (2017). UV-GAN: Adversarial facial uv map completion for pose-invariant face recognition. arXiv preprintarXiv:1712.04695. – reference: Xue, T., Chen, B., Wu, J., Wei, D., & Freeman, W. T. (2017). Video enhancement with task-oriented flow. arXiv preprintarXiv:1711.09078. – reference: HanB-JSimJ-YGlass reflection removal using co-saliency-based image alignment and low-rank matrix completion in gradient domainIEEE Transactions on Image Processing20182748734888382453610.1109/TIP.2018.2849880 – reference: Gretton, A., Borgwardt, K. M., Rasch, M., Schölkopf, B., & Smola, A. J. (2007). A kernel method for the two-sample-problem. In Proceedings of neural information processing systems (NeurIPS). – reference: Liu, Z., Luo, P., Wang, X., & Tang, X. (2015). Deep learning face attributes in the wild. In Proceedings of International Conference on Computer Vision (ICCV). – reference: Simonyan, K., & Zisserman, A. (2014). Very deep convolutional networks for large-scale image recognition. arXiv preprintarXiv:1409.1556. – reference: Sun, C., Liu, S., Yang, T., Zeng, B., Wang, Z., & Liu, G. (2013). Automatic reflection removal using gradient intensity and motion cues. In Proceedings of IEEE conference on Computer Vision and Pattern Recognition (CVPR). – reference: Wan, R., Shi, B., Li, H., Duan, L.-Y., Tan, A.-H., & Chichung, A. K. (2019). CoRRN: Cooperative reflection removal network. IEEE Transactions on Pattern Analysis and Machine Intelligence. https://doi.org/10.1109/TPAMI.2019.2921574. – reference: WuXHeRSunZTanTA light CNN for deep face representation with noisy labelsIEEE Transactions on Information Forensics and Security201813112884289610.1109/TIFS.2018.2833032 – reference: Yang, C.-Y., Liu, S., & Yang, M.-H. (2013). Structured face hallucination. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. – reference: Zhang, X., Ng, R., & Chen, Q. (2018b). Single image reflection separation with perceptual losses. In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR). – reference: Chen, Y., Tai, Y., Liu, X., Shen, C., & Yang, J. (2018). FSRNet: End-to-end learning face super-resolution with facial priors. In Proceedings of computer vision and pattern recognition (CVPR). – reference: Gai, K., Shi, Z., & Zhang, C. (2014). Robust separation of reflection from multiple images. In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR). – reference: Smola, A., Gretton, A., Song, L., & Schölkopf, B. (2007). A Hilbert space embedding for distributions. In International Conference on Algorithmic Learning Theory. – reference: Learned-Miller, E., Huang, G. B., RoyChowdhury, A., Li, H., & Hua, G. (2016). Labeled faces in the wild: A survey. In Proceedings of neural information processing systems (NeurIPS). – reference: Le, V., Brandt, J., Lin, Z., Bourdev, L., & Huang, T. S. (2012). Interactive facial feature localization. In Proceedings of European Conference on Computer Vision (ECCV). – reference: Li, H., Pan, S. J., Wang, S., & Kot, A. C. (2018a). Domain generalization with adversarial feature learning. In Proceedings of computer vision and pattern recognition (CVPR). – reference: Lin, T.-Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., et al. (2014). Microsoft coco: Common objects in context. In Proceedings of European Conference on Computer Vision (ECCV). – reference: AmosBLudwiczukBSatyanarayananMOpenface: A general-purpose face recognition library with mobile applications2016PittsburghCMU School of Computer Science – reference: Wang, X., & Tang, X. (2005). Hallucinating face by eigentransformation. In IEEE transactions on systems, man, and cybernetics, part C (applications and reviews) (Vol. 35, no. 3, pp. 425–434). https://doi.org/10.1109/TSMCC.2005.848171. – reference: Howard, A. G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T., Andreetto, M., & Adam, H. (2017). Mobilenets: Efficient convolutional neural networks for mobile vision applications. arXiv preprintarXiv:1704.04861. – reference: Yang, J., Li, H., Dai, Y., & Tan, R. T. (2016). Robust optical flow estimation of double-layer images under transparency or reflection. In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR). – reference: Pitie, F., Kokaram, A. C., & Dahyot, R. (2005). N-dimensional probability density function transfer and its application to color transfer. In International Conference on Computer Vision (ICCV). – reference: Lin, D., & Tang, X. (2007). Quality-driven face occlusion detection and recovery. In Proceedings of computer vision and pattern recognition (CVPR). – reference: EveringhamMVan GoolLWilliamsCKIWinnJZissermanAThe Pascal visual object classes (VOC) challengeSpringer International Journal of Computer Vision201088230333810.1007/s11263-009-0275-4 – reference: Shih, Y., Krishnan, D., Durand, F., & Freeman, W. T. (2015). Reflection removal using ghosting cues. In Proceedings of computer vision and pattern recognition (CVPR). – reference: Song, Y., Zhang, J., He, S., Bao, L., & Yang, Q. (2017). Learning to hallucinate face images via component generation and enhancement. arXiv preprintarXiv:1708.00223. – reference: ZhangKZhangZLiZQiaoYJoint face detection and alignment using multitask cascaded convolutional networksIEEE Signal Processing Letter201623101499150310.1109/LSP.2016.2603342 – reference: Arvanitopoulos, N., Achanta, R., & Susstrunk, S. (2017). Single image reflection suppression. In Proceedings of computer vision and pattern recognition (CVPR). – reference: Li, Y., Liu, S., Yang, J., & Yang, M.-H. (2017b). Generative face completion. In Proceedings of computer vision and pattern recognition (CVPR). – reference: GaiKShiZZhangCBlind separation of superimposed moving images using image statisticsIEEE Transactions on Pattern Analysis and Machine Intelligence201234193210.1109/TPAMI.2011.87 – reference: Jason, J. Y., Harley, A. W., & Derpanis, K. G. (2016). Back to basics: Unsupervised learning of optical flow via brightness constancy and motion smoothness. In Proceedings of European Conference on Computer Vision (ECCV). – reference: Wan, R., Shi, B., Duan, L.-Y., Tan, A.-H., & Kot, A. C. (2018a). CRRN: Multi-scale guided concurrent reflection removal network. In Proceedings of computer vision and pattern recognition (CVPR). – reference: Fan, Q., Yang, J., Hua, G., Chen, B., & Wipf, D. (2017). A generic deep architecture for single image reflection removal and image smoothing. In Proceedings of International Conference on Computer Vision (ICCV). – reference: Baker, S., & Kanade, T. (2000). Hallucinating faces. In FG. – reference: Li, Y., & Brown, M. S. (2014). Single image layer separation using relative smoothness. In Proceedings of computer vision and pattern recognition (CVPR). – reference: Ronneberger, O., Fischer, P., & Brox, T. (2015). U-net: Convolutional networks for biomedical image segmentation. In Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention. – reference: Yi, D., Lei, Z., Liao, S., & Li, S. Z. (2014). Learning face representation from scratch. arXiv preprintarXiv:1411.7923. – reference: Wei, K., Yang, J., Fu, Y., Wipf, D., & Huang, H. (2019). Single image reflection removal exploiting misaligned training data and network enhancements. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. – reference: Ma, D., Wan, R., Shi, B., Kot, A. C., & Duan, L.-Y. (2019). Learning to jointly generate and separate reflections. In Proceedings of the IEEE International Conference on Computer Vision (ICCV). – reference: Fischer, P., Dosovitskiy, A., Ilg, E., Häusser, P., Hazırbaş, C., Golkov, V., Van der Smagt, P., Cremers, D., & Brox, T. (2015). Flownet: Learning optical flow with convolutional networks. arXiv preprintarXiv:1504.06852. – reference: Lee, D., Yang, M.-H., & Oh, S. (2018). Generative single image reflection separation. arXiv preprintarXiv:1801.04102. – reference: Li, Y., & Brown, M. (2013). Exploiting reflection change for automatic reflection removal. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. – reference: Shen, Z., Lai, W.-S., Xu, T., Kautz, J., & Yang, M.-H. (2018). Deep semantic face deblurring. In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. – reference: Li, Y., Swersky, K., & Zemel, R. (2015). Generative moment matching networks. In International Conference on Machine Learning. – reference: Pan, J., Hu, Z., Su, Z., & Yang, M.-H. (2014). Deblurring face images with exemplars. In Proceedings of European Conference on Computer Vision (ECCV). – reference: Torralba, A., & Efros, A. A. (2011). Unbiased look at dataset bias. In CVPR 2011 (pp. 1521–1528). IEEE. – reference: Lyu, Y., Cui, Z., Li, S., Pollefeys, M., & Shi, B. (2019). Reflection separation using a pair of unpolarized and polarized images. In Advances in neural information processing systems. – reference: Wan, R., Shi, B., Tan, A. H., & Kot, A. C. (2016). Depth of field guided reflection removal. In Proceedings of International Conference on Image Processing (ICIPa). – volume: 23 start-page: 1499 issue: 10 year: 2016 ident: 1372_CR59 publication-title: IEEE Signal Processing Letter doi: 10.1109/LSP.2016.2603342 – ident: 1372_CR9 – ident: 1372_CR31 doi: 10.1109/ICCV.2015.425 – ident: 1372_CR8 doi: 10.1109/ICCV.2017.351 – ident: 1372_CR28 doi: 10.1109/CVPR.2007.383052 – volume: 27 start-page: 2927 issue: 6 year: 2018 ident: 1372_CR47 publication-title: IEEE Transactions on Image Processing doi: 10.1109/TIP.2018.2808768 – ident: 1372_CR10 doi: 10.1109/ICCV.2015.316 – ident: 1372_CR36 doi: 10.1109/ICCV.2005.166 – ident: 1372_CR50 doi: 10.1109/ICME.2017.8019527 – ident: 1372_CR16 – ident: 1372_CR39 – ident: 1372_CR12 – ident: 1372_CR48 doi: 10.1109/TPAMI.2019.2921574 – ident: 1372_CR45 doi: 10.1109/ICCV.2017.423 – ident: 1372_CR5 doi: 10.1109/CVPR.2018.00264 – ident: 1372_CR43 – ident: 1372_CR51 doi: 10.1109/TSMCC.2005.848171 – ident: 1372_CR52 doi: 10.1109/CVPR.2019.00837 – ident: 1372_CR19 doi: 10.1007/978-3-319-25958-1_8 – ident: 1372_CR49 doi: 10.1109/ICIP.2016.7532311 – volume: 75 start-page: 115 issue: 1 year: 2007 ident: 1372_CR30 publication-title: Springer International Journal of Computer Vision doi: 10.1007/s11263-006-0029-5 – ident: 1372_CR24 doi: 10.1109/ICCV.2013.302 – ident: 1372_CR42 doi: 10.24963/ijcai.2017/633 – ident: 1372_CR32 – ident: 1372_CR37 doi: 10.1007/978-3-319-24574-4_28 – ident: 1372_CR46 doi: 10.1109/CVPR.2018.00502 – ident: 1372_CR13 doi: 10.7551/mitpress/7503.003.0069 – ident: 1372_CR3 doi: 10.1109/AFGR.2000.840616 – ident: 1372_CR15 – ident: 1372_CR26 doi: 10.1109/CVPR.2017.624 – ident: 1372_CR40 – volume: 27 start-page: 4873 year: 2018 ident: 1372_CR14 publication-title: IEEE Transactions on Image Processing doi: 10.1109/TIP.2018.2849880 – ident: 1372_CR21 doi: 10.1109/CVPR.2018.00566 – ident: 1372_CR35 doi: 10.1109/CVPR.2016.278 – ident: 1372_CR44 doi: 10.1109/CVPR.2011.5995347 – ident: 1372_CR18 doi: 10.1007/978-3-642-33712-3_49 – ident: 1372_CR33 doi: 10.1109/ICCV.2019.00253 – volume: 88 start-page: 303 issue: 2 year: 2010 ident: 1372_CR7 publication-title: Springer International Journal of Computer Vision doi: 10.1007/s11263-009-0275-4 – ident: 1372_CR57 doi: 10.1109/CVPR.2016.157 – ident: 1372_CR6 doi: 10.1109/CVPR.2018.00741 – ident: 1372_CR58 – ident: 1372_CR54 – ident: 1372_CR22 doi: 10.1109/ICCV.2017.228 – ident: 1372_CR55 doi: 10.1109/CVPR.2013.146 – ident: 1372_CR61 doi: 10.1109/CVPR.2018.00503 – ident: 1372_CR23 doi: 10.1007/978-3-030-01261-8_17 – ident: 1372_CR34 doi: 10.1007/978-3-319-10584-0_4 – ident: 1372_CR29 doi: 10.1007/978-3-319-10602-1_48 – ident: 1372_CR2 doi: 10.1109/CVPR.2017.190 – ident: 1372_CR20 – volume: 13 start-page: 2884 issue: 11 year: 2018 ident: 1372_CR53 publication-title: IEEE Transactions on Information Forensics and Security doi: 10.1109/TIFS.2018.2833032 – volume-title: Openface: A general-purpose face recognition library with mobile applications year: 2016 ident: 1372_CR1 – ident: 1372_CR27 – volume: 13 start-page: 637 issue: 3 year: 2018 ident: 1372_CR60 publication-title: IEEE Transactions on Information Forensics and Security doi: 10.1109/TIFS.2017.2763119 – ident: 1372_CR38 doi: 10.1109/CVPR.2018.00862 – ident: 1372_CR4 doi: 10.1007/s11263-019-01276-z – volume: 34 start-page: 19 year: 2012 ident: 1372_CR11 publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence doi: 10.1109/TPAMI.2011.87 – ident: 1372_CR17 – ident: 1372_CR25 doi: 10.1109/CVPR.2014.346 – ident: 1372_CR41 doi: 10.1007/978-3-540-75225-7_5 – ident: 1372_CR56 doi: 10.1007/978-3-030-01219-9_40 |
SSID | ssj0002823 |
Score | 2.4904232 |
Snippet | Face images captured through glass are usually contaminated by reflections. The low-transmitted reflections make the reflection removal more challenging than... |
SourceID | proquest gale crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 385 |
SubjectTerms | Artificial Intelligence Computer Imaging Computer Science Face recognition Image Processing and Computer Vision Image transmission Object recognition Pattern Recognition Pattern Recognition and Graphics Vision |
SummonAdditionalLinks | – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF60Xrz4FqOtBBE8aCDZJJvkWMTSCnqoFnpb9jHrpU3FtP_f2XTTUl_gLWxm85jdnZmPeRFyreJYoeKEIDFaI0CRNJACRABSaJMaYLmyQPHpmfVHyeM4HbuksKqJdm9ckrWkXie7RbT2OdpAqjhDCLVNdlKL3XEXj2h3JX8RRCwbyCNlyorIpcr8_IwNdfRVKH_zjtZKp3dA9py16HeXy3tItqA8IvvOcvTduaxwqGnO0Iwdk05PKPAHU5QX_hDMpA65KvFyOsPNdUJGvYfX-37geiEECi2YeRCnBcslSEQXQFHHqyQvTGZylkiRQySoEXg8JWiVgRYyM5GmJmNhITVjBu2sU9IqZyWcEV-EhUYiRKeo24GBMCHkwLTOkhxnhh6JGpZw5QqF234VE74ucWzZyJGNvGYjTz1yu5rzviyT8Sf1leU0t_UnShvg8iYWVcUHL0PeZWmUIQaMqEduHJGZ4euVcPkC-BO2ZNUGZbtZMe5OYMUpMii0rVRij9w1q7i-_fvHnf-P_ILsUhvmUgdyt0lr_rGADtopc3lZb8tPDnzbMg priority: 102 providerName: Springer Nature |
Title | Face Image Reflection Removal |
URI | https://link.springer.com/article/10.1007/s11263-020-01372-5 https://www.proquest.com/docview/2489046743 |
Volume | 129 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9swDCbW5LLL2j2KZW0DYxiww2bMlm1ZPhXplvS1FkO6AO1J0IPapXXaOvn_pRy5QTesJxsS5QclkfwkigT4ZLLMkOLEOHfWEkDRLNYKVYxaWVc45MJ4oHh2zo9m-cllcRkW3JrgVtnJxFZQ27nxa-TfWC6qxKfGyPZv72KfNcrvroYUGhvQJxEsCHz1D8bnv6aPspgAxSqZPIGkgldpODazOjyXsnYP0ztmZSVBsieq6W8B_c9OaauAJlvwKliO0WjV1a_hBdZvYDNYkVGYow0VdYkaurK3sDdRBqPjG5Id0RTddet-VdPtzZwG2juYTca_vx_FIS9CbMiaWcRZUXGhURPSQEb63hBrXOkEz7USmCrmFE1VjdaUaJUuXWqZK3lSacu5I5trG3r1vMb3EKmkskRESJX0PHJULkGB3NoyF9QyGUDasUSaEDTc5664lutwx56NktgoWzbKYgBfHtvcrkJmPEv90XNa-lgUtXd2-aOWTSOPL6ZyxIu0JDyYsgF8DkRuTq83KpwdoJ_w4aueUO52PSbDbGzkeuwM4GvXi-vq_3_ch-eftgMvmXdxaZ24d6G3uF_iHtkoCz2EDTE5HEJ_9OPs54W_Hl6djodheFLtjI0eAGLA5MY |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB5RemgvpaVFLF3aCFH1UCISJ3GSQ1WhlmWX14GHxM34Me4FstDsCvGn-I0dJw4risqNW-SMnWQ8npkvHs8ArOsk0WQ4MUytMQRQFAuVRBmiksZmFnmhHVA8OOTD03T3LDubg7vuLIwLq-x0YqOozVi7f-SbLC3KyJXGSH5cXYeuapTbXe1KaLRisYe3NwTZ6u-jXzS_XxgbbJ_8HIa-qkCoyReYhElW8kKhIj8dGVlLTQPb3BY8VbLAWDIrSdAVGp2jkSq3sWE251GpDOeWPBYa9wW8TJOkdCuqGOzca36CL23peoJkGS9jf0inPaoXs2bH1IWBJTkBwAeG8F9z8GhftjF3g7fwxvupwVYrWO9gDqtFWPA-a-A1Qk1NXVmIru09rA6kxmB0SZoqOEJ70QR7VXR5OSax_gCnz8KvJZivxhUuQyCj0hAR4WLyKpCjtBEWyI3J04J6Rj2IO5YI7VOUu0oZF2KWXNmxURAbRcNGkfXg232fqzZBx5PUa47TwmW-qFxozW85rWsxOj4SWzyLc0KfMevBV09kx_R4Lf1JBfoIlyzrAWW_mzHh134tZpLag41uFme3__9yK0-P9hleDU8O9sX-6HDvI7xmLrimCR_vw_zkzxRXyTuaqE-NSAZw_txr4C9MQRxo |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB7RRap6KfSlbnk0Qq16aKNNnMRJDghBYcWWdoW2ReLm-jHuBbKULEL8NX4d48RhRSu4cYucsZ2MJzPzxeMZgA86STQZTgxTawwBFMVCJVGGqKSxmUVeaAcUf4z5_lH67Tg7XoDr7iyMC6vsdGKjqM1Uu3_kA5YWZeRKYyQD68MiDneHW2d_Q1dByu20duU0WhE5wKtLgm_15miX1vojY8O9X1_3Q19hINTkF8zCJCt5oVCRz46MLKemSWxuC54qWWAsmZUk9AqNztFIldvYMJvzqFSGc0veC437BBZzQkVRDxZ39saHk1s7QGCmLWRPAC3jZeyP7LQH92LW7J-6oLAkJzh4xyz-axz-26VtjN9wGZ57rzXYbsXsBSxg9RKWvAcbeP1QU1NXJKJrewVrQ6kxGJ2S3gomaE-a0K-KLk-nJOSv4ehROPYGetW0wrcQyKg0REQomXwM5ChthAVyY_K0oJ5RH-KOJUL7hOWubsaJmKdadmwUxEbRsFFkffh82-esTdfxIPWG47RweTAqJ1F_5EVdi9HPidjmWZwTFo1ZHz55Ijul6bX05xboJVzqrDuUq92KCa8JajGX2z586VZxfvv-h3v38Gjv4SnJv_g-Gh-swDPmIm2aWPJV6M3OL3CNXKWZWvcyGcDvx_4MbgCTzSH6 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Face+Image+Reflection+Removal&rft.jtitle=International+journal+of+computer+vision&rft.au=Wan%2C+Renjie&rft.au=Shi%2C+Boxin&rft.au=Li%2C+Haoliang&rft.au=Duan%2C+Ling-Yu&rft.date=2021-02-01&rft.pub=Springer&rft.issn=0920-5691&rft.volume=129&rft.issue=2&rft.spage=385&rft_id=info:doi/10.1007%2Fs11263-020-01372-5&rft.externalDocID=A651789912 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0920-5691&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0920-5691&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0920-5691&client=summon |