Data-driven modelling of the Reynolds stress tensor using random forests with invariance

•A random forest predicting the Reynolds stress in turbulent flows is presented.•Invariance of predictions is achieved by making use of a tensor basis.•The algorithm is trained and tested on 5 different flow configurations.•Predicted Reynolds stresses are propagated, producing improved mean flow fie...

Full description

Saved in:
Bibliographic Details
Published inComputers & fluids Vol. 202; p. 104497
Main Authors Kaandorp, Mikael L.A., Dwight, Richard P.
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier Ltd 30.04.2020
Elsevier BV
Subjects
Online AccessGet full text
ISSN0045-7930
1879-0747
DOI10.1016/j.compfluid.2020.104497

Cover

Abstract •A random forest predicting the Reynolds stress in turbulent flows is presented.•Invariance of predictions is achieved by making use of a tensor basis.•The algorithm is trained and tested on 5 different flow configurations.•Predicted Reynolds stresses are propagated, producing improved mean flow fields. A novel machine learning algorithm is presented, serving as a data-driven turbulence modeling tool for Reynolds Averaged Navier-Stokes (RANS) simulations. This machine learning algorithm, called the Tensor Basis Random Forest (TBRF), is used to predict the Reynolds-stress anisotropy tensor, while guaranteeing Galilean invariance by making use of a tensor basis. By modifying a random forest algorithm to accept such a tensor basis, a robust, easy to implement, and easy to train algorithm is created. The algorithm is trained on several flow cases using DNS/LES data, and used to predict the Reynolds stress anisotropy tensor for new, unseen flows. The resulting predictions of turbulence anisotropy are used as a turbulence model within a custom RANS solver. Stabilization of this solver is necessary, and is achieved by a continuation method and a modified k-equation. Results are compared to the neural network approach of Ling et al. [29]. Results show that the TBRF algorithm is able to accurately predict the anisotropy tensor for various flow cases, with realizable predictions close to the DNS/LES reference data. Corresponding mean flows for a square duct flow case and a backward facing step flow case show good agreement with DNS and experimental data-sets. Overall, these results are seen as a next step towards improved data-driven modelling of turbulence. This creates an opportunity to generate custom turbulence closures for specific classes of flows, limited only by the availability of LES/DNS data.
AbstractList •A random forest predicting the Reynolds stress in turbulent flows is presented.•Invariance of predictions is achieved by making use of a tensor basis.•The algorithm is trained and tested on 5 different flow configurations.•Predicted Reynolds stresses are propagated, producing improved mean flow fields. A novel machine learning algorithm is presented, serving as a data-driven turbulence modeling tool for Reynolds Averaged Navier-Stokes (RANS) simulations. This machine learning algorithm, called the Tensor Basis Random Forest (TBRF), is used to predict the Reynolds-stress anisotropy tensor, while guaranteeing Galilean invariance by making use of a tensor basis. By modifying a random forest algorithm to accept such a tensor basis, a robust, easy to implement, and easy to train algorithm is created. The algorithm is trained on several flow cases using DNS/LES data, and used to predict the Reynolds stress anisotropy tensor for new, unseen flows. The resulting predictions of turbulence anisotropy are used as a turbulence model within a custom RANS solver. Stabilization of this solver is necessary, and is achieved by a continuation method and a modified k-equation. Results are compared to the neural network approach of Ling et al. [29]. Results show that the TBRF algorithm is able to accurately predict the anisotropy tensor for various flow cases, with realizable predictions close to the DNS/LES reference data. Corresponding mean flows for a square duct flow case and a backward facing step flow case show good agreement with DNS and experimental data-sets. Overall, these results are seen as a next step towards improved data-driven modelling of turbulence. This creates an opportunity to generate custom turbulence closures for specific classes of flows, limited only by the availability of LES/DNS data.
A novel machine learning algorithm is presented, serving as a data-driven turbulence modeling tool for Reynolds Averaged Navier-Stokes (RANS) simulations. This machine learning algorithm, called the Tensor Basis Random Forest (TBRF), is used to predict the Reynolds-stress anisotropy tensor, while guaranteeing Galilean invariance by making use of a tensor basis. By modifying a random forest algorithm to accept such a tensor basis, a robust, easy to implement, and easy to train algorithm is created. The algorithm is trained on several flow cases using DNS/LES data, and used to predict the Reynolds stress anisotropy tensor for new, unseen flows. The resulting predictions of turbulence anisotropy are used as a turbulence model within a custom RANS solver. Stabilization of this solver is necessary, and is achieved by a continuation method and a modified k-equation. Results are compared to the neural network approach of Ling et al. [29]. Results show that the TBRF algorithm is able to accurately predict the anisotropy tensor for various flow cases, with realizable predictions close to the DNS/LES reference data. Corresponding mean flows for a square duct flow case and a backward facing step flow case show good agreement with DNS and experimental data-sets. Overall, these results are seen as a next step towards improved data-driven modelling of turbulence. This creates an opportunity to generate custom turbulence closures for specific classes of flows, limited only by the availability of LES/DNS data.
ArticleNumber 104497
Author Dwight, Richard P.
Kaandorp, Mikael L.A.
Author_xml – sequence: 1
  givenname: Mikael L.A.
  orcidid: 0000-0003-3744-6789
  surname: Kaandorp
  fullname: Kaandorp, Mikael L.A.
  email: m.l.a.kaandorp@uu.nl
  organization: Aerodynamics, Faculty of Aerospace, Delft University of Technology, 2629 HS, Delft, the Netherlands
– sequence: 2
  givenname: Richard P.
  orcidid: 0000-0003-2369-2540
  surname: Dwight
  fullname: Dwight, Richard P.
  organization: Aerodynamics, Faculty of Aerospace, Delft University of Technology, 2629 HS, Delft, the Netherlands
BookMark eNqNkE9LAzEQxYNUsK1-BgOet2Y3WXdz8FDqXygIouAtZJNZm2Wb1CSt9NubpeLBi56GmffezPCboJF1FhA6z8ksJ_nVZTdTbr1p-63Rs4IUw5QxXh2hcV5XPCMVq0ZoTAgrs4pTcoImIXQk9bRgY_R2I6PMtDc7sHjtNPS9se_YtTiuAD_D3rpeBxyihxBwBBucx9sweLy02q1x65IUA_40cYWN3UlvpFVwio5b2Qc4-65T9Hp3-7J4yJZP94-L-TJTlBcxK4AUNeW6rKimpQRVS64ZA0oaQjkrC8ZK3ZB8kFjOk4k3NG-gZKqGRmk6RReHvRvvPrbpE9G5rbfppCgYrRKDktHkqg4u5V0IHlqx8WYt_V7kRAwYRSd-MIoBozhgTMnrX0lloozG2eil6f-Rnx_ykCDsDHgRlIEESBsPKgrtzJ87vgCFXJdP
CitedBy_id crossref_primary_10_1063_5_0245113
crossref_primary_10_1080_14685248_2021_1999459
crossref_primary_10_3389_fphy_2024_1347657
crossref_primary_10_1134_S1990478924010046
crossref_primary_10_1007_s00162_020_00545_9
crossref_primary_10_1063_5_0149750
crossref_primary_10_5194_gmd_14_3769_2021
crossref_primary_10_1016_j_ijheatfluidflow_2022_109017
crossref_primary_10_1063_5_0174470
crossref_primary_10_1016_j_ijheatfluidflow_2022_109018
crossref_primary_10_1016_j_ijheatfluidflow_2022_109051
crossref_primary_10_1063_5_0070890
crossref_primary_10_1063_5_0233053
crossref_primary_10_1002_fld_5284
crossref_primary_10_1111_ina_13123
crossref_primary_10_1063_5_0248576
crossref_primary_10_1063_5_0253703
crossref_primary_10_1017_jfm_2021_148
crossref_primary_10_1007_s10494_022_00346_6
crossref_primary_10_1016_j_compfluid_2024_106215
crossref_primary_10_1051_e3sconf_202345902005
crossref_primary_10_1007_s10494_023_00506_2
crossref_primary_10_1016_j_ijheatfluidflow_2022_109047
crossref_primary_10_1063_5_0153735
crossref_primary_10_1063_5_0207256
crossref_primary_10_1007_s00773_022_00914_5
crossref_primary_10_1007_s10409_022_09001_w
crossref_primary_10_1016_j_ijheatfluidflow_2023_109140
crossref_primary_10_1063_5_0146456
crossref_primary_10_1108_HFF_12_2023_0726
crossref_primary_10_3390_en16041755
crossref_primary_10_1063_5_0083074
crossref_primary_10_1063_5_0247759
crossref_primary_10_1088_1742_6596_2099_1_012020
crossref_primary_10_1063_5_0166685
crossref_primary_10_1016_j_jcp_2024_112982
crossref_primary_10_1038_s41597_021_01034_2
crossref_primary_10_1115_1_4064650
crossref_primary_10_1016_j_jcp_2025_113793
crossref_primary_10_1016_j_compfluid_2021_105213
crossref_primary_10_1016_j_cej_2022_138036
crossref_primary_10_1063_5_0173678
crossref_primary_10_1016_j_jcp_2022_111090
crossref_primary_10_1063_5_0231494
crossref_primary_10_1080_10618562_2022_2113520
crossref_primary_10_1016_j_jcp_2021_110717
crossref_primary_10_1016_j_jcp_2021_110153
crossref_primary_10_1016_j_ijheatfluidflow_2022_109072
crossref_primary_10_1016_j_compfluid_2024_106270
crossref_primary_10_1016_j_jcp_2021_110116
crossref_primary_10_1016_j_compfluid_2021_104997
crossref_primary_10_1063_5_0220444
crossref_primary_10_1007_s10494_024_00595_7
crossref_primary_10_1063_5_0252753
crossref_primary_10_1063_5_0263211
crossref_primary_10_1098_rspa_2023_0058
crossref_primary_10_1088_1367_2630_ad6689
crossref_primary_10_1134_S0021894423030094
crossref_primary_10_1063_5_0100076
crossref_primary_10_1016_j_jcp_2021_110922
crossref_primary_10_1016_j_compfluid_2024_106246
crossref_primary_10_1016_j_ijheatfluidflow_2024_109348
crossref_primary_10_1063_5_0149547
crossref_primary_10_1063_5_0184157
crossref_primary_10_1016_j_ijheatfluidflow_2023_109242
Cites_doi 10.1016/j.ress.2010.09.013
10.1063/1.4927765
10.1017/jfm.2016.615
10.1214/09-AOAS285
10.1109/34.589207
10.1016/j.compfluid.2016.01.014
10.1016/0142-727X(95)00079-6
10.1016/j.jcp.2016.08.015
10.1017/S0022112096003941
10.1017/S0022112091000101
10.1080/10485252.2012.715161
10.1016/j.compfluid.2008.05.002
10.1016/j.jcp.2015.11.012
10.1109/ACCESS.2014.2325029
10.1016/0045-7825(74)90029-2
10.1016/S0065-2156(08)70266-7
10.1146/annurev-fluid-010518-040547
10.2172/1562229
10.2514/1.36541
10.1016/j.jcp.2003.08.010
10.1017/S0022112075003382
10.1017/S0022112077000585
10.1017/S0022112009992242
10.1007/978-90-481-9603-6_21
10.1098/rsta.1895.0004
10.1016/j.jcp.2014.06.052
10.1016/j.cma.2016.10.025
10.1016/j.jcp.2016.05.003
ContentType Journal Article
Copyright 2020
Copyright Elsevier BV Apr 30, 2020
Copyright_xml – notice: 2020
– notice: Copyright Elsevier BV Apr 30, 2020
DBID 6I.
AAFTH
AAYXX
CITATION
7SC
7TB
7U5
8FD
FR3
H8D
JQ2
KR7
L7M
L~C
L~D
DOI 10.1016/j.compfluid.2020.104497
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Engineering Research Database
Aerospace Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Aerospace Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1879-0747
ExternalDocumentID 10_1016_j_compfluid_2020_104497
S0045793020300700
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
6I.
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABAOU
ABJNI
ABMAC
ABYKQ
ACAZW
ACDAQ
ACGFS
ACIWK
ACRLP
ADBBV
ADEZE
ADGUI
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIGVJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ARUGR
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JJJVA
KOM
LG9
LY7
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SPD
SST
SSW
SSZ
T5K
TN5
XPP
ZMT
~G-
29F
6TJ
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABEFU
ABFNM
ABWVN
ABXDB
ACKIV
ACNNM
ACRPL
ACVFH
ADCNI
ADIYS
ADMUD
ADNMO
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
R2-
RIG
SBC
SET
SEW
SSH
T9H
VH1
WUQ
7SC
7TB
7U5
8FD
EFKBS
FR3
H8D
JQ2
KR7
L7M
L~C
L~D
ID FETCH-LOGICAL-c392t-2e02839d573d35aec8a9d44e30b039452445db015aec4193d39b31be54c8ebcd3
IEDL.DBID AIKHN
ISSN 0045-7930
IngestDate Fri Jul 25 04:29:47 EDT 2025
Thu Apr 24 23:02:27 EDT 2025
Tue Jul 01 02:21:30 EDT 2025
Fri Feb 23 02:46:57 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Non-linear eddy-viscosity closures
Machine-learning
Reynolds anisotropy tensor
Random forests
Turbulence modelling
Language English
License This is an open access article under the CC BY license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c392t-2e02839d573d35aec8a9d44e30b039452445db015aec4193d39b31be54c8ebcd3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-3744-6789
0000-0003-2369-2540
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0045793020300700
PQID 2437187543
PQPubID 2045265
ParticipantIDs proquest_journals_2437187543
crossref_primary_10_1016_j_compfluid_2020_104497
crossref_citationtrail_10_1016_j_compfluid_2020_104497
elsevier_sciencedirect_doi_10_1016_j_compfluid_2020_104497
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-04-30
PublicationDateYYYYMMDD 2020-04-30
PublicationDate_xml – month: 04
  year: 2020
  text: 2020-04-30
  day: 30
PublicationDecade 2020
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Computers & fluids
PublicationYear 2020
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Kingma, Ba (bib0021) 2015
Chipman, George, McCulloch (bib0008) 2010; 4
Reynolds (bib0042) 1895; 186
Singh, Medida, Duraisamy (bib0045) 2016
Tracey, Duraisamy, Alonso (bib0050) 2013
Giordano, Stephenson, Liu, Jordan, Broderick (bib0015) 2019
Kaandorp, Dwight (bib0020) 2019
Esposito, Malerba, Semeraro (bib0014) 1997; 19
Wang, Dow (bib0052) 2010
Murphy (bib0035) 2012
Edeling, Cinnella, Dwight (bib0012) 2014; 275
Banerjee, Krahl, Durst, Zenger (bib0002) 2007; 8
Craft, Launder, Suga (bib0009) 1996; 17
Meinshausen (bib0033) 2006; 7
Parish, Duraisamy (bib0036) 2016; 305
.
Akolekar, Sandberg, Hutchins, Michelassi, Laskowski (bib0001) 2018
Launder, Spalding (bib0023) 1974; 3
Ling, Jones, Templeton (bib0028) 2016; 318
Cheung, Oliver, Prudencio, Prudhomme, Moser (bib0007) 2011; 96
Breuer, Peller, Rapp, Manhart (bib0005) 2009; 38
Slotnick, Khodadoust, Alonso, Darmofal, Gropp, Lurie (bib0046) 2014
Lumley, Newman (bib0032) 1977; 82
Hastie, Tibshirani, Friedman (bib0016) 2008
Rasmussen, Williams (bib0041) 2006
Brent (bib0004) 1973
Thompson, Sampaio, de Bragana Alves, Thais, Mompean (bib0049) 2016; 130
Knoll, Keyes (bib0022) 2004; 193
Pinelli, Uhlmann, Sekimoto, Kawahara (bib0038) 2010; 644
Speziale, Sarkar, Gatski (bib0047) 1991; 227
Lien, Chen, Leschziner (bib0027) 1996
Srivastava, Hinton, Krizhevsky, Sutskever, Salakhutdinov (bib0048) 2014; 15
Chen, Lin (bib0006) 2014; 2
Le, Moin (bib0025) 1992
Ling, Templeton (bib0030) 2015; 27
Kaandorp (bib0019) 2018
Xiao, Wang, Ghanem (bib0057) 2016; 313
Weatheritt, Sandberg (bib0053) 2016; 325
Lumley (bib0031) 1979; 18
Mentch, Hooker (bib0034) 2016; 17
Higham (bib0017) 2008
Shih, Zhu, Lumley (bib0044) 1993
Duraisamy, Zhang, Anand (bib0011) 2015
Wilcox (bib0054) 2008; 46
Laval, Marquillie (bib0024) 2011
Pecnik, Iaccarino (bib0037) 2007
Duraisamy, Iaccarino, Xiao (bib0010) 2019; 51
Emory, Larsson, Iaccarino (bib0013) 2013; 25
Pope (bib0040) 2000
Wu, Wang, Xiao, Ling (bib0055) 2016
Le, Moin, Kim (bib0026) 1997; 330
Ling, Kurzawski, Templeton (bib0029) 2016; 807
Bentaleb, Lardeau, Leschziner (bib0003) 2012; 13
Pope (bib0039) 1975; 72
Roy, Larocque (bib0043) 2012; 24
Jovic, Driver (bib0018) 1994
Wu, Xiao, Sun, Wang (bib0056) 2019
Wang J.-X., Wu J., Ling J., Iaccarino G., Xiao H.. A comprehensive physics-informed machine learning framework for predictive turbulence modeling; 2017.
Duraisamy (10.1016/j.compfluid.2020.104497_bib0010) 2019; 51
Reynolds (10.1016/j.compfluid.2020.104497_bib0042) 1895; 186
Emory (10.1016/j.compfluid.2020.104497_bib0013) 2013; 25
Knoll (10.1016/j.compfluid.2020.104497_bib0022) 2004; 193
10.1016/j.compfluid.2020.104497_bib0051
Wilcox (10.1016/j.compfluid.2020.104497_bib0054) 2008; 46
Tracey (10.1016/j.compfluid.2020.104497_bib0050) 2013
Cheung (10.1016/j.compfluid.2020.104497_bib0007) 2011; 96
Esposito (10.1016/j.compfluid.2020.104497_bib0014) 1997; 19
Ling (10.1016/j.compfluid.2020.104497_bib0030) 2015; 27
Lumley (10.1016/j.compfluid.2020.104497_bib0032) 1977; 82
Wu (10.1016/j.compfluid.2020.104497_sbref0055) 2019
Craft (10.1016/j.compfluid.2020.104497_bib0009) 1996; 17
Jovic (10.1016/j.compfluid.2020.104497_bib0018) 1994
Kaandorp (10.1016/j.compfluid.2020.104497_bib0020) 2019
Speziale (10.1016/j.compfluid.2020.104497_bib0047) 1991; 227
Parish (10.1016/j.compfluid.2020.104497_bib0036) 2016; 305
Giordano (10.1016/j.compfluid.2020.104497_bib0015) 2019
Roy (10.1016/j.compfluid.2020.104497_bib0043) 2012; 24
Srivastava (10.1016/j.compfluid.2020.104497_bib0048) 2014; 15
Brent (10.1016/j.compfluid.2020.104497_bib0004) 1973
Murphy (10.1016/j.compfluid.2020.104497_bib0035) 2012
Lien (10.1016/j.compfluid.2020.104497_bib0027) 1996
Ling (10.1016/j.compfluid.2020.104497_bib0029) 2016; 807
Shih (10.1016/j.compfluid.2020.104497_bib0044) 1993
Rasmussen (10.1016/j.compfluid.2020.104497_bib0041) 2006
Laval (10.1016/j.compfluid.2020.104497_bib0024) 2011
Pinelli (10.1016/j.compfluid.2020.104497_bib0038) 2010; 644
Le (10.1016/j.compfluid.2020.104497_bib0026) 1997; 330
Akolekar (10.1016/j.compfluid.2020.104497_bib0001) 2018
Banerjee (10.1016/j.compfluid.2020.104497_bib0002) 2007; 8
Edeling (10.1016/j.compfluid.2020.104497_bib0012) 2014; 275
Meinshausen (10.1016/j.compfluid.2020.104497_bib0033) 2006; 7
Mentch (10.1016/j.compfluid.2020.104497_bib0034) 2016; 17
Wu (10.1016/j.compfluid.2020.104497_sbref0054) 2016
Singh (10.1016/j.compfluid.2020.104497_bib0045) 2016
Bentaleb (10.1016/j.compfluid.2020.104497_bib0003) 2012; 13
Chipman (10.1016/j.compfluid.2020.104497_bib0008) 2010; 4
Kingma (10.1016/j.compfluid.2020.104497_sbref0021) 2015
Pope (10.1016/j.compfluid.2020.104497_bib0039) 1975; 72
Slotnick (10.1016/j.compfluid.2020.104497_bib0046) 2014
Launder (10.1016/j.compfluid.2020.104497_bib0023) 1974; 3
Breuer (10.1016/j.compfluid.2020.104497_bib0005) 2009; 38
Pope (10.1016/j.compfluid.2020.104497_bib0040) 2000
Pecnik (10.1016/j.compfluid.2020.104497_bib0037) 2007
Ling (10.1016/j.compfluid.2020.104497_bib0028) 2016; 318
Thompson (10.1016/j.compfluid.2020.104497_bib0049) 2016; 130
Hastie (10.1016/j.compfluid.2020.104497_bib0016) 2008
Kaandorp (10.1016/j.compfluid.2020.104497_sbref0019) 2018
Xiao (10.1016/j.compfluid.2020.104497_bib0057) 2016; 313
Duraisamy (10.1016/j.compfluid.2020.104497_bib0011) 2015
Higham (10.1016/j.compfluid.2020.104497_bib0017) 2008
Weatheritt (10.1016/j.compfluid.2020.104497_bib0053) 2016; 325
Chen (10.1016/j.compfluid.2020.104497_bib0006) 2014; 2
Le (10.1016/j.compfluid.2020.104497_bib0025) 1992
Wang (10.1016/j.compfluid.2020.104497_bib0052) 2010
Lumley (10.1016/j.compfluid.2020.104497_bib0031) 1979; 18
References_xml – volume: 4
  start-page: 266
  year: 2010
  end-page: 298
  ident: bib0008
  article-title: Bart: Bayesian additive regression trees
  publication-title: Ann Appl Stat
– volume: 18
  start-page: 123
  year: 1979
  end-page: 176
  ident: bib0031
  article-title: Computational modeling of turbulent flows
  publication-title: Adv Appl Mech
– volume: 193
  start-page: 357
  year: 2004
  end-page: 397
  ident: bib0022
  article-title: Jacobian-free Newton–Krylov methods: a survey of approaches and applications
  publication-title: J Comput Phys
– year: 2018
  ident: bib0001
  article-title: Machine-learnt turbulence closures for lpt’s with unsteady inflow conditions
  publication-title: Proceedings of the 15th international symposium on unsteady aerodynamics, aeroacoustics & aeroelasticity of turbomachines
– volume: 17
  start-page: 108
  year: 1996
  end-page: 115
  ident: bib0009
  article-title: Development and application of a cubic eddy-viscosity model of turbulence
  publication-title: Int J Heat Fluid Flow
– volume: 51
  start-page: 1
  year: 2019
  end-page: 23
  ident: bib0010
  article-title: Turbulence modeling in the age of data
  publication-title: Annu Rev Fluid Mech
– year: 2018
  ident: bib0019
  publication-title: Machine learning for data-driven RANS turbulence modelling
– volume: 227
  start-page: 245
  year: 1991
  end-page: 272
  ident: bib0047
  article-title: Modelling the pressure-strain correlation of turbulence: an invariant dynamical systems approach
  publication-title: J Fluid Mech
– volume: 2
  start-page: 514
  year: 2014
  end-page: 525
  ident: bib0006
  article-title: Big data deep learning: challenges and perspectives
  publication-title: IEEE Access
– volume: 318
  start-page: 22
  year: 2016
  end-page: 35
  ident: bib0028
  article-title: Machine learning strategies for systems with invariance properties
  publication-title: J Comput Phys
– year: 1973
  ident: bib0004
  article-title: An algorithm with guaranteed convergence for finding a zero of a function
  publication-title: Algorithms for minimization without derivatives
– volume: 275
  start-page: 65
  year: 2014
  end-page: 91
  ident: bib0012
  article-title: Predictive RANS simulations via Bayesian model-scenario averaging
  publication-title: J Comput Phys
– volume: 17
  start-page: 1
  year: 2016
  end-page: 41
  ident: bib0034
  article-title: Quantifying uncertainty in random forests via confidence intervals and hypothesis tests
  publication-title: J Mach Learn Res
– volume: 72
  start-page: 331
  year: 1975
  end-page: 340
  ident: bib0039
  article-title: A more general effective-viscosity hypothesis
  publication-title: J Fluid Mech
– start-page: 161
  year: 1992
  end-page: 173
  ident: bib0025
  article-title: Direct numerical simulation of turbulent flow over a backward-facing step
– volume: 24
  start-page: 993
  year: 2012
  end-page: 1006
  ident: bib0043
  article-title: A methodology to evaluate statistical errors in DNS data of plane channel flows
  publication-title: J Nonparametr Stat
– year: 2016
  ident: bib0045
  article-title: Machine learning-augmented predictive modeling of turbulent separated flows over airfoils
– start-page: 203
  year: 2011
  end-page: 209
  ident: bib0024
  article-title: Direct numerical simulations of converging-diverging channel flow
  publication-title: Progress in wall turbulence: understanding and modeling
– year: 2013
  ident: bib0050
  article-title: Application of supervised learning to quantify uncertainties in turbulence and combustion modeling
  publication-title: 51st AIAA ASM including the new horizons forum and aerospace exposition
– year: 2019
  ident: bib0020
  article-title: Tensor basis random forest github repository
– volume: 313
  start-page: 941
  year: 2016
  end-page: 965
  ident: bib0057
  article-title: A random matrix approach for quantifying model-Form uncertainties in turbulence modeling
  publication-title: Comput Methods Appl Mech Eng
– year: 2015
  ident: bib0021
  article-title: Adam: a method for stochastic optimization
  publication-title: Proceedings of the 3rd international conference on learning representations (ICLR)
– start-page: 91
  year: 1996
  end-page: 100
  ident: bib0027
  article-title: Low-Reynolds-number eddy-viscosity modelling based on non-linear stress-strain/vorticity relations
  publication-title: Engineering turbulence modelling and experiments 3
– reference: Wang J.-X., Wu J., Ling J., Iaccarino G., Xiao H.. A comprehensive physics-informed machine learning framework for predictive turbulence modeling; 2017.
– start-page: 333
  year: 2007
  end-page: 343
  ident: bib0037
  article-title: Predictions of turbulent secondary flows using the v2 - f model
– year: 2016
  ident: bib0055
  article-title: Physics-informed machine learning for predictive turbulence modeling: a priori assessment of prediction confidence
– volume: 186
  start-page: 123
  year: 1895
  end-page: 164
  ident: bib0042
  article-title: On the dynamical theory of incompressible viscous fluids and the determination of the criterion
  publication-title: Philos Trans R Soc Lond A
– volume: 330
  start-page: 349
  year: 1997
  end-page: 374
  ident: bib0026
  article-title: Direct numerical simulation of turbulent flow over a backward-facing step
  publication-title: J Fluid Mech
– year: 2019
  ident: bib0056
  article-title: RANS equations with explicit data-driven Reynolds stress closure can be ill-conditioned
– year: 2000
  ident: bib0040
  article-title: Turbulent flows
– volume: 25
  year: 2013
  ident: bib0013
  article-title: Modeling of structural uncertainties in Reynolds-averaged Navier-Stokes closures
  publication-title: Phys Fluids
– year: 2008
  ident: bib0017
  article-title: Functions of matrices: theory and computation
– year: 2014
  ident: bib0046
  article-title: CFD vision 2030 study: a path to revolutionary computational aerosciences
  publication-title: NASA Technical Report NASA/CR-2014-21878
– year: 2010
  ident: bib0052
  article-title: Quantification of structural uncertainties in the k - omega turbulence model
– volume: 3
  start-page: 269
  year: 1974
  end-page: 289
  ident: bib0023
  article-title: The numerical computation of turbulent flows
  publication-title: Comput Methods Appl Mech Eng
– volume: 130
  start-page: 1
  year: 2016
  end-page: 7
  ident: bib0049
  article-title: A methodology to evaluate statistical errors in DNS data of plane channel flows
  publication-title: Comput Fluids
– volume: 46
  start-page: 2823
  year: 2008
  end-page: 2838
  ident: bib0054
  article-title: Formulation of the k-w turbulence model revisited
  publication-title: AIAA J
– volume: 8
  year: 2007
  ident: bib0002
  article-title: Presentation of anisotropy properties of turbulence, invariants versus eigenvalue approaches
  publication-title: J Turbul
– year: 1993
  ident: bib0044
  article-title: A realizable Reynolds stress algebraic equation model
  publication-title: NASA Technical Memorandum 105993
– volume: 807
  start-page: 155
  year: 2016
  end-page: 166
  ident: bib0029
  article-title: Reynolds averaged turbulence modelling using deep neural networks with embedded invariance
  publication-title: J Fluid Mech
– volume: 27
  year: 2015
  ident: bib0030
  article-title: Evaluation of machine learning algorithms for prediction of regions of high Reynolds averaged Navier Stokes uncertainty
  publication-title: Phys Fluids
– volume: 82
  start-page: 161
  year: 1977
  end-page: 178
  ident: bib0032
  article-title: The return to isotropy of homogeneous turbulence
  publication-title: J Fluid Mech
– year: 2006
  ident: bib0041
  article-title: Gaussian processes for machine learning
– start-page: 1
  year: 2015
  end-page: 14
  ident: bib0011
  article-title: New approaches in turbulence and transition modeling using data-driven techniques
  publication-title: 53rd AIAA Aerospace sciences meeting
– volume: 96
  start-page: 1137
  year: 2011
  end-page: 1149
  ident: bib0007
  article-title: Bayesian uncertainty analysis with applications to turbulence modeling
  publication-title: Reliab Eng Syst Saf
– volume: 19
  start-page: 476
  year: 1997
  end-page: 491
  ident: bib0014
  article-title: A comparative analysis of methods for pruning decision trees
  publication-title: IEEE Trans Pattern Anal Mach Intell
– volume: 38
  start-page: 433
  year: 2009
  end-page: 457
  ident: bib0005
  article-title: Flow over periodic hills - numerical and experimental study in a wide range of Reynolds numbers
  publication-title: Comput Fluids
– reference: .
– year: 2019
  ident: bib0015
  article-title: A Swiss army infinitesimal jackknife
  publication-title: Proceedings of the 22nd international conference on artificial intelligence and statistics (AISTATS), Naha, Okinawa, Japan
– volume: 7
  start-page: 983
  year: 2006
  end-page: 999
  ident: bib0033
  article-title: Quantile regression forests
  publication-title: J Mach Learn Res
– volume: 325
  start-page: 22
  year: 2016
  end-page: 37
  ident: bib0053
  article-title: A novel evolutionary algorithm applied to algebraic modifications of the RANS stress-strain relationship
  publication-title: J Comput Phys
– volume: 15
  start-page: 1929
  year: 2014
  end-page: 1958
  ident: bib0048
  article-title: Dropout: a simple way to prevent neural networks from overfitting
  publication-title: J Mach Learn Res
– volume: 13
  start-page: 1
  year: 2012
  end-page: 28
  ident: bib0003
  article-title: Geometric properties of particle trajectories in turbulent flows
  publication-title: J Turbul
– year: 2012
  ident: bib0035
  article-title: Machine learning: a probabilistic perspective
– volume: 305
  start-page: 758
  year: 2016
  end-page: 774
  ident: bib0036
  article-title: A paradigm for data-driven predictive modeling using field inversion and machine learning
  publication-title: J Comput Phys
– year: 2008
  ident: bib0016
  article-title: The elements of statistical learning
– year: 1994
  ident: bib0018
  article-title: Backward-facing step measurements at low reynolds number
  publication-title: NASA Technical Memorandum 108807
– volume: 644
  start-page: 107
  year: 2010
  ident: bib0038
  article-title: Reynolds number dependence of mean flow structure in square duct turbulence
  publication-title: J Fluid Mech
– volume: 96
  start-page: 1137
  issue: 9
  year: 2011
  ident: 10.1016/j.compfluid.2020.104497_bib0007
  article-title: Bayesian uncertainty analysis with applications to turbulence modeling
  publication-title: Reliab Eng Syst Saf
  doi: 10.1016/j.ress.2010.09.013
– volume: 27
  issue: 8
  year: 2015
  ident: 10.1016/j.compfluid.2020.104497_bib0030
  article-title: Evaluation of machine learning algorithms for prediction of regions of high Reynolds averaged Navier Stokes uncertainty
  publication-title: Phys Fluids
  doi: 10.1063/1.4927765
– volume: 807
  start-page: 155
  year: 2016
  ident: 10.1016/j.compfluid.2020.104497_bib0029
  article-title: Reynolds averaged turbulence modelling using deep neural networks with embedded invariance
  publication-title: J Fluid Mech
  doi: 10.1017/jfm.2016.615
– year: 2008
  ident: 10.1016/j.compfluid.2020.104497_bib0017
– volume: 4
  start-page: 266
  issue: 1
  year: 2010
  ident: 10.1016/j.compfluid.2020.104497_bib0008
  article-title: Bart: Bayesian additive regression trees
  publication-title: Ann Appl Stat
  doi: 10.1214/09-AOAS285
– year: 1993
  ident: 10.1016/j.compfluid.2020.104497_bib0044
  article-title: A realizable Reynolds stress algebraic equation model
– start-page: 1
  year: 2015
  ident: 10.1016/j.compfluid.2020.104497_bib0011
  article-title: New approaches in turbulence and transition modeling using data-driven techniques
– volume: 19
  start-page: 476
  issue: 5
  year: 1997
  ident: 10.1016/j.compfluid.2020.104497_bib0014
  article-title: A comparative analysis of methods for pruning decision trees
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/34.589207
– volume: 130
  start-page: 1
  year: 2016
  ident: 10.1016/j.compfluid.2020.104497_bib0049
  article-title: A methodology to evaluate statistical errors in DNS data of plane channel flows
  publication-title: Comput Fluids
  doi: 10.1016/j.compfluid.2016.01.014
– volume: 17
  start-page: 108
  issue: 2
  year: 1996
  ident: 10.1016/j.compfluid.2020.104497_bib0009
  article-title: Development and application of a cubic eddy-viscosity model of turbulence
  publication-title: Int J Heat Fluid Flow
  doi: 10.1016/0142-727X(95)00079-6
– year: 2019
  ident: 10.1016/j.compfluid.2020.104497_bib0020
– volume: 325
  start-page: 22
  year: 2016
  ident: 10.1016/j.compfluid.2020.104497_bib0053
  article-title: A novel evolutionary algorithm applied to algebraic modifications of the RANS stress-strain relationship
  publication-title: J Comput Phys
  doi: 10.1016/j.jcp.2016.08.015
– year: 2006
  ident: 10.1016/j.compfluid.2020.104497_bib0041
– year: 2015
  ident: 10.1016/j.compfluid.2020.104497_sbref0021
  article-title: Adam: a method for stochastic optimization
– start-page: 161
  year: 1992
  ident: 10.1016/j.compfluid.2020.104497_bib0025
– year: 2000
  ident: 10.1016/j.compfluid.2020.104497_bib0040
– volume: 15
  start-page: 1929
  year: 2014
  ident: 10.1016/j.compfluid.2020.104497_bib0048
  article-title: Dropout: a simple way to prevent neural networks from overfitting
  publication-title: J Mach Learn Res
– year: 1994
  ident: 10.1016/j.compfluid.2020.104497_bib0018
  article-title: Backward-facing step measurements at low reynolds number
– start-page: 91
  year: 1996
  ident: 10.1016/j.compfluid.2020.104497_bib0027
  article-title: Low-Reynolds-number eddy-viscosity modelling based on non-linear stress-strain/vorticity relations
– year: 2012
  ident: 10.1016/j.compfluid.2020.104497_bib0035
– volume: 330
  start-page: 349
  year: 1997
  ident: 10.1016/j.compfluid.2020.104497_bib0026
  article-title: Direct numerical simulation of turbulent flow over a backward-facing step
  publication-title: J Fluid Mech
  doi: 10.1017/S0022112096003941
– volume: 227
  start-page: 245
  issue: December
  year: 1991
  ident: 10.1016/j.compfluid.2020.104497_bib0047
  article-title: Modelling the pressure-strain correlation of turbulence: an invariant dynamical systems approach
  publication-title: J Fluid Mech
  doi: 10.1017/S0022112091000101
– volume: 17
  start-page: 1
  year: 2016
  ident: 10.1016/j.compfluid.2020.104497_bib0034
  article-title: Quantifying uncertainty in random forests via confidence intervals and hypothesis tests
  publication-title: J Mach Learn Res
– year: 2010
  ident: 10.1016/j.compfluid.2020.104497_bib0052
– volume: 24
  start-page: 993
  year: 2012
  ident: 10.1016/j.compfluid.2020.104497_bib0043
  article-title: A methodology to evaluate statistical errors in DNS data of plane channel flows
  publication-title: J Nonparametr Stat
  doi: 10.1080/10485252.2012.715161
– volume: 38
  start-page: 433
  issue: 2
  year: 2009
  ident: 10.1016/j.compfluid.2020.104497_bib0005
  article-title: Flow over periodic hills - numerical and experimental study in a wide range of Reynolds numbers
  publication-title: Comput Fluids
  doi: 10.1016/j.compfluid.2008.05.002
– year: 1973
  ident: 10.1016/j.compfluid.2020.104497_bib0004
  article-title: An algorithm with guaranteed convergence for finding a zero of a function
– year: 2018
  ident: 10.1016/j.compfluid.2020.104497_sbref0019
– volume: 305
  start-page: 758
  year: 2016
  ident: 10.1016/j.compfluid.2020.104497_bib0036
  article-title: A paradigm for data-driven predictive modeling using field inversion and machine learning
  publication-title: J Comput Phys
  doi: 10.1016/j.jcp.2015.11.012
– year: 2016
  ident: 10.1016/j.compfluid.2020.104497_bib0045
– volume: 2
  start-page: 514
  year: 2014
  ident: 10.1016/j.compfluid.2020.104497_bib0006
  article-title: Big data deep learning: challenges and perspectives
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2014.2325029
– volume: 8
  issue: 32
  year: 2007
  ident: 10.1016/j.compfluid.2020.104497_bib0002
  article-title: Presentation of anisotropy properties of turbulence, invariants versus eigenvalue approaches
  publication-title: J Turbul
– volume: 3
  start-page: 269
  issue: 2
  year: 1974
  ident: 10.1016/j.compfluid.2020.104497_bib0023
  article-title: The numerical computation of turbulent flows
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/0045-7825(74)90029-2
– volume: 7
  start-page: 983
  year: 2006
  ident: 10.1016/j.compfluid.2020.104497_bib0033
  article-title: Quantile regression forests
  publication-title: J Mach Learn Res
– year: 2018
  ident: 10.1016/j.compfluid.2020.104497_bib0001
  article-title: Machine-learnt turbulence closures for lpt’s with unsteady inflow conditions
– year: 2019
  ident: 10.1016/j.compfluid.2020.104497_sbref0055
– year: 2014
  ident: 10.1016/j.compfluid.2020.104497_bib0046
  article-title: CFD vision 2030 study: a path to revolutionary computational aerosciences
– volume: 18
  start-page: 123
  year: 1979
  ident: 10.1016/j.compfluid.2020.104497_bib0031
  article-title: Computational modeling of turbulent flows
  publication-title: Adv Appl Mech
  doi: 10.1016/S0065-2156(08)70266-7
– volume: 51
  start-page: 1
  year: 2019
  ident: 10.1016/j.compfluid.2020.104497_bib0010
  article-title: Turbulence modeling in the age of data
  publication-title: Annu Rev Fluid Mech
  doi: 10.1146/annurev-fluid-010518-040547
– volume: 25
  issue: 11
  year: 2013
  ident: 10.1016/j.compfluid.2020.104497_bib0013
  article-title: Modeling of structural uncertainties in Reynolds-averaged Navier-Stokes closures
  publication-title: Phys Fluids
– volume: 13
  start-page: 1
  year: 2012
  ident: 10.1016/j.compfluid.2020.104497_bib0003
  article-title: Geometric properties of particle trajectories in turbulent flows
  publication-title: J Turbul
– ident: 10.1016/j.compfluid.2020.104497_bib0051
  doi: 10.2172/1562229
– volume: 46
  start-page: 2823
  issue: 11
  year: 2008
  ident: 10.1016/j.compfluid.2020.104497_bib0054
  article-title: Formulation of the k-w turbulence model revisited
  publication-title: AIAA J
  doi: 10.2514/1.36541
– volume: 193
  start-page: 357
  year: 2004
  ident: 10.1016/j.compfluid.2020.104497_bib0022
  article-title: Jacobian-free Newton–Krylov methods: a survey of approaches and applications
  publication-title: J Comput Phys
  doi: 10.1016/j.jcp.2003.08.010
– year: 2008
  ident: 10.1016/j.compfluid.2020.104497_bib0016
– year: 2019
  ident: 10.1016/j.compfluid.2020.104497_bib0015
  article-title: A Swiss army infinitesimal jackknife
– start-page: 333
  year: 2007
  ident: 10.1016/j.compfluid.2020.104497_bib0037
– volume: 72
  start-page: 331
  issue: 2
  year: 1975
  ident: 10.1016/j.compfluid.2020.104497_bib0039
  article-title: A more general effective-viscosity hypothesis
  publication-title: J Fluid Mech
  doi: 10.1017/S0022112075003382
– volume: 82
  start-page: 161
  issue: 1
  year: 1977
  ident: 10.1016/j.compfluid.2020.104497_bib0032
  article-title: The return to isotropy of homogeneous turbulence
  publication-title: J Fluid Mech
  doi: 10.1017/S0022112077000585
– volume: 644
  start-page: 107
  year: 2010
  ident: 10.1016/j.compfluid.2020.104497_bib0038
  article-title: Reynolds number dependence of mean flow structure in square duct turbulence
  publication-title: J Fluid Mech
  doi: 10.1017/S0022112009992242
– start-page: 203
  year: 2011
  ident: 10.1016/j.compfluid.2020.104497_bib0024
  article-title: Direct numerical simulations of converging-diverging channel flow
  doi: 10.1007/978-90-481-9603-6_21
– year: 2013
  ident: 10.1016/j.compfluid.2020.104497_bib0050
  article-title: Application of supervised learning to quantify uncertainties in turbulence and combustion modeling
– year: 2016
  ident: 10.1016/j.compfluid.2020.104497_sbref0054
– volume: 186
  start-page: 123
  year: 1895
  ident: 10.1016/j.compfluid.2020.104497_bib0042
  article-title: On the dynamical theory of incompressible viscous fluids and the determination of the criterion
  publication-title: Philos Trans R Soc Lond A
  doi: 10.1098/rsta.1895.0004
– volume: 275
  start-page: 65
  issue: October
  year: 2014
  ident: 10.1016/j.compfluid.2020.104497_bib0012
  article-title: Predictive RANS simulations via Bayesian model-scenario averaging
  publication-title: J Comput Phys
  doi: 10.1016/j.jcp.2014.06.052
– volume: 313
  start-page: 941
  year: 2016
  ident: 10.1016/j.compfluid.2020.104497_bib0057
  article-title: A random matrix approach for quantifying model-Form uncertainties in turbulence modeling
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/j.cma.2016.10.025
– volume: 318
  start-page: 22
  year: 2016
  ident: 10.1016/j.compfluid.2020.104497_bib0028
  article-title: Machine learning strategies for systems with invariance properties
  publication-title: J Comput Phys
  doi: 10.1016/j.jcp.2016.05.003
SSID ssj0004324
Score 2.5618606
Snippet •A random forest predicting the Reynolds stress in turbulent flows is presented.•Invariance of predictions is achieved by making use of a tensor basis.•The...
A novel machine learning algorithm is presented, serving as a data-driven turbulence modeling tool for Reynolds Averaged Navier-Stokes (RANS) simulations. This...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 104497
SubjectTerms Algorithms
Anisotropy
Closures
Computational fluid dynamics
Computer simulation
Invariance
Machine learning
Mathematical analysis
Modelling
Neural networks
Non-linear eddy-viscosity closures
Random forests
Reynolds anisotropy tensor
Reynolds averaged Navier-Stokes method
Reynolds stress
Tensors
Turbulence modelling
Turbulence models
Title Data-driven modelling of the Reynolds stress tensor using random forests with invariance
URI https://dx.doi.org/10.1016/j.compfluid.2020.104497
https://www.proquest.com/docview/2437187543
Volume 202
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PT8IwFG4QLnow_owokh68TtjawuqNoAQ1cjCScGvatRgMbgSGiRf_dt9jG4ox8eBxW7otr6_vfa9973uEXDAjQgeOwJPMRB5nJvC04AyMIW85LiNQKyxOfhi0-kN-NxKjEukWtTCYVpnb_symr6x1fqeRS7Mxm0ywxpcL0C48SkPSGojbKwGTLVEmlc7tfX_wVR7JgoyMmSM7I2tupHlh5vZ4upwga2iwOvLkSAD1u5P6Ya5XPqi3R3Zz8Eg72f_tk5KLD8jON0rBQzK61qn27ByNGF21ucF6c5qMKSA9-uje42RqFzQrEaGYvp7MKSa_P1PwWjZ5pYBi4dMLiju0dBK_QTCNmnFEhr2bp27fy7sneBFgntQLHEIHaUWbWSa0i0ItLeeONU2TSS7ArwtrAA3AIw4wzjJpmG-c4FHoTGTZMSnHSexOCB0jC1pb-rxtkD2f6SCA1TrWWrow8LWoklYhLhXl1OLY4WKqihyyF7WWs0I5q0zOVdJcD5xl7Bp_D7kq5kNtKIoCH_D34FoxgypfqwuFlIw-hG2cnf7n3WdkG6-yk6YaKafzpTsHwJKaOtm6_PDruVp-AsuN6tI
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELaqMgAD4ikKBTywhqax3SRsqIAKtB1QK3Wz7NhFRSWp-kBi4bdzl0ehCKkDayIn0fl89zn33WdCLpkWgYVE4IRMRw5n2nOU4AyCIW9YHkbgVtic3Ok2Wn3-OBCDEmkWvTBIq8xjfxbT02idX6nl1qxNRiPs8eUCvAtLaShaA_v2DS6Yj7y-q89vngdKzmVlZtRmZO4KyQt528PxYoSaoV5a8OQo__R3ivoVrNMMdL9LdnLoSG-yr9sjJRvvk-0fgoIHZHCr5soxUwxhND3kBrvNaTKkgPPos_2Ik7GZ0axBhCJ5PZlSpL6_UMhZJnmjgGHh1TOK_2fpKH6HrTT6xSHp39_1mi0nPzvBiQDxzB3PInAIjfCZYULZKFCh4dwyV7ss5AKyujAasADc4gDiDAs1q2sreBRYHRl2RMpxEttjQoeogeaHde5r1M5nyvNgrQ6VCm3g1ZWokEZhLhnlwuJ4vsVYFgyyV7m0s0Q7y8zOFeIuB04ybY31Q66L-ZArbiIhA6wfXC1mUOYrdSZRkLEOmzbOTv7z7Auy2ep12rL90H06JVt4J6s5VUl5Pl3YM4Auc32euuYXyP_rnQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Data-driven+modelling+of+the+Reynolds+stress+tensor+using+random+forests+with+invariance&rft.jtitle=Computers+%26+fluids&rft.au=Kaandorp%2C+Mikael+L.A.&rft.au=Dwight%2C+Richard+P.&rft.date=2020-04-30&rft.issn=0045-7930&rft.volume=202&rft.spage=104497&rft_id=info:doi/10.1016%2Fj.compfluid.2020.104497&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_compfluid_2020_104497
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0045-7930&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0045-7930&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0045-7930&client=summon