Lipid-Based Nanoparticles as a Pivotal Delivery Approach in Triple Negative Breast Cancer (TNBC) Therapy

Triple-negative breast cancer is considered the most aggressive type of breast cancer among women and the lack of expressed receptors has made treatment options substantially limited. Recently, various types of nanoparticles have emerged as a therapeutic option against TNBC, to elevate the therapeut...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of molecular sciences Vol. 23; no. 17; p. 10068
Main Authors Chaudhuri, Aiswarya, Kumar, Dulla Naveen, Shaik, Rasheed A., Eid, Basma G., Abdel-Naim, Ashraf B., Md, Shadab, Ahmad, Aftab, Agrawal, Ashish Kumar
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 03.09.2022
MDPI
Subjects
Online AccessGet full text
ISSN1422-0067
1661-6596
1422-0067
DOI10.3390/ijms231710068

Cover

Loading…
Abstract Triple-negative breast cancer is considered the most aggressive type of breast cancer among women and the lack of expressed receptors has made treatment options substantially limited. Recently, various types of nanoparticles have emerged as a therapeutic option against TNBC, to elevate the therapeutic efficacy of the existing chemotherapeutics. Among the various nanoparticles, lipid-based nanoparticles (LNPs) viz. liposomes, nanoemulsions, solid lipid nanoparticles, nanostructured lipid nanocarriers, and lipid–polymer hybrid nanoparticles are developed for cancer treatment which is well confirmed and documented. LNPs include various therapeutic advantages as compared to conventional therapy and other nanoparticles, including increased loading capacity, enhanced temporal and thermal stability, decreased therapeutic dose and associated toxicity, and limited drug resistance. In addition to these, LNPs overcome physiological barriers which provide increased accumulation of therapeutics at the target site. Extensive efforts by the scientific community could make some of the liposomal formulations the clinical reality; however, the relatively high cost, problems in scaling up the formulations, and delivery in a more targetable fashion are some of the major issues that need to be addressed. In the present review, we have compiled the state of the art about different types of LNPs with the latest advances reported for the treatment of TNBC in recent years, along with their clinical status and toxicity in detail.
AbstractList Triple-negative breast cancer is considered the most aggressive type of breast cancer among women and the lack of expressed receptors has made treatment options substantially limited. Recently, various types of nanoparticles have emerged as a therapeutic option against TNBC, to elevate the therapeutic efficacy of the existing chemotherapeutics. Among the various nanoparticles, lipid-based nanoparticles (LNPs) viz. liposomes, nanoemulsions, solid lipid nanoparticles, nanostructured lipid nanocarriers, and lipid-polymer hybrid nanoparticles are developed for cancer treatment which is well confirmed and documented. LNPs include various therapeutic advantages as compared to conventional therapy and other nanoparticles, including increased loading capacity, enhanced temporal and thermal stability, decreased therapeutic dose and associated toxicity, and limited drug resistance. In addition to these, LNPs overcome physiological barriers which provide increased accumulation of therapeutics at the target site. Extensive efforts by the scientific community could make some of the liposomal formulations the clinical reality; however, the relatively high cost, problems in scaling up the formulations, and delivery in a more targetable fashion are some of the major issues that need to be addressed. In the present review, we have compiled the state of the art about different types of LNPs with the latest advances reported for the treatment of TNBC in recent years, along with their clinical status and toxicity in detail.Triple-negative breast cancer is considered the most aggressive type of breast cancer among women and the lack of expressed receptors has made treatment options substantially limited. Recently, various types of nanoparticles have emerged as a therapeutic option against TNBC, to elevate the therapeutic efficacy of the existing chemotherapeutics. Among the various nanoparticles, lipid-based nanoparticles (LNPs) viz. liposomes, nanoemulsions, solid lipid nanoparticles, nanostructured lipid nanocarriers, and lipid-polymer hybrid nanoparticles are developed for cancer treatment which is well confirmed and documented. LNPs include various therapeutic advantages as compared to conventional therapy and other nanoparticles, including increased loading capacity, enhanced temporal and thermal stability, decreased therapeutic dose and associated toxicity, and limited drug resistance. In addition to these, LNPs overcome physiological barriers which provide increased accumulation of therapeutics at the target site. Extensive efforts by the scientific community could make some of the liposomal formulations the clinical reality; however, the relatively high cost, problems in scaling up the formulations, and delivery in a more targetable fashion are some of the major issues that need to be addressed. In the present review, we have compiled the state of the art about different types of LNPs with the latest advances reported for the treatment of TNBC in recent years, along with their clinical status and toxicity in detail.
Triple-negative breast cancer is considered the most aggressive type of breast cancer among women and the lack of expressed receptors has made treatment options substantially limited. Recently, various types of nanoparticles have emerged as a therapeutic option against TNBC, to elevate the therapeutic efficacy of the existing chemotherapeutics. Among the various nanoparticles, lipid-based nanoparticles (LNPs) viz. liposomes, nanoemulsions, solid lipid nanoparticles, nanostructured lipid nanocarriers, and lipid–polymer hybrid nanoparticles are developed for cancer treatment which is well confirmed and documented. LNPs include various therapeutic advantages as compared to conventional therapy and other nanoparticles, including increased loading capacity, enhanced temporal and thermal stability, decreased therapeutic dose and associated toxicity, and limited drug resistance. In addition to these, LNPs overcome physiological barriers which provide increased accumulation of therapeutics at the target site. Extensive efforts by the scientific community could make some of the liposomal formulations the clinical reality; however, the relatively high cost, problems in scaling up the formulations, and delivery in a more targetable fashion are some of the major issues that need to be addressed. In the present review, we have compiled the state of the art about different types of LNPs with the latest advances reported for the treatment of TNBC in recent years, along with their clinical status and toxicity in detail.
Author Md, Shadab
Shaik, Rasheed A.
Chaudhuri, Aiswarya
Kumar, Dulla Naveen
Eid, Basma G.
Agrawal, Ashish Kumar
Abdel-Naim, Ashraf B.
Ahmad, Aftab
AuthorAffiliation 2 Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
3 Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
1 Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, India
4 Health Information Technology Department, Faculty of Applied Studies, King Abdulaziz University, Jeddah 21589, Saudi Arabia
AuthorAffiliation_xml – name: 1 Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, India
– name: 2 Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
– name: 3 Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
– name: 4 Health Information Technology Department, Faculty of Applied Studies, King Abdulaziz University, Jeddah 21589, Saudi Arabia
Author_xml – sequence: 1
  givenname: Aiswarya
  orcidid: 0000-0002-6045-6590
  surname: Chaudhuri
  fullname: Chaudhuri, Aiswarya
– sequence: 2
  givenname: Dulla Naveen
  orcidid: 0000-0003-2415-7806
  surname: Kumar
  fullname: Kumar, Dulla Naveen
– sequence: 3
  givenname: Rasheed A.
  orcidid: 0000-0001-7959-8647
  surname: Shaik
  fullname: Shaik, Rasheed A.
– sequence: 4
  givenname: Basma G.
  orcidid: 0000-0002-8244-1242
  surname: Eid
  fullname: Eid, Basma G.
– sequence: 5
  givenname: Ashraf B.
  surname: Abdel-Naim
  fullname: Abdel-Naim, Ashraf B.
– sequence: 6
  givenname: Shadab
  orcidid: 0000-0002-9343-1066
  surname: Md
  fullname: Md, Shadab
– sequence: 7
  givenname: Aftab
  surname: Ahmad
  fullname: Ahmad, Aftab
– sequence: 8
  givenname: Ashish Kumar
  orcidid: 0000-0002-7302-3647
  surname: Agrawal
  fullname: Agrawal, Ashish Kumar
BookMark eNptkU1rGzEQhkVJaL567F3QS3LYVB-70upSiN02LRgnB_csZrWzscx6tZXWBv_7yiSFJhQGZuB95h1m5oKcDGFAQj5ydiulYZ_9ZpuE5Jozpup35JyXQhS51if_1GfkIqUNY0KKyrwnZ1IxrUulzsl64UffFjNI2NIlDGGEOHnXY6KQgz76fZigp1-x93uMB3o3jjGAW1M_0FX0Y490iU8wZZXOIkKa6BwGh5Fer5az-Q1drTHCeLgipx30CT-85Evy6_u31fxHsXi4_zm_WxROGjEVUtasa6WWoqmVQFOXBjvZuFarijd1oxsFiKzSTgMoxZVohGgaI11tVAudvCRfnn3HXbPF1uEwRejtGP0W4sEG8Pa1Mvi1fQp7a8pKSS6zwfWLQQy_d5gmu_XJYd_DgGGXrNBc1JVSwmT00xt0E3ZxyOsdKS5NqSqRKflMuRhSithZ56d8sHCc73vLmT1-0r76ZO4q3nT9XeH__B-tFaC6
CitedBy_id crossref_primary_10_1007_s11051_024_06000_8
crossref_primary_10_1007_s12032_025_02660_1
crossref_primary_10_1208_s12249_023_02624_6
crossref_primary_10_3390_vaccines13010047
crossref_primary_10_1002_wnan_2013
crossref_primary_10_1016_j_critrevonc_2024_104417
crossref_primary_10_1021_acsbiomaterials_4c00532
crossref_primary_10_1016_j_procbio_2024_06_006
crossref_primary_10_3390_jfb13040304
crossref_primary_10_1111_jcmm_17677
crossref_primary_10_1021_acs_langmuir_4c00278
crossref_primary_10_3390_pharmaceutics15010024
crossref_primary_10_1002_smll_202300666
crossref_primary_10_20517_cdr_2024_19
crossref_primary_10_3390_pharmaceutics15010246
crossref_primary_10_1021_acs_biomac_3c01258
crossref_primary_10_21926_obm_neurobiol_2401208
crossref_primary_10_1016_j_jconrel_2024_05_020
crossref_primary_10_1016_j_jddst_2022_103886
crossref_primary_10_1016_j_jddst_2024_106414
crossref_primary_10_2174_0122106812246316230920095319
crossref_primary_10_1016_j_biopha_2024_117465
crossref_primary_10_1007_s00210_024_03234_0
crossref_primary_10_2174_0122117385286781240228060152
crossref_primary_10_1080_17458080_2023_2281938
crossref_primary_10_1016_j_pmatsci_2023_101070
crossref_primary_10_1186_s11671_024_04086_6
crossref_primary_10_1007_s00210_023_02865_z
crossref_primary_10_1208_s12249_023_02712_7
crossref_primary_10_3390_cancers15092661
crossref_primary_10_1016_j_ijpharm_2023_123224
crossref_primary_10_1002_mco2_339
crossref_primary_10_1016_j_ijpharm_2022_122575
crossref_primary_10_1016_j_onano_2022_100091
crossref_primary_10_1080_08982104_2024_2325963
crossref_primary_10_3390_pharmaceutics15071958
crossref_primary_10_3390_pharmaceutics15010216
crossref_primary_10_3390_pharmaceutics15082065
crossref_primary_10_3390_pharmaceutics15020678
crossref_primary_10_1080_02652048_2024_2326091
crossref_primary_10_1016_j_jddst_2024_105957
crossref_primary_10_1016_j_ejmech_2023_115676
crossref_primary_10_1016_j_jddst_2024_106346
Cites_doi 10.1007/s00280-017-3247-3
10.3390/ijms19020586
10.2217/nnm.13.225
10.1007/s40005-021-00548-6
10.1186/s11671-018-2716-x
10.1016/j.ijpharm.2020.119565
10.1038/aps.2016.166
10.20944/preprints201810.0507.v1
10.2147/IJN.S121262
10.1186/s12951-016-0209-6
10.3390/molecules23040907
10.1016/j.canlet.2017.02.004
10.1111/bcp.12260
10.1007/s11095-017-2238-8
10.1177/1559325820936161
10.2174/138945011795906570
10.1038/s41598-021-87968-4
10.1016/j.jconrel.2012.06.002
10.1016/j.ejps.2017.12.011
10.1016/j.ejpb.2018.09.012
10.1016/j.colsurfb.2018.09.047
10.2217/nnm-2017-0278
10.1201/9781003186083-3
10.1016/j.colsurfb.2014.09.062
10.1016/j.nano.2013.08.012
10.2147/IJN.S161163
10.1016/j.ijpharm.2018.07.016
10.2217/nnm-2020-0003
10.1016/j.colsurfb.2016.05.051
10.3390/ph14080725
10.3390/cancers13153700
10.1208/s12249-019-1330-2
10.1126/sciadv.aav5010
10.1016/j.addr.2007.04.008
10.2147/OTT.S105587
10.1016/j.biopha.2016.08.061
10.1208/s12249-021-02016-8
10.1208/s12249-014-0088-9
10.1002/btm2.10143
10.1016/j.ijpharm.2021.120877
10.1021/acsami.7b07132
10.1016/j.jddst.2019.101370
10.1016/j.ijpharm.2017.06.031
10.1080/10717544.2018.1526227
10.1021/acs.molpharmaceut.6b01148
10.1007/s13346-022-01125-6
10.1021/acs.molpharmaceut.5b00281
10.1016/j.ijpharm.2019.118595
10.4155/tde-2018-0074
10.1021/mp400036w
10.1021/acs.nanolett.1c01210
10.1080/03639045.2018.1539496
10.1080/21691401.2017.1313267
10.1208/s12248-017-0154-9
10.1007/s10637-016-0407-y
10.1016/j.canlet.2017.08.004
10.1039/D0RA03491F
10.1016/j.lfs.2019.01.053
10.1016/j.jconrel.2014.09.005
10.1088/0957-4484/27/8/085102
10.1007/s11095-018-2502-6
10.1007/s11095-017-2202-7
10.2147/IJN.S327094
10.1016/j.nantod.2011.10.001
10.1016/j.addr.2020.07.002
10.1517/17425240903167942
10.1039/C5RA06047H
10.1111/cas.14181
10.1080/08982100600848769
10.1021/acs.molpharmaceut.9b00527
10.1039/C5SM02958A
10.1186/s13045-021-01096-0
10.1088/2632-959X/abeb4b
10.3390/pharmaceutics13040549
10.1016/j.ejps.2013.10.003
10.1016/j.yexmp.2008.12.004
10.1007/s13346-020-00795-4
10.1080/1061186X.2017.1298603
10.1021/bc400477q
10.1007/s12032-014-0345-5
10.3390/cancers14061435
10.3390/cancers13246248
10.1016/j.biopha.2017.08.090
10.3109/10717544.2014.991001
10.1038/nrd2197
10.1007/s13204-019-01004-6
10.1208/s12249-014-0177-9
10.1007/s40005-017-0370-4
10.1016/j.addr.2021.03.004
10.1016/j.biomaterials.2020.119769
10.1007/s11095-014-1449-5
10.1016/j.xphs.2019.04.005
10.1002/adhm.201500235
10.5772/54781
10.1021/acs.molpharmaceut.6b01099
10.1016/j.nano.2016.07.016
10.2147/IJN.S289443
10.3390/ijms19123859
10.1038/s41598-020-69276-5
10.3389/fbioe.2021.670124
10.2147/IJN.S163929
10.1007/s00280-017-3279-8
10.3390/molecules22071052
10.2478/acph-2013-0040
10.1016/S0140-6736(15)00986-1
10.3892/or.2015.4142
10.3390/nano9060821
10.3109/1061186X.2012.716845
10.1038/s43586-022-00104-y
10.1016/j.canlet.2019.02.011
10.1016/B978-0-12-814619-4.00010-0
10.3390/ph15050542
10.3390/vaccines9040359
10.1208/s12249-019-1304-4
10.3109/10717544.2015.1092183
10.1016/j.ejpb.2020.12.012
10.1016/j.yexmp.2016.05.013
10.1186/s12951-019-0526-7
10.1016/j.addr.2020.06.017
10.1039/D0NR00523A
10.3390/coatings11020158
10.1021/acs.molpharmaceut.8b01065
10.1016/j.drudis.2016.09.024
10.1016/j.biopha.2020.110876
10.1186/s12951-018-0392-8
10.1021/acs.molpharmaceut.1c00650
10.2147/IJN.S182384
10.1016/j.nano.2017.03.001
10.2147/IJN.S143977
10.1039/C5RA03283K
10.1039/C7FO00882A
10.1007/s13204-019-01129-8
10.3390/life12081143
10.4236/cm.2020.113007
10.2147/OTT.S182437
10.2147/IJN.S64103
10.1201/9781003186069-7
10.1016/j.colsurfb.2018.08.047
10.1016/j.ejps.2017.09.041
10.1016/j.msec.2020.111279
10.3389/fcell.2021.731062
10.1021/mp500637b
10.1016/j.nano.2018.04.009
10.1016/j.jddst.2021.102665
10.1007/s00280-012-2042-4
10.2147/IJN.S80302
10.1016/j.jcis.2014.12.092
10.1155/2013/165981
10.1615/CritRevTherDrugCarrierSyst.v26.i6.10
10.3109/10717544.2014.909906
10.1080/10408444.2020.1719974
10.1021/mp300202c
10.2147/IJN.S207837
10.1016/B978-0-12-813663-8.00010-5
10.1016/j.biomaterials.2019.01.019
10.1080/10717544.2016.1217954
ContentType Journal Article
Copyright 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2022 by the authors. 2022
Copyright_xml – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2022 by the authors. 2022
DBID AAYXX
CITATION
3V.
7X7
7XB
88E
8FI
8FJ
8FK
8G5
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
COVID
DWQXO
FYUFA
GHDGH
GNUQQ
GUQSH
K9.
M0S
M1P
M2O
MBDVC
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOI 10.3390/ijms231710068
DatabaseName CrossRef
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Research Library
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One
Coronavirus Research Database
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
ProQuest Research Library
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Collection
Medical Database
Research Library
Research Library (Corporate)
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
Publicly Available Content Database
Research Library Prep
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Research Library
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Central Basic
ProQuest One Academic Eastern Edition
Coronavirus Research Database
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
CrossRef

Publicly Available Content Database
Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1422-0067
ExternalDocumentID PMC9456313
10_3390_ijms231710068
GrantInformation_xml – fundername: King Abdulaziz University, DSR, Jeddah, Saudi Arabia
– fundername: Research & Innovation, Ministry of Education in Saudi Arabia
  grantid: 508-166-1442
GroupedDBID ---
29J
2WC
53G
5GY
5VS
7X7
88E
8FE
8FG
8FH
8FI
8FJ
8G5
A8Z
AADQD
AAFWJ
AAHBH
AAYXX
ABDBF
ABUWG
ACGFO
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
AEAQA
AENEX
AFKRA
AFZYC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BCNDV
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DIK
DU5
DWQXO
E3Z
EBD
EBS
EJD
ESX
F5P
FRP
FYUFA
GNUQQ
GUQSH
GX1
HH5
HMCUK
HYE
IAO
IHR
ITC
KQ8
LK8
M1P
M2O
M48
MODMG
O5R
O5S
OK1
OVT
P2P
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RPM
TR2
TUS
UKHRP
~8M
3V.
7XB
8FK
COVID
K9.
MBDVC
PJZUB
PKEHL
PPXIY
PQEST
PQUKI
PRINS
Q9U
7X8
5PM
ID FETCH-LOGICAL-c392t-3380fd3732b862e9849ef3bcd7651b8b7b6aee057c7aa66162b22bb93c896daf3
IEDL.DBID M48
ISSN 1422-0067
1661-6596
IngestDate Thu Aug 21 17:50:22 EDT 2025
Tue Aug 05 11:02:14 EDT 2025
Sat Aug 23 12:54:34 EDT 2025
Tue Jul 01 03:40:30 EDT 2025
Thu Apr 24 23:03:48 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 17
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c392t-3380fd3732b862e9849ef3bcd7651b8b7b6aee057c7aa66162b22bb93c896daf3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0001-7959-8647
0000-0002-9343-1066
0000-0002-8244-1242
0000-0003-2415-7806
0000-0002-7302-3647
0000-0002-6045-6590
OpenAccessLink https://www.proquest.com/docview/2711394652?pq-origsite=%requestingapplication%
PMID 36077466
PQID 2711394652
PQPubID 2032341
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_9456313
proquest_miscellaneous_2712856629
proquest_journals_2711394652
crossref_citationtrail_10_3390_ijms231710068
crossref_primary_10_3390_ijms231710068
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20220903
PublicationDateYYYYMMDD 2022-09-03
PublicationDate_xml – month: 9
  year: 2022
  text: 20220903
  day: 3
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle International journal of molecular sciences
PublicationYear 2022
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References ref_137
ref_93
Shen (ref_149) 2019; 197
ref_90
Choi (ref_107) 2018; 48
ref_13
Chen (ref_54) 2021; 21
ref_10
ref_133
ref_97
ref_96
Kushwah (ref_27) 2018; 548
Das (ref_161) 2014; 25
Patel (ref_17) 2019; 10
ref_15
Silverman (ref_110) 2013; 71
Aqil (ref_94) 2017; 8
Jain (ref_86) 2013; 10
Zhang (ref_118) 2018; 13
Pindiprolu (ref_78) 2019; 45
ref_24
ref_120
ref_22
ref_122
Wang (ref_140) 2014; 9
Li (ref_141) 2017; 34
ref_124
Nazzal (ref_143) 2017; 528
Nartowski (ref_59) 2021; 18
Agrawal (ref_91) 2017; 13
Aqil (ref_95) 2016; 101
ref_29
Singh (ref_37) 2009; 86
Duan (ref_72) 2020; 10
Clarke (ref_115) 2017; 79
Mohsin (ref_31) 2012; 46
Han (ref_64) 2021; 16
ref_159
Chen (ref_46) 2020; 32
Grillone (ref_136) 2015; 4
Ganta (ref_60) 2014; 15
ref_155
ref_75
Chen (ref_123) 2018; 111
Yildirimer (ref_162) 2011; 6
Li (ref_104) 2020; 12
Kushwah (ref_158) 2017; 34
Siddhartha (ref_76) 2018; 46
Venkatakrishnan (ref_109) 2014; 77
Pindiprolu (ref_79) 2020; 15
Harde (ref_70) 2015; 5
Paliwal (ref_35) 2014; 15
Jain (ref_49) 2014; 10
Zhang (ref_111) 2016; 9
ref_83
ref_148
ref_82
ref_81
Munagala (ref_98) 2017; 393
Jain (ref_50) 2012; 9
Lakkadwala (ref_114) 2019; 173
Kadari (ref_116) 2018; 132
ref_144
ref_85
ref_84
Yang (ref_139) 2018; 11
Jain (ref_11) 2015; 12
Yu (ref_130) 2016; 83
Kushwah (ref_48) 2018; 172
Yu (ref_103) 2019; 110
Moghimipour (ref_147) 2018; 114
Patel (ref_18) 2019; 16
Shah (ref_108) 2020; 154–155
Jyoti (ref_121) 2015; 445
Kim (ref_62) 2019; 16
Patel (ref_67) 2019; 9
Porter (ref_30) 2007; 6
Rocca (ref_129) 2017; 79
Souto (ref_57) 2011; 66
Khan (ref_32) 2013; 8
Qi (ref_33) 2017; 22
ref_56
ref_52
Jiang (ref_142) 2016; 23
Lim (ref_28) 2012; 163
ref_51
Alawak (ref_55) 2021; 158
Singh (ref_14) 2018; 13
Yan (ref_53) 2019; 14
Azarnezhad (ref_163) 2020; 50
Jain (ref_58) 2017; 25
Liang (ref_127) 2017; 12
Li (ref_146) 2016; 387
(ref_4) 2021; 173
Nassir (ref_153) 2019; 220
Aqil (ref_99) 2017; 19
Shi (ref_125) 2014; 194
Zhou (ref_88) 2017; 13
Cao (ref_128) 2015; 12
Gupta (ref_41) 2016; 12
ref_61
Anjum (ref_16) 2021; 11
Garg (ref_131) 2016; 146
Bottger (ref_160) 2020; 154–155
Beg (ref_135) 2017; 35
Li (ref_126) 2017; 95
ref_69
ref_68
ref_66
Harde (ref_20) 2015; 32
ref_65
Kumar (ref_113) 2016; 23
ref_63
Negi (ref_150) 2014; 123
Laquintana (ref_157) 2009; 6
Li (ref_132) 2018; 13
Puri (ref_74) 2009; 26
Aqil (ref_92) 2019; 449
Gade (ref_80) 2019; 108
Edis (ref_71) 2021; 16
Chen (ref_119) 2015; 10
Wei (ref_145) 2017; 9
Harde (ref_19) 2014; 9
ref_36
Chang (ref_134) 2018; 25
Hua (ref_154) 2017; 12
ref_34
Naseri (ref_101) 2018; 13
ref_112
ref_39
Hegde (ref_156) 2021; 52
ref_38
Ding (ref_138) 2015; 34
Talluri (ref_8) 2016; 23
Arias (ref_47) 2011; 12
Kushwah (ref_26) 2018; 14
ref_106
Gabizon (ref_40) 2006; 16
ref_105
Wong (ref_73) 2007; 59
Agrawal (ref_12) 2017; 14
Kothari (ref_77) 2019; 10
Ahmad (ref_151) 2017; 406
Cerpnjak (ref_25) 2013; 63
ref_45
ref_44
Zhang (ref_87) 2017; 38
ref_100
Jain (ref_23) 2015; 5
ref_42
ref_102
ref_1
ref_3
ref_2
Rai (ref_21) 2016; 23
Tsai (ref_152) 2016; 11
Garg (ref_89) 2017; 14
Carbone (ref_117) 2014; 52
ref_9
ref_5
Iqbal (ref_43) 2012; 20
ref_7
ref_6
References_xml – volume: 79
  start-page: 603
  year: 2017
  ident: ref_115
  article-title: A phase 1 trial of intravenous liposomal irinotecan in patients with recurrent high-grade glioma
  publication-title: Cancer Chemother. Pharmacol.
  doi: 10.1007/s00280-017-3247-3
– ident: ref_148
  doi: 10.3390/ijms19020586
– volume: 9
  start-page: 2511
  year: 2014
  ident: ref_19
  article-title: Development of stabilized glucomannosylated chitosan nanoparticles using tandem crosslinking method for oral vaccine delivery
  publication-title: Nanomedicine
  doi: 10.2217/nnm.13.225
– volume: 52
  start-page: 49
  year: 2021
  ident: ref_156
  article-title: Multifunctional lipidic nanocarriers for effective therapy of glioblastoma: Recent advances in stimuli-responsive, receptor and subcellular targeted approaches
  publication-title: J. Pharm. Investig.
  doi: 10.1007/s40005-021-00548-6
– ident: ref_120
  doi: 10.1186/s11671-018-2716-x
– ident: ref_90
  doi: 10.1016/j.ijpharm.2020.119565
– volume: 38
  start-page: 835
  year: 2017
  ident: ref_87
  article-title: Dual-targeted hybrid nanoparticles of synergistic drugs for treating lung metastases of triple negative breast cancer in mice
  publication-title: Acta Pharmacol. Sin.
  doi: 10.1038/aps.2016.166
– ident: ref_45
  doi: 10.20944/preprints201810.0507.v1
– volume: 12
  start-page: 1699
  year: 2017
  ident: ref_127
  article-title: Tumor-targeted polymeric nanostructured lipid carriers with precise ratiometric control over dual-drug loading for combination therapy in non-small-cell lung cancer
  publication-title: Int. J. Nanomed.
  doi: 10.2147/IJN.S121262
– ident: ref_144
  doi: 10.1186/s12951-016-0209-6
– ident: ref_51
  doi: 10.3390/molecules23040907
– volume: 393
  start-page: 94
  year: 2017
  ident: ref_98
  article-title: Exosomal formulation of anthocyanidins against multiple cancer types
  publication-title: Cancer Lett.
  doi: 10.1016/j.canlet.2017.02.004
– volume: 77
  start-page: 986
  year: 2014
  ident: ref_109
  article-title: Pharmacokinetics and pharmacodynamics of liposomal mifamurtide in adult volunteers with mild or moderate renal impairment
  publication-title: Br. J. Clin. Pharmacol.
  doi: 10.1111/bcp.12260
– ident: ref_1
– volume: 34
  start-page: 2295
  year: 2017
  ident: ref_158
  article-title: Novel Gemcitabine Conjugated Albumin Nanoparticles: A Potential Strategy to Enhance Drug Efficacy in Pancreatic Cancer Treatment
  publication-title: Pharm. Res.
  doi: 10.1007/s11095-017-2238-8
– ident: ref_5
  doi: 10.1177/1559325820936161
– volume: 12
  start-page: 1151
  year: 2011
  ident: ref_47
  article-title: Lipid-Based Drug Delivery Systems for Cancer Treatment
  publication-title: Curr. Drug Targets
  doi: 10.2174/138945011795906570
– ident: ref_65
  doi: 10.1038/s41598-021-87968-4
– volume: 163
  start-page: 34
  year: 2012
  ident: ref_28
  article-title: Improvement of drug safety by the use of lipid-based nanocarriers
  publication-title: J. Control. Release
  doi: 10.1016/j.jconrel.2012.06.002
– volume: 114
  start-page: 166
  year: 2018
  ident: ref_147
  article-title: Folic acid-modified liposomal drug delivery strategy for tumor targeting of 5-fluorouracil
  publication-title: Eur. J. Pharm. Sci.
  doi: 10.1016/j.ejps.2017.12.011
– volume: 132
  start-page: 168
  year: 2018
  ident: ref_116
  article-title: Design of multifunctional peptide collaborated and docetaxel loaded lipid nanoparticles for antiglioma therapy
  publication-title: Eur. J. Pharm. Biopharm.
  doi: 10.1016/j.ejpb.2018.09.012
– volume: 173
  start-page: 27
  year: 2019
  ident: ref_114
  article-title: Co-delivery of doxorubicin and erlotinib through liposomal nanoparticles for glioblastoma tumor regression using an in vitro brain tumor model
  publication-title: Coll. Surf. B Biointerfaces
  doi: 10.1016/j.colsurfb.2018.09.047
– volume: 13
  start-page: 521
  year: 2018
  ident: ref_14
  article-title: Insulin- and quercetin-loaded liquid crystalline nanoparticles: Implications on oral bioavailability, antidiabetic and antioxidant efficacy
  publication-title: Nanomedicine
  doi: 10.2217/nnm-2017-0278
– ident: ref_96
  doi: 10.1201/9781003186083-3
– volume: 66
  start-page: 473
  year: 2011
  ident: ref_57
  article-title: Lipid nanoemulsions for anti-cancer drug therapy
  publication-title: Pharmazie
– volume: 123
  start-page: 600
  year: 2014
  ident: ref_150
  article-title: Surface engineered nanostructured lipid carriers for targeting MDR tumor: Part I. Synthesis, characterization and in vitro investigation
  publication-title: Coll. Surf. B Biointerfaces
  doi: 10.1016/j.colsurfb.2014.09.062
– volume: 10
  start-page: 431
  year: 2014
  ident: ref_49
  article-title: Improved stability and immunological potential of tetanus toxoid containing surface engineered bilosomes following oral administration
  publication-title: Nanomedicine
  doi: 10.1016/j.nano.2013.08.012
– volume: 13
  start-page: 3039
  year: 2018
  ident: ref_118
  article-title: Lactoferrin- and RGD-comodified, temozolomide and vincristine-coloaded nanostructured lipid carriers for gliomatosis cerebri combination therapy
  publication-title: Int. J. Nanomed.
  doi: 10.2147/IJN.S161163
– volume: 548
  start-page: 357
  year: 2018
  ident: ref_27
  article-title: Implication of linker length on cell cytotoxicity, pharmacokinetic and toxicity profile of gemcitabine-docetaxel combinatorial dual drug conjugate
  publication-title: Int. J. Pharm.
  doi: 10.1016/j.ijpharm.2018.07.016
– volume: 15
  start-page: 1551
  year: 2020
  ident: ref_79
  article-title: Phenyl boronic acid-modified lipid nanocarriers of niclosamide for targeting triple-negative breast cancer
  publication-title: Nanomedicine
  doi: 10.2217/nnm-2020-0003
– volume: 146
  start-page: 114
  year: 2016
  ident: ref_131
  article-title: Fucose decorated solid-lipid nanocarriers mediate efficient delivery of methotrexate in breast cancer therapeutics
  publication-title: Coll. Surf. B Biointerfaces
  doi: 10.1016/j.colsurfb.2016.05.051
– ident: ref_155
  doi: 10.3390/ph14080725
– ident: ref_93
  doi: 10.3390/cancers13153700
– ident: ref_15
  doi: 10.1208/s12249-019-1330-2
– ident: ref_52
  doi: 10.1126/sciadv.aav5010
– volume: 59
  start-page: 491
  year: 2007
  ident: ref_73
  article-title: Chemotherapy with anticancer drugs encapsulated in solid lipid nanoparticles
  publication-title: Adv. Drug Deliv. Rev.
  doi: 10.1016/j.addr.2007.04.008
– volume: 9
  start-page: 3001
  year: 2016
  ident: ref_111
  article-title: Onivyde for the therapy of multiple solid tumors
  publication-title: Onco Targets Ther.
  doi: 10.2147/OTT.S105587
– volume: 83
  start-page: 1428
  year: 2016
  ident: ref_130
  article-title: Anti-tumor efficiency of paclitaxel and DNA when co-delivered by pH responsive ligand modified nanocarriers for breast cancer treatment
  publication-title: Biomed. Pharmacother.
  doi: 10.1016/j.biopha.2016.08.061
– ident: ref_13
  doi: 10.1208/s12249-021-02016-8
– volume: 15
  start-page: 694
  year: 2014
  ident: ref_60
  article-title: Nanoemulsions in translational research-opportunities and challenges in targeted cancer therapy
  publication-title: AAPS PharmSciTech
  doi: 10.1208/s12249-014-0088-9
– ident: ref_112
  doi: 10.1002/btm2.10143
– ident: ref_84
  doi: 10.1016/j.ijpharm.2021.120877
– volume: 9
  start-page: 25138
  year: 2017
  ident: ref_145
  article-title: Thermosensitive Liposomal Codelivery of HSA-Paclitaxel and HSA-Ellagic Acid Complexes for Enhanced Drug Perfusion and Efficacy Against Pancreatic Cancer
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b07132
– ident: ref_81
  doi: 10.1016/j.jddst.2019.101370
– volume: 528
  start-page: 463
  year: 2017
  ident: ref_143
  article-title: Gemcitabine-vitamin E conjugates: Synthesis, characterization, entrapment into nanoemulsions, and in-vitro deamination and antitumor activity
  publication-title: Int. J. Pharm.
  doi: 10.1016/j.ijpharm.2017.06.031
– volume: 25
  start-page: 1984
  year: 2018
  ident: ref_134
  article-title: Antitumor activities of novel glycyrrhetinic acid-modified curcumin-loaded cationic liposomes in vitro and in H22 tumor-bearing mice
  publication-title: Drug Deliv.
  doi: 10.1080/10717544.2018.1526227
– volume: 14
  start-page: 1883
  year: 2017
  ident: ref_89
  article-title: Functionalized Lipid-Polymer Hybrid Nanoparticles Mediated Codelivery of Methotrexate and Aceclofenac: A Synergistic Effect in Breast Cancer with Improved Pharmacokinetics Attributes
  publication-title: Mol. Pharm.
  doi: 10.1021/acs.molpharmaceut.6b01148
– ident: ref_10
  doi: 10.1007/s13346-022-01125-6
– volume: 12
  start-page: 3871
  year: 2015
  ident: ref_11
  article-title: Enhanced Antitumor Efficacy and Reduced Toxicity of Docetaxel Loaded Estradiol Functionalized Stealth Polymeric Nanoparticles
  publication-title: Mol. Pharm.
  doi: 10.1021/acs.molpharmaceut.5b00281
– ident: ref_82
  doi: 10.1016/j.ijpharm.2019.118595
– volume: 10
  start-page: 227
  year: 2019
  ident: ref_77
  article-title: Docetaxel and alpha-lipoic acid co-loaded nanoparticles for cancer therapy
  publication-title: Ther. Deliv.
  doi: 10.4155/tde-2018-0074
– volume: 10
  start-page: 2416
  year: 2013
  ident: ref_86
  article-title: Enhanced transfection efficiency and reduced cytotoxicity of novel lipid-polymer hybrid nanoplexes
  publication-title: Mol. Pharm.
  doi: 10.1021/mp400036w
– volume: 21
  start-page: 6031
  year: 2021
  ident: ref_54
  article-title: Detachable Liposomes Combined Immunochemotherapy for Enhanced Triple-Negative Breast Cancer Treatment through Reprogramming of Tumor-Associated Macrophages
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.1c01210
– volume: 45
  start-page: 304
  year: 2019
  ident: ref_78
  article-title: Formulation-optimization of solid lipid nanocarrier system of STAT3 inhibitor to improve its activity in triple negative breast cancer cells
  publication-title: Drug Dev. Ind. Pharm.
  doi: 10.1080/03639045.2018.1539496
– volume: 46
  start-page: 387
  year: 2018
  ident: ref_76
  article-title: RAGE receptor targeted bioconjuguate lipid nanoparticles of diallyl disulfide for improved apoptotic activity in triple negative breast cancer: In vitro studies
  publication-title: Artif. Cells Nanomed. Biotechnol.
  doi: 10.1080/21691401.2017.1313267
– volume: 19
  start-page: 1691
  year: 2017
  ident: ref_99
  article-title: Exosomes for the Enhanced Tissue Bioavailability and Efficacy of Curcumin
  publication-title: AAPS J.
  doi: 10.1208/s12248-017-0154-9
– volume: 35
  start-page: 180
  year: 2017
  ident: ref_135
  article-title: Phase I study of MRX34, a liposomal miR-34a mimic, administered twice weekly in patients with advanced solid tumors
  publication-title: Investig. New Drugs
  doi: 10.1007/s10637-016-0407-y
– volume: 406
  start-page: 71
  year: 2017
  ident: ref_151
  article-title: Nanoemulsion formulation of a novel taxoid DHA-SBT-1214 inhibits prostate cancer stem cell-induced tumor growth
  publication-title: Cancer Lett.
  doi: 10.1016/j.canlet.2017.08.004
– volume: 10
  start-page: 26777
  year: 2020
  ident: ref_72
  article-title: A brief review on solid lipid nanoparticles: Part and parcel of contemporary drug delivery systems
  publication-title: RSC Adv.
  doi: 10.1039/D0RA03491F
– ident: ref_106
– volume: 220
  start-page: 136
  year: 2019
  ident: ref_153
  article-title: Surface functionalized folate targeted oleuropein nano-liposomes for prostate tumor targeting: Invitro and invivo activity
  publication-title: Life Sci.
  doi: 10.1016/j.lfs.2019.01.053
– volume: 194
  start-page: 228
  year: 2014
  ident: ref_125
  article-title: Dual drugs (microRNA-34a and paclitaxel)-loaded functional solid lipid nanoparticles for synergistic cancer cell suppression
  publication-title: J. Control. Release
  doi: 10.1016/j.jconrel.2014.09.005
– ident: ref_122
  doi: 10.1088/0957-4484/27/8/085102
– ident: ref_75
  doi: 10.1007/s11095-018-2502-6
– volume: 34
  start-page: 2710
  year: 2017
  ident: ref_141
  article-title: miR-542-3p Appended Sorafenib/All-trans Retinoic Acid (ATRA)-Loaded Lipid Nanoparticles to Enhance the Anticancer Efficacy in Gastric Cancers
  publication-title: Pharm. Res.
  doi: 10.1007/s11095-017-2202-7
– volume: 16
  start-page: 6035
  year: 2021
  ident: ref_64
  article-title: Elemene Nanoemulsion Inhibits Metastasis of Breast Cancer by ROS Scavenging
  publication-title: Int. J. Nanomed.
  doi: 10.2147/IJN.S327094
– volume: 6
  start-page: 585
  year: 2011
  ident: ref_162
  article-title: Toxicology and clinical potential of nanoparticles
  publication-title: Nano Today
  doi: 10.1016/j.nantod.2011.10.001
– volume: 154–155
  start-page: 102
  year: 2020
  ident: ref_108
  article-title: Liposomes: Advancements and innovation in the manufacturing process
  publication-title: Adv. Drug Deliv. Rev.
  doi: 10.1016/j.addr.2020.07.002
– volume: 6
  start-page: 1017
  year: 2009
  ident: ref_157
  article-title: New strategies to deliver anticancer drugs to brain tumors
  publication-title: Expert Opin. Drug Deliv.
  doi: 10.1517/17425240903167942
– volume: 5
  start-page: 43917
  year: 2015
  ident: ref_70
  article-title: Development of a topical adapalene-solid lipid nanoparticle loaded gel with enhanced efficacy and improved skin tolerability
  publication-title: RSC Adv.
  doi: 10.1039/C5RA06047H
– volume: 110
  start-page: 3173
  year: 2019
  ident: ref_103
  article-title: Targeted exosome-encapsulated erastin induced ferroptosis in triple negative breast cancer cells
  publication-title: Cancer Sci.
  doi: 10.1111/cas.14181
– volume: 16
  start-page: 175
  year: 2006
  ident: ref_40
  article-title: Pros and cons of the liposome platform in cancer drug targeting
  publication-title: J. Liposome Res.
  doi: 10.1080/08982100600848769
– volume: 16
  start-page: 3916
  year: 2019
  ident: ref_18
  article-title: Antibiofilm Potential of Silver Sulfadiazine-Loaded Nanoparticle Formulations: A Study on the Effect of DNase-I on Microbial Biofilm and Wound Healing Activity
  publication-title: Mol. Pharm.
  doi: 10.1021/acs.molpharmaceut.9b00527
– volume: 12
  start-page: 2826
  year: 2016
  ident: ref_41
  article-title: Nanoemulsions: Formation, properties and applications
  publication-title: Soft Matter
  doi: 10.1039/C5SM02958A
– volume: 46
  start-page: 88
  year: 2012
  ident: ref_31
  article-title: Lipid Based Self Emulsifying Formulations for Poorly Water Soluble Drugs-An Excellent Opportunity
  publication-title: Indian J. Pharm. Educ. Res.
– ident: ref_3
  doi: 10.1186/s13045-021-01096-0
– ident: ref_44
  doi: 10.1088/2632-959X/abeb4b
– ident: ref_66
  doi: 10.3390/pharmaceutics13040549
– volume: 52
  start-page: 12
  year: 2014
  ident: ref_117
  article-title: FA-loaded lipid drug delivery systems: Preparation, characterization and biological studies
  publication-title: Eur. J. Pharm. Sci.
  doi: 10.1016/j.ejps.2013.10.003
– volume: 86
  start-page: 215
  year: 2009
  ident: ref_37
  article-title: Nanoparticle-based targeted drug delivery
  publication-title: Exp. Mol. Pathol.
  doi: 10.1016/j.yexmp.2008.12.004
– volume: 11
  start-page: 305
  year: 2021
  ident: ref_16
  article-title: Anacardic acid encapsulated solid lipid nanoparticles for Staphylococcus aureus biofilm therapy: Chitosan and DNase coating improves antimicrobial activity
  publication-title: Drug Deliv. Transl. Res.
  doi: 10.1007/s13346-020-00795-4
– volume: 25
  start-page: 554
  year: 2017
  ident: ref_58
  article-title: alpha-Tocopherol as functional excipient for resveratrol and coenzyme Q10-loaded SNEDDS for improved bioavailability and prophylaxis of breast cancer
  publication-title: J. Drug Target.
  doi: 10.1080/1061186X.2017.1298603
– volume: 25
  start-page: 501
  year: 2014
  ident: ref_161
  article-title: Macromolecular bipill of gemcitabine and methotrexate facilitates tumor-specific dual drug therapy with higher benefit-to-risk ratio
  publication-title: Bioconjugate Chem.
  doi: 10.1021/bc400477q
– ident: ref_124
  doi: 10.1007/s12032-014-0345-5
– ident: ref_39
  doi: 10.3390/cancers14061435
– ident: ref_2
  doi: 10.3390/cancers13246248
– volume: 95
  start-page: 548
  year: 2017
  ident: ref_126
  article-title: Combination lung cancer chemotherapy: Design of a pH-sensitive transferrin-PEG-Hz-lipid conjugate for the co-delivery of docetaxel and baicalin
  publication-title: Biomed. Pharmacother.
  doi: 10.1016/j.biopha.2017.08.090
– volume: 23
  start-page: 2371
  year: 2016
  ident: ref_21
  article-title: Novel drug delivery system: An immense hope for diabetics
  publication-title: Drug Deliv.
  doi: 10.3109/10717544.2014.991001
– volume: 6
  start-page: 231
  year: 2007
  ident: ref_30
  article-title: Lipids and lipid-based formulations: Optimizing the oral delivery of lipophilic drugs
  publication-title: Nat. Rev. Drug Discov.
  doi: 10.1038/nrd2197
– volume: 9
  start-page: 1383
  year: 2019
  ident: ref_67
  article-title: Effect of penetration enhancers and amorphization on transdermal permeation flux of raloxifene-encapsulated solid lipid nanoparticles: An ex vivo study on human skin
  publication-title: Appl. Nanosci.
  doi: 10.1007/s13204-019-01004-6
– volume: 15
  start-page: 1527
  year: 2014
  ident: ref_35
  article-title: Nanomedicine scale-up technologies: Feasibilities and challenges
  publication-title: AAPS PharmSciTech
  doi: 10.1208/s12249-014-0177-9
– volume: 48
  start-page: 43
  year: 2018
  ident: ref_107
  article-title: Nanomedicines: Current status and future perspectives in aspect of drug delivery and pharmacokinetics
  publication-title: J. Pharm. Investig.
  doi: 10.1007/s40005-017-0370-4
– volume: 173
  start-page: 238
  year: 2021
  ident: ref_4
  article-title: Oral lipid nanomedicines: Current status and future perspectives in cancer treatment
  publication-title: Adv. Drug Deliv. Rev.
  doi: 10.1016/j.addr.2021.03.004
– ident: ref_63
  doi: 10.1016/j.biomaterials.2020.119769
– volume: 32
  start-page: 122
  year: 2015
  ident: ref_20
  article-title: Tetanus toxoids loaded glucomannosylated chitosan based nanohoming vaccine adjuvant with improved oral stability and immunostimulatory response
  publication-title: Pharm. Res.
  doi: 10.1007/s11095-014-1449-5
– volume: 108
  start-page: 2905
  year: 2019
  ident: ref_80
  article-title: An Ex Vivo Evaluation of Moxifloxacin Nanostructured Lipid Carrier Enriched In Situ Gel for Transcorneal Permeation on Goat Cornea
  publication-title: J. Pharm. Sci.
  doi: 10.1016/j.xphs.2019.04.005
– volume: 8
  start-page: 2733
  year: 2013
  ident: ref_32
  article-title: Advanced drug delivery to the lymphatic system: Lipid-based nanoformulations
  publication-title: Int. J. Nanomed.
– volume: 4
  start-page: 1681
  year: 2015
  ident: ref_136
  article-title: Active Targeting of Sorafenib: Preparation, Characterization, and In Vitro Testing of Drug-Loaded Magnetic Solid Lipid Nanoparticles
  publication-title: Adv. Healthc. Mater.
  doi: 10.1002/adhm.201500235
– ident: ref_42
  doi: 10.5772/54781
– volume: 14
  start-page: 1874
  year: 2017
  ident: ref_12
  article-title: “Liquid Crystalline Nanoparticles”: Rationally Designed Vehicle To Improve Stability and Therapeutic Efficacy of Insulin Following Oral Administration
  publication-title: Mol. Pharm.
  doi: 10.1021/acs.molpharmaceut.6b01099
– volume: 13
  start-page: 403
  year: 2017
  ident: ref_88
  article-title: Calcium phosphate-polymer hybrid nanoparticles for enhanced triple negative breast cancer treatment via co-delivery of paclitaxel and miR-221/222 inhibitors
  publication-title: Nanomedicine
  doi: 10.1016/j.nano.2016.07.016
– volume: 16
  start-page: 1313
  year: 2021
  ident: ref_71
  article-title: Nanocarriers-Mediated Drug Delivery Systems for Anticancer Agents: An Overview and Perspectives
  publication-title: Int. J. Nanomed.
  doi: 10.2147/IJN.S289443
– ident: ref_34
  doi: 10.3390/ijms19123859
– ident: ref_68
  doi: 10.1038/s41598-020-69276-5
– ident: ref_159
  doi: 10.3389/fbioe.2021.670124
– volume: 13
  start-page: 4107
  year: 2018
  ident: ref_132
  article-title: Nanostructured lipid carriers co-delivering lapachone and doxorubicin for overcoming multidrug resistance in breast cancer therapy
  publication-title: Int. J. Nanomed.
  doi: 10.2147/IJN.S163929
– volume: 79
  start-page: 863
  year: 2017
  ident: ref_129
  article-title: Phase Ib dose-finding trial of lapatinib plus pegylated liposomal doxorubicin in advanced HER2-positive breast cancer
  publication-title: Cancer Chemother. Pharmacol.
  doi: 10.1007/s00280-017-3279-8
– ident: ref_133
  doi: 10.3390/molecules22071052
– volume: 63
  start-page: 427
  year: 2013
  ident: ref_25
  article-title: Lipid-based systems as a promising approach for enhancing the bioavailability of poorly water-soluble drugs
  publication-title: Acta Pharm.
  doi: 10.2478/acph-2013-0040
– volume: 387
  start-page: 545
  year: 2016
  ident: ref_146
  article-title: Nanoliposomal irinotecan with fluorouracil and folinic acid in metastatic pancreatic cancer after previous gemcitabine-based therapy (NAPOLI-1): A global, randomised, open-label, phase 3 trial
  publication-title: Lancet
  doi: 10.1016/S0140-6736(15)00986-1
– volume: 34
  start-page: 1825
  year: 2015
  ident: ref_138
  article-title: Targeting effect of PEGylated liposomes modified with the Arg-Gly-Asp sequence on gastric cancer
  publication-title: Oncol. Rep.
  doi: 10.3892/or.2015.4142
– ident: ref_61
  doi: 10.3390/nano9060821
– volume: 20
  start-page: 813
  year: 2012
  ident: ref_43
  article-title: Nanostructured lipid carriers system: Recent advances in drug delivery
  publication-title: J. Drug Target.
  doi: 10.3109/1061186X.2012.716845
– ident: ref_38
  doi: 10.1038/s43586-022-00104-y
– volume: 449
  start-page: 186
  year: 2019
  ident: ref_92
  article-title: Milk exosomes-Natural nanoparticles for siRNA delivery
  publication-title: Cancer Lett.
  doi: 10.1016/j.canlet.2019.02.011
– ident: ref_7
  doi: 10.1016/B978-0-12-814619-4.00010-0
– ident: ref_9
  doi: 10.3390/ph15050542
– ident: ref_105
  doi: 10.3390/vaccines9040359
– ident: ref_137
  doi: 10.1208/s12249-019-1304-4
– volume: 23
  start-page: 1291
  year: 2016
  ident: ref_8
  article-title: Lipid-based nanocarriers for breast cancer treatment-comprehensive review
  publication-title: Drug Deliv.
  doi: 10.3109/10717544.2015.1092183
– volume: 158
  start-page: 390
  year: 2021
  ident: ref_55
  article-title: ADAM 8 as a novel target for doxorubicin delivery to TNBC cells using magnetic thermosensitive liposomes
  publication-title: Eur. J. Pharm. Biopharm.
  doi: 10.1016/j.ejpb.2020.12.012
– volume: 101
  start-page: 12
  year: 2016
  ident: ref_95
  article-title: Exosomal formulation enhances therapeutic response of celastrol against lung cancer
  publication-title: Exp. Mol. Pathol.
  doi: 10.1016/j.yexmp.2016.05.013
– ident: ref_102
  doi: 10.1186/s12951-019-0526-7
– volume: 154–155
  start-page: 79
  year: 2020
  ident: ref_160
  article-title: Lipid-based nanoparticle technologies for liver targeting
  publication-title: Adv. Drug Deliv. Rev.
  doi: 10.1016/j.addr.2020.06.017
– volume: 12
  start-page: 10854
  year: 2020
  ident: ref_104
  article-title: Engineering macrophage-derived exosomes for targeted chemotherapy of triple-negative breast cancer
  publication-title: Nanoscale
  doi: 10.1039/D0NR00523A
– ident: ref_85
  doi: 10.3390/coatings11020158
– volume: 16
  start-page: 1813
  year: 2019
  ident: ref_62
  article-title: Targeted Lipid Nanoemulsions Encapsulating Epigenetic Drugs Exhibit Selective Cytotoxicity on CDH1−/FOXM1+ Triple Negative Breast Cancer Cells
  publication-title: Mol. Pharm.
  doi: 10.1021/acs.molpharmaceut.8b01065
– volume: 22
  start-page: 166
  year: 2017
  ident: ref_33
  article-title: In vivo fate of lipid-based nanoparticles
  publication-title: Drug Discov. Today
  doi: 10.1016/j.drudis.2016.09.024
– ident: ref_83
  doi: 10.1016/j.biopha.2020.110876
– ident: ref_36
  doi: 10.1186/s12951-018-0392-8
– volume: 18
  start-page: 3719
  year: 2021
  ident: ref_59
  article-title: Ophthalmic Nanoemulsions: From Composition to Technological Processes and Quality Control
  publication-title: Mol. Pharm.
  doi: 10.1021/acs.molpharmaceut.1c00650
– volume: 13
  start-page: 7727
  year: 2018
  ident: ref_101
  article-title: Exosome-mediated delivery of functionally active miRNA-142–3p inhibitor reduces tumorigenicity of breast cancer in vitro and in vivo
  publication-title: Int. J. Nanomed.
  doi: 10.2147/IJN.S182384
– volume: 13
  start-page: 1627
  year: 2017
  ident: ref_91
  article-title: Milk-derived exosomes for oral delivery of paclitaxel
  publication-title: Nanomedicine
  doi: 10.1016/j.nano.2017.03.001
– volume: 12
  start-page: 7869
  year: 2017
  ident: ref_154
  article-title: Multifunctional gold nanorods and docetaxel-encapsulated liposomes for combined thermo- and chemotherapy
  publication-title: Int. J. Nanomed.
  doi: 10.2147/IJN.S143977
– ident: ref_24
– volume: 5
  start-page: 41144
  year: 2015
  ident: ref_23
  article-title: Hyaluronic acid–PEI–cyclodextrin polyplexes: Implications for in vitro and in vivo transfection efficiency and toxicity
  publication-title: RSC Adv.
  doi: 10.1039/C5RA03283K
– volume: 11
  start-page: 1907
  year: 2016
  ident: ref_152
  article-title: Preparation of catechin extracts and nanoemulsions from green tea leaf waste and their inhibition effect on prostate cancer cell PC-3
  publication-title: Int. J. Nanomed.
– volume: 8
  start-page: 4100
  year: 2017
  ident: ref_94
  article-title: Exosomal delivery of berry anthocyanidins for the management of ovarian cancer
  publication-title: Food Funct.
  doi: 10.1039/C7FO00882A
– volume: 10
  start-page: 563
  year: 2019
  ident: ref_17
  article-title: DNase-I functionalization of ciprofloxacin-loaded chitosan nanoparticles overcomes the biofilm-mediated resistance of Pseudomonas aeruginosa
  publication-title: Appl. Nanosci.
  doi: 10.1007/s13204-019-01129-8
– ident: ref_97
  doi: 10.3390/life12081143
– volume: 32
  start-page: 113
  year: 2020
  ident: ref_46
  article-title: Exosomes in clinical trial and their production in compliance with good manufacturing practice
  publication-title: Tzu Chi Med. J.
  doi: 10.4236/cm.2020.113007
– volume: 11
  start-page: 6811
  year: 2018
  ident: ref_139
  article-title: SATB1 siRNA-encapsulated immunoliposomes conjugated with CD44 antibodies target and eliminate gastric cancer-initiating cells
  publication-title: OncoTargets Ther.
  doi: 10.2147/OTT.S182437
– volume: 9
  start-page: 3987
  year: 2014
  ident: ref_140
  article-title: Intracellular uptake of etoposide-loaded solid lipid nanoparticles induces an enhancing inhibitory effect on gastric cancer through mitochondria-mediated apoptosis pathway
  publication-title: Int. J. Nanomed.
  doi: 10.2147/IJN.S64103
– ident: ref_22
  doi: 10.1201/9781003186069-7
– volume: 172
  start-page: 213
  year: 2018
  ident: ref_48
  article-title: Improved antitumor efficacy and reduced toxicity of docetaxel using anacardic acid functionalized stealth liposomes
  publication-title: Coll. Surf. B Biointerfaces
  doi: 10.1016/j.colsurfb.2018.08.047
– volume: 111
  start-page: 293
  year: 2018
  ident: ref_123
  article-title: A comparison study between lycobetaine-loaded nanoemulsion and liposome using nRGD as therapeutic adjuvant for lung cancer therapy
  publication-title: Eur. J. Pharm. Sci.
  doi: 10.1016/j.ejps.2017.09.041
– ident: ref_69
  doi: 10.1016/j.msec.2020.111279
– ident: ref_100
  doi: 10.3389/fcell.2021.731062
– volume: 12
  start-page: 274
  year: 2015
  ident: ref_128
  article-title: Coencapsulated doxorubicin and bromotetrandrine lipid nanoemulsions in reversing multidrug resistance in breast cancer in vitro and in vivo
  publication-title: Mol. Pharm.
  doi: 10.1021/mp500637b
– volume: 14
  start-page: 1629
  year: 2018
  ident: ref_26
  article-title: Co-delivery of docetaxel and gemcitabine using PEGylated self-assembled stealth nanoparticles for improved breast cancer therapy
  publication-title: Nanomedicine
  doi: 10.1016/j.nano.2018.04.009
– ident: ref_56
  doi: 10.1016/j.jddst.2021.102665
– volume: 71
  start-page: 555
  year: 2013
  ident: ref_110
  article-title: Marqibo(R) (vincristine sulfate liposome injection) improves the pharmacokinetics and pharmacodynamics of vincristine
  publication-title: Cancer Chemother. Pharmacol.
  doi: 10.1007/s00280-012-2042-4
– volume: 10
  start-page: 3641
  year: 2015
  ident: ref_119
  article-title: External beam radiotherapy synergizes 188Re-liposome against human esophageal cancer xenograft and modulates 188Re-liposome pharmacokinetics
  publication-title: Int. J. Nanomed.
  doi: 10.2147/IJN.S80302
– volume: 445
  start-page: 219
  year: 2015
  ident: ref_121
  article-title: Inhalable nanostructured lipid particles of 9-bromo-noscapine, a tubulin-binding cytotoxic agent: In vitro and in vivo studies
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2014.12.092
– ident: ref_6
  doi: 10.1155/2013/165981
– volume: 26
  start-page: 523
  year: 2009
  ident: ref_74
  article-title: Lipid-Based Nanoparticles as Pharmaceutical Drug Carriers: From Concepts to Clinic
  publication-title: Crit. Rev. Ther. Drug Carrier Syst.
  doi: 10.1615/CritRevTherDrugCarrierSyst.v26.i6.10
– volume: 23
  start-page: 214
  year: 2016
  ident: ref_113
  article-title: Curcumin-loaded lipid nanocarrier for improving bioavailability, stability and cytotoxicity against malignant glioma cells
  publication-title: Drug Deliv.
  doi: 10.3109/10717544.2014.909906
– volume: 50
  start-page: 148
  year: 2020
  ident: ref_163
  article-title: Toxicological profile of lipid-based nanostructures: Are they considered as completely safe nanocarriers?
  publication-title: Crit. Rev. Toxicol.
  doi: 10.1080/10408444.2020.1719974
– volume: 9
  start-page: 2626
  year: 2012
  ident: ref_50
  article-title: Oral delivery of doxorubicin using novel polyelectrolyte-stabilized liposomes (layersomes)
  publication-title: Mol. Pharm.
  doi: 10.1021/mp300202c
– volume: 14
  start-page: 3645
  year: 2019
  ident: ref_53
  article-title: Nanosized functional miRNA liposomes and application in the treatment of TNBC by silencing Slug gene
  publication-title: Int. J. Nanomed.
  doi: 10.2147/IJN.S207837
– ident: ref_29
  doi: 10.1016/B978-0-12-813663-8.00010-5
– volume: 197
  start-page: 86
  year: 2019
  ident: ref_149
  article-title: Hierarchically targetable polysaccharide-coated solid lipid nanoparticles as an oral chemo/thermotherapy delivery system for local treatment of colon cancer
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2019.01.019
– volume: 23
  start-page: 3665
  year: 2016
  ident: ref_142
  article-title: Co-delivery of etoposide and curcumin by lipid nanoparticulate drug delivery system for the treatment of gastric tumors
  publication-title: Drug Deliv.
  doi: 10.1080/10717544.2016.1217954
SSID ssj0023259
Score 2.5478792
SecondaryResourceType review_article
Snippet Triple-negative breast cancer is considered the most aggressive type of breast cancer among women and the lack of expressed receptors has made treatment...
SourceID pubmedcentral
proquest
crossref
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 10068
SubjectTerms Bioavailability
Blood vessels
Bone marrow
Breast cancer
Cancer therapies
Chemotherapy
Drug delivery systems
Drug resistance
Fatty acids
Lipids
Lymphatic system
Medical research
Metabolism
Metastasis
Nanoparticles
Nanotechnology
Polyethylene glycol
Review
Surfactants
Triglycerides
Womens health
SummonAdditionalLinks – databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fS8MwEA46EXwRf-J0SgQRBYM2aZPmSdxURHD4MGFvJWlTN9FOtyn433vXZpt7UOhbAoFLcvfd5fp9hByBgzOA6nOW21iz0ImAGS1ChlRiSoRZHpUkSQ9tefcU3nejri-4jXxb5cQnlo46G6RYIz_nKgCwEsqIX75_MFSNwtdVL6GxSJaQugxbulR3lnAJXoqlBRCDmIy0rDg2BaT55_2XtxFAG-S2QZbV3zFpBjTn2yR_xZ3bNbLqASO9qnZ4nSy4YoMsVxKS35ukh-LTGWtCMMoouErIgX2rGzXw0cf-1wDwNb12r9iB8U2vPIk47Re0M8QyO22755L-mzaxQ31MW3gShvSk0262Tmmn4h3YIk-3N53WHfPqCSwFzDNmkHte5JlQglvIWpyOQ-1yYdNMySiwsVVWGucArqXKGLCQ5JZza7VIYy0zk4ttUisGhdsh1EEMA2QiFNJaQ0QzkGQ4iHJhqmKZ67hOzib2S1JPLY4KF68JpBho7mTO3HVyPJ3-XnFq_DWxMdmMxF-tUTI7CHVyOB2GS4EvHaZwg89yDo8BqHJdJ2puE6cLIq32_EjR75X02howpQjE7v-L75EVjn9C4NuSaJDaePjp9gGfjO1BeQh_AOKO45Y
  priority: 102
  providerName: ProQuest
Title Lipid-Based Nanoparticles as a Pivotal Delivery Approach in Triple Negative Breast Cancer (TNBC) Therapy
URI https://www.proquest.com/docview/2711394652
https://www.proquest.com/docview/2712856629
https://pubmed.ncbi.nlm.nih.gov/PMC9456313
Volume 23
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1da9swFL2sLYO-jO6jNFsXNCilhaltJNuSHkppsqZl0FBGAnkzki03GZmzpulY_v3utZ10Zh0UjF8s2_jq45wjyecC7OEAZ5HVZzxz2vDAyxa3RgacrMSUDNIsLEySrnvR1SD4OgyHj5ZCVQDvn5R2lE9qMJsc_b5bnGGHPyXFiZL9ePz9xz3SFPKpifQabCAoKeqj18FqQQF5Q5E3jWY8OI3Qpd3mv7fX4emRc9Z3TP4FQd0teFVxR3ZeVvZreOHzN_CyzCa5eAsjykOd8jbiUspw1EQ5XO16YxYPdjP-NcWvZF_8hDZjLNh55SfOxjnrz2jGnfX8beEEztq0WX3OOtQoZuyg32t3Dlm_tCB4B4PuRb9zxatECjxB-jPnKENPslQqKRwKGG90YHwmXZKqKGw57ZSLrPfI3BJlLQJ2JJwQzhmZaBOlNpPbsJ5Pc78DzCOcIUmRihyuEdws6g2PgBckSkeZ0Q34vIxfnFQu45TsYhKj2qBwx7VwN2B_Vfxnaa_xv4K7y8qIl40kFqqFBDaIQtGAT6vL2D9o0cPmfvpQlBEaOaswDVC1Sly9kBy261fy8ahw2jZIL2VLvn_G0z_ApqA_I2itSe7C-nz24D8iX5m7JqypocKz7l42YaN90bv51iQECZtFG_0Dd9Tsvw
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NIQQviE_RMcBIgEDCWmMndvyA0NoxdWyreMikvmV24rCiLR1tB-o_xd_IXT7a9QHeJuXNTiyd7-N38fl3AG_QwVlE9QUvXGx46GXArZEhJyoxLcO8iCqSpOOhGpyEX0fRaAP-tHdhqKyy9YmVo84nGf0j3xE6QLASqkh8vvzJqWsUna62LTRqtTj0i9-Yss0-Hezh_r4VYv9L0h_wpqsAzxALzDnmZN0il1oKh2jemzg0vpAuy7WKAhc77ZT1HmFMpq3F6KWEE8I5I7PYqNwWEr97C25j4O2SRenRKsGTomrOFuBbXEVG1ZyeUpruzvjHxQyhFHHpEKvr9Ri4ArbrZZnX4tz-A7jfAFS2W2vUQ9jw5SO4U7esXDyGM2p2nfMeBr-coWvGnLsprWMWH_Zt_GuCeJ7t-XOq-Fiw3Ya0nI1Llkzptz4b-u8V3TjrUUX8nPVJ86bsfTLs9T-wpOY5eAInNyLXp7BZTkr_DJjHmIlISGqi0cYIajGp8RhVw0zHqjBxBz628kuzhsqcOmqcp5jSkLjTNXF34N1y-mXN4fGvidvtZqSNKc_SleJ14PVyGI2QTlZs6SdX1RwRIzAWpgN6bROXCxKN9_pIOT6r6LwNYlgZyK3_L_4K7g6S46P06GB4-BzuCbqFQedachs259Mr_wKx0dy9rBSSwelNW8BfEokgxg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB6VIlAviKdIKWAkQCBhpWvv2usDQk1C1FKIekil3BZ719umKpuSpK3y1_h1zOwjaQ5wq7Q3e9fSeB7frMffALxFB2cR1ec8d7HhoZcBt0aGnKjEtAyzPCpJkn4M1P5x-G0UjTbgT3MXhsoqG59YOupsktI_8rbQAYKVUEWinddlEUe9_peL35w6SNFJa9NOo1KRQ7-4xvRt9vmgh3v9Toj-12F3n9cdBniKuGDOMT_bzTOppXCI7L2JQ-Nz6dJMqyhwsdNOWe8R0qTaWoxkSjghnDMyjY3KbC7xu3fgrpZRQDamR6tkT4qyUVuAb3EVGVXxe0ppdtvjs18zhFXEq0MMrzfj4Qrkrpdo3oh5_YfwoAarbK_Srkew4YvHcK9qX7l4AqfU-DrjHQyEGUM3jfl3XWbHLD7saHw1QWzPev6cqj8WbK8mMGfjgg2n9IufDfxJST3OOlQdP2dd0sIp-zAcdLof2bDiPHgKx7ci12ewWUwK_xyYx_iJqEhqotTGaGoxwfEYYcNUxyo3cQs-NfJL0prWnLprnCeY3pC4kzVxt-D9cvpFxefxr4k7zWYktVnPkpUStuDNchgNkk5ZbOEnl-UcESNIFqYFem0TlwsSpff6SDE-Lam9DeJZGcjt_y_-Gu6j7iffDwaHL2BL0IUMOuKSO7A5n176lwiT5u5VqY8Mft62AfwFWGIk_A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Lipid-Based+Nanoparticles+as+a+Pivotal+Delivery+Approach+in+Triple+Negative+Breast+Cancer+%28TNBC%29+Therapy&rft.jtitle=International+journal+of+molecular+sciences&rft.au=Chaudhuri%2C+Aiswarya&rft.au=Kumar%2C+Dulla+Naveen&rft.au=Shaik%2C+Rasheed+A&rft.au=Eid%2C+Basma+G&rft.date=2022-09-03&rft.issn=1422-0067&rft.eissn=1422-0067&rft.volume=23&rft.issue=17&rft_id=info:doi/10.3390%2Fijms231710068&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1422-0067&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1422-0067&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1422-0067&client=summon