Learning Discriminative Spatiospectral Features of ERPs for Accurate Brain-Computer Interfaces
Constructing accurate predictive models is at the heart of brain-computer interfaces (BCIs) because these models can ultimately translate brain activities into communication and control commands. The majority of the previous work in BCI use spatial, temporal, or spatiotemporal features of event-rela...
Saved in:
Published in | IEEE journal of biomedical and health informatics Vol. 23; no. 5; pp. 2009 - 2020 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.09.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 2168-2194 2168-2208 2168-2208 |
DOI | 10.1109/JBHI.2018.2883458 |
Cover
Abstract | Constructing accurate predictive models is at the heart of brain-computer interfaces (BCIs) because these models can ultimately translate brain activities into communication and control commands. The majority of the previous work in BCI use spatial, temporal, or spatiotemporal features of event-related potentials (ERPs). In this study, we examined the discriminatory effect of their spatiospectral features to capture the most relevant set of neural activities from electroencephalographic recordings that represent users' mental intent. In this regard, we model ERP waveforms using a sum of sinusoids with unknown amplitudes, frequencies, and phases. The effect of this signal modeling step is to represent high-dimensional ERP waveforms in a substantially lower dimensionality space, which includes their dominant power spectral contents. We found that the most discriminative frequencies for accurate decoding of visual attention modulated ERPs lie in a spectral range less than 6.4 Hz. This was empirically verified by treating dominant frequency contents of ERP waveforms as feature vectors in the state-of-the-art machine learning techniques used herein. The constructed predictive models achieved remarkable performance, which for some subjects was as high as 94% as measured by the area under curve. Using these spectral contents, we further studied the discriminatory effect of each channel and proposed an efficient strategy to choose subject-specific subsets of channels that generally led to classifiers with comparable performance. |
---|---|
AbstractList | Constructing accurate predictive models is at the heart of brain-computer interfaces (BCIs) because these models can ultimately translate brain activities into communication and control commands. The majority of the previous work in BCI use spatial, temporal, or spatiotemporal features of event-related potentials (ERPs). In this study, we examined the discriminatory effect of their spatiospectral features to capture the most relevant set of neural activities from electroencephalographic recordings that represent users' mental intent. In this regard, we model ERP waveforms using a sum of sinusoids with unknown amplitudes, frequencies, and phases. The effect of this signal modeling step is to represent high-dimensional ERP waveforms in a substantially lower dimensionality space, which includes their dominant power spectral contents. We found that the most discriminative frequencies for accurate decoding of visual attention modulated ERPs lie in a spectral range less than 6.4 Hz. This was empirically verified by treating dominant frequency contents of ERP waveforms as feature vectors in the state-of-the-art machine learning techniques used herein. The constructed predictive models achieved remarkable performance, which for some subjects was as high as 94% as measured by the area under curve. Using these spectral contents, we further studied the discriminatory effect of each channel and proposed an efficient strategy to choose subject-specific subsets of channels that generally led to classifiers with comparable performance. Constructing accurate predictive models is at the heart of brain-computer interfaces (BCIs) because these models can ultimately translate brain activities into communication and control commands. The majority of the previous work in BCI use spatial, temporal, or spatiotemporal features of event-related potentials (ERPs). In this study, we examined the discriminatory effect of their spatiospectral features to capture the most relevant set of neural activities from electroencephalographic recordings that represent users' mental intent. In this regard, we model ERP waveforms using a sum of sinusoids with unknown amplitudes, frequencies, and phases. The effect of this signal modeling step is to represent high-dimensional ERP waveforms in a substantially lower dimensionality space, which includes their dominant power spectral contents. We found that the most discriminative frequencies for accurate decoding of visual attention modulated ERPs lie in a spectral range less than 6.4 Hz. This was empirically verified by treating dominant frequency contents of ERP waveforms as feature vectors in the state-of-the-art machine learning techniques used herein. The constructed predictive models achieved remarkable performance, which for some subjects was as high as 94% as measured by the area under curve. Using these spectral contents, we further studied the discriminatory effect of each channel and proposed an efficient strategy to choose subject-specific subsets of channels that generally led to classifiers with comparable performance.Constructing accurate predictive models is at the heart of brain-computer interfaces (BCIs) because these models can ultimately translate brain activities into communication and control commands. The majority of the previous work in BCI use spatial, temporal, or spatiotemporal features of event-related potentials (ERPs). In this study, we examined the discriminatory effect of their spatiospectral features to capture the most relevant set of neural activities from electroencephalographic recordings that represent users' mental intent. In this regard, we model ERP waveforms using a sum of sinusoids with unknown amplitudes, frequencies, and phases. The effect of this signal modeling step is to represent high-dimensional ERP waveforms in a substantially lower dimensionality space, which includes their dominant power spectral contents. We found that the most discriminative frequencies for accurate decoding of visual attention modulated ERPs lie in a spectral range less than 6.4 Hz. This was empirically verified by treating dominant frequency contents of ERP waveforms as feature vectors in the state-of-the-art machine learning techniques used herein. The constructed predictive models achieved remarkable performance, which for some subjects was as high as 94% as measured by the area under curve. Using these spectral contents, we further studied the discriminatory effect of each channel and proposed an efficient strategy to choose subject-specific subsets of channels that generally led to classifiers with comparable performance. Constructing accurate predictive models is at the heart of brain–computer interfaces (BCIs) because these models can ultimately translate brain activities into communication and control commands. The majority of the previous work in BCI use spatial, temporal, or spatiotemporal features of event-related potentials (ERPs). In this study, we examined the discriminatory effect of their spatiospectral features to capture the most relevant set of neural activities from electroencephalographic recordings that represent users’ mental intent. In this regard, we model ERP waveforms using a sum of sinusoids with unknown amplitudes, frequencies, and phases. The effect of this signal modeling step is to represent high-dimensional ERP waveforms in a substantially lower dimensionality space, which includes their dominant power spectral contents. We found that the most discriminative frequencies for accurate decoding of visual attention modulated ERPs lie in a spectral range less than 6.4 Hz. This was empirically verified by treating dominant frequency contents of ERP waveforms as feature vectors in the state-of-the-art machine learning techniques used herein. The constructed predictive models achieved remarkable performance, which for some subjects was as high as 94% as measured by the area under curve. Using these spectral contents, we further studied the discriminatory effect of each channel and proposed an efficient strategy to choose subject-specific subsets of channels that generally led to classifiers with comparable performance. |
Author | Zollanvari, Amin Abibullaev, Berdakh |
Author_xml | – sequence: 1 givenname: Berdakh orcidid: 0000-0002-8623-5526 surname: Abibullaev fullname: Abibullaev, Berdakh email: berdakh.abibullaev@nu.edu.kz organization: Department of Robotics and Mechatronics, Nazarbayev University, Astana, Kazakhstan – sequence: 2 givenname: Amin orcidid: 0000-0002-9172-8413 surname: Zollanvari fullname: Zollanvari, Amin email: amin.zollanvari@nu.edu.kz organization: Department of Electrical and Computer Engineering, Nazarbayev University, Astana, Kazakhstan |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30668507$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kU9v3CAQxVGVqknTfICqUoXUSy_eMGBjfEw2SbPRSq3651qE8bgi8oILdqR--2Ltbg85lAOD0O8NzHuvyYkPHgl5C2wFwJrLh-v7zYozUCuulCgr9YKccZCq4Jypk-MZmvKUXKT0yPJS-aqRr8ipYFKqitVn5OcWTfTO_6I3Ltnods6byT0h_TbmGtKIdopmoHdopjlioqGnt1-_JNqHSK-snaOZkF5H43yxDrtxnjDSjc97byymN-Rlb4aEF4d6Tn7c3X5f3xfbz58266ttYUXDp4KbTkFjUTABjeQcoJRYS7BtBcx2rRK8wrKyDetaZnuQUMtKtrzltus7CeKcfNz3HWP4PWOa9C6Pg8NgPIY5aQ51U5Yg1IJ-eIY-hjn6_DvNuapEfkqVmXp_oOZ2h50eszUm_tFH5zJQ7wEbQ0oRe23dtFjms19u0MD0EpNeYtJLTPoQU1bCM-Wx-f807_Yah4j_eJUnrxUTfwH74puF |
CODEN | IJBHA9 |
CitedBy_id | crossref_primary_10_1016_j_patcog_2023_109751 crossref_primary_10_1186_s12984_023_01169_w crossref_primary_10_1186_s12984_023_01179_8 crossref_primary_10_3390_make3040042 crossref_primary_10_1109_JBHI_2022_3174771 crossref_primary_10_1109_ACCESS_2023_3329678 crossref_primary_10_1016_j_patrec_2023_10_011 crossref_primary_10_1109_ACCESS_2021_3089998 crossref_primary_10_1007_s10489_023_05155_6 crossref_primary_10_1109_ACCESS_2019_2933268 crossref_primary_10_1109_TSMC_2021_3051136 crossref_primary_10_3390_brainsci12111552 crossref_primary_10_1109_THMS_2022_3189576 crossref_primary_10_3390_biomedicines11113015 crossref_primary_10_7717_peerj_cs_375 crossref_primary_10_1186_s42234_020_0040_0 crossref_primary_10_1080_2326263X_2021_1968633 crossref_primary_10_1016_j_engappai_2022_105581 crossref_primary_10_3389_fnrgo_2022_1045653 |
Cites_doi | 10.1080/2326263X.2017.1338010 10.1109/MLSP.2010.5589242 10.1109/TBME.2011.2131142 10.1088/1741-2552/aa6213 10.1088/1741-2560/8/2/025003 10.1007/978-1-4419-7865-3 10.1109/ICIST.2015.7288989 10.1080/2326263X.2013.876724 10.1109/TPAMI.2010.125 10.1016/0167-8760(92)90055-G 10.1093/acprof:oso/9780195388855.001.0001 10.3389/fneng.2012.00014 10.1371/journal.pone.0060608 10.1109/TBME.2008.915728 10.1109/ROMAN.2017.8172426 10.1016/j.biopsycho.2006.04.007 10.1088/1741-2560/10/1/016006 10.1109/TBME.2015.2468588 10.1142/S0129065716500143 10.1016/j.jneumeth.2014.04.009 10.1007/978-1-4614-5227-0 10.1109/IWW-BCI.2017.7858151 10.3389/fnins.2016.00530 10.1016/0013-4694(88)90149-6 10.1023/A:1010920819831 10.1111/j.2517-6161.1996.tb02080.x 10.1109/CNE.2007.369699 10.1016/j.eswa.2016.12.038 10.1017/CBO9780511622762 10.1109/TBME.2014.2300164 10.1002/0470854774 10.1088/1741-2560/8/2/025002 10.1016/j.neuroimage.2010.11.004 10.5772/14858 10.1109/TNSRE.2004.841878 10.1016/j.clinph.2015.01.013 10.1007/s12021-012-9171-0 10.1109/TBME.2004.826702 10.1088/1741-2560/13/2/026024 10.1016/j.clinph.2005.06.027 10.1088/1741-2560/7/1/016003 10.1016/j.neuroimage.2010.06.048 10.1109/MLSP.2010.5589243 10.1016/S1388-2457(02)00057-3 10.1007/978-3-319-59773-7_11 10.1080/00401706.1996.10484520 10.1007/3-540-62858-4_79 10.1016/j.ijpsycho.2016.07.500 10.3389/fnins.2016.00122 10.1109/TBME.2009.2012869 10.1186/s13634-015-0251-9 10.1002/wics.101 10.1088/1741-2560/4/2/R03 10.1088/1741-2560/4/2/R01 10.1088/1741-2552/aab2f2 10.1016/j.jneumeth.2007.07.017 10.1016/j.patrec.2005.10.010 10.2307/2347628 10.1007/978-4-431-54907-9_10 10.1371/journal.pone.0017191 10.3389/fnins.2013.00267 10.18637/jss.v033.i01 10.3389/fnins.2017.00630 10.1016/S0031-3203(96)00142-2 10.1016/j.neucom.2016.09.053 10.1007/0-306-48610-5_3 10.1016/j.clinph.2015.04.054 10.1016/j.clinph.2007.04.019 10.1371/journal.pbio.1002593 10.1186/1475-925X-10-83 10.1023/A:1007465528199 10.1080/21646821.2015.1075181 10.1007/978-1-4614-5227-0_2 10.1016/j.ijpsycho.2015.02.001 10.1002/9781444300772 10.1016/S1874-608X(99)80002-8 10.1159/000054958 10.1016/S0140-6736(10)61156-7 10.1109/TKDE.2005.50 10.1016/bs.pbr.2016.04.019 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019 |
DBID | 97E ESBDL RIA RIE AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 K9. KR7 L7M L~C L~D NAPCQ P64 7X8 |
DOI | 10.1109/JBHI.2018.2883458 |
DatabaseName | IEEE Xplore (IEEE) IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Materials Research Database ProQuest Computer Science Collection ProQuest Health & Medical Complete (Alumni) Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Nursing & Allied Health Premium Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Civil Engineering Abstracts Aluminium Industry Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Health & Medical Complete (Alumni) Ceramic Abstracts Materials Business File METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Aerospace Database Nursing & Allied Health Premium Engineered Materials Abstracts Biotechnology Research Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Materials Research Database MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 2168-2208 |
EndPage | 2020 |
ExternalDocumentID | 30668507 10_1109_JBHI_2018_2883458 8613780 |
Genre | orig-research Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Nazarbayev University Faculty Development grantid: SOE2018008 |
GroupedDBID | 0R~ 4.4 6IF 6IH 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACIWK ACPRK AENEX AFRAH AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD ESBDL HZ~ IFIPE IPLJI JAVBF M43 O9- OCL PQQKQ RIA RIE RNS AAYXX CITATION RIG 6IL ADZIZ CGR CHZPO CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 K9. KR7 L7M L~C L~D NAPCQ P64 7X8 |
ID | FETCH-LOGICAL-c392t-2ad819ce303196221146e761cb510cdb8325e45c90db0cf1617656b2b2cdfd613 |
IEDL.DBID | RIE |
ISSN | 2168-2194 2168-2208 |
IngestDate | Thu Sep 04 23:23:37 EDT 2025 Mon Jun 30 03:14:30 EDT 2025 Thu Jan 02 22:59:04 EST 2025 Tue Jul 01 02:59:56 EDT 2025 Thu Apr 24 23:03:24 EDT 2025 Wed Aug 27 02:46:12 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/OAPA.html |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c392t-2ad819ce303196221146e761cb510cdb8325e45c90db0cf1617656b2b2cdfd613 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-8623-5526 0000-0002-9172-8413 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/8613780 |
PMID | 30668507 |
PQID | 2285332584 |
PQPubID | 85417 |
PageCount | 12 |
ParticipantIDs | crossref_citationtrail_10_1109_JBHI_2018_2883458 crossref_primary_10_1109_JBHI_2018_2883458 proquest_miscellaneous_2179441381 proquest_journals_2285332584 ieee_primary_8613780 pubmed_primary_30668507 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-Sept. 2019-9-00 2019-09-00 20190901 |
PublicationDateYYYYMMDD | 2019-09-01 |
PublicationDate_xml | – month: 09 year: 2019 text: 2019-Sept. |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Piscataway |
PublicationTitle | IEEE journal of biomedical and health informatics |
PublicationTitleAbbrev | JBHI |
PublicationTitleAlternate | IEEE J Biomed Health Inform |
PublicationYear | 2019 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref57 ref56 ref12 ref15 ref14 bougrain (ref46) 0 ref11 ref54 ref10 ref17 ref16 ref19 ref18 ricco (ref80) 2013; 7 ref93 ref92 ref51 ref50 talsma (ref53) 2005 ref91 ref90 ref89 ref45 ref48 ref47 roijendijk (ref33) 2009 ref86 ref42 ref85 ref41 ref88 ref44 ref87 ref43 herrmann (ref76) 2005 kubat (ref55) 2006; 27 ref49 hand (ref58) 2001; 45 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref82 ref40 ref84 ref83 ref79 ref35 ref78 ref34 ref37 friedman (ref65) 2010; 33 ref36 ref75 ref31 ref74 ref30 pines (ref81) 2008 ref77 ref32 ref2 gao (ref13) 2014; 61 ref1 ref39 ref38 kay (ref52) 2013 ref71 ref70 duda (ref59) 2001 ref73 müller (ref23) 2004; 49 ref72 langley (ref67) 0 cheng (ref69) 0 ref68 ref24 ref26 ref25 ref64 ref20 ref63 ref66 ref22 ref21 ref28 ref27 ref29 witten (ref61) 2017 ref60 ref62 |
References_xml | – ident: ref51 doi: 10.1080/2326263X.2017.1338010 – ident: ref86 doi: 10.1109/MLSP.2010.5589242 – ident: ref36 doi: 10.1080/2326263X.2017.1338010 – ident: ref73 doi: 10.1109/TBME.2011.2131142 – ident: ref19 doi: 10.1088/1741-2552/aa6213 – ident: ref37 doi: 10.1088/1741-2560/8/2/025003 – ident: ref54 doi: 10.1007/978-1-4419-7865-3 – ident: ref48 doi: 10.1109/ICIST.2015.7288989 – ident: ref26 doi: 10.1080/2326263X.2013.876724 – ident: ref49 doi: 10.1109/TPAMI.2010.125 – ident: ref88 doi: 10.1016/0167-8760(92)90055-G – ident: ref11 doi: 10.1093/acprof:oso/9780195388855.001.0001 – ident: ref25 doi: 10.3389/fneng.2012.00014 – ident: ref93 doi: 10.1371/journal.pone.0060608 – ident: ref34 doi: 10.1109/TBME.2008.915728 – ident: ref14 doi: 10.1109/ROMAN.2017.8172426 – ident: ref9 doi: 10.1016/j.biopsycho.2006.04.007 – ident: ref87 doi: 10.1088/1741-2560/10/1/016006 – ident: ref43 doi: 10.1109/TBME.2015.2468588 – ident: ref44 doi: 10.1142/S0129065716500143 – start-page: 101 year: 0 ident: ref69 article-title: Comparing Bayesian network classifiers publication-title: Proc 15th Conf Uncertainty Artif Intell – ident: ref92 doi: 10.1016/j.jneumeth.2014.04.009 – ident: ref83 doi: 10.1007/978-1-4614-5227-0 – ident: ref27 doi: 10.1109/IWW-BCI.2017.7858151 – ident: ref24 doi: 10.3389/fnins.2016.00530 – ident: ref17 doi: 10.1016/0013-4694(88)90149-6 – volume: 45 start-page: 171 year: 2001 ident: ref58 article-title: A simple generalization of the area under the ROC curve for multiple class classification problems publication-title: Mach Learn doi: 10.1023/A:1010920819831 – start-page: 223 year: 0 ident: ref67 article-title: An analysis of Bayesian classifiers publication-title: Proc Nat Conf Artif Intell – ident: ref64 doi: 10.1111/j.2517-6161.1996.tb02080.x – ident: ref40 doi: 10.1109/CNE.2007.369699 – year: 2013 ident: ref52 publication-title: Fundamentals of Statistical Signal Processing Volume III Practical Algorithm Development – ident: ref38 doi: 10.1016/j.eswa.2016.12.038 – ident: ref78 doi: 10.1017/CBO9780511622762 – year: 2001 ident: ref59 publication-title: Pattern Classification – volume: 61 start-page: 1436 year: 2014 ident: ref13 article-title: Visual and auditory brain-computer interfaces publication-title: IEEE Trans Biomed Eng doi: 10.1109/TBME.2014.2300164 – ident: ref63 doi: 10.1002/0470854774 – ident: ref29 doi: 10.1088/1741-2560/8/2/025002 – ident: ref50 doi: 10.1016/j.neuroimage.2010.11.004 – ident: ref18 doi: 10.5772/14858 – start-page: 1 year: 0 ident: ref46 article-title: Finally, what is the best filter for P300 detection publication-title: Proc Tools Brain-Comput Interact – ident: ref20 doi: 10.1109/TNSRE.2004.841878 – ident: ref7 doi: 10.1016/j.clinph.2015.01.013 – ident: ref30 doi: 10.1007/s12021-012-9171-0 – volume: 49 start-page: 11 year: 2004 ident: ref23 article-title: Machine learning techniques for brain-computer interfaces publication-title: Biomed Technol – ident: ref39 doi: 10.1109/TBME.2004.826702 – volume: 7 start-page: 1 year: 2013 ident: ref80 article-title: Attention and P300-based BCI performance in people with amyotrophic lateral sclerosis publication-title: Frontiers Human Neurosci – ident: ref21 doi: 10.1088/1741-2560/13/2/026024 – ident: ref8 doi: 10.1016/j.clinph.2005.06.027 – ident: ref70 doi: 10.1088/1741-2560/7/1/016003 – ident: ref31 doi: 10.1016/j.neuroimage.2010.06.048 – ident: ref85 doi: 10.1109/MLSP.2010.5589243 – ident: ref1 doi: 10.1016/S1388-2457(02)00057-3 – ident: ref84 doi: 10.1007/978-3-319-59773-7_11 – ident: ref82 doi: 10.1080/00401706.1996.10484520 – ident: ref72 doi: 10.1007/3-540-62858-4_79 – ident: ref22 doi: 10.1016/j.ijpsycho.2016.07.500 – ident: ref16 doi: 10.3389/fnins.2016.00122 – ident: ref41 doi: 10.1109/TBME.2009.2012869 – start-page: 229 year: 2005 ident: ref76 article-title: EEG oscillations and wavelet analysis publication-title: Event-Related Potentials A Methods Handbook – year: 2017 ident: ref61 publication-title: Data Mining Practical Machine Learning Tools and Techniques – volume: 27 start-page: 861 year: 2006 ident: ref55 article-title: Learning when negative examples abound publication-title: Pattern Recognit Lett – ident: ref74 doi: 10.1186/s13634-015-0251-9 – ident: ref75 doi: 10.1002/wics.101 – ident: ref12 doi: 10.1088/1741-2560/4/2/R03 – start-page: 115 year: 2005 ident: ref53 article-title: Methods for the estimation and removal of artifacts and overlap in ERP data publication-title: Event-Related Potentials A Methods Handbook – ident: ref28 doi: 10.1088/1741-2560/4/2/R01 – ident: ref47 doi: 10.1088/1741-2552/aab2f2 – year: 2009 ident: ref33 article-title: Variability and nonstationarity in brain computer interfaces – ident: ref91 doi: 10.1016/j.jneumeth.2007.07.017 – ident: ref57 doi: 10.1016/j.patrec.2005.10.010 – ident: ref60 doi: 10.2307/2347628 – ident: ref71 doi: 10.1007/978-4-431-54907-9_10 – ident: ref68 doi: 10.1371/journal.pone.0017191 – ident: ref79 doi: 10.3389/fnins.2013.00267 – volume: 33 start-page: 1 year: 2010 ident: ref65 article-title: Regularization paths for generalized linear models via coordinate descent publication-title: J Statist Softw doi: 10.18637/jss.v033.i01 – ident: ref45 doi: 10.3389/fnins.2017.00630 – ident: ref56 doi: 10.1016/S0031-3203(96)00142-2 – ident: ref35 doi: 10.1016/j.neucom.2016.09.053 – ident: ref2 doi: 10.1007/0-306-48610-5_3 – ident: ref15 doi: 10.1016/j.clinph.2015.04.054 – ident: ref90 doi: 10.1016/j.clinph.2007.04.019 – ident: ref6 doi: 10.1371/journal.pbio.1002593 – ident: ref42 doi: 10.1186/1475-925X-10-83 – ident: ref62 doi: 10.1023/A:1007465528199 – ident: ref5 doi: 10.1080/21646821.2015.1075181 – ident: ref10 doi: 10.1007/978-1-4614-5227-0_2 – ident: ref89 doi: 10.1016/j.ijpsycho.2015.02.001 – year: 2008 ident: ref81 publication-title: Evidence-Based Emergency Care Diagnostic Testing and Clinical Decision Rules doi: 10.1002/9781444300772 – ident: ref77 doi: 10.1016/S1874-608X(99)80002-8 – ident: ref32 doi: 10.1159/000054958 – ident: ref4 doi: 10.1016/S0140-6736(10)61156-7 – ident: ref66 doi: 10.1109/TKDE.2005.50 – ident: ref3 doi: 10.1016/bs.pbr.2016.04.019 |
SSID | ssj0000816896 |
Score | 2.3949502 |
Snippet | Constructing accurate predictive models is at the heart of brain-computer interfaces (BCIs) because these models can ultimately translate brain activities into... Constructing accurate predictive models is at the heart of brain–computer interfaces (BCIs) because these models can ultimately translate brain activities into... |
SourceID | proquest pubmed crossref ieee |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2009 |
SubjectTerms | Adult Attention Brain Brain modeling Brain-Computer Interfaces Decoding EEG Electrodes Electroencephalography Electroencephalography - methods ERPs Event-related potentials Evoked Potentials - physiology Feature extraction Humans Interfaces Learning algorithms Machine Learning P300 Performance prediction Prediction models Predictive models signal processing Signal Processing, Computer-Assisted Spectra State vectors Visual discrimination Visual perception Visualization Waveforms Young Adult |
Title | Learning Discriminative Spatiospectral Features of ERPs for Accurate Brain-Computer Interfaces |
URI | https://ieeexplore.ieee.org/document/8613780 https://www.ncbi.nlm.nih.gov/pubmed/30668507 https://www.proquest.com/docview/2285332584 https://www.proquest.com/docview/2179441381 |
Volume | 23 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDLaAA-LC-1FeChInREaXdaE9MmAak4YQD4kTVZO6CIE2BOuFX4-dZhVCgLhVapo2dWJ_Tmx_APtkYRCzIpJaY0tywS6ZJZGWBB1QZ0j6sXBRvpe6dxf179v3U3BY58Igogs-wwZfurP8fGRL3io7isn2HMfkoE_TNKtyter9FEcg4ei4FF1IWoiRP8RshslRv9O74DiuuMHsuhETvH8xQ45X5XeI6UxNdwEGk4-sIkyeG-XYNOzHt_qN_x3FIsx7zClOqkmyBFM4XIbZgT9VX4EHX2T1UZw9sRbh6BjWguLGhVu7ZMw36oDhYknuuRgV4vz66l0Q4BUn1pZcbkJ0mGxCTlgihNtqLDjgaxXuuue3pz3peRekJbQ0lirLCSdYbHGGk1aKE5fxWDetoQVsc0NKoI1R2yZhbkJbsIdEojXKKJsXOY1uDWaGoyFugCDjl2dhQopEkw-OGMeZIauZqQSTZsuYAMKJGFLri5IzN8ZL6pyTMElZcilLLvWSC-CgfuS1qsjxV-MVFkDd0P_7ALYnsk79mn1PlSLoQkOLowD26tu02vgIJRviqKQ2rL_I7sfNANarOVL3Tc6Xjgleb_78zi2Yoy_z8WnbMDN-K3GHAM3Y7LqZ_AmXpO6x |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1RT9swED6hIsFeNhhsyyhgJJ4mXFI3NckjBaqWUYRYK_WJKHYu07SpnaB54ddz57gRmgbiLVIcJ87Zd9_Zd_cBHJKFQcyKSGqNHckFu2SWRFoSdECdIenHwkX5XuvBJLqcdqcrcFTnwiCiCz7DFl-6s_x8bkveKjuOyfacxOSgr5Ldj7pVtla9o-IoJBwhl6ILSUsx8seY7TA5vuwNhhzJFbeYXzdiivdnhsgxq7wMMp2x6X-A0fIzqxiT361yYVr28Z8Kjm8dxwa896hTnFbTZBNWcPYR1kb-XH0L7nyZ1Z_i_BfrEY6PYT0ofriAa5eOeU8dMGAsyUEX80Jc3N48CIK84tTakgtOiB7TTcglT4Rwm40Fh3xtw6R_MT4bSM-8IC3hpYVUWU5IwWKHc5y0Upy6jCe6bQ0tYZsbUgNdjLo2CXMT2oJ9JBKuUUbZvMhpdJ-gMZvP8AsIMn95FiakSjR54YhxnBmym5lKMGl3jAkgXIohtb4sObNj_EmdexImKUsuZcmlXnIBfKsf-VvV5Hit8RYLoG7o_30AzaWsU79qH1KlCLzQ0OIogIP6Nq03PkTJZjgvqQ1rMLL8cTuAz9Ucqfsm90vHBLC__v-d-7A-GI-u0qvh9fcdeEdf6aPVmtBY3Je4S_BmYfbcrH4CPXbx_g |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Learning+Discriminative+Spatiospectral+Features+of+ERPs+for+Accurate+Brain-Computer+Interfaces&rft.jtitle=IEEE+journal+of+biomedical+and+health+informatics&rft.au=Abibullaev%2C+Berdakh&rft.au=Zollanvari%2C+Amin&rft.date=2019-09-01&rft.eissn=2168-2208&rft.volume=23&rft.issue=5&rft.spage=2009&rft_id=info:doi/10.1109%2FJBHI.2018.2883458&rft_id=info%3Apmid%2F30668507&rft.externalDocID=30668507 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-2194&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-2194&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-2194&client=summon |