Data-driven modelling of the Reynolds stress tensor using random forests with invariance
•A random forest predicting the Reynolds stress in turbulent flows is presented.•Invariance of predictions is achieved by making use of a tensor basis.•The algorithm is trained and tested on 5 different flow configurations.•Predicted Reynolds stresses are propagated, producing improved mean flow fie...
Saved in:
Published in | Computers & fluids Vol. 202; p. 104497 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Amsterdam
Elsevier Ltd
30.04.2020
Elsevier BV |
Subjects | |
Online Access | Get full text |
ISSN | 0045-7930 1879-0747 |
DOI | 10.1016/j.compfluid.2020.104497 |
Cover
Abstract | •A random forest predicting the Reynolds stress in turbulent flows is presented.•Invariance of predictions is achieved by making use of a tensor basis.•The algorithm is trained and tested on 5 different flow configurations.•Predicted Reynolds stresses are propagated, producing improved mean flow fields.
A novel machine learning algorithm is presented, serving as a data-driven turbulence modeling tool for Reynolds Averaged Navier-Stokes (RANS) simulations. This machine learning algorithm, called the Tensor Basis Random Forest (TBRF), is used to predict the Reynolds-stress anisotropy tensor, while guaranteeing Galilean invariance by making use of a tensor basis. By modifying a random forest algorithm to accept such a tensor basis, a robust, easy to implement, and easy to train algorithm is created. The algorithm is trained on several flow cases using DNS/LES data, and used to predict the Reynolds stress anisotropy tensor for new, unseen flows. The resulting predictions of turbulence anisotropy are used as a turbulence model within a custom RANS solver. Stabilization of this solver is necessary, and is achieved by a continuation method and a modified k-equation. Results are compared to the neural network approach of Ling et al. [29]. Results show that the TBRF algorithm is able to accurately predict the anisotropy tensor for various flow cases, with realizable predictions close to the DNS/LES reference data. Corresponding mean flows for a square duct flow case and a backward facing step flow case show good agreement with DNS and experimental data-sets. Overall, these results are seen as a next step towards improved data-driven modelling of turbulence. This creates an opportunity to generate custom turbulence closures for specific classes of flows, limited only by the availability of LES/DNS data. |
---|---|
AbstractList | •A random forest predicting the Reynolds stress in turbulent flows is presented.•Invariance of predictions is achieved by making use of a tensor basis.•The algorithm is trained and tested on 5 different flow configurations.•Predicted Reynolds stresses are propagated, producing improved mean flow fields.
A novel machine learning algorithm is presented, serving as a data-driven turbulence modeling tool for Reynolds Averaged Navier-Stokes (RANS) simulations. This machine learning algorithm, called the Tensor Basis Random Forest (TBRF), is used to predict the Reynolds-stress anisotropy tensor, while guaranteeing Galilean invariance by making use of a tensor basis. By modifying a random forest algorithm to accept such a tensor basis, a robust, easy to implement, and easy to train algorithm is created. The algorithm is trained on several flow cases using DNS/LES data, and used to predict the Reynolds stress anisotropy tensor for new, unseen flows. The resulting predictions of turbulence anisotropy are used as a turbulence model within a custom RANS solver. Stabilization of this solver is necessary, and is achieved by a continuation method and a modified k-equation. Results are compared to the neural network approach of Ling et al. [29]. Results show that the TBRF algorithm is able to accurately predict the anisotropy tensor for various flow cases, with realizable predictions close to the DNS/LES reference data. Corresponding mean flows for a square duct flow case and a backward facing step flow case show good agreement with DNS and experimental data-sets. Overall, these results are seen as a next step towards improved data-driven modelling of turbulence. This creates an opportunity to generate custom turbulence closures for specific classes of flows, limited only by the availability of LES/DNS data. A novel machine learning algorithm is presented, serving as a data-driven turbulence modeling tool for Reynolds Averaged Navier-Stokes (RANS) simulations. This machine learning algorithm, called the Tensor Basis Random Forest (TBRF), is used to predict the Reynolds-stress anisotropy tensor, while guaranteeing Galilean invariance by making use of a tensor basis. By modifying a random forest algorithm to accept such a tensor basis, a robust, easy to implement, and easy to train algorithm is created. The algorithm is trained on several flow cases using DNS/LES data, and used to predict the Reynolds stress anisotropy tensor for new, unseen flows. The resulting predictions of turbulence anisotropy are used as a turbulence model within a custom RANS solver. Stabilization of this solver is necessary, and is achieved by a continuation method and a modified k-equation. Results are compared to the neural network approach of Ling et al. [29]. Results show that the TBRF algorithm is able to accurately predict the anisotropy tensor for various flow cases, with realizable predictions close to the DNS/LES reference data. Corresponding mean flows for a square duct flow case and a backward facing step flow case show good agreement with DNS and experimental data-sets. Overall, these results are seen as a next step towards improved data-driven modelling of turbulence. This creates an opportunity to generate custom turbulence closures for specific classes of flows, limited only by the availability of LES/DNS data. |
ArticleNumber | 104497 |
Author | Dwight, Richard P. Kaandorp, Mikael L.A. |
Author_xml | – sequence: 1 givenname: Mikael L.A. orcidid: 0000-0003-3744-6789 surname: Kaandorp fullname: Kaandorp, Mikael L.A. email: m.l.a.kaandorp@uu.nl organization: Aerodynamics, Faculty of Aerospace, Delft University of Technology, 2629 HS, Delft, the Netherlands – sequence: 2 givenname: Richard P. orcidid: 0000-0003-2369-2540 surname: Dwight fullname: Dwight, Richard P. organization: Aerodynamics, Faculty of Aerospace, Delft University of Technology, 2629 HS, Delft, the Netherlands |
BookMark | eNqNkE9LAzEQxYNUsK1-BgOet2Y3WXdz8FDqXygIouAtZJNZm2Wb1CSt9NubpeLBi56GmffezPCboJF1FhA6z8ksJ_nVZTdTbr1p-63Rs4IUw5QxXh2hcV5XPCMVq0ZoTAgrs4pTcoImIXQk9bRgY_R2I6PMtDc7sHjtNPS9se_YtTiuAD_D3rpeBxyihxBwBBucx9sweLy02q1x65IUA_40cYWN3UlvpFVwio5b2Qc4-65T9Hp3-7J4yJZP94-L-TJTlBcxK4AUNeW6rKimpQRVS64ZA0oaQjkrC8ZK3ZB8kFjOk4k3NG-gZKqGRmk6RReHvRvvPrbpE9G5rbfppCgYrRKDktHkqg4u5V0IHlqx8WYt_V7kRAwYRSd-MIoBozhgTMnrX0lloozG2eil6f-Rnx_ykCDsDHgRlIEESBsPKgrtzJ87vgCFXJdP |
CitedBy_id | crossref_primary_10_1063_5_0245113 crossref_primary_10_1080_14685248_2021_1999459 crossref_primary_10_3389_fphy_2024_1347657 crossref_primary_10_1134_S1990478924010046 crossref_primary_10_1007_s00162_020_00545_9 crossref_primary_10_1063_5_0149750 crossref_primary_10_5194_gmd_14_3769_2021 crossref_primary_10_1016_j_ijheatfluidflow_2022_109017 crossref_primary_10_1063_5_0174470 crossref_primary_10_1016_j_ijheatfluidflow_2022_109018 crossref_primary_10_1016_j_ijheatfluidflow_2022_109051 crossref_primary_10_1063_5_0070890 crossref_primary_10_1063_5_0233053 crossref_primary_10_1002_fld_5284 crossref_primary_10_1111_ina_13123 crossref_primary_10_1063_5_0248576 crossref_primary_10_1063_5_0253703 crossref_primary_10_1017_jfm_2021_148 crossref_primary_10_1007_s10494_022_00346_6 crossref_primary_10_1016_j_compfluid_2024_106215 crossref_primary_10_1051_e3sconf_202345902005 crossref_primary_10_1007_s10494_023_00506_2 crossref_primary_10_1016_j_ijheatfluidflow_2022_109047 crossref_primary_10_1063_5_0153735 crossref_primary_10_1063_5_0207256 crossref_primary_10_1007_s00773_022_00914_5 crossref_primary_10_1007_s10409_022_09001_w crossref_primary_10_1016_j_ijheatfluidflow_2023_109140 crossref_primary_10_1063_5_0146456 crossref_primary_10_1108_HFF_12_2023_0726 crossref_primary_10_3390_en16041755 crossref_primary_10_1063_5_0083074 crossref_primary_10_1063_5_0247759 crossref_primary_10_1088_1742_6596_2099_1_012020 crossref_primary_10_1063_5_0166685 crossref_primary_10_1016_j_jcp_2024_112982 crossref_primary_10_1038_s41597_021_01034_2 crossref_primary_10_1115_1_4064650 crossref_primary_10_1016_j_jcp_2025_113793 crossref_primary_10_1016_j_compfluid_2021_105213 crossref_primary_10_1016_j_cej_2022_138036 crossref_primary_10_1063_5_0173678 crossref_primary_10_1016_j_jcp_2022_111090 crossref_primary_10_1063_5_0231494 crossref_primary_10_1080_10618562_2022_2113520 crossref_primary_10_1016_j_jcp_2021_110717 crossref_primary_10_1016_j_jcp_2021_110153 crossref_primary_10_1016_j_ijheatfluidflow_2022_109072 crossref_primary_10_1016_j_compfluid_2024_106270 crossref_primary_10_1016_j_jcp_2021_110116 crossref_primary_10_1016_j_compfluid_2021_104997 crossref_primary_10_1063_5_0220444 crossref_primary_10_1007_s10494_024_00595_7 crossref_primary_10_1063_5_0252753 crossref_primary_10_1063_5_0263211 crossref_primary_10_1098_rspa_2023_0058 crossref_primary_10_1088_1367_2630_ad6689 crossref_primary_10_1134_S0021894423030094 crossref_primary_10_1063_5_0100076 crossref_primary_10_1016_j_jcp_2021_110922 crossref_primary_10_1016_j_compfluid_2024_106246 crossref_primary_10_1016_j_ijheatfluidflow_2024_109348 crossref_primary_10_1063_5_0149547 crossref_primary_10_1063_5_0184157 crossref_primary_10_1016_j_ijheatfluidflow_2023_109242 |
Cites_doi | 10.1016/j.ress.2010.09.013 10.1063/1.4927765 10.1017/jfm.2016.615 10.1214/09-AOAS285 10.1109/34.589207 10.1016/j.compfluid.2016.01.014 10.1016/0142-727X(95)00079-6 10.1016/j.jcp.2016.08.015 10.1017/S0022112096003941 10.1017/S0022112091000101 10.1080/10485252.2012.715161 10.1016/j.compfluid.2008.05.002 10.1016/j.jcp.2015.11.012 10.1109/ACCESS.2014.2325029 10.1016/0045-7825(74)90029-2 10.1016/S0065-2156(08)70266-7 10.1146/annurev-fluid-010518-040547 10.2172/1562229 10.2514/1.36541 10.1016/j.jcp.2003.08.010 10.1017/S0022112075003382 10.1017/S0022112077000585 10.1017/S0022112009992242 10.1007/978-90-481-9603-6_21 10.1098/rsta.1895.0004 10.1016/j.jcp.2014.06.052 10.1016/j.cma.2016.10.025 10.1016/j.jcp.2016.05.003 |
ContentType | Journal Article |
Copyright | 2020 Copyright Elsevier BV Apr 30, 2020 |
Copyright_xml | – notice: 2020 – notice: Copyright Elsevier BV Apr 30, 2020 |
DBID | 6I. AAFTH AAYXX CITATION 7SC 7TB 7U5 8FD FR3 H8D JQ2 KR7 L7M L~C L~D |
DOI | 10.1016/j.compfluid.2020.104497 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts Technology Research Database Engineering Research Database Aerospace Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Aerospace Database Civil Engineering Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Aerospace Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1879-0747 |
ExternalDocumentID | 10_1016_j_compfluid_2020_104497 S0045793020300700 |
GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 6I. 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAFTH AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABAOU ABJNI ABMAC ABYKQ ACAZW ACDAQ ACGFS ACIWK ACRLP ADBBV ADEZE ADGUI ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIGVJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ARUGR AXJTR BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W JJJVA KOM LG9 LY7 M41 MHUIS MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 ROL RPZ SDF SDG SDP SES SPC SPCBC SPD SST SSW SSZ T5K TN5 XPP ZMT ~G- 29F 6TJ AAQXK AATTM AAXKI AAYWO AAYXX ABDPE ABEFU ABFNM ABWVN ABXDB ACKIV ACNNM ACRPL ACVFH ADCNI ADIYS ADMUD ADNMO AEIPS AEUPX AFFNX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FEDTE FGOYB G-2 HLZ HVGLF HZ~ R2- RIG SBC SET SEW SSH T9H VH1 WUQ 7SC 7TB 7U5 8FD EFKBS FR3 H8D JQ2 KR7 L7M L~C L~D |
ID | FETCH-LOGICAL-c392t-2e02839d573d35aec8a9d44e30b039452445db015aec4193d39b31be54c8ebcd3 |
IEDL.DBID | AIKHN |
ISSN | 0045-7930 |
IngestDate | Fri Jul 25 04:29:47 EDT 2025 Thu Apr 24 23:02:27 EDT 2025 Tue Jul 01 02:21:30 EDT 2025 Fri Feb 23 02:46:57 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Non-linear eddy-viscosity closures Machine-learning Reynolds anisotropy tensor Random forests Turbulence modelling |
Language | English |
License | This is an open access article under the CC BY license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c392t-2e02839d573d35aec8a9d44e30b039452445db015aec4193d39b31be54c8ebcd3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-3744-6789 0000-0003-2369-2540 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0045793020300700 |
PQID | 2437187543 |
PQPubID | 2045265 |
ParticipantIDs | proquest_journals_2437187543 crossref_primary_10_1016_j_compfluid_2020_104497 crossref_citationtrail_10_1016_j_compfluid_2020_104497 elsevier_sciencedirect_doi_10_1016_j_compfluid_2020_104497 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-04-30 |
PublicationDateYYYYMMDD | 2020-04-30 |
PublicationDate_xml | – month: 04 year: 2020 text: 2020-04-30 day: 30 |
PublicationDecade | 2020 |
PublicationPlace | Amsterdam |
PublicationPlace_xml | – name: Amsterdam |
PublicationTitle | Computers & fluids |
PublicationYear | 2020 |
Publisher | Elsevier Ltd Elsevier BV |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
References | Kingma, Ba (bib0021) 2015 Chipman, George, McCulloch (bib0008) 2010; 4 Reynolds (bib0042) 1895; 186 Singh, Medida, Duraisamy (bib0045) 2016 Tracey, Duraisamy, Alonso (bib0050) 2013 Giordano, Stephenson, Liu, Jordan, Broderick (bib0015) 2019 Kaandorp, Dwight (bib0020) 2019 Esposito, Malerba, Semeraro (bib0014) 1997; 19 Wang, Dow (bib0052) 2010 Murphy (bib0035) 2012 Edeling, Cinnella, Dwight (bib0012) 2014; 275 Banerjee, Krahl, Durst, Zenger (bib0002) 2007; 8 Craft, Launder, Suga (bib0009) 1996; 17 Meinshausen (bib0033) 2006; 7 Parish, Duraisamy (bib0036) 2016; 305 . Akolekar, Sandberg, Hutchins, Michelassi, Laskowski (bib0001) 2018 Launder, Spalding (bib0023) 1974; 3 Ling, Jones, Templeton (bib0028) 2016; 318 Cheung, Oliver, Prudencio, Prudhomme, Moser (bib0007) 2011; 96 Breuer, Peller, Rapp, Manhart (bib0005) 2009; 38 Slotnick, Khodadoust, Alonso, Darmofal, Gropp, Lurie (bib0046) 2014 Lumley, Newman (bib0032) 1977; 82 Hastie, Tibshirani, Friedman (bib0016) 2008 Rasmussen, Williams (bib0041) 2006 Brent (bib0004) 1973 Thompson, Sampaio, de Bragana Alves, Thais, Mompean (bib0049) 2016; 130 Knoll, Keyes (bib0022) 2004; 193 Pinelli, Uhlmann, Sekimoto, Kawahara (bib0038) 2010; 644 Speziale, Sarkar, Gatski (bib0047) 1991; 227 Lien, Chen, Leschziner (bib0027) 1996 Srivastava, Hinton, Krizhevsky, Sutskever, Salakhutdinov (bib0048) 2014; 15 Chen, Lin (bib0006) 2014; 2 Le, Moin (bib0025) 1992 Ling, Templeton (bib0030) 2015; 27 Kaandorp (bib0019) 2018 Xiao, Wang, Ghanem (bib0057) 2016; 313 Weatheritt, Sandberg (bib0053) 2016; 325 Lumley (bib0031) 1979; 18 Mentch, Hooker (bib0034) 2016; 17 Higham (bib0017) 2008 Shih, Zhu, Lumley (bib0044) 1993 Duraisamy, Zhang, Anand (bib0011) 2015 Wilcox (bib0054) 2008; 46 Laval, Marquillie (bib0024) 2011 Pecnik, Iaccarino (bib0037) 2007 Duraisamy, Iaccarino, Xiao (bib0010) 2019; 51 Emory, Larsson, Iaccarino (bib0013) 2013; 25 Pope (bib0040) 2000 Wu, Wang, Xiao, Ling (bib0055) 2016 Le, Moin, Kim (bib0026) 1997; 330 Ling, Kurzawski, Templeton (bib0029) 2016; 807 Bentaleb, Lardeau, Leschziner (bib0003) 2012; 13 Pope (bib0039) 1975; 72 Roy, Larocque (bib0043) 2012; 24 Jovic, Driver (bib0018) 1994 Wu, Xiao, Sun, Wang (bib0056) 2019 Wang J.-X., Wu J., Ling J., Iaccarino G., Xiao H.. A comprehensive physics-informed machine learning framework for predictive turbulence modeling; 2017. Duraisamy (10.1016/j.compfluid.2020.104497_bib0010) 2019; 51 Reynolds (10.1016/j.compfluid.2020.104497_bib0042) 1895; 186 Emory (10.1016/j.compfluid.2020.104497_bib0013) 2013; 25 Knoll (10.1016/j.compfluid.2020.104497_bib0022) 2004; 193 10.1016/j.compfluid.2020.104497_bib0051 Wilcox (10.1016/j.compfluid.2020.104497_bib0054) 2008; 46 Tracey (10.1016/j.compfluid.2020.104497_bib0050) 2013 Cheung (10.1016/j.compfluid.2020.104497_bib0007) 2011; 96 Esposito (10.1016/j.compfluid.2020.104497_bib0014) 1997; 19 Ling (10.1016/j.compfluid.2020.104497_bib0030) 2015; 27 Lumley (10.1016/j.compfluid.2020.104497_bib0032) 1977; 82 Wu (10.1016/j.compfluid.2020.104497_sbref0055) 2019 Craft (10.1016/j.compfluid.2020.104497_bib0009) 1996; 17 Jovic (10.1016/j.compfluid.2020.104497_bib0018) 1994 Kaandorp (10.1016/j.compfluid.2020.104497_bib0020) 2019 Speziale (10.1016/j.compfluid.2020.104497_bib0047) 1991; 227 Parish (10.1016/j.compfluid.2020.104497_bib0036) 2016; 305 Giordano (10.1016/j.compfluid.2020.104497_bib0015) 2019 Roy (10.1016/j.compfluid.2020.104497_bib0043) 2012; 24 Srivastava (10.1016/j.compfluid.2020.104497_bib0048) 2014; 15 Brent (10.1016/j.compfluid.2020.104497_bib0004) 1973 Murphy (10.1016/j.compfluid.2020.104497_bib0035) 2012 Lien (10.1016/j.compfluid.2020.104497_bib0027) 1996 Ling (10.1016/j.compfluid.2020.104497_bib0029) 2016; 807 Shih (10.1016/j.compfluid.2020.104497_bib0044) 1993 Rasmussen (10.1016/j.compfluid.2020.104497_bib0041) 2006 Laval (10.1016/j.compfluid.2020.104497_bib0024) 2011 Pinelli (10.1016/j.compfluid.2020.104497_bib0038) 2010; 644 Le (10.1016/j.compfluid.2020.104497_bib0026) 1997; 330 Akolekar (10.1016/j.compfluid.2020.104497_bib0001) 2018 Banerjee (10.1016/j.compfluid.2020.104497_bib0002) 2007; 8 Edeling (10.1016/j.compfluid.2020.104497_bib0012) 2014; 275 Meinshausen (10.1016/j.compfluid.2020.104497_bib0033) 2006; 7 Mentch (10.1016/j.compfluid.2020.104497_bib0034) 2016; 17 Wu (10.1016/j.compfluid.2020.104497_sbref0054) 2016 Singh (10.1016/j.compfluid.2020.104497_bib0045) 2016 Bentaleb (10.1016/j.compfluid.2020.104497_bib0003) 2012; 13 Chipman (10.1016/j.compfluid.2020.104497_bib0008) 2010; 4 Kingma (10.1016/j.compfluid.2020.104497_sbref0021) 2015 Pope (10.1016/j.compfluid.2020.104497_bib0039) 1975; 72 Slotnick (10.1016/j.compfluid.2020.104497_bib0046) 2014 Launder (10.1016/j.compfluid.2020.104497_bib0023) 1974; 3 Breuer (10.1016/j.compfluid.2020.104497_bib0005) 2009; 38 Pope (10.1016/j.compfluid.2020.104497_bib0040) 2000 Pecnik (10.1016/j.compfluid.2020.104497_bib0037) 2007 Ling (10.1016/j.compfluid.2020.104497_bib0028) 2016; 318 Thompson (10.1016/j.compfluid.2020.104497_bib0049) 2016; 130 Hastie (10.1016/j.compfluid.2020.104497_bib0016) 2008 Kaandorp (10.1016/j.compfluid.2020.104497_sbref0019) 2018 Xiao (10.1016/j.compfluid.2020.104497_bib0057) 2016; 313 Duraisamy (10.1016/j.compfluid.2020.104497_bib0011) 2015 Higham (10.1016/j.compfluid.2020.104497_bib0017) 2008 Weatheritt (10.1016/j.compfluid.2020.104497_bib0053) 2016; 325 Chen (10.1016/j.compfluid.2020.104497_bib0006) 2014; 2 Le (10.1016/j.compfluid.2020.104497_bib0025) 1992 Wang (10.1016/j.compfluid.2020.104497_bib0052) 2010 Lumley (10.1016/j.compfluid.2020.104497_bib0031) 1979; 18 |
References_xml | – volume: 4 start-page: 266 year: 2010 end-page: 298 ident: bib0008 article-title: Bart: Bayesian additive regression trees publication-title: Ann Appl Stat – volume: 18 start-page: 123 year: 1979 end-page: 176 ident: bib0031 article-title: Computational modeling of turbulent flows publication-title: Adv Appl Mech – volume: 193 start-page: 357 year: 2004 end-page: 397 ident: bib0022 article-title: Jacobian-free Newton–Krylov methods: a survey of approaches and applications publication-title: J Comput Phys – year: 2018 ident: bib0001 article-title: Machine-learnt turbulence closures for lpt’s with unsteady inflow conditions publication-title: Proceedings of the 15th international symposium on unsteady aerodynamics, aeroacoustics & aeroelasticity of turbomachines – volume: 17 start-page: 108 year: 1996 end-page: 115 ident: bib0009 article-title: Development and application of a cubic eddy-viscosity model of turbulence publication-title: Int J Heat Fluid Flow – volume: 51 start-page: 1 year: 2019 end-page: 23 ident: bib0010 article-title: Turbulence modeling in the age of data publication-title: Annu Rev Fluid Mech – year: 2018 ident: bib0019 publication-title: Machine learning for data-driven RANS turbulence modelling – volume: 227 start-page: 245 year: 1991 end-page: 272 ident: bib0047 article-title: Modelling the pressure-strain correlation of turbulence: an invariant dynamical systems approach publication-title: J Fluid Mech – volume: 2 start-page: 514 year: 2014 end-page: 525 ident: bib0006 article-title: Big data deep learning: challenges and perspectives publication-title: IEEE Access – volume: 318 start-page: 22 year: 2016 end-page: 35 ident: bib0028 article-title: Machine learning strategies for systems with invariance properties publication-title: J Comput Phys – year: 1973 ident: bib0004 article-title: An algorithm with guaranteed convergence for finding a zero of a function publication-title: Algorithms for minimization without derivatives – volume: 275 start-page: 65 year: 2014 end-page: 91 ident: bib0012 article-title: Predictive RANS simulations via Bayesian model-scenario averaging publication-title: J Comput Phys – volume: 17 start-page: 1 year: 2016 end-page: 41 ident: bib0034 article-title: Quantifying uncertainty in random forests via confidence intervals and hypothesis tests publication-title: J Mach Learn Res – volume: 72 start-page: 331 year: 1975 end-page: 340 ident: bib0039 article-title: A more general effective-viscosity hypothesis publication-title: J Fluid Mech – start-page: 161 year: 1992 end-page: 173 ident: bib0025 article-title: Direct numerical simulation of turbulent flow over a backward-facing step – volume: 24 start-page: 993 year: 2012 end-page: 1006 ident: bib0043 article-title: A methodology to evaluate statistical errors in DNS data of plane channel flows publication-title: J Nonparametr Stat – year: 2016 ident: bib0045 article-title: Machine learning-augmented predictive modeling of turbulent separated flows over airfoils – start-page: 203 year: 2011 end-page: 209 ident: bib0024 article-title: Direct numerical simulations of converging-diverging channel flow publication-title: Progress in wall turbulence: understanding and modeling – year: 2013 ident: bib0050 article-title: Application of supervised learning to quantify uncertainties in turbulence and combustion modeling publication-title: 51st AIAA ASM including the new horizons forum and aerospace exposition – year: 2019 ident: bib0020 article-title: Tensor basis random forest github repository – volume: 313 start-page: 941 year: 2016 end-page: 965 ident: bib0057 article-title: A random matrix approach for quantifying model-Form uncertainties in turbulence modeling publication-title: Comput Methods Appl Mech Eng – year: 2015 ident: bib0021 article-title: Adam: a method for stochastic optimization publication-title: Proceedings of the 3rd international conference on learning representations (ICLR) – start-page: 91 year: 1996 end-page: 100 ident: bib0027 article-title: Low-Reynolds-number eddy-viscosity modelling based on non-linear stress-strain/vorticity relations publication-title: Engineering turbulence modelling and experiments 3 – reference: Wang J.-X., Wu J., Ling J., Iaccarino G., Xiao H.. A comprehensive physics-informed machine learning framework for predictive turbulence modeling; 2017. – start-page: 333 year: 2007 end-page: 343 ident: bib0037 article-title: Predictions of turbulent secondary flows using the v2 - f model – year: 2016 ident: bib0055 article-title: Physics-informed machine learning for predictive turbulence modeling: a priori assessment of prediction confidence – volume: 186 start-page: 123 year: 1895 end-page: 164 ident: bib0042 article-title: On the dynamical theory of incompressible viscous fluids and the determination of the criterion publication-title: Philos Trans R Soc Lond A – volume: 330 start-page: 349 year: 1997 end-page: 374 ident: bib0026 article-title: Direct numerical simulation of turbulent flow over a backward-facing step publication-title: J Fluid Mech – year: 2019 ident: bib0056 article-title: RANS equations with explicit data-driven Reynolds stress closure can be ill-conditioned – year: 2000 ident: bib0040 article-title: Turbulent flows – volume: 25 year: 2013 ident: bib0013 article-title: Modeling of structural uncertainties in Reynolds-averaged Navier-Stokes closures publication-title: Phys Fluids – year: 2008 ident: bib0017 article-title: Functions of matrices: theory and computation – year: 2014 ident: bib0046 article-title: CFD vision 2030 study: a path to revolutionary computational aerosciences publication-title: NASA Technical Report NASA/CR-2014-21878 – year: 2010 ident: bib0052 article-title: Quantification of structural uncertainties in the k - omega turbulence model – volume: 3 start-page: 269 year: 1974 end-page: 289 ident: bib0023 article-title: The numerical computation of turbulent flows publication-title: Comput Methods Appl Mech Eng – volume: 130 start-page: 1 year: 2016 end-page: 7 ident: bib0049 article-title: A methodology to evaluate statistical errors in DNS data of plane channel flows publication-title: Comput Fluids – volume: 46 start-page: 2823 year: 2008 end-page: 2838 ident: bib0054 article-title: Formulation of the k-w turbulence model revisited publication-title: AIAA J – volume: 8 year: 2007 ident: bib0002 article-title: Presentation of anisotropy properties of turbulence, invariants versus eigenvalue approaches publication-title: J Turbul – year: 1993 ident: bib0044 article-title: A realizable Reynolds stress algebraic equation model publication-title: NASA Technical Memorandum 105993 – volume: 807 start-page: 155 year: 2016 end-page: 166 ident: bib0029 article-title: Reynolds averaged turbulence modelling using deep neural networks with embedded invariance publication-title: J Fluid Mech – volume: 27 year: 2015 ident: bib0030 article-title: Evaluation of machine learning algorithms for prediction of regions of high Reynolds averaged Navier Stokes uncertainty publication-title: Phys Fluids – volume: 82 start-page: 161 year: 1977 end-page: 178 ident: bib0032 article-title: The return to isotropy of homogeneous turbulence publication-title: J Fluid Mech – year: 2006 ident: bib0041 article-title: Gaussian processes for machine learning – start-page: 1 year: 2015 end-page: 14 ident: bib0011 article-title: New approaches in turbulence and transition modeling using data-driven techniques publication-title: 53rd AIAA Aerospace sciences meeting – volume: 96 start-page: 1137 year: 2011 end-page: 1149 ident: bib0007 article-title: Bayesian uncertainty analysis with applications to turbulence modeling publication-title: Reliab Eng Syst Saf – volume: 19 start-page: 476 year: 1997 end-page: 491 ident: bib0014 article-title: A comparative analysis of methods for pruning decision trees publication-title: IEEE Trans Pattern Anal Mach Intell – volume: 38 start-page: 433 year: 2009 end-page: 457 ident: bib0005 article-title: Flow over periodic hills - numerical and experimental study in a wide range of Reynolds numbers publication-title: Comput Fluids – reference: . – year: 2019 ident: bib0015 article-title: A Swiss army infinitesimal jackknife publication-title: Proceedings of the 22nd international conference on artificial intelligence and statistics (AISTATS), Naha, Okinawa, Japan – volume: 7 start-page: 983 year: 2006 end-page: 999 ident: bib0033 article-title: Quantile regression forests publication-title: J Mach Learn Res – volume: 325 start-page: 22 year: 2016 end-page: 37 ident: bib0053 article-title: A novel evolutionary algorithm applied to algebraic modifications of the RANS stress-strain relationship publication-title: J Comput Phys – volume: 15 start-page: 1929 year: 2014 end-page: 1958 ident: bib0048 article-title: Dropout: a simple way to prevent neural networks from overfitting publication-title: J Mach Learn Res – volume: 13 start-page: 1 year: 2012 end-page: 28 ident: bib0003 article-title: Geometric properties of particle trajectories in turbulent flows publication-title: J Turbul – year: 2012 ident: bib0035 article-title: Machine learning: a probabilistic perspective – volume: 305 start-page: 758 year: 2016 end-page: 774 ident: bib0036 article-title: A paradigm for data-driven predictive modeling using field inversion and machine learning publication-title: J Comput Phys – year: 2008 ident: bib0016 article-title: The elements of statistical learning – year: 1994 ident: bib0018 article-title: Backward-facing step measurements at low reynolds number publication-title: NASA Technical Memorandum 108807 – volume: 644 start-page: 107 year: 2010 ident: bib0038 article-title: Reynolds number dependence of mean flow structure in square duct turbulence publication-title: J Fluid Mech – volume: 96 start-page: 1137 issue: 9 year: 2011 ident: 10.1016/j.compfluid.2020.104497_bib0007 article-title: Bayesian uncertainty analysis with applications to turbulence modeling publication-title: Reliab Eng Syst Saf doi: 10.1016/j.ress.2010.09.013 – volume: 27 issue: 8 year: 2015 ident: 10.1016/j.compfluid.2020.104497_bib0030 article-title: Evaluation of machine learning algorithms for prediction of regions of high Reynolds averaged Navier Stokes uncertainty publication-title: Phys Fluids doi: 10.1063/1.4927765 – volume: 807 start-page: 155 year: 2016 ident: 10.1016/j.compfluid.2020.104497_bib0029 article-title: Reynolds averaged turbulence modelling using deep neural networks with embedded invariance publication-title: J Fluid Mech doi: 10.1017/jfm.2016.615 – year: 2008 ident: 10.1016/j.compfluid.2020.104497_bib0017 – volume: 4 start-page: 266 issue: 1 year: 2010 ident: 10.1016/j.compfluid.2020.104497_bib0008 article-title: Bart: Bayesian additive regression trees publication-title: Ann Appl Stat doi: 10.1214/09-AOAS285 – year: 1993 ident: 10.1016/j.compfluid.2020.104497_bib0044 article-title: A realizable Reynolds stress algebraic equation model – start-page: 1 year: 2015 ident: 10.1016/j.compfluid.2020.104497_bib0011 article-title: New approaches in turbulence and transition modeling using data-driven techniques – volume: 19 start-page: 476 issue: 5 year: 1997 ident: 10.1016/j.compfluid.2020.104497_bib0014 article-title: A comparative analysis of methods for pruning decision trees publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/34.589207 – volume: 130 start-page: 1 year: 2016 ident: 10.1016/j.compfluid.2020.104497_bib0049 article-title: A methodology to evaluate statistical errors in DNS data of plane channel flows publication-title: Comput Fluids doi: 10.1016/j.compfluid.2016.01.014 – volume: 17 start-page: 108 issue: 2 year: 1996 ident: 10.1016/j.compfluid.2020.104497_bib0009 article-title: Development and application of a cubic eddy-viscosity model of turbulence publication-title: Int J Heat Fluid Flow doi: 10.1016/0142-727X(95)00079-6 – year: 2019 ident: 10.1016/j.compfluid.2020.104497_bib0020 – volume: 325 start-page: 22 year: 2016 ident: 10.1016/j.compfluid.2020.104497_bib0053 article-title: A novel evolutionary algorithm applied to algebraic modifications of the RANS stress-strain relationship publication-title: J Comput Phys doi: 10.1016/j.jcp.2016.08.015 – year: 2006 ident: 10.1016/j.compfluid.2020.104497_bib0041 – year: 2015 ident: 10.1016/j.compfluid.2020.104497_sbref0021 article-title: Adam: a method for stochastic optimization – start-page: 161 year: 1992 ident: 10.1016/j.compfluid.2020.104497_bib0025 – year: 2000 ident: 10.1016/j.compfluid.2020.104497_bib0040 – volume: 15 start-page: 1929 year: 2014 ident: 10.1016/j.compfluid.2020.104497_bib0048 article-title: Dropout: a simple way to prevent neural networks from overfitting publication-title: J Mach Learn Res – year: 1994 ident: 10.1016/j.compfluid.2020.104497_bib0018 article-title: Backward-facing step measurements at low reynolds number – start-page: 91 year: 1996 ident: 10.1016/j.compfluid.2020.104497_bib0027 article-title: Low-Reynolds-number eddy-viscosity modelling based on non-linear stress-strain/vorticity relations – year: 2012 ident: 10.1016/j.compfluid.2020.104497_bib0035 – volume: 330 start-page: 349 year: 1997 ident: 10.1016/j.compfluid.2020.104497_bib0026 article-title: Direct numerical simulation of turbulent flow over a backward-facing step publication-title: J Fluid Mech doi: 10.1017/S0022112096003941 – volume: 227 start-page: 245 issue: December year: 1991 ident: 10.1016/j.compfluid.2020.104497_bib0047 article-title: Modelling the pressure-strain correlation of turbulence: an invariant dynamical systems approach publication-title: J Fluid Mech doi: 10.1017/S0022112091000101 – volume: 17 start-page: 1 year: 2016 ident: 10.1016/j.compfluid.2020.104497_bib0034 article-title: Quantifying uncertainty in random forests via confidence intervals and hypothesis tests publication-title: J Mach Learn Res – year: 2010 ident: 10.1016/j.compfluid.2020.104497_bib0052 – volume: 24 start-page: 993 year: 2012 ident: 10.1016/j.compfluid.2020.104497_bib0043 article-title: A methodology to evaluate statistical errors in DNS data of plane channel flows publication-title: J Nonparametr Stat doi: 10.1080/10485252.2012.715161 – volume: 38 start-page: 433 issue: 2 year: 2009 ident: 10.1016/j.compfluid.2020.104497_bib0005 article-title: Flow over periodic hills - numerical and experimental study in a wide range of Reynolds numbers publication-title: Comput Fluids doi: 10.1016/j.compfluid.2008.05.002 – year: 1973 ident: 10.1016/j.compfluid.2020.104497_bib0004 article-title: An algorithm with guaranteed convergence for finding a zero of a function – year: 2018 ident: 10.1016/j.compfluid.2020.104497_sbref0019 – volume: 305 start-page: 758 year: 2016 ident: 10.1016/j.compfluid.2020.104497_bib0036 article-title: A paradigm for data-driven predictive modeling using field inversion and machine learning publication-title: J Comput Phys doi: 10.1016/j.jcp.2015.11.012 – year: 2016 ident: 10.1016/j.compfluid.2020.104497_bib0045 – volume: 2 start-page: 514 year: 2014 ident: 10.1016/j.compfluid.2020.104497_bib0006 article-title: Big data deep learning: challenges and perspectives publication-title: IEEE Access doi: 10.1109/ACCESS.2014.2325029 – volume: 8 issue: 32 year: 2007 ident: 10.1016/j.compfluid.2020.104497_bib0002 article-title: Presentation of anisotropy properties of turbulence, invariants versus eigenvalue approaches publication-title: J Turbul – volume: 3 start-page: 269 issue: 2 year: 1974 ident: 10.1016/j.compfluid.2020.104497_bib0023 article-title: The numerical computation of turbulent flows publication-title: Comput Methods Appl Mech Eng doi: 10.1016/0045-7825(74)90029-2 – volume: 7 start-page: 983 year: 2006 ident: 10.1016/j.compfluid.2020.104497_bib0033 article-title: Quantile regression forests publication-title: J Mach Learn Res – year: 2018 ident: 10.1016/j.compfluid.2020.104497_bib0001 article-title: Machine-learnt turbulence closures for lpt’s with unsteady inflow conditions – year: 2019 ident: 10.1016/j.compfluid.2020.104497_sbref0055 – year: 2014 ident: 10.1016/j.compfluid.2020.104497_bib0046 article-title: CFD vision 2030 study: a path to revolutionary computational aerosciences – volume: 18 start-page: 123 year: 1979 ident: 10.1016/j.compfluid.2020.104497_bib0031 article-title: Computational modeling of turbulent flows publication-title: Adv Appl Mech doi: 10.1016/S0065-2156(08)70266-7 – volume: 51 start-page: 1 year: 2019 ident: 10.1016/j.compfluid.2020.104497_bib0010 article-title: Turbulence modeling in the age of data publication-title: Annu Rev Fluid Mech doi: 10.1146/annurev-fluid-010518-040547 – volume: 25 issue: 11 year: 2013 ident: 10.1016/j.compfluid.2020.104497_bib0013 article-title: Modeling of structural uncertainties in Reynolds-averaged Navier-Stokes closures publication-title: Phys Fluids – volume: 13 start-page: 1 year: 2012 ident: 10.1016/j.compfluid.2020.104497_bib0003 article-title: Geometric properties of particle trajectories in turbulent flows publication-title: J Turbul – ident: 10.1016/j.compfluid.2020.104497_bib0051 doi: 10.2172/1562229 – volume: 46 start-page: 2823 issue: 11 year: 2008 ident: 10.1016/j.compfluid.2020.104497_bib0054 article-title: Formulation of the k-w turbulence model revisited publication-title: AIAA J doi: 10.2514/1.36541 – volume: 193 start-page: 357 year: 2004 ident: 10.1016/j.compfluid.2020.104497_bib0022 article-title: Jacobian-free Newton–Krylov methods: a survey of approaches and applications publication-title: J Comput Phys doi: 10.1016/j.jcp.2003.08.010 – year: 2008 ident: 10.1016/j.compfluid.2020.104497_bib0016 – year: 2019 ident: 10.1016/j.compfluid.2020.104497_bib0015 article-title: A Swiss army infinitesimal jackknife – start-page: 333 year: 2007 ident: 10.1016/j.compfluid.2020.104497_bib0037 – volume: 72 start-page: 331 issue: 2 year: 1975 ident: 10.1016/j.compfluid.2020.104497_bib0039 article-title: A more general effective-viscosity hypothesis publication-title: J Fluid Mech doi: 10.1017/S0022112075003382 – volume: 82 start-page: 161 issue: 1 year: 1977 ident: 10.1016/j.compfluid.2020.104497_bib0032 article-title: The return to isotropy of homogeneous turbulence publication-title: J Fluid Mech doi: 10.1017/S0022112077000585 – volume: 644 start-page: 107 year: 2010 ident: 10.1016/j.compfluid.2020.104497_bib0038 article-title: Reynolds number dependence of mean flow structure in square duct turbulence publication-title: J Fluid Mech doi: 10.1017/S0022112009992242 – start-page: 203 year: 2011 ident: 10.1016/j.compfluid.2020.104497_bib0024 article-title: Direct numerical simulations of converging-diverging channel flow doi: 10.1007/978-90-481-9603-6_21 – year: 2013 ident: 10.1016/j.compfluid.2020.104497_bib0050 article-title: Application of supervised learning to quantify uncertainties in turbulence and combustion modeling – year: 2016 ident: 10.1016/j.compfluid.2020.104497_sbref0054 – volume: 186 start-page: 123 year: 1895 ident: 10.1016/j.compfluid.2020.104497_bib0042 article-title: On the dynamical theory of incompressible viscous fluids and the determination of the criterion publication-title: Philos Trans R Soc Lond A doi: 10.1098/rsta.1895.0004 – volume: 275 start-page: 65 issue: October year: 2014 ident: 10.1016/j.compfluid.2020.104497_bib0012 article-title: Predictive RANS simulations via Bayesian model-scenario averaging publication-title: J Comput Phys doi: 10.1016/j.jcp.2014.06.052 – volume: 313 start-page: 941 year: 2016 ident: 10.1016/j.compfluid.2020.104497_bib0057 article-title: A random matrix approach for quantifying model-Form uncertainties in turbulence modeling publication-title: Comput Methods Appl Mech Eng doi: 10.1016/j.cma.2016.10.025 – volume: 318 start-page: 22 year: 2016 ident: 10.1016/j.compfluid.2020.104497_bib0028 article-title: Machine learning strategies for systems with invariance properties publication-title: J Comput Phys doi: 10.1016/j.jcp.2016.05.003 |
SSID | ssj0004324 |
Score | 2.5618606 |
Snippet | •A random forest predicting the Reynolds stress in turbulent flows is presented.•Invariance of predictions is achieved by making use of a tensor basis.•The... A novel machine learning algorithm is presented, serving as a data-driven turbulence modeling tool for Reynolds Averaged Navier-Stokes (RANS) simulations. This... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 104497 |
SubjectTerms | Algorithms Anisotropy Closures Computational fluid dynamics Computer simulation Invariance Machine learning Mathematical analysis Modelling Neural networks Non-linear eddy-viscosity closures Random forests Reynolds anisotropy tensor Reynolds averaged Navier-Stokes method Reynolds stress Tensors Turbulence modelling Turbulence models |
Title | Data-driven modelling of the Reynolds stress tensor using random forests with invariance |
URI | https://dx.doi.org/10.1016/j.compfluid.2020.104497 https://www.proquest.com/docview/2437187543 |
Volume | 202 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PT8IwFG4QLnow_owokh68TtjawuqNoAQ1cjCScGvatRgMbgSGiRf_dt9jG4ox8eBxW7otr6_vfa9973uEXDAjQgeOwJPMRB5nJvC04AyMIW85LiNQKyxOfhi0-kN-NxKjEukWtTCYVpnb_symr6x1fqeRS7Mxm0ywxpcL0C48SkPSGojbKwGTLVEmlc7tfX_wVR7JgoyMmSM7I2tupHlh5vZ4upwga2iwOvLkSAD1u5P6Ya5XPqi3R3Zz8Eg72f_tk5KLD8jON0rBQzK61qn27ByNGF21ucF6c5qMKSA9-uje42RqFzQrEaGYvp7MKSa_P1PwWjZ5pYBi4dMLiju0dBK_QTCNmnFEhr2bp27fy7sneBFgntQLHEIHaUWbWSa0i0ItLeeONU2TSS7ArwtrAA3AIw4wzjJpmG-c4FHoTGTZMSnHSexOCB0jC1pb-rxtkD2f6SCA1TrWWrow8LWoklYhLhXl1OLY4WKqihyyF7WWs0I5q0zOVdJcD5xl7Bp_D7kq5kNtKIoCH_D34FoxgypfqwuFlIw-hG2cnf7n3WdkG6-yk6YaKafzpTsHwJKaOtm6_PDruVp-AsuN6tI |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELaqMgAD4ikKBTywhqax3SRsqIAKtB1QK3Wz7NhFRSWp-kBi4bdzl0ehCKkDayIn0fl89zn33WdCLpkWgYVE4IRMRw5n2nOU4AyCIW9YHkbgVtic3Ok2Wn3-OBCDEmkWvTBIq8xjfxbT02idX6nl1qxNRiPs8eUCvAtLaShaA_v2DS6Yj7y-q89vngdKzmVlZtRmZO4KyQt528PxYoSaoV5a8OQo__R3ivoVrNMMdL9LdnLoSG-yr9sjJRvvk-0fgoIHZHCr5soxUwxhND3kBrvNaTKkgPPos_2Ik7GZ0axBhCJ5PZlSpL6_UMhZJnmjgGHh1TOK_2fpKH6HrTT6xSHp39_1mi0nPzvBiQDxzB3PInAIjfCZYULZKFCh4dwyV7ss5AKyujAasADc4gDiDAs1q2sreBRYHRl2RMpxEttjQoeogeaHde5r1M5nyvNgrQ6VCm3g1ZWokEZhLhnlwuJ4vsVYFgyyV7m0s0Q7y8zOFeIuB04ybY31Q66L-ZArbiIhA6wfXC1mUOYrdSZRkLEOmzbOTv7z7Auy2ep12rL90H06JVt4J6s5VUl5Pl3YM4Auc32euuYXyP_rnQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Data-driven+modelling+of+the+Reynolds+stress+tensor+using+random+forests+with+invariance&rft.jtitle=Computers+%26+fluids&rft.au=Kaandorp%2C+Mikael+L.A.&rft.au=Dwight%2C+Richard+P.&rft.date=2020-04-30&rft.issn=0045-7930&rft.volume=202&rft.spage=104497&rft_id=info:doi/10.1016%2Fj.compfluid.2020.104497&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_compfluid_2020_104497 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0045-7930&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0045-7930&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0045-7930&client=summon |