Learning Discriminative Spatiospectral Features of ERPs for Accurate Brain-Computer Interfaces

Constructing accurate predictive models is at the heart of brain-computer interfaces (BCIs) because these models can ultimately translate brain activities into communication and control commands. The majority of the previous work in BCI use spatial, temporal, or spatiotemporal features of event-rela...

Full description

Saved in:
Bibliographic Details
Published inIEEE journal of biomedical and health informatics Vol. 23; no. 5; pp. 2009 - 2020
Main Authors Abibullaev, Berdakh, Zollanvari, Amin
Format Journal Article
LanguageEnglish
Published United States IEEE 01.09.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN2168-2194
2168-2208
2168-2208
DOI10.1109/JBHI.2018.2883458

Cover

Abstract Constructing accurate predictive models is at the heart of brain-computer interfaces (BCIs) because these models can ultimately translate brain activities into communication and control commands. The majority of the previous work in BCI use spatial, temporal, or spatiotemporal features of event-related potentials (ERPs). In this study, we examined the discriminatory effect of their spatiospectral features to capture the most relevant set of neural activities from electroencephalographic recordings that represent users' mental intent. In this regard, we model ERP waveforms using a sum of sinusoids with unknown amplitudes, frequencies, and phases. The effect of this signal modeling step is to represent high-dimensional ERP waveforms in a substantially lower dimensionality space, which includes their dominant power spectral contents. We found that the most discriminative frequencies for accurate decoding of visual attention modulated ERPs lie in a spectral range less than 6.4 Hz. This was empirically verified by treating dominant frequency contents of ERP waveforms as feature vectors in the state-of-the-art machine learning techniques used herein. The constructed predictive models achieved remarkable performance, which for some subjects was as high as 94% as measured by the area under curve. Using these spectral contents, we further studied the discriminatory effect of each channel and proposed an efficient strategy to choose subject-specific subsets of channels that generally led to classifiers with comparable performance.
AbstractList Constructing accurate predictive models is at the heart of brain-computer interfaces (BCIs) because these models can ultimately translate brain activities into communication and control commands. The majority of the previous work in BCI use spatial, temporal, or spatiotemporal features of event-related potentials (ERPs). In this study, we examined the discriminatory effect of their spatiospectral features to capture the most relevant set of neural activities from electroencephalographic recordings that represent users' mental intent. In this regard, we model ERP waveforms using a sum of sinusoids with unknown amplitudes, frequencies, and phases. The effect of this signal modeling step is to represent high-dimensional ERP waveforms in a substantially lower dimensionality space, which includes their dominant power spectral contents. We found that the most discriminative frequencies for accurate decoding of visual attention modulated ERPs lie in a spectral range less than 6.4 Hz. This was empirically verified by treating dominant frequency contents of ERP waveforms as feature vectors in the state-of-the-art machine learning techniques used herein. The constructed predictive models achieved remarkable performance, which for some subjects was as high as 94% as measured by the area under curve. Using these spectral contents, we further studied the discriminatory effect of each channel and proposed an efficient strategy to choose subject-specific subsets of channels that generally led to classifiers with comparable performance.
Constructing accurate predictive models is at the heart of brain-computer interfaces (BCIs) because these models can ultimately translate brain activities into communication and control commands. The majority of the previous work in BCI use spatial, temporal, or spatiotemporal features of event-related potentials (ERPs). In this study, we examined the discriminatory effect of their spatiospectral features to capture the most relevant set of neural activities from electroencephalographic recordings that represent users' mental intent. In this regard, we model ERP waveforms using a sum of sinusoids with unknown amplitudes, frequencies, and phases. The effect of this signal modeling step is to represent high-dimensional ERP waveforms in a substantially lower dimensionality space, which includes their dominant power spectral contents. We found that the most discriminative frequencies for accurate decoding of visual attention modulated ERPs lie in a spectral range less than 6.4 Hz. This was empirically verified by treating dominant frequency contents of ERP waveforms as feature vectors in the state-of-the-art machine learning techniques used herein. The constructed predictive models achieved remarkable performance, which for some subjects was as high as 94% as measured by the area under curve. Using these spectral contents, we further studied the discriminatory effect of each channel and proposed an efficient strategy to choose subject-specific subsets of channels that generally led to classifiers with comparable performance.Constructing accurate predictive models is at the heart of brain-computer interfaces (BCIs) because these models can ultimately translate brain activities into communication and control commands. The majority of the previous work in BCI use spatial, temporal, or spatiotemporal features of event-related potentials (ERPs). In this study, we examined the discriminatory effect of their spatiospectral features to capture the most relevant set of neural activities from electroencephalographic recordings that represent users' mental intent. In this regard, we model ERP waveforms using a sum of sinusoids with unknown amplitudes, frequencies, and phases. The effect of this signal modeling step is to represent high-dimensional ERP waveforms in a substantially lower dimensionality space, which includes their dominant power spectral contents. We found that the most discriminative frequencies for accurate decoding of visual attention modulated ERPs lie in a spectral range less than 6.4 Hz. This was empirically verified by treating dominant frequency contents of ERP waveforms as feature vectors in the state-of-the-art machine learning techniques used herein. The constructed predictive models achieved remarkable performance, which for some subjects was as high as 94% as measured by the area under curve. Using these spectral contents, we further studied the discriminatory effect of each channel and proposed an efficient strategy to choose subject-specific subsets of channels that generally led to classifiers with comparable performance.
Constructing accurate predictive models is at the heart of brain–computer interfaces (BCIs) because these models can ultimately translate brain activities into communication and control commands. The majority of the previous work in BCI use spatial, temporal, or spatiotemporal features of event-related potentials (ERPs). In this study, we examined the discriminatory effect of their spatiospectral features to capture the most relevant set of neural activities from electroencephalographic recordings that represent users’ mental intent. In this regard, we model ERP waveforms using a sum of sinusoids with unknown amplitudes, frequencies, and phases. The effect of this signal modeling step is to represent high-dimensional ERP waveforms in a substantially lower dimensionality space, which includes their dominant power spectral contents. We found that the most discriminative frequencies for accurate decoding of visual attention modulated ERPs lie in a spectral range less than 6.4 Hz. This was empirically verified by treating dominant frequency contents of ERP waveforms as feature vectors in the state-of-the-art machine learning techniques used herein. The constructed predictive models achieved remarkable performance, which for some subjects was as high as 94% as measured by the area under curve. Using these spectral contents, we further studied the discriminatory effect of each channel and proposed an efficient strategy to choose subject-specific subsets of channels that generally led to classifiers with comparable performance.
Author Zollanvari, Amin
Abibullaev, Berdakh
Author_xml – sequence: 1
  givenname: Berdakh
  orcidid: 0000-0002-8623-5526
  surname: Abibullaev
  fullname: Abibullaev, Berdakh
  email: berdakh.abibullaev@nu.edu.kz
  organization: Department of Robotics and Mechatronics, Nazarbayev University, Astana, Kazakhstan
– sequence: 2
  givenname: Amin
  orcidid: 0000-0002-9172-8413
  surname: Zollanvari
  fullname: Zollanvari, Amin
  email: amin.zollanvari@nu.edu.kz
  organization: Department of Electrical and Computer Engineering, Nazarbayev University, Astana, Kazakhstan
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30668507$$D View this record in MEDLINE/PubMed
BookMark eNp9kU9v3CAQxVGVqknTfICqUoXUSy_eMGBjfEw2SbPRSq3651qE8bgi8oILdqR--2Ltbg85lAOD0O8NzHuvyYkPHgl5C2wFwJrLh-v7zYozUCuulCgr9YKccZCq4Jypk-MZmvKUXKT0yPJS-aqRr8ipYFKqitVn5OcWTfTO_6I3Ltnods6byT0h_TbmGtKIdopmoHdopjlioqGnt1-_JNqHSK-snaOZkF5H43yxDrtxnjDSjc97byymN-Rlb4aEF4d6Tn7c3X5f3xfbz58266ttYUXDp4KbTkFjUTABjeQcoJRYS7BtBcx2rRK8wrKyDetaZnuQUMtKtrzltus7CeKcfNz3HWP4PWOa9C6Pg8NgPIY5aQ51U5Yg1IJ-eIY-hjn6_DvNuapEfkqVmXp_oOZ2h50eszUm_tFH5zJQ7wEbQ0oRe23dtFjms19u0MD0EpNeYtJLTPoQU1bCM-Wx-f807_Yah4j_eJUnrxUTfwH74puF
CODEN IJBHA9
CitedBy_id crossref_primary_10_1016_j_patcog_2023_109751
crossref_primary_10_1186_s12984_023_01169_w
crossref_primary_10_1186_s12984_023_01179_8
crossref_primary_10_3390_make3040042
crossref_primary_10_1109_JBHI_2022_3174771
crossref_primary_10_1109_ACCESS_2023_3329678
crossref_primary_10_1016_j_patrec_2023_10_011
crossref_primary_10_1109_ACCESS_2021_3089998
crossref_primary_10_1007_s10489_023_05155_6
crossref_primary_10_1109_ACCESS_2019_2933268
crossref_primary_10_1109_TSMC_2021_3051136
crossref_primary_10_3390_brainsci12111552
crossref_primary_10_1109_THMS_2022_3189576
crossref_primary_10_3390_biomedicines11113015
crossref_primary_10_7717_peerj_cs_375
crossref_primary_10_1186_s42234_020_0040_0
crossref_primary_10_1080_2326263X_2021_1968633
crossref_primary_10_1016_j_engappai_2022_105581
crossref_primary_10_3389_fnrgo_2022_1045653
Cites_doi 10.1080/2326263X.2017.1338010
10.1109/MLSP.2010.5589242
10.1109/TBME.2011.2131142
10.1088/1741-2552/aa6213
10.1088/1741-2560/8/2/025003
10.1007/978-1-4419-7865-3
10.1109/ICIST.2015.7288989
10.1080/2326263X.2013.876724
10.1109/TPAMI.2010.125
10.1016/0167-8760(92)90055-G
10.1093/acprof:oso/9780195388855.001.0001
10.3389/fneng.2012.00014
10.1371/journal.pone.0060608
10.1109/TBME.2008.915728
10.1109/ROMAN.2017.8172426
10.1016/j.biopsycho.2006.04.007
10.1088/1741-2560/10/1/016006
10.1109/TBME.2015.2468588
10.1142/S0129065716500143
10.1016/j.jneumeth.2014.04.009
10.1007/978-1-4614-5227-0
10.1109/IWW-BCI.2017.7858151
10.3389/fnins.2016.00530
10.1016/0013-4694(88)90149-6
10.1023/A:1010920819831
10.1111/j.2517-6161.1996.tb02080.x
10.1109/CNE.2007.369699
10.1016/j.eswa.2016.12.038
10.1017/CBO9780511622762
10.1109/TBME.2014.2300164
10.1002/0470854774
10.1088/1741-2560/8/2/025002
10.1016/j.neuroimage.2010.11.004
10.5772/14858
10.1109/TNSRE.2004.841878
10.1016/j.clinph.2015.01.013
10.1007/s12021-012-9171-0
10.1109/TBME.2004.826702
10.1088/1741-2560/13/2/026024
10.1016/j.clinph.2005.06.027
10.1088/1741-2560/7/1/016003
10.1016/j.neuroimage.2010.06.048
10.1109/MLSP.2010.5589243
10.1016/S1388-2457(02)00057-3
10.1007/978-3-319-59773-7_11
10.1080/00401706.1996.10484520
10.1007/3-540-62858-4_79
10.1016/j.ijpsycho.2016.07.500
10.3389/fnins.2016.00122
10.1109/TBME.2009.2012869
10.1186/s13634-015-0251-9
10.1002/wics.101
10.1088/1741-2560/4/2/R03
10.1088/1741-2560/4/2/R01
10.1088/1741-2552/aab2f2
10.1016/j.jneumeth.2007.07.017
10.1016/j.patrec.2005.10.010
10.2307/2347628
10.1007/978-4-431-54907-9_10
10.1371/journal.pone.0017191
10.3389/fnins.2013.00267
10.18637/jss.v033.i01
10.3389/fnins.2017.00630
10.1016/S0031-3203(96)00142-2
10.1016/j.neucom.2016.09.053
10.1007/0-306-48610-5_3
10.1016/j.clinph.2015.04.054
10.1016/j.clinph.2007.04.019
10.1371/journal.pbio.1002593
10.1186/1475-925X-10-83
10.1023/A:1007465528199
10.1080/21646821.2015.1075181
10.1007/978-1-4614-5227-0_2
10.1016/j.ijpsycho.2015.02.001
10.1002/9781444300772
10.1016/S1874-608X(99)80002-8
10.1159/000054958
10.1016/S0140-6736(10)61156-7
10.1109/TKDE.2005.50
10.1016/bs.pbr.2016.04.019
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
DOI 10.1109/JBHI.2018.2883458
DatabaseName IEEE Xplore (IEEE)
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Civil Engineering Abstracts
Aluminium Industry Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Health & Medical Complete (Alumni)
Ceramic Abstracts
Materials Business File
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Aerospace Database
Nursing & Allied Health Premium
Engineered Materials Abstracts
Biotechnology Research Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
Materials Research Database
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 2168-2208
EndPage 2020
ExternalDocumentID 30668507
10_1109_JBHI_2018_2883458
8613780
Genre orig-research
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Nazarbayev University Faculty Development
  grantid: SOE2018008
GroupedDBID 0R~
4.4
6IF
6IH
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
ACPRK
AENEX
AFRAH
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
ESBDL
HZ~
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
RIG
6IL
ADZIZ
CGR
CHZPO
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
ID FETCH-LOGICAL-c392t-2ad819ce303196221146e761cb510cdb8325e45c90db0cf1617656b2b2cdfd613
IEDL.DBID RIE
ISSN 2168-2194
2168-2208
IngestDate Thu Sep 04 23:23:37 EDT 2025
Mon Jun 30 03:14:30 EDT 2025
Thu Jan 02 22:59:04 EST 2025
Tue Jul 01 02:59:56 EDT 2025
Thu Apr 24 23:03:24 EDT 2025
Wed Aug 27 02:46:12 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/OAPA.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c392t-2ad819ce303196221146e761cb510cdb8325e45c90db0cf1617656b2b2cdfd613
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-8623-5526
0000-0002-9172-8413
OpenAccessLink https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/8613780
PMID 30668507
PQID 2285332584
PQPubID 85417
PageCount 12
ParticipantIDs crossref_citationtrail_10_1109_JBHI_2018_2883458
crossref_primary_10_1109_JBHI_2018_2883458
proquest_miscellaneous_2179441381
proquest_journals_2285332584
ieee_primary_8613780
pubmed_primary_30668507
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-Sept.
2019-9-00
2019-09-00
20190901
PublicationDateYYYYMMDD 2019-09-01
PublicationDate_xml – month: 09
  year: 2019
  text: 2019-Sept.
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Piscataway
PublicationTitle IEEE journal of biomedical and health informatics
PublicationTitleAbbrev JBHI
PublicationTitleAlternate IEEE J Biomed Health Inform
PublicationYear 2019
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref57
ref56
ref12
ref15
ref14
bougrain (ref46) 0
ref11
ref54
ref10
ref17
ref16
ref19
ref18
ricco (ref80) 2013; 7
ref93
ref92
ref51
ref50
talsma (ref53) 2005
ref91
ref90
ref89
ref45
ref48
ref47
roijendijk (ref33) 2009
ref86
ref42
ref85
ref41
ref88
ref44
ref87
ref43
herrmann (ref76) 2005
kubat (ref55) 2006; 27
ref49
hand (ref58) 2001; 45
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref82
ref40
ref84
ref83
ref79
ref35
ref78
ref34
ref37
friedman (ref65) 2010; 33
ref36
ref75
ref31
ref74
ref30
pines (ref81) 2008
ref77
ref32
ref2
gao (ref13) 2014; 61
ref1
ref39
ref38
kay (ref52) 2013
ref71
ref70
duda (ref59) 2001
ref73
müller (ref23) 2004; 49
ref72
langley (ref67) 0
cheng (ref69) 0
ref68
ref24
ref26
ref25
ref64
ref20
ref63
ref66
ref22
ref21
ref28
ref27
ref29
witten (ref61) 2017
ref60
ref62
References_xml – ident: ref51
  doi: 10.1080/2326263X.2017.1338010
– ident: ref86
  doi: 10.1109/MLSP.2010.5589242
– ident: ref36
  doi: 10.1080/2326263X.2017.1338010
– ident: ref73
  doi: 10.1109/TBME.2011.2131142
– ident: ref19
  doi: 10.1088/1741-2552/aa6213
– ident: ref37
  doi: 10.1088/1741-2560/8/2/025003
– ident: ref54
  doi: 10.1007/978-1-4419-7865-3
– ident: ref48
  doi: 10.1109/ICIST.2015.7288989
– ident: ref26
  doi: 10.1080/2326263X.2013.876724
– ident: ref49
  doi: 10.1109/TPAMI.2010.125
– ident: ref88
  doi: 10.1016/0167-8760(92)90055-G
– ident: ref11
  doi: 10.1093/acprof:oso/9780195388855.001.0001
– ident: ref25
  doi: 10.3389/fneng.2012.00014
– ident: ref93
  doi: 10.1371/journal.pone.0060608
– ident: ref34
  doi: 10.1109/TBME.2008.915728
– ident: ref14
  doi: 10.1109/ROMAN.2017.8172426
– ident: ref9
  doi: 10.1016/j.biopsycho.2006.04.007
– ident: ref87
  doi: 10.1088/1741-2560/10/1/016006
– ident: ref43
  doi: 10.1109/TBME.2015.2468588
– ident: ref44
  doi: 10.1142/S0129065716500143
– start-page: 101
  year: 0
  ident: ref69
  article-title: Comparing Bayesian network classifiers
  publication-title: Proc 15th Conf Uncertainty Artif Intell
– ident: ref92
  doi: 10.1016/j.jneumeth.2014.04.009
– ident: ref83
  doi: 10.1007/978-1-4614-5227-0
– ident: ref27
  doi: 10.1109/IWW-BCI.2017.7858151
– ident: ref24
  doi: 10.3389/fnins.2016.00530
– ident: ref17
  doi: 10.1016/0013-4694(88)90149-6
– volume: 45
  start-page: 171
  year: 2001
  ident: ref58
  article-title: A simple generalization of the area under the ROC curve for multiple class classification problems
  publication-title: Mach Learn
  doi: 10.1023/A:1010920819831
– start-page: 223
  year: 0
  ident: ref67
  article-title: An analysis of Bayesian classifiers
  publication-title: Proc Nat Conf Artif Intell
– ident: ref64
  doi: 10.1111/j.2517-6161.1996.tb02080.x
– ident: ref40
  doi: 10.1109/CNE.2007.369699
– year: 2013
  ident: ref52
  publication-title: Fundamentals of Statistical Signal Processing Volume III Practical Algorithm Development
– ident: ref38
  doi: 10.1016/j.eswa.2016.12.038
– ident: ref78
  doi: 10.1017/CBO9780511622762
– year: 2001
  ident: ref59
  publication-title: Pattern Classification
– volume: 61
  start-page: 1436
  year: 2014
  ident: ref13
  article-title: Visual and auditory brain-computer interfaces
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/TBME.2014.2300164
– ident: ref63
  doi: 10.1002/0470854774
– ident: ref29
  doi: 10.1088/1741-2560/8/2/025002
– ident: ref50
  doi: 10.1016/j.neuroimage.2010.11.004
– ident: ref18
  doi: 10.5772/14858
– start-page: 1
  year: 0
  ident: ref46
  article-title: Finally, what is the best filter for P300 detection
  publication-title: Proc Tools Brain-Comput Interact
– ident: ref20
  doi: 10.1109/TNSRE.2004.841878
– ident: ref7
  doi: 10.1016/j.clinph.2015.01.013
– ident: ref30
  doi: 10.1007/s12021-012-9171-0
– volume: 49
  start-page: 11
  year: 2004
  ident: ref23
  article-title: Machine learning techniques for brain-computer interfaces
  publication-title: Biomed Technol
– ident: ref39
  doi: 10.1109/TBME.2004.826702
– volume: 7
  start-page: 1
  year: 2013
  ident: ref80
  article-title: Attention and P300-based BCI performance in people with amyotrophic lateral sclerosis
  publication-title: Frontiers Human Neurosci
– ident: ref21
  doi: 10.1088/1741-2560/13/2/026024
– ident: ref8
  doi: 10.1016/j.clinph.2005.06.027
– ident: ref70
  doi: 10.1088/1741-2560/7/1/016003
– ident: ref31
  doi: 10.1016/j.neuroimage.2010.06.048
– ident: ref85
  doi: 10.1109/MLSP.2010.5589243
– ident: ref1
  doi: 10.1016/S1388-2457(02)00057-3
– ident: ref84
  doi: 10.1007/978-3-319-59773-7_11
– ident: ref82
  doi: 10.1080/00401706.1996.10484520
– ident: ref72
  doi: 10.1007/3-540-62858-4_79
– ident: ref22
  doi: 10.1016/j.ijpsycho.2016.07.500
– ident: ref16
  doi: 10.3389/fnins.2016.00122
– ident: ref41
  doi: 10.1109/TBME.2009.2012869
– start-page: 229
  year: 2005
  ident: ref76
  article-title: EEG oscillations and wavelet analysis
  publication-title: Event-Related Potentials A Methods Handbook
– year: 2017
  ident: ref61
  publication-title: Data Mining Practical Machine Learning Tools and Techniques
– volume: 27
  start-page: 861
  year: 2006
  ident: ref55
  article-title: Learning when negative examples abound
  publication-title: Pattern Recognit Lett
– ident: ref74
  doi: 10.1186/s13634-015-0251-9
– ident: ref75
  doi: 10.1002/wics.101
– ident: ref12
  doi: 10.1088/1741-2560/4/2/R03
– start-page: 115
  year: 2005
  ident: ref53
  article-title: Methods for the estimation and removal of artifacts and overlap in ERP data
  publication-title: Event-Related Potentials A Methods Handbook
– ident: ref28
  doi: 10.1088/1741-2560/4/2/R01
– ident: ref47
  doi: 10.1088/1741-2552/aab2f2
– year: 2009
  ident: ref33
  article-title: Variability and nonstationarity in brain computer interfaces
– ident: ref91
  doi: 10.1016/j.jneumeth.2007.07.017
– ident: ref57
  doi: 10.1016/j.patrec.2005.10.010
– ident: ref60
  doi: 10.2307/2347628
– ident: ref71
  doi: 10.1007/978-4-431-54907-9_10
– ident: ref68
  doi: 10.1371/journal.pone.0017191
– ident: ref79
  doi: 10.3389/fnins.2013.00267
– volume: 33
  start-page: 1
  year: 2010
  ident: ref65
  article-title: Regularization paths for generalized linear models via coordinate descent
  publication-title: J Statist Softw
  doi: 10.18637/jss.v033.i01
– ident: ref45
  doi: 10.3389/fnins.2017.00630
– ident: ref56
  doi: 10.1016/S0031-3203(96)00142-2
– ident: ref35
  doi: 10.1016/j.neucom.2016.09.053
– ident: ref2
  doi: 10.1007/0-306-48610-5_3
– ident: ref15
  doi: 10.1016/j.clinph.2015.04.054
– ident: ref90
  doi: 10.1016/j.clinph.2007.04.019
– ident: ref6
  doi: 10.1371/journal.pbio.1002593
– ident: ref42
  doi: 10.1186/1475-925X-10-83
– ident: ref62
  doi: 10.1023/A:1007465528199
– ident: ref5
  doi: 10.1080/21646821.2015.1075181
– ident: ref10
  doi: 10.1007/978-1-4614-5227-0_2
– ident: ref89
  doi: 10.1016/j.ijpsycho.2015.02.001
– year: 2008
  ident: ref81
  publication-title: Evidence-Based Emergency Care Diagnostic Testing and Clinical Decision Rules
  doi: 10.1002/9781444300772
– ident: ref77
  doi: 10.1016/S1874-608X(99)80002-8
– ident: ref32
  doi: 10.1159/000054958
– ident: ref4
  doi: 10.1016/S0140-6736(10)61156-7
– ident: ref66
  doi: 10.1109/TKDE.2005.50
– ident: ref3
  doi: 10.1016/bs.pbr.2016.04.019
SSID ssj0000816896
Score 2.3949502
Snippet Constructing accurate predictive models is at the heart of brain-computer interfaces (BCIs) because these models can ultimately translate brain activities into...
Constructing accurate predictive models is at the heart of brain–computer interfaces (BCIs) because these models can ultimately translate brain activities into...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2009
SubjectTerms Adult
Attention
Brain
Brain modeling
Brain-Computer Interfaces
Decoding
EEG
Electrodes
Electroencephalography
Electroencephalography - methods
ERPs
Event-related potentials
Evoked Potentials - physiology
Feature extraction
Humans
Interfaces
Learning algorithms
Machine Learning
P300
Performance prediction
Prediction models
Predictive models
signal processing
Signal Processing, Computer-Assisted
Spectra
State vectors
Visual discrimination
Visual perception
Visualization
Waveforms
Young Adult
Title Learning Discriminative Spatiospectral Features of ERPs for Accurate Brain-Computer Interfaces
URI https://ieeexplore.ieee.org/document/8613780
https://www.ncbi.nlm.nih.gov/pubmed/30668507
https://www.proquest.com/docview/2285332584
https://www.proquest.com/docview/2179441381
Volume 23
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDLaAA-LC-1FeChInREaXdaE9MmAak4YQD4kTVZO6CIE2BOuFX4-dZhVCgLhVapo2dWJ_Tmx_APtkYRCzIpJaY0tywS6ZJZGWBB1QZ0j6sXBRvpe6dxf179v3U3BY58Igogs-wwZfurP8fGRL3io7isn2HMfkoE_TNKtyter9FEcg4ei4FF1IWoiRP8RshslRv9O74DiuuMHsuhETvH8xQ45X5XeI6UxNdwEGk4-sIkyeG-XYNOzHt_qN_x3FIsx7zClOqkmyBFM4XIbZgT9VX4EHX2T1UZw9sRbh6BjWguLGhVu7ZMw36oDhYknuuRgV4vz66l0Q4BUn1pZcbkJ0mGxCTlgihNtqLDjgaxXuuue3pz3peRekJbQ0lirLCSdYbHGGk1aKE5fxWDetoQVsc0NKoI1R2yZhbkJbsIdEojXKKJsXOY1uDWaGoyFugCDjl2dhQopEkw-OGMeZIauZqQSTZsuYAMKJGFLri5IzN8ZL6pyTMElZcilLLvWSC-CgfuS1qsjxV-MVFkDd0P_7ALYnsk79mn1PlSLoQkOLowD26tu02vgIJRviqKQ2rL_I7sfNANarOVL3Tc6Xjgleb_78zi2Yoy_z8WnbMDN-K3GHAM3Y7LqZ_AmXpO6x
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1RT9swED6hIsFeNhhsyyhgJJ4mXFI3NckjBaqWUYRYK_WJKHYu07SpnaB54ddz57gRmgbiLVIcJ87Zd9_Zd_cBHJKFQcyKSGqNHckFu2SWRFoSdECdIenHwkX5XuvBJLqcdqcrcFTnwiCiCz7DFl-6s_x8bkveKjuOyfacxOSgr5Ldj7pVtla9o-IoJBwhl6ILSUsx8seY7TA5vuwNhhzJFbeYXzdiivdnhsgxq7wMMp2x6X-A0fIzqxiT361yYVr28Z8Kjm8dxwa896hTnFbTZBNWcPYR1kb-XH0L7nyZ1Z_i_BfrEY6PYT0ofriAa5eOeU8dMGAsyUEX80Jc3N48CIK84tTakgtOiB7TTcglT4Rwm40Fh3xtw6R_MT4bSM-8IC3hpYVUWU5IwWKHc5y0Upy6jCe6bQ0tYZsbUgNdjLo2CXMT2oJ9JBKuUUbZvMhpdJ-gMZvP8AsIMn95FiakSjR54YhxnBmym5lKMGl3jAkgXIohtb4sObNj_EmdexImKUsuZcmlXnIBfKsf-VvV5Hit8RYLoG7o_30AzaWsU79qH1KlCLzQ0OIogIP6Nq03PkTJZjgvqQ1rMLL8cTuAz9Ucqfsm90vHBLC__v-d-7A-GI-u0qvh9fcdeEdf6aPVmtBY3Je4S_BmYfbcrH4CPXbx_g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Learning+Discriminative+Spatiospectral+Features+of+ERPs+for+Accurate+Brain-Computer+Interfaces&rft.jtitle=IEEE+journal+of+biomedical+and+health+informatics&rft.au=Abibullaev%2C+Berdakh&rft.au=Zollanvari%2C+Amin&rft.date=2019-09-01&rft.eissn=2168-2208&rft.volume=23&rft.issue=5&rft.spage=2009&rft_id=info:doi/10.1109%2FJBHI.2018.2883458&rft_id=info%3Apmid%2F30668507&rft.externalDocID=30668507
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-2194&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-2194&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-2194&client=summon