Learning Discriminative Spatiospectral Features of ERPs for Accurate Brain-Computer Interfaces

Constructing accurate predictive models is at the heart of brain-computer interfaces (BCIs) because these models can ultimately translate brain activities into communication and control commands. The majority of the previous work in BCI use spatial, temporal, or spatiotemporal features of event-rela...

Full description

Saved in:
Bibliographic Details
Published inIEEE journal of biomedical and health informatics Vol. 23; no. 5; pp. 2009 - 2020
Main Authors Abibullaev, Berdakh, Zollanvari, Amin
Format Journal Article
LanguageEnglish
Published United States IEEE 01.09.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN2168-2194
2168-2208
2168-2208
DOI10.1109/JBHI.2018.2883458

Cover

Loading…
More Information
Summary:Constructing accurate predictive models is at the heart of brain-computer interfaces (BCIs) because these models can ultimately translate brain activities into communication and control commands. The majority of the previous work in BCI use spatial, temporal, or spatiotemporal features of event-related potentials (ERPs). In this study, we examined the discriminatory effect of their spatiospectral features to capture the most relevant set of neural activities from electroencephalographic recordings that represent users' mental intent. In this regard, we model ERP waveforms using a sum of sinusoids with unknown amplitudes, frequencies, and phases. The effect of this signal modeling step is to represent high-dimensional ERP waveforms in a substantially lower dimensionality space, which includes their dominant power spectral contents. We found that the most discriminative frequencies for accurate decoding of visual attention modulated ERPs lie in a spectral range less than 6.4 Hz. This was empirically verified by treating dominant frequency contents of ERP waveforms as feature vectors in the state-of-the-art machine learning techniques used herein. The constructed predictive models achieved remarkable performance, which for some subjects was as high as 94% as measured by the area under curve. Using these spectral contents, we further studied the discriminatory effect of each channel and proposed an efficient strategy to choose subject-specific subsets of channels that generally led to classifiers with comparable performance.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:2168-2194
2168-2208
2168-2208
DOI:10.1109/JBHI.2018.2883458