Effect of precursor concentration on size evolution of iron oxide nanoparticles

Thermal decomposition is a promising route for the synthesis of magnetic nanoparticles. The simplicity of the synthesis method is counterbalanced by the complex chemistry of the system such as precursor decomposition and surfactant-reducing agent interactions. Control over nanoparticle size is achie...

Full description

Saved in:
Bibliographic Details
Published inCrystEngComm Vol. 19; no. 44; pp. 6694 - 672
Main Authors Sharifi Dehsari, Hamed, Halda Ribeiro, Anielen, Ersöz, Bora, Tremel, Wolfgang, Jakob, Gerhard, Asadi, Kamal
Format Journal Article
LanguageEnglish
Published 2017
Online AccessGet full text

Cover

Loading…
Abstract Thermal decomposition is a promising route for the synthesis of magnetic nanoparticles. The simplicity of the synthesis method is counterbalanced by the complex chemistry of the system such as precursor decomposition and surfactant-reducing agent interactions. Control over nanoparticle size is achieved by adjusting the reaction parameters, namely, the precursor concentration. The results, however, are conflicting as both an increase and a decrease in nanoparticle size, as a function of increasing concentration, have been reported. Here, we address the issue of size-controlled synthesis via the precursor concentration. We synthesized iron oxide nanoparticles with sizes from 6 nm to 24 nm with narrow size distributions. We show that the size does not monotonically increase with increasing precursor concentration. After an initial increase, the size reaches a maximum and then shows a decrease with increasing precursor concentration. We argue that the observation of two different size regimes is closely related to the critical role of the amount of surfactant. We confirm the effect of surfactant amount on nucleation and growth and explain the observed trend. Furthermore, we show that the nanoparticles show size-dependent but superior superparamagnetic properties at room temperature. Changing the precursor concentration to tune the iron-oxide nanoparticle size alters the surfactant/precursor ratio and leads to the observation of two size regimes.
AbstractList Thermal decomposition is a promising route for the synthesis of magnetic nanoparticles. The simplicity of the synthesis method is counterbalanced by the complex chemistry of the system such as precursor decomposition and surfactant-reducing agent interactions. Control over nanoparticle size is achieved by adjusting the reaction parameters, namely, the precursor concentration. The results, however, are conflicting as both an increase and a decrease in nanoparticle size, as a function of increasing concentration, have been reported. Here, we address the issue of size-controlled synthesis via the precursor concentration. We synthesized iron oxide nanoparticles with sizes from 6 nm to 24 nm with narrow size distributions. We show that the size does not monotonically increase with increasing precursor concentration. After an initial increase, the size reaches a maximum and then shows a decrease with increasing precursor concentration. We argue that the observation of two different size regimes is closely related to the critical role of the amount of surfactant. We confirm the effect of surfactant amount on nucleation and growth and explain the observed trend. Furthermore, we show that the nanoparticles show size-dependent but superior superparamagnetic properties at room temperature. Changing the precursor concentration to tune the iron-oxide nanoparticle size alters the surfactant/precursor ratio and leads to the observation of two size regimes.
Thermal decomposition is a promising route for the synthesis of magnetic nanoparticles. The simplicity of the synthesis method is counterbalanced by the complex chemistry of the system such as precursor decomposition and surfactant–reducing agent interactions. Control over nanoparticle size is achieved by adjusting the reaction parameters, namely, the precursor concentration. The results, however, are conflicting as both an increase and a decrease in nanoparticle size, as a function of increasing concentration, have been reported. Here, we address the issue of size-controlled synthesis via the precursor concentration. We synthesized iron oxide nanoparticles with sizes from 6 nm to 24 nm with narrow size distributions. We show that the size does not monotonically increase with increasing precursor concentration. After an initial increase, the size reaches a maximum and then shows a decrease with increasing precursor concentration. We argue that the observation of two different size regimes is closely related to the critical role of the amount of surfactant. We confirm the effect of surfactant amount on nucleation and growth and explain the observed trend. Furthermore, we show that the nanoparticles show size-dependent but superior superparamagnetic properties at room temperature.
Author Tremel, Wolfgang
Jakob, Gerhard
Halda Ribeiro, Anielen
Ersöz, Bora
Sharifi Dehsari, Hamed
Asadi, Kamal
AuthorAffiliation Institute of Physics
Max Planck Institute for Polymer Research
Johannes Gutenberg University, Mainz
Johannes Gutenberg-University Mainz
Institute of Inorganic Chemistry and Analytical Chemistry
AuthorAffiliation_xml – sequence: 0
  name: Johannes Gutenberg-University Mainz
– sequence: 0
  name: Max Planck Institute for Polymer Research
– sequence: 0
  name: Institute of Inorganic Chemistry and Analytical Chemistry
– sequence: 0
  name: Johannes Gutenberg University, Mainz
– sequence: 0
  name: Institute of Physics
Author_xml – sequence: 1
  givenname: Hamed
  surname: Sharifi Dehsari
  fullname: Sharifi Dehsari, Hamed
– sequence: 2
  givenname: Anielen
  surname: Halda Ribeiro
  fullname: Halda Ribeiro, Anielen
– sequence: 3
  givenname: Bora
  surname: Ersöz
  fullname: Ersöz, Bora
– sequence: 4
  givenname: Wolfgang
  surname: Tremel
  fullname: Tremel, Wolfgang
– sequence: 5
  givenname: Gerhard
  surname: Jakob
  fullname: Jakob, Gerhard
– sequence: 6
  givenname: Kamal
  surname: Asadi
  fullname: Asadi, Kamal
BookMark eNptUMFKAzEUDKJgW714F3IWVpN9u9nNUZZWhUIvel6yry8QWZOSbEX9eretqIjwYB7DzMDMlB374ImxCymupQB9gxWSkIVQ9ohNZKFUVguA41__KZum9CxGkZRiwlZzawkHHizfRMJtTCFyDB7JD9EMLng-XnIfxOk19NsDY7mLO3xza-Le-LAxcXDYUzpjJ9b0ic6_cMaeFvPH5j5bru4emttlhqDzIcs7rGqQKi8tKKkqrfJ1WXZaU1ebopRYQQ0Gyw5AgzVU1LYzuhPF2kilhYIZuzrkYgwpRbLtJroXE99bKdrdFG1TNfP9FItRLP6I0Q37cmNH1_9vuTxYYsLv6J914RN19W1I
CitedBy_id crossref_primary_10_1021_acs_langmuir_4c02495
crossref_primary_10_1007_s10904_024_03316_9
crossref_primary_10_1016_j_heliyon_2022_e09964
crossref_primary_10_1002_er_5175
crossref_primary_10_1007_s42161_024_01660_w
crossref_primary_10_1007_s13399_024_06406_3
crossref_primary_10_1007_s13346_023_01315_w
crossref_primary_10_1016_j_jallcom_2020_156940
crossref_primary_10_1021_acs_chemmater_2c00708
crossref_primary_10_1039_C9RA09773B
crossref_primary_10_1016_j_carbon_2025_120077
crossref_primary_10_1016_j_heliyon_2023_e18718
crossref_primary_10_1021_acsnano_2c09769
crossref_primary_10_1038_s41427_025_00587_7
crossref_primary_10_4150_KPMI_2023_30_4_297
crossref_primary_10_1007_s11837_024_06423_7
crossref_primary_10_1002_slct_202002916
crossref_primary_10_1021_acsomega_4c02822
crossref_primary_10_1002_eem2_12857
crossref_primary_10_1016_j_desal_2022_116235
crossref_primary_10_1021_acs_est_3c00555
crossref_primary_10_1166_sam_2021_4019
crossref_primary_10_1007_s10854_023_11730_x
crossref_primary_10_1016_j_jmmm_2022_170033
crossref_primary_10_1016_j_molstruc_2020_129497
crossref_primary_10_1039_D0NR09055G
crossref_primary_10_3390_w14152301
crossref_primary_10_1016_j_jallcom_2020_155815
crossref_primary_10_1021_acsapm_3c02684
crossref_primary_10_2174_2666001601666211110093947
crossref_primary_10_1246_cl_180632
crossref_primary_10_1016_j_bioorg_2024_107513
crossref_primary_10_3390_nano11030652
crossref_primary_10_1021_acs_inorgchem_1c03938
crossref_primary_10_1016_j_jare_2021_07_003
crossref_primary_10_1016_j_bej_2022_108694
crossref_primary_10_1007_s10404_020_02410_x
crossref_primary_10_1016_j_apsusc_2019_02_234
crossref_primary_10_1016_j_colcom_2020_100276
crossref_primary_10_1021_acs_jpcc_8b06927
crossref_primary_10_1016_j_onano_2022_100096
crossref_primary_10_1002_app_52525
crossref_primary_10_1016_j_ceramint_2020_07_155
crossref_primary_10_1080_24701556_2022_2081189
crossref_primary_10_1016_j_jddst_2025_106750
crossref_primary_10_1021_acs_energyfuels_2c03230
crossref_primary_10_1016_j_onano_2022_100106
crossref_primary_10_1002_crat_202400220
crossref_primary_10_1016_j_apsusc_2025_162733
crossref_primary_10_1021_acs_jpcc_8b09276
crossref_primary_10_1039_D4RA01989J
crossref_primary_10_3390_applnano5020006
crossref_primary_10_1039_C9TA00178F
crossref_primary_10_1016_j_plana_2024_100120
crossref_primary_10_1016_j_rinp_2018_11_068
crossref_primary_10_3390_polym16010050
crossref_primary_10_1039_D2CE01588A
crossref_primary_10_1007_s10853_021_06450_8
crossref_primary_10_1016_j_jmmm_2022_169468
crossref_primary_10_1007_s10876_020_01865_w
crossref_primary_10_1016_j_jcis_2020_11_057
crossref_primary_10_1016_j_microc_2024_110280
crossref_primary_10_1016_j_materresbull_2019_04_029
crossref_primary_10_1016_j_hydromet_2022_105863
crossref_primary_10_1039_D4NR00581C
crossref_primary_10_1016_j_cej_2023_144542
crossref_primary_10_1016_j_biotno_2024_12_001
crossref_primary_10_1021_acsanm_0c01949
crossref_primary_10_1049_mna2_12085
crossref_primary_10_1038_s41598_023_31294_4
crossref_primary_10_1016_j_inoche_2021_108810
crossref_primary_10_1021_acs_langmuir_0c02131
crossref_primary_10_1002_adfm_202423516
crossref_primary_10_1002_slct_202100157
crossref_primary_10_1016_j_apsusc_2020_146313
crossref_primary_10_1021_acs_energyfuels_4c01323
crossref_primary_10_1021_acs_inorgchem_0c01180
crossref_primary_10_1039_D0NA01006E
crossref_primary_10_1039_D0CS00260G
crossref_primary_10_1039_D0NJ03683H
crossref_primary_10_1088_2399_1984_ac7832
crossref_primary_10_1039_D1DT02953C
crossref_primary_10_1007_s11706_020_0531_7
crossref_primary_10_1016_j_jece_2022_108960
crossref_primary_10_2174_1381612827666210929114621
crossref_primary_10_1039_C9CE00112C
crossref_primary_10_1080_03067319_2022_2118594
crossref_primary_10_1080_01932691_2023_2176868
crossref_primary_10_1016_j_jallcom_2019_153143
crossref_primary_10_1021_acsanm_8b01443
crossref_primary_10_1021_acsanm_8b00033
crossref_primary_10_1039_D3TC00489A
crossref_primary_10_3390_ijms22030989
Cites_doi 10.1039/C6CE02421A
10.1039/b311610g
10.1016/j.jmmm.2004.04.022
10.1002/3527602097
10.1039/C2CE25957E
10.1201/b18948
10.1063/1.364659
10.1021/cm960157j
10.1016/S0304-8853(97)01057-3
10.1021/cr300068p
10.1021/ja0380852
10.1016/j.jallcom.2011.05.115
10.1080/15533174.2012.680126
10.1021/ie3002974
10.1021/ed032p228.2
10.1016/0304-8853(83)90407-9
10.1007/s11051-012-0873-x
10.1088/0957-4484/16/9/009
10.1002/adfm.200400187
10.1088/0957-4484/24/5/055705
10.1007/s12274-016-1131-9
10.1021/ja01167a001
10.1039/C5NR01651G
10.1557/JMR.2004.0157
10.1021/cm960077f
10.1016/j.vibspec.2006.09.008
10.1088/1361-6528/aa5ab0
10.1039/C5RA27649G
10.1016/j.jcis.2005.04.099
10.1088/0957-4484/17/11/010
10.1002/adma.200703183
10.1088/0022-3727/40/19/001
10.1021/jp803452j
10.1021/nl1022749
10.1021/cm060805r
10.1039/c2ce25109d
10.1021/acs.chemrev.5b00589
10.1103/PhysRevLett.72.3278
10.1021/la8018088
10.1021/jp411481p
10.1038/nmat1251
10.1021/acsnano.6b05630
10.1039/c2cy20026k
10.1080/1040841X.2016.1267708
10.1021/cm0009470
10.1021/ja045911d
10.1021/la903767e
10.3390/ijms140815977
10.1039/c0cc05862a
10.1016/j.addr.2010.05.006
10.1039/C0NR00521E
10.1039/C5CP03395K
10.1002/1521-3773(20020703)41:13<2368::AID-ANIE2368>3.0.CO;2-G
10.1021/acs.chemrev.5b00687
10.1039/b815548h
10.1016/j.apsusc.2009.11.079
10.1021/nl500904a
10.1021/acsnano.7b00609
10.1016/j.jcis.2006.10.023
10.1021/cm000787s
10.1039/C4NR00646A
ContentType Journal Article
DBID AAYXX
CITATION
DOI 10.1039/c7ce01406f
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1466-8033
EndPage 672
ExternalDocumentID 10_1039_C7CE01406F
c7ce01406f
GroupedDBID -JG
0-7
0R~
29F
5GY
6J9
705
70~
7~J
AAEMU
AAIWI
AAJAE
AAMEH
AANOJ
AAWGC
AAXHV
AAXPP
ABASK
ABDVN
ABEMK
ABJNI
ABPDG
ABRYZ
ABXOH
ACGFO
ACGFS
ACLDK
ADMRA
ADSRN
AEFDR
AENEX
AENGV
AESAV
AETIL
AFLYV
AFOGI
AFVBQ
AGEGJ
AGKEF
AGRSR
AGSTE
AHGCF
ALMA_UNASSIGNED_HOLDINGS
ANBJS
ANUXI
APEMP
ASKNT
AUDPV
AZFZN
BLAPV
BSQNT
C6K
CS3
E3Z
EBS
ECGLT
EE0
EF-
EJD
GGIMP
GNO
H13
HZ~
H~N
IDZ
J3I
N9A
O9-
OK1
P2P
R7B
RAOCF
RCNCU
RNS
RPMJG
RRA
RRC
RSCEA
SKA
SLH
VH6
0UZ
1TJ
4.4
71~
AAYXX
ACHDF
ACRPL
ADNMO
AFRZK
AGQPQ
AHGXI
AKMSF
ALSGL
ANLMG
ASPBG
AVWKF
BBWZM
CAG
CITATION
COF
EEHRC
FEDTE
HVGLF
IDY
J3G
J3H
L-8
M4U
NDZJH
R56
RCLXC
ROL
ID FETCH-LOGICAL-c392t-2bc7831625f36167962d55b99eb8a451c7383ac5b3393fae48fba9b04da169063
ISSN 1466-8033
IngestDate Tue Jul 01 02:20:54 EDT 2025
Thu Apr 24 22:58:42 EDT 2025
Tue Dec 17 20:59:19 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 44
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c392t-2bc7831625f36167962d55b99eb8a451c7383ac5b3393fae48fba9b04da169063
Notes Electronic supplementary information (ESI) available. See DOI
10.1039/c7ce01406f
ORCID 0000-0001-9466-0840
0000-0002-4536-994X
0000-0003-3179-0589
0000-0003-1051-2889
0000-0003-0447-4337
OpenAccessLink https://pubs.rsc.org/en/content/articlepdf/2017/ce/c7ce01406f
PageCount 9
ParticipantIDs crossref_primary_10_1039_C7CE01406F
rsc_primary_c7ce01406f
crossref_citationtrail_10_1039_C7CE01406F
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-00-00
PublicationDateYYYYMMDD 2017-01-01
PublicationDate_xml – year: 2017
  text: 2017-00-00
PublicationDecade 2010
PublicationTitle CrystEngComm
PublicationYear 2017
References Yang (C7CE01406F-(cit45)/*[position()=1]) 2010; 256
Yang (C7CE01406F-(cit1)/*[position()=1]) 2011; 47
Frey (C7CE01406F-(cit3)/*[position()=1]) 2009; 38
Ulbrich (C7CE01406F-(cit12)/*[position()=1]) 2016; 116
Demortiere (C7CE01406F-(cit31)/*[position()=1]) 2011; 3
William (C7CE01406F-(cit49)/*[position()=1]) 2004
LaMer (C7CE01406F-(cit33)/*[position()=1]) 1950; 72
O'grady (C7CE01406F-(cit55)/*[position()=1]) 1983; 39
Huang (C7CE01406F-(cit25)/*[position()=1]) 2008; 112
Roca (C7CE01406F-(cit56)/*[position()=1]) 2006; 17
Miguel-Sancho (C7CE01406F-(cit35)/*[position()=1]) 2012; 51
López-López (C7CE01406F-(cit7)/*[position()=1]) 2005; 291
Vargas (C7CE01406F-(cit52)/*[position()=1]) 2005; 16
Eom (C7CE01406F-(cit43)/*[position()=1]) 2016; 6
Tang (C7CE01406F-(cit21)/*[position()=1]) 2004; 282
Zhang (C7CE01406F-(cit13)/*[position()=1]) 2017; 11
Caruntu (C7CE01406F-(cit58)/*[position()=1]) 2007; 40
Klokkenburg (C7CE01406F-(cit44)/*[position()=1]) 2007; 43
Belaïd (C7CE01406F-(cit41)/*[position()=1]) 2013; 24
Teng (C7CE01406F-(cit42)/*[position()=1]) 2004; 14
Sahoo (C7CE01406F-(cit5)/*[position()=1]) 2012; 2
Moya (C7CE01406F-(cit46)/*[position()=1]) 2015; 17
Mahmoudi (C7CE01406F-(cit14)/*[position()=1]) 2011; 63
Daou (C7CE01406F-(cit18)/*[position()=1]) 2006; 18
Zhu (C7CE01406F-(cit50)/*[position()=1]) 2011; 509
Yu (C7CE01406F-(cit53)/*[position()=1]) 2002; 41
Leslie-Pelecky (C7CE01406F-(cit54)/*[position()=1]) 1996; 8
De (C7CE01406F-(cit8)/*[position()=1]) 2008; 20
Baaziz (C7CE01406F-(cit28)/*[position()=1]) 2014; 118
Hufschmid (C7CE01406F-(cit26)/*[position()=1]) 2015; 7
Liu (C7CE01406F-(cit62)/*[position()=1]) 2001; 13
Dai (C7CE01406F-(cit16)/*[position()=1]) 2010; 10
Chen (C7CE01406F-(cit51)/*[position()=1]) 2012; 42
Cornell (C7CE01406F-(cit40)/*[position()=1]) 2003
Cai (C7CE01406F-(cit19)/*[position()=1]) 2007; 305
Mou (C7CE01406F-(cit6)/*[position()=1]) 2012; 14
Park (C7CE01406F-(cit23)/*[position()=1]) 2004; 3
Wu (C7CE01406F-(cit4)/*[position()=1]) 2016; 116
Li (C7CE01406F-(cit36)/*[position()=1]) 2001; 13
Yin (C7CE01406F-(cit48)/*[position()=1]) 2004; 19
Cabrera (C7CE01406F-(cit34)/*[position()=1]) 2012; 14
Effenberger (C7CE01406F-(cit32)/*[position()=1]) 2017; 28
Jiles (C7CE01406F-(cit57)/*[position()=1]) 2015
Guardia (C7CE01406F-(cit29)/*[position()=1]) 2009; 26
Wu (C7CE01406F-(cit15)/*[position()=1]) 2014; 14
Zheng (C7CE01406F-(cit61)/*[position()=1]) 1998; 183
Sun (C7CE01406F-(cit22)/*[position()=1]) 2004; 126
Reddy (C7CE01406F-(cit9)/*[position()=1]) 2012; 112
Venkatesan (C7CE01406F-(cit38)/*[position()=1]) 2015; 10
Dinali (C7CE01406F-(cit10)/*[position()=1]) 2017; 43
Unni (C7CE01406F-(cit24)/*[position()=1]) 2017; 11
Meledandri (C7CE01406F-(cit30)/*[position()=1]) 2008; 24
Mohapatra (C7CE01406F-(cit39)/*[position()=1]) 2013; 15
Schwaminger (C7CE01406F-(cit60)/*[position()=1]) 2017; 19
Kodama (C7CE01406F-(cit59)/*[position()=1]) 1997; 81
Lee (C7CE01406F-(cit20)/*[position()=1]) 2005; 15
Kang (C7CE01406F-(cit17)/*[position()=1]) 1996; 8
Assa (C7CE01406F-(cit11)/*[position()=1]) 2016; 9
Zeng (C7CE01406F-(cit27)/*[position()=1]) 2004; 126
Arrhenius (C7CE01406F-(cit37)/*[position()=1]) 1955; 32
Mørup (C7CE01406F-(cit63)/*[position()=1]) 1994; 72
Castellanos-Rubio (C7CE01406F-(cit47)/*[position()=1]) 2014; 6
Kolhatkar (C7CE01406F-(cit2)/*[position()=1]) 2013; 14
References_xml – issn: 2015
  publication-title: Introduction to magnetism and magnetic materials
  doi: Jiles
– issn: 2003
  publication-title: The iron oxides: structure, properties, reactions, occurrences and uses
  doi: Cornell Schwertmann
– volume: 19
  start-page: 246
  year: 2017
  ident: C7CE01406F-(cit60)/*[position()=1]
  publication-title: CrystEngComm
  doi: 10.1039/C6CE02421A
– volume: 14
  start-page: 774
  year: 2004
  ident: C7CE01406F-(cit42)/*[position()=1]
  publication-title: J. Mater. Chem.
  doi: 10.1039/b311610g
– volume: 282
  start-page: 92
  year: 2004
  ident: C7CE01406F-(cit21)/*[position()=1]
  publication-title: J. Magn. Magn. Mater.
  doi: 10.1016/j.jmmm.2004.04.022
– volume-title: The iron oxides: structure, properties, reactions, occurrences and uses
  year: 2003
  ident: C7CE01406F-(cit40)/*[position()=1]
  doi: 10.1002/3527602097
– volume: 15
  start-page: 524
  year: 2013
  ident: C7CE01406F-(cit39)/*[position()=1]
  publication-title: CrystEngComm
  doi: 10.1039/C2CE25957E
– volume-title: Introduction to magnetism and magnetic materials
  year: 2015
  ident: C7CE01406F-(cit57)/*[position()=1]
  doi: 10.1201/b18948
– volume: 81
  start-page: 5552
  year: 1997
  ident: C7CE01406F-(cit59)/*[position()=1]
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.364659
– volume: 8
  start-page: 2209
  year: 1996
  ident: C7CE01406F-(cit17)/*[position()=1]
  publication-title: Chem. Mater.
  doi: 10.1021/cm960157j
– volume: 183
  start-page: 152
  year: 1998
  ident: C7CE01406F-(cit61)/*[position()=1]
  publication-title: J. Magn. Magn. Mater.
  doi: 10.1016/S0304-8853(97)01057-3
– volume: 112
  start-page: 5818
  year: 2012
  ident: C7CE01406F-(cit9)/*[position()=1]
  publication-title: Chem. Rev.
  doi: 10.1021/cr300068p
– volume: 126
  start-page: 273
  year: 2004
  ident: C7CE01406F-(cit22)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja0380852
– volume: 509
  start-page: 8549
  year: 2011
  ident: C7CE01406F-(cit50)/*[position()=1]
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2011.05.115
– volume: 42
  start-page: 1040
  year: 2012
  ident: C7CE01406F-(cit51)/*[position()=1]
  publication-title: Synth. React. Inorg., Met.-Org., Nano-Met. Chem.
  doi: 10.1080/15533174.2012.680126
– volume: 51
  start-page: 8348
  year: 2012
  ident: C7CE01406F-(cit35)/*[position()=1]
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie3002974
– volume: 32
  start-page: 228
  year: 1955
  ident: C7CE01406F-(cit37)/*[position()=1]
  publication-title: J. Chem. Educ.
  doi: 10.1021/ed032p228.2
– volume: 39
  start-page: 91
  year: 1983
  ident: C7CE01406F-(cit55)/*[position()=1]
  publication-title: J. Magn. Magn. Mater.
  doi: 10.1016/0304-8853(83)90407-9
– volume: 14
  start-page: 1
  year: 2012
  ident: C7CE01406F-(cit34)/*[position()=1]
  publication-title: J. Nanopart. Res.
  doi: 10.1007/s11051-012-0873-x
– volume: 16
  start-page: 1474
  year: 2005
  ident: C7CE01406F-(cit52)/*[position()=1]
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/16/9/009
– volume: 15
  start-page: 503
  year: 2005
  ident: C7CE01406F-(cit20)/*[position()=1]
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.200400187
– volume: 24
  start-page: 055705
  year: 2013
  ident: C7CE01406F-(cit41)/*[position()=1]
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/24/5/055705
– volume: 9
  start-page: 2203
  year: 2016
  ident: C7CE01406F-(cit11)/*[position()=1]
  publication-title: Nano Res.
  doi: 10.1007/s12274-016-1131-9
– volume: 72
  start-page: 4847
  year: 1950
  ident: C7CE01406F-(cit33)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja01167a001
– volume: 7
  start-page: 11142
  year: 2015
  ident: C7CE01406F-(cit26)/*[position()=1]
  publication-title: Nanoscale
  doi: 10.1039/C5NR01651G
– volume: 19
  start-page: 1208
  year: 2004
  ident: C7CE01406F-(cit48)/*[position()=1]
  publication-title: J. Mater. Res.
  doi: 10.1557/JMR.2004.0157
– volume: 8
  start-page: 1770
  year: 1996
  ident: C7CE01406F-(cit54)/*[position()=1]
  publication-title: Chem. Mater.
  doi: 10.1021/cm960077f
– volume: 43
  start-page: 243
  year: 2007
  ident: C7CE01406F-(cit44)/*[position()=1]
  publication-title: Vib. Spectrosc.
  doi: 10.1016/j.vibspec.2006.09.008
– volume: 28
  start-page: 115603
  year: 2017
  ident: C7CE01406F-(cit32)/*[position()=1]
  publication-title: Nanotechnology
  doi: 10.1088/1361-6528/aa5ab0
– volume: 6
  start-page: 15861
  year: 2016
  ident: C7CE01406F-(cit43)/*[position()=1]
  publication-title: RSC Adv.
  doi: 10.1039/C5RA27649G
– volume: 291
  start-page: 144
  year: 2005
  ident: C7CE01406F-(cit7)/*[position()=1]
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2005.04.099
– volume: 17
  start-page: 2783
  year: 2006
  ident: C7CE01406F-(cit56)/*[position()=1]
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/17/11/010
– volume: 20
  start-page: 4225
  year: 2008
  ident: C7CE01406F-(cit8)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200703183
– volume: 40
  start-page: 5801
  year: 2007
  ident: C7CE01406F-(cit58)/*[position()=1]
  publication-title: J. Phys. D: Appl. Phys.
  doi: 10.1088/0022-3727/40/19/001
– volume: 112
  start-page: 15684
  year: 2008
  ident: C7CE01406F-(cit25)/*[position()=1]
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp803452j
– volume: 10
  start-page: 3216
  year: 2010
  ident: C7CE01406F-(cit16)/*[position()=1]
  publication-title: Nano Lett.
  doi: 10.1021/nl1022749
– volume: 18
  start-page: 4399
  year: 2006
  ident: C7CE01406F-(cit18)/*[position()=1]
  publication-title: Chem. Mater.
  doi: 10.1021/cm060805r
– volume: 14
  start-page: 5107
  year: 2012
  ident: C7CE01406F-(cit6)/*[position()=1]
  publication-title: CrystEngComm
  doi: 10.1039/c2ce25109d
– volume: 116
  start-page: 5338
  year: 2016
  ident: C7CE01406F-(cit12)/*[position()=1]
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.5b00589
– volume: 72
  start-page: 3278
  year: 1994
  ident: C7CE01406F-(cit63)/*[position()=1]
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.72.3278
– start-page: 2306
  year: 2004
  ident: C7CE01406F-(cit49)/*[position()=1]
  publication-title: Chem. Commun.
– volume: 24
  start-page: 14159
  year: 2008
  ident: C7CE01406F-(cit30)/*[position()=1]
  publication-title: Langmuir
  doi: 10.1021/la8018088
– volume: 118
  start-page: 3795
  year: 2014
  ident: C7CE01406F-(cit28)/*[position()=1]
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp411481p
– volume: 3
  start-page: 891
  year: 2004
  ident: C7CE01406F-(cit23)/*[position()=1]
  publication-title: Nat. Mater.
  doi: 10.1038/nmat1251
– volume: 11
  start-page: 277
  year: 2017
  ident: C7CE01406F-(cit13)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/acsnano.6b05630
– volume: 2
  start-page: 1367
  year: 2012
  ident: C7CE01406F-(cit5)/*[position()=1]
  publication-title: Catal. Sci. Technol.
  doi: 10.1039/c2cy20026k
– volume: 43
  start-page: 493
  year: 2017
  ident: C7CE01406F-(cit10)/*[position()=1]
  publication-title: Crit. Rev. Microbiol.
  doi: 10.1080/1040841X.2016.1267708
– volume: 10
  start-page: 189
  year: 2015
  ident: C7CE01406F-(cit38)/*[position()=1]
  publication-title: Int. J. Nanomed.
– volume: 13
  start-page: 2092
  year: 2001
  ident: C7CE01406F-(cit62)/*[position()=1]
  publication-title: Chem. Mater.
  doi: 10.1021/cm0009470
– volume: 126
  start-page: 11458
  year: 2004
  ident: C7CE01406F-(cit27)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja045911d
– volume: 26
  start-page: 5843
  year: 2009
  ident: C7CE01406F-(cit29)/*[position()=1]
  publication-title: Langmuir
  doi: 10.1021/la903767e
– volume: 14
  start-page: 15977
  year: 2013
  ident: C7CE01406F-(cit2)/*[position()=1]
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms140815977
– volume: 47
  start-page: 5130
  year: 2011
  ident: C7CE01406F-(cit1)/*[position()=1]
  publication-title: Chem. Commun.
  doi: 10.1039/c0cc05862a
– volume: 63
  start-page: 24
  year: 2011
  ident: C7CE01406F-(cit14)/*[position()=1]
  publication-title: Adv. Drug Delivery Rev.
  doi: 10.1016/j.addr.2010.05.006
– volume: 3
  start-page: 225
  year: 2011
  ident: C7CE01406F-(cit31)/*[position()=1]
  publication-title: Nanoscale
  doi: 10.1039/C0NR00521E
– volume: 17
  start-page: 27373
  year: 2015
  ident: C7CE01406F-(cit46)/*[position()=1]
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C5CP03395K
– volume: 41
  start-page: 2368
  year: 2002
  ident: C7CE01406F-(cit53)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/1521-3773(20020703)41:13<2368::AID-ANIE2368>3.0.CO;2-G
– volume: 116
  start-page: 10473
  year: 2016
  ident: C7CE01406F-(cit4)/*[position()=1]
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.5b00687
– volume: 38
  start-page: 2532
  year: 2009
  ident: C7CE01406F-(cit3)/*[position()=1]
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/b815548h
– volume: 256
  start-page: 3093
  year: 2010
  ident: C7CE01406F-(cit45)/*[position()=1]
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2009.11.079
– volume: 14
  start-page: 3395
  year: 2014
  ident: C7CE01406F-(cit15)/*[position()=1]
  publication-title: Nano Lett.
  doi: 10.1021/nl500904a
– volume: 11
  start-page: 2284
  year: 2017
  ident: C7CE01406F-(cit24)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/acsnano.7b00609
– volume: 305
  start-page: 366
  year: 2007
  ident: C7CE01406F-(cit19)/*[position()=1]
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2006.10.023
– volume: 13
  start-page: 1008
  year: 2001
  ident: C7CE01406F-(cit36)/*[position()=1]
  publication-title: Chem. Mater.
  doi: 10.1021/cm000787s
– volume: 6
  start-page: 7542
  year: 2014
  ident: C7CE01406F-(cit47)/*[position()=1]
  publication-title: Nanoscale
  doi: 10.1039/C4NR00646A
SSID ssj0014110
Score 2.4965858
Snippet Thermal decomposition is a promising route for the synthesis of magnetic nanoparticles. The simplicity of the synthesis method is counterbalanced by the...
SourceID crossref
rsc
SourceType Enrichment Source
Index Database
Publisher
StartPage 6694
Title Effect of precursor concentration on size evolution of iron oxide nanoparticles
Volume 19
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swEBdr-rI9jH2VdV8YtpcR3DmWrFiPbUjJxj5gpKxvQZLl1pDaw_bG1r9-d5IiJ6yDbRCcYMsm6GdOd6f7_Y6QV0KnSclUGUuuk5jJxMSCCh5nmUyUQUk72-vww0e-OGPvzrPzoX-nZZf06khf38gr-R9U4RzgiizZf0A2PBROwG_AF46AMBz_CmMvPYxFyy3mzbumxTJyV3DpXMF63FXXZmy--z9iJSJa_P5RFWZcyxqiZl8ct-2oztqfXT-vL5BAErIwlxBYlxXYqMtOOob6Ql55dpS1YutCjj9XylSePWPp60N9SNvhvvwJt0nrk6YNS8ISs5Q2Gf2lWZcX0i-nPhvhaJdHxtlOxlHb2OlaBOMqtl4ixrZMJeeuu7Ffdrnr4PObRU8oCqLqqTYYC_JyWLdCNeFwcY_spxAupCOyfzxfvn0f9pMYeDkbcVoq3gx37Lgje-2m64v1Lpb3yF0fFkTHDon75JapH5A7W2KRD8knh3bUlFFAO9pBO4IPoh0FtHEwoh1ZtKMdtB-Rs9P5craIfTuMWIMT28ep0tOcTiBgLSnH3TOeFlmmhDAqlyyb6CnNqdSZolTQUhqWl0oKlbBC4l4opwdkVDe1eUwiVmRcmxyexSaszFQOdp3qSY6cvAJuOySvN7Oy0l4rHluWrFe2ZoGK1Ww6m9sZPD0kL8PYr04h5cZRBzC5YcAAwJM_XXhKbuML5tJdz8iob7-Z5-AA9uqFR_cX1-FgnQ
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effect+of+precursor+concentration+on+size+evolution+of+iron+oxide+nanoparticles&rft.jtitle=CrystEngComm&rft.au=Sharifi+Dehsari%2C+Hamed&rft.au=Halda+Ribeiro%2C+Anielen&rft.au=Ers%C3%B6z%2C+Bora&rft.au=Tremel%2C+Wolfgang&rft.date=2017&rft.eissn=1466-8033&rft.volume=19&rft.issue=44&rft.spage=6694&rft.epage=672&rft_id=info:doi/10.1039%2Fc7ce01406f&rft.externalDocID=c7ce01406f
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1466-8033&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1466-8033&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1466-8033&client=summon