Plastid phylogenomic insights into the evolution of Caryophyllales
[Display omitted] •Plastomes of 95 species (80 genera) within Caryophyllales were newly sequenced.•The deep-level relationships of Caryophyllales were resolved.•A fossil-calibrated chronogram with Caryophyllales-wide sampling is provided.•A rapid radiation of Caryophyllales in the mid-Cretaceous was...
Saved in:
Published in | Molecular phylogenetics and evolution Vol. 134; pp. 74 - 86 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
01.05.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | [Display omitted]
•Plastomes of 95 species (80 genera) within Caryophyllales were newly sequenced.•The deep-level relationships of Caryophyllales were resolved.•A fossil-calibrated chronogram with Caryophyllales-wide sampling is provided.•A rapid radiation of Caryophyllales in the mid-Cretaceous was detected.•Relationship between plastome structure and molecular evolution was discussed.
The Caryophyllales includes 40 families and 12,500 species, representing a large and diverse clade of angiosperms. Collectively, members of the clade grow on all continents and in all terrestrial biomes and often occupy extreme habitats (e.g., xeric, salty). The order is characterized by many taxa with unusual adaptations including carnivory, halophytism, and multiple origins of C4 photosynthesis. However, deep phylogenetic relationships within the order have long been problematic due to putative rapid divergence. To resolve the deep-level relationships of Caryophyllales, we performed phylogenomic analyses of all 40 families of Caryophyllales. We time-calibrated the molecular phylogeny of this clade, and evaluated putative correlations among plastid structural changes and rates of molecular substitution. We recovered a well-resolved and well-supported phylogeny of the Caryophyllales that was largely congruent with previous estimates of this order. Our results provide improved support for the phylogenetic position of several key families within this clade. The crown age of Caryophyllales was estimated at ca. 114.4 million years ago (Ma), with periods of rapid divergence in the mid-Cretaceous. A strong, positive correlation between nucleotide substitution rate and plastid structural changes was detected. Our study highlights the importance of broad taxon sampling in phylogenomic inference and provides a firm basis for future investigations of molecular, morphological, and ecophysiological evolution in Caryophyllales. |
---|---|
AbstractList | The Caryophyllales includes 40 families and 12,500 species, representing a large and diverse clade of angiosperms. Collectively, members of the clade grow on all continents and in all terrestrial biomes and often occupy extreme habitats (e.g., xeric, salty). The order is characterized by many taxa with unusual adaptations including carnivory, halophytism, and multiple origins of C4 photosynthesis. However, deep phylogenetic relationships within the order have long been problematic due to putative rapid divergence. To resolve the deep-level relationships of Caryophyllales, we performed phylogenomic analyses of all 40 families of Caryophyllales. We time-calibrated the molecular phylogeny of this clade, and evaluated putative correlations among plastid structural changes and rates of molecular substitution. We recovered a well-resolved and well-supported phylogeny of the Caryophyllales that was largely congruent with previous estimates of this order. Our results provide improved support for the phylogenetic position of several key families within this clade. The crown age of Caryophyllales was estimated at ca. 114.4 million years ago (Ma), with periods of rapid divergence in the mid-Cretaceous. A strong, positive correlation between nucleotide substitution rate and plastid structural changes was detected. Our study highlights the importance of broad taxon sampling in phylogenomic inference and provides a firm basis for future investigations of molecular, morphological, and ecophysiological evolution in Caryophyllales.The Caryophyllales includes 40 families and 12,500 species, representing a large and diverse clade of angiosperms. Collectively, members of the clade grow on all continents and in all terrestrial biomes and often occupy extreme habitats (e.g., xeric, salty). The order is characterized by many taxa with unusual adaptations including carnivory, halophytism, and multiple origins of C4 photosynthesis. However, deep phylogenetic relationships within the order have long been problematic due to putative rapid divergence. To resolve the deep-level relationships of Caryophyllales, we performed phylogenomic analyses of all 40 families of Caryophyllales. We time-calibrated the molecular phylogeny of this clade, and evaluated putative correlations among plastid structural changes and rates of molecular substitution. We recovered a well-resolved and well-supported phylogeny of the Caryophyllales that was largely congruent with previous estimates of this order. Our results provide improved support for the phylogenetic position of several key families within this clade. The crown age of Caryophyllales was estimated at ca. 114.4 million years ago (Ma), with periods of rapid divergence in the mid-Cretaceous. A strong, positive correlation between nucleotide substitution rate and plastid structural changes was detected. Our study highlights the importance of broad taxon sampling in phylogenomic inference and provides a firm basis for future investigations of molecular, morphological, and ecophysiological evolution in Caryophyllales. The Caryophyllales includes 40 families and 12,500 species, representing a large and diverse clade of angiosperms. Collectively, members of the clade grow on all continents and in all terrestrial biomes and often occupy extreme habitats (e.g., xeric, salty). The order is characterized by many taxa with unusual adaptations including carnivory, halophytism, and multiple origins of C photosynthesis. However, deep phylogenetic relationships within the order have long been problematic due to putative rapid divergence. To resolve the deep-level relationships of Caryophyllales, we performed phylogenomic analyses of all 40 families of Caryophyllales. We time-calibrated the molecular phylogeny of this clade, and evaluated putative correlations among plastid structural changes and rates of molecular substitution. We recovered a well-resolved and well-supported phylogeny of the Caryophyllales that was largely congruent with previous estimates of this order. Our results provide improved support for the phylogenetic position of several key families within this clade. The crown age of Caryophyllales was estimated at ca. 114.4 million years ago (Ma), with periods of rapid divergence in the mid-Cretaceous. A strong, positive correlation between nucleotide substitution rate and plastid structural changes was detected. Our study highlights the importance of broad taxon sampling in phylogenomic inference and provides a firm basis for future investigations of molecular, morphological, and ecophysiological evolution in Caryophyllales. The Caryophyllales includes 40 families and 12,500 species, representing a large and diverse clade of angiosperms. Collectively, members of the clade grow on all continents and in all terrestrial biomes and often occupy extreme habitats (e.g., xeric, salty). The order is characterized by many taxa with unusual adaptations including carnivory, halophytism, and multiple origins of C4 photosynthesis. However, deep phylogenetic relationships within the order have long been problematic due to putative rapid divergence. To resolve the deep-level relationships of Caryophyllales, we performed phylogenomic analyses of all 40 families of Caryophyllales. We time-calibrated the molecular phylogeny of this clade, and evaluated putative correlations among plastid structural changes and rates of molecular substitution. We recovered a well-resolved and well-supported phylogeny of the Caryophyllales that was largely congruent with previous estimates of this order. Our results provide improved support for the phylogenetic position of several key families within this clade. The crown age of Caryophyllales was estimated at ca. 114.4 million years ago (Ma), with periods of rapid divergence in the mid-Cretaceous. A strong, positive correlation between nucleotide substitution rate and plastid structural changes was detected. Our study highlights the importance of broad taxon sampling in phylogenomic inference and provides a firm basis for future investigations of molecular, morphological, and ecophysiological evolution in Caryophyllales. [Display omitted] •Plastomes of 95 species (80 genera) within Caryophyllales were newly sequenced.•The deep-level relationships of Caryophyllales were resolved.•A fossil-calibrated chronogram with Caryophyllales-wide sampling is provided.•A rapid radiation of Caryophyllales in the mid-Cretaceous was detected.•Relationship between plastome structure and molecular evolution was discussed. The Caryophyllales includes 40 families and 12,500 species, representing a large and diverse clade of angiosperms. Collectively, members of the clade grow on all continents and in all terrestrial biomes and often occupy extreme habitats (e.g., xeric, salty). The order is characterized by many taxa with unusual adaptations including carnivory, halophytism, and multiple origins of C4 photosynthesis. However, deep phylogenetic relationships within the order have long been problematic due to putative rapid divergence. To resolve the deep-level relationships of Caryophyllales, we performed phylogenomic analyses of all 40 families of Caryophyllales. We time-calibrated the molecular phylogeny of this clade, and evaluated putative correlations among plastid structural changes and rates of molecular substitution. We recovered a well-resolved and well-supported phylogeny of the Caryophyllales that was largely congruent with previous estimates of this order. Our results provide improved support for the phylogenetic position of several key families within this clade. The crown age of Caryophyllales was estimated at ca. 114.4 million years ago (Ma), with periods of rapid divergence in the mid-Cretaceous. A strong, positive correlation between nucleotide substitution rate and plastid structural changes was detected. Our study highlights the importance of broad taxon sampling in phylogenomic inference and provides a firm basis for future investigations of molecular, morphological, and ecophysiological evolution in Caryophyllales. |
Author | Yao, Gang Li, De-Zhu Soltis, Pamela S. Soltis, Douglas E. Douglas, Norman A. Yang, Jun-Bo Mostow, Rebecca Brockington, Samuel F. Moore, Michael J. Mandala, Venkata Shiva Christenhusz, Maarten J.M. Li, Hong-Tao Jin, Jian-Jun Croley, Matthew Chase, Mark W. Yi, Ting-Shuang Smith, Stephen A. |
Author_xml | – sequence: 1 givenname: Gang surname: Yao fullname: Yao, Gang organization: Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China – sequence: 2 givenname: Jian-Jun surname: Jin fullname: Jin, Jian-Jun organization: Key Laboratory for Plant Biodiversity and Biogeography, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China – sequence: 3 givenname: Hong-Tao surname: Li fullname: Li, Hong-Tao organization: Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China – sequence: 4 givenname: Jun-Bo surname: Yang fullname: Yang, Jun-Bo organization: Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China – sequence: 5 givenname: Venkata Shiva surname: Mandala fullname: Mandala, Venkata Shiva organization: Department of Biology, Oberlin College, Oberlin, OH 44074, USA – sequence: 6 givenname: Matthew surname: Croley fullname: Croley, Matthew organization: Department of Biology, Oberlin College, Oberlin, OH 44074, USA – sequence: 7 givenname: Rebecca surname: Mostow fullname: Mostow, Rebecca organization: Department of Biology, Oberlin College, Oberlin, OH 44074, USA – sequence: 8 givenname: Norman A. surname: Douglas fullname: Douglas, Norman A. organization: Department of Biology, University of Florida, Gainesville, FL 32611-8525, USA – sequence: 9 givenname: Mark W. surname: Chase fullname: Chase, Mark W. organization: Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3DS, UK – sequence: 10 givenname: Maarten J.M. surname: Christenhusz fullname: Christenhusz, Maarten J.M. organization: Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3DS, UK – sequence: 11 givenname: Douglas E. surname: Soltis fullname: Soltis, Douglas E. organization: Department of Biology, University of Florida, Gainesville, FL 32611-8525, USA – sequence: 12 givenname: Pamela S. surname: Soltis fullname: Soltis, Pamela S. organization: Florida Museum of Natural History, University of Florida, Gainesville, FL 32611-7800, USA – sequence: 13 givenname: Stephen A. surname: Smith fullname: Smith, Stephen A. organization: Department of Ecology & Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109-1048, USA – sequence: 14 givenname: Samuel F. surname: Brockington fullname: Brockington, Samuel F. organization: Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, UK – sequence: 15 givenname: Michael J. surname: Moore fullname: Moore, Michael J. organization: Department of Biology, Oberlin College, Oberlin, OH 44074, USA – sequence: 16 givenname: Ting-Shuang surname: Yi fullname: Yi, Ting-Shuang email: tingshuangyi@mail.kib.ac.cn organization: Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China – sequence: 17 givenname: De-Zhu surname: Li fullname: Li, De-Zhu email: dzl@mail.kib.ac.cn organization: Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30735725$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkT1PwzAURS0E4vsXIKGMLAl-dt3aAwNUfElIMMBsJfYLdZXEJXYr9d_j0MLAAJPfcI7td-8R2e18h4ScAS2AwvhyXqzbBa4KRkEWwArK-A45BKpErgTw3WEWIp8oyg_IUQhzSgGEEvvkgNMJFxMmDsnNS1OG6Gy2mK0b_46db53JXBfc-yyGNESfxRlmuPLNMjrfZb7OpmW_9oPQlA2GE7JXl03A0-15TN7ubl-nD_nT8_3j9PopN1yxmDMFrFSmGtnaGpRUigoFM2DR1DXnyo5AclpVgBKYsFLIaqzq0iJMQIyo4cfkYnPvovcfSwxRty4YTJ_o0C-DZoylXCTj8n80PQVSMTVO6PkWXVYtWr3oXZvW098RJYBvANP7EHqsfxCgeihCz_VXEXooQgPTqYhkqV-WcbEcAox96Zp_3KuNiynNlcNeB-OwM2hdjyZq692f_ifHJaVR |
CitedBy_id | crossref_primary_10_3390_f14071486 crossref_primary_10_1080_23802359_2024_2333574 crossref_primary_10_3897_phytokeys_220_97667 crossref_primary_10_1038_s41598_024_66102_0 crossref_primary_10_1111_jipb_13415 crossref_primary_10_1111_jse_12733 crossref_primary_10_1080_23802359_2023_2288891 crossref_primary_10_1093_hr_uhad124 crossref_primary_10_1038_s41477_023_01474_1 crossref_primary_10_3390_d17020136 crossref_primary_10_1016_j_japb_2024_05_001 crossref_primary_10_1186_s12870_023_04323_7 crossref_primary_10_3390_plants8100392 crossref_primary_10_31083_j_fbl2810233 crossref_primary_10_1007_s00299_020_02532_0 crossref_primary_10_1002_ece3_70199 crossref_primary_10_3390_plants11131700 crossref_primary_10_1080_23802359_2020_1718028 crossref_primary_10_1016_j_ympev_2021_107259 crossref_primary_10_1111_gcb_17622 crossref_primary_10_1007_s11816_024_00943_z crossref_primary_10_1007_s12298_021_01121_z crossref_primary_10_1093_botlinnean_boaa093 crossref_primary_10_32604_phyton_2024_050099 crossref_primary_10_1016_j_ympev_2019_106668 crossref_primary_10_1016_j_japb_2024_11_001 crossref_primary_10_1111_jse_13004 crossref_primary_10_1111_nph_19342 crossref_primary_10_1186_s12870_024_04750_0 crossref_primary_10_3390_d14050323 crossref_primary_10_11110_kjpt_2021_51_3_337 crossref_primary_10_3390_d15040570 crossref_primary_10_1093_dnares_dsac050 crossref_primary_10_1002_ajb2_1775 crossref_primary_10_1186_s12864_023_09607_8 crossref_primary_10_1186_s12915_023_01539_9 crossref_primary_10_3389_fpls_2022_893201 crossref_primary_10_3389_fpls_2024_1487725 crossref_primary_10_1007_s12010_023_04535_5 crossref_primary_10_1186_s12864_022_08336_8 crossref_primary_10_1038_s42003_023_05044_1 crossref_primary_10_32615_bp_2021_014 crossref_primary_10_1186_s12862_023_02121_1 crossref_primary_10_1111_mec_15448 crossref_primary_10_1016_j_flora_2024_152639 crossref_primary_10_1080_23802359_2019_1688116 crossref_primary_10_1186_s12870_020_02801_w crossref_primary_10_3390_genes15050544 crossref_primary_10_3389_fpls_2022_844918 crossref_primary_10_1080_23802359_2024_2383686 crossref_primary_10_1186_s12870_025_06338_8 crossref_primary_10_1007_s00239_024_10224_6 crossref_primary_10_1007_s40415_021_00772_2 crossref_primary_10_17129_botsci_3446 crossref_primary_10_3897_phytokeys_243_122784 crossref_primary_10_1080_23802359_2021_1997126 crossref_primary_10_1093_botlinnean_boad025 crossref_primary_10_1186_s12870_023_04148_4 crossref_primary_10_1007_s11105_020_01246_7 crossref_primary_10_1111_jse_12814 crossref_primary_10_1093_sysbio_syaa066 crossref_primary_10_1002_ece3_9205 crossref_primary_10_1007_s00425_021_03753_7 crossref_primary_10_1016_j_csbj_2023_10_023 crossref_primary_10_1093_hr_uhad161 crossref_primary_10_3390_plants11233275 crossref_primary_10_1016_j_pld_2020_11_001 crossref_primary_10_1002_ece3_8481 crossref_primary_10_1186_s12915_023_01544_y crossref_primary_10_1093_botlinnean_boaa048 crossref_primary_10_1186_s12870_024_04972_2 crossref_primary_10_1016_j_ympev_2021_107171 crossref_primary_10_1038_s41598_020_68563_5 crossref_primary_10_1080_23802359_2022_2054380 crossref_primary_10_1111_jse_12946 crossref_primary_10_7717_peerj_8025 crossref_primary_10_1186_s12870_023_04682_1 crossref_primary_10_3389_fpls_2022_1046253 crossref_primary_10_1371_journal_pone_0310091 crossref_primary_10_1016_j_ympev_2021_107214 crossref_primary_10_1016_j_ympev_2021_107217 crossref_primary_10_1016_j_ympev_2020_106940 crossref_primary_10_3390_ijms20174107 crossref_primary_10_1080_23802359_2019_1659120 crossref_primary_10_1080_23802359_2023_2220436 crossref_primary_10_1093_botlinnean_boaa052 crossref_primary_10_1002_ece3_7281 crossref_primary_10_3389_fpls_2021_612382 crossref_primary_10_3390_genes15010098 crossref_primary_10_3897_phytokeys_173_60898 crossref_primary_10_1002_ajb2_16048 crossref_primary_10_1080_14772000_2020_1759728 crossref_primary_10_3897_phytokeys_155_53460 crossref_primary_10_1186_s12870_022_03715_5 crossref_primary_10_3389_fpls_2021_643137 crossref_primary_10_3390_genes13111979 crossref_primary_10_3897_phytokeys_175_61054 crossref_primary_10_15407_ukrbotj82_01_060 crossref_primary_10_3389_fpls_2022_990064 crossref_primary_10_3389_fpls_2020_00729 crossref_primary_10_1093_botlinnean_boac045 crossref_primary_10_1080_23802359_2024_2329666 crossref_primary_10_1080_23802359_2024_2398180 crossref_primary_10_1038_s41598_023_39403_z crossref_primary_10_3389_fpls_2022_870949 crossref_primary_10_1002_ece3_70013 crossref_primary_10_1080_0028825X_2021_1905671 crossref_primary_10_3389_fpls_2023_1127443 crossref_primary_10_3390_plants9121671 crossref_primary_10_1093_aob_mcad098 crossref_primary_10_1086_731504 crossref_primary_10_3390_agronomy14050913 crossref_primary_10_3390_d14121104 |
Cites_doi | 10.1186/1471-2229-7-45 10.1038/nature21370 10.1007/0-387-27048-5_7 10.1126/science.1177265 10.1111/j.1759-6831.2012.00197.x 10.1016/j.ympev.2013.12.004 10.1093/molbev/mst261 10.1093/molbev/mst064 10.3417/2015035 10.1007/s00239-010-9398-z 10.1073/pnas.1205818109 10.1093/molbev/msv081 10.1093/jxb/err048 10.7717/peerj.2699 10.1093/oxfordjournals.molbev.a026334 10.1080/10635150390218330 10.1093/molbev/msn083 10.1126/science.1163197 10.1111/nph.14503 10.1080/10635150500541730 10.1098/rspb.2001.1782 10.1093/bioinformatics/bts199 10.1093/gbe/evr105 10.17520/biods.2015052 10.1111/boj.12385 10.3109/19401736.2015.1060448 10.1371/journal.pone.0126690 10.1093/gbe/evw033 10.1186/s13059-016-1004-2 10.1093/bioinformatics/bth352 10.1186/1471-2148-12-100 10.3372/wi.39.39201 10.1159/000355212 10.1111/nph.13490 10.2307/3546574 10.1111/nph.14461 10.1093/sysbio/syu054 10.1007/s11103-012-9884-3 10.3732/ajb.1700083 10.3732/apps.1600063 10.1186/1471-2148-14-23 10.1093/bioinformatics/btl446 10.1073/pnas.0813376106 10.1016/j.molcel.2012.11.030 10.1038/331344a0 10.1111/nph.14822 10.1073/pnas.1100628108 10.1093/nar/gkt371 10.1038/nature12817 10.1093/molbev/msl089 10.2307/2412923 10.1101/gr.097261.109 10.1007/s00606-011-0544-x 10.1016/S0169-5347(01)02269-8 10.1098/rstb.2008.0144 10.1002/ajb2.1069 10.1007/s11103-011-9753-5 10.1016/j.plaphy.2010.04.009 10.3732/apps.1200497 10.1080/10635150500234583 10.1093/molbev/msw054 10.1016/j.tig.2006.02.003 10.3417/2014014 10.1086/378649 10.1111/j.1461-0248.2009.01410.x 10.1109/GCE.2010.5676129 10.1371/journal.pbio.1000602 10.1086/286013 10.1093/bib/bbu015 10.1186/s12864-017-4319-9 10.1089/cmb.2012.0021 10.1111/jbi.12846 10.1111/nph.14812 10.3417/2017017 10.3732/ajb.0900346 10.3372/wi.45.45301 10.1111/nph.13264 10.1038/46528 10.2307/2399279 10.1111/nph.13743 10.1093/molbev/mss020 10.1093/molbev/msq089 10.1371/journal.pcbi.1003537 10.1093/bioinformatics/btv383 10.1080/00173134.2012.677856 10.1111/j.1469-8137.2012.04158.x 10.3109/19401736.2014.883611 10.1016/j.tree.2007.01.012 10.1073/pnas.1014456108 10.1007/s00294-009-0249-7 10.1073/pnas.0907801107 10.1371/journal.pone.0141329 10.1186/1471-2229-8-59 10.1111/nph.14772 10.1080/10635150701397643 10.1093/molbev/mst010 10.1016/j.ympev.2015.02.002 10.12705/654.6 10.1093/bioinformatics/btg412 10.1023/A:1006478403810 10.1073/pnas.0709121104 10.1093/oxfordjournals.molbev.a025779 10.1086/597785 10.3732/ajb.89.1.132 10.1093/bioinformatics/bts492 10.3732/ajb.1000404 10.1371/journal.pone.0068591 10.1093/sysbio/syt108 10.1016/j.ympev.2014.08.006 10.3732/ajb.1500184 10.1093/molbev/msu252 10.1105/tpc.113.113373 10.1007/BF00986073 10.1007/s00239-008-9180-7 10.1186/1471-2148-4-27 10.1093/molbev/msm267 10.1111/j.1096-0031.2005.00059.x |
ContentType | Journal Article |
Copyright | 2019 Elsevier Inc. Copyright © 2018. Published by Elsevier Inc. Copyright © 2019 Elsevier Inc. All rights reserved. |
Copyright_xml | – notice: 2019 Elsevier Inc. – notice: Copyright © 2018. Published by Elsevier Inc. – notice: Copyright © 2019 Elsevier Inc. All rights reserved. |
DBID | AAYXX CITATION NPM 7X8 7S9 L.6 |
DOI | 10.1016/j.ympev.2018.12.023 |
DatabaseName | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed AGRICOLA |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1095-9513 |
EndPage | 86 |
ExternalDocumentID | 30735725 10_1016_j_ympev_2018_12_023 S1055790318302252 |
Genre | Journal Article |
GroupedDBID | --- --K --M -~X .~1 0R~ 123 1B1 1RT 1~. 1~5 29M 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JM AABNK AABVA AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALCJ AALRI AAOAW AAQFI AAQXK AATLK AAXUO ABFNM ABFRF ABGRD ABGSF ABJNI ABMAC ABUDA ABXDB ABYKQ ACDAQ ACGFO ACGFS ACRLP ADBBV ADEZE ADFGL ADMUD ADQTV ADUVX AEBSH AEFWE AEHWI AEKER AENEX AEQOU AFFNX AFKWA AFTJW AFXIZ AGHFR AGRDE AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CAG CBWCG COF CS3 DM4 DOVZS DU5 EBS EFBJH EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLV HLW HVGLF HZ~ IHE J1W K-O KOM LG5 LW8 LX2 M41 MO0 MVM N9A O-L O9- OAUVE OHT OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SAB SBG SCC SDF SDG SDP SES SEW SPCBC SSA SSU SSZ T5K TN5 UNMZH WUQ XJT XPP XSW YK3 ZCG ZKB ZMT ZU3 ~02 ~G- AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO ADVLN AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH NPM 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c392t-2912a9cb4dfdce8085be52c1decff339d41830bb1e8125d858b69fade171540c3 |
IEDL.DBID | .~1 |
ISSN | 1055-7903 1095-9513 |
IngestDate | Fri Jul 11 08:47:38 EDT 2025 Thu Jul 10 22:24:29 EDT 2025 Thu Apr 03 07:10:44 EDT 2025 Tue Jul 01 00:44:30 EDT 2025 Thu Apr 24 23:08:58 EDT 2025 Fri Feb 23 02:26:03 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Gene loss Plastome Rapid radiation Caryophyllales Substitution rate Molecular dating Phylogenomics gene loss plastome substitution rate molecular dating rapid radiation phylogenomics |
Language | English |
License | Copyright © 2018. Published by Elsevier Inc. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c392t-2912a9cb4dfdce8085be52c1decff339d41830bb1e8125d858b69fade171540c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 30735725 |
PQID | 2183189296 |
PQPubID | 23479 |
PageCount | 13 |
ParticipantIDs | proquest_miscellaneous_2221018238 proquest_miscellaneous_2183189296 pubmed_primary_30735725 crossref_primary_10_1016_j_ympev_2018_12_023 crossref_citationtrail_10_1016_j_ympev_2018_12_023 elsevier_sciencedirect_doi_10_1016_j_ympev_2018_12_023 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-05-01 |
PublicationDateYYYYMMDD | 2019-05-01 |
PublicationDate_xml | – month: 05 year: 2019 text: 2019-05-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Molecular phylogenetics and evolution |
PublicationTitleAlternate | Mol Phylogenet Evol |
PublicationYear | 2019 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Posada (b0415) 2008; 25 Jeffroy, Brinkmann, Delsuc, Philippe (b0225) 2006; 22 Pozzi (b0420) 2016; 43 Katoh, Standley (b0245) 2013; 30 Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D., R Core Team., 2016. _nlme: Linear and nonlinear mixed effects models_.R package version 3.1-128 Wiens (b0595) 2003; 52 Braukmann, Stefanović (b0055) 2012; 79 Palmer, Jansen, Michaels, Chase, Manhart (b0380) 1988; 75 Wang, Ortiz, Jacques, Xiang, Li, Lin, Li, Liu, Soltis, Soltis, Chen (b0560) 2012; 195 Wang, Moore, Soltis, Bell, Brockington, Alexandre, Davis, Latvis, Manchester, Soltis (b0555) 2009; 106 Lidgard, Crane (b0295) 1988; 331 Xi, Ruhfel, Schaefer, Amorim, Sugumaran, Wurdack, Endress, Matthews, Stevens, Mathews, Davis (b0620) 2012; 109 Thulin, Moore, El-Seedi, Larsson, Christin, Edwards (b0540) 2016; 65 Zeng, Zhang, Zhang, Endress, Huang, Ma (b0655) 2017; 214 McElwain, Willis, Lupia (b0340) 2005; 177 Funk, Berg, Krupinska, Maier, Krause (b0165) 2007; 7 Smith, Donoghue (b0485) 2008; 322 Galtier, Daubin (b0170) 2008; 363 Whitfield, Lockhart (b0570) 2007; 22 Soltis, Soltis, Chase (b0505) 1999; 402 Zheng, Wiens (b0675) 2015; 85 Hernández-Ledesma, Berendsohn, Borsch, Mering, Akhani, Arias, Castañeda-Noa, Eggli, Eriksson, Flores-Olvera, Fuentes-Bazán, Kadereit, Klak, Korotkova, Nyffeler, Ocampo, Ochoterena, Oxelman, Sanchez, Schlumpberger, Uotila (b0205) 2015; 45 . Gurusamy, Lee, Park (b0190) 2016; 27 Blazier, Guisinger-Bellian, Jansen (b0040) 2011; 76 Sanderson, Copetti, Búrquez, Bustamante, Charboneau, Eguiarte, Kumar, Lee, Lee, Lee, McMahon, Steele, Wing, Yang, Zwickl, Wojciechowski (b0460) 2015; 102 Drew, Ruhfel, Smith, Moore, Briggs, Gitzendanner, Soltis, Soltis (b0120) 2014; 63 Peredo, King, Les (b0395) 2013; 8 Feild, Brodribb, Iglesias, Chatelet, Baresch, Upchurch, Gomez, Mohr, Coiffard, Kvacek, Jaramillo (b0155) 2011; 108 Liu, Ye, Liu, Wang, Yang, Lai, Zeng, Lin (b0300) 2015; 23 Schmitz-Linneweber, Maier, Alcaraz, Cottet, Herrmann, Mache (b0470) 2001; 45 Cho, Yun, Yoon, Hong, Mekapogu, Kim, Yang (b0085) 2015; 10 Moore, Soltis, Bell, Burleigh, Solti (b0355) 2010; 107 Sloan, Triant, Forrester, Bergner, Wu, Taylor (b0480) 2014; 72 Martín, Sabater (b0330) 2010; 48 Bouckaert, Heled, Kühnert, Vaughan, Wu, Xie, Suchard, Rambaut, Drummond (b0045) 2014; 10 Daniell, Lin, Yu, Chang (b0115) 2016; 17 Li, Zhu, Ruan, Qian, Fang, Shi, Li, Li, Shan, Kristiansen, Li, Yang, Wang, Wang (b0290) 2010; 20 Stamatakis (b0515) 2006; 22 Barrett, Freudenstein, Li, Mayfield-Jones, Perez, Pires, Santos (b0020) 2014; 31 Logacheva, Samigullin, Dhingra, Penin (b0305) 2008; 8 Fu, Li, Milne, Zhang, Ma, Yang, Li, Gao (b0160) 2017; 18 Bankevich, Nurk, Antipov, Gurevich, Dvorkin, Kulikov, Lesin, Nikolenko, Pham, Prjibelski, Pyshkin, Sirotkin, Vyahhi, Tesler, Alekseyev, Pevzner (b0015) 2012; 19 Schulte, P., Alegret, L., Arenillas, I., Arz, J.A., Barton, P.J., Bown, P.R., Bralower, T.J., Christeson, G.L., Claeys, P., Cockell, C.S., Collins, G.S., Deutsch, A., Goldin, T.J., Goto, K., Grajales-Nishimura, J.M., Grieve, R.A.F., Gulick, S.P.S., Johnson, K.R., Kiessling, W., Koeberl, Kring, C.D.A., MacLeod, K.G., Matsui, T., Melosh, J., Montanari, A., Morgan, J.V., Neal, C.R., Nichols, D.J., Norris, R.D., Pierazzo, E., Ravizza, G., Rebolledo-Vieyra, M., Reimold, W.U., Robin, E., Salge, T., Speijer, R.P., Sweet, A.R., Urrutia-Fucugauchi, J., Vajda, V., Whalen, M.T., Willumsen, P.S., 2010. The Chicxulub asteroid impact and mass extinction at the Cretaceous-Paleogene boundary. Science 327, pp. 1214–1218. Crawley, Hilu (b0105) 2012; 298 Ogden, Rosenberg (b0375) 2006; 55 Kung, Tsien (b0275) 1979 Lanfear, Calcott, Ho, Guindon (b0280) 2012; 29 Soltis, Smith, Cellinese, Wurdack, Tank, Brockington, Refulio-Rodriguez, Walker, Moore, Carlsward, Bell, Latvis, Crawley, Black, Diouf, Xi, Rushworth, Gitzendanner, Sytsma, Qiu, Hilu, Davis, Sanderson, Beaman, Olmstead, Judd, Donoghue, Soltis (b0500) 2011; 98 Xia (b0625) 2013; 30 Castresana (b0075) 2000; 17 Jansen, Cai, Raubeson, Daniell, dePamphilis, Leebens-Mack, Müller, Guisinger-Bellian, Haberle, Hansen, Chumley, Lee, Peery, McNeal, Kuehl, Boore (b0215) 2007; 104 Paradis, Claude, Strimmer (b0385) 2004; 20 Wickett, Zhang, Hansen, Roper, Kuehl, Plock, Wolf, dePamphilis, Boore, Goffinet (b0590) 2008; 25 Xiang, Huang, Hu, Wen, Li, Yi, Chen, Xiang, Ma (b0630) 2016; 34 Cai, Guisinger, Kim, Ruck, Blazier, McMurtry, Kuehl, Boore, Jansen (b0070) 2008; 67 Chumley, Palmer, Mower, Fourcade, Calie, Boore, Jansen (b0090) 2006; 23 Schäferhoff, Müller, Borsch (b0465) 2009; 39 Raman, Park (b0425) 2015; 10 Ruhfel, Gitzendammer, Soltis, Soltis, Burleigh (b0445) 2014; 14 Yang, Li, Li (b0635) 2014; 14 Givnish, Spalink, Ames, Lyon, Hunter, Zuluaga, Iles, Clements, Arroyo, Leebens-Mack, Endara, Kriebel, Neubig, Whitten, Williams, Cameron (b0180) 2015; 282 Kubitzki, Rohwer, Bittrich (b0265) 1993 Wyman, Jansen, Boore (b0615) 2004; 20 Sage, Christin, Edwards (b0455) 2011; 62 Wicke, Schäferhoff, de Pamphilis, Müller (b0585) 2014; 31 Wikström, Kainulainen, Razafimandimbison, Smedmark, Bremer (b0605) 2015; 10 Halbritter, Hesse, Weber (b0200) 2012; 51 Welsh, Cromptom, Clemants (b0565) 2003 Magallón, Gómez-Acevedo, Sánchez-Reyes, Hernández-Hernández (b0325) 2015; 207 Stull, Moore, Mandala, Douglas, Kates, Qi, Brockington, Soltis, Soltis, Gitzendanner (b0535) 2013; 1 Wicke, Müller, de Pamphilis, Quandt, Wickett, Zhang, Renner, Schneeweiss (b0580) 2013; 25 Martins, Hansen (b0335) 1997; 149 Zhang, Ruhlman, Sabir, Blazier, Weng, Park, Jansen (b0660) 2016; 8 Cuénoud, Savolainen, Chatrou, Powell, Grayer, Chase (b0110) 2002; 89 Stevens, P.F., 2001 onwards. Angiosperm Phylogeny Website. Version 12, July 2012 [and more or less continuously updated since]. Wick, Schultz, Zobel, Holt (b0575) 2015; 31 Koenen, Clarkson, Pennington, Chatrou (b0260) 2015; 207 Steflova, Hobza, Vyskot, Kejnovsky (b0525) 2014; 142 Ruhlman, Jansen (b0450) 2014 Jiang, Chen, Wang, Li, Wiens (b0230) 2014; 80 Ma, Zhang, Zeng, Guo, Li (b0320) 2014; 63 Wikström, Savolainen, Chase (b0610) 2001; 268 Kumar, Stecher, Tamura (b0270) 2016; 33 Parks, Cronn, Liston (b0390) 2012; 12 Brockington, Alexandre, Ramdial, Moore, Crawley, Dhingra, Hilu, Soltis, Soltis (b0060) 2009; 170 Hahn, Bachmann, Chevreux (b0195) 2013; 41 Zhu, Guo, Gupta, Fan, Mower (b0685) 2016; 209 Nienaber, Thieret (b0370) 2003 Behnke (b0025) 1976; 126 Luo, Lu, Wortley, Li, Wang, Blackmore (b0315) 2015; 101 Angiosperm Phylogeny Group (APG) (b0005) 2016; 181 Doyle, Hotton (b0135) 1991 Müller, Borsch (b0365) 2005; 92 Walker, Yang, Feng, Timoneda, Mikenas, Hutchinson, Edwards, Wang, Ahluwalia, Olivieri, Walker-Hale, Majure, Puente, Kadereit, Lauterbach, Eggli, Flores-Olvera, Ochoterena, Brockington, Moore, Smith (b0550) 2018; 105 Wiens (b0600) 2005; 54 Som (b0510) 2015; 16 Kang, Lee, Kim, Shin, Park, Lee (b0240) 2015; 27 Yu, Wortley, Lu, Li, Wang, Blackmore (b0650) 2018; 103 Dohm, Minoche, Holtgräwe, Capella-Gutiérrez, Zakrzewski, Tafer, Rupp, Sörenson, Stracke, Reinhardt, Goesmann, Kraft, Schulz, Stadler, Schmidt, Gabaldón, Lehrach, Weisshaar, Himmelbauer (b0125) 2014; 505 Kim, Kim, Moore, Neubig, Williams, Whitten, Kim (b0255) 2015; 10 Rambaut, A., 2012. FigTree version 1.4.0. Smith, Brown, Yang, Bruenn, Drummond, Brockington, Walker, Last, Douglas, Moore (b0495) 2018; 217 Yang, Moore, Brockington, Mikenas, Olivieri, Walker, Smith (b0645) 2018; 217 Yang, Moore, Brockington, Soltis, Wong, Carpenter, Zhang, Chen, Yan, Xie, Sage, Covshoff, Hibberd, Nelson, Smith (b0640) 2015; 32 Bergsten (b0035) 2005; 21 Pick, Philippe, Schreiber, Erpenbeck, Jackson, Wrede, Wiens, Alié, Morgenstern, Manuel (b0405) 2010; 27 Dong, Xu, Li, Jin, Li, Lu, Suo (b0130) 2016; 4 Hertle, Blunder, Wunder, Pesaresi, Pribil, Armbruster, Leister (b0210) 2013; 49 Arakaki, Christin, Nyffeler, Lendel, Eggli, Ogburn, Spriggs, Moore, Edwards (b0010) 2011; 108 Felsenstein (b0150) 1978; 27 Lopez-Nieves, Yang, Timoneda, Wang, Feng, Smith, Brockington, Maeda (b0310) 2018; 217 Crawley, Hilu (b0100) 2012; 50 Fan, Sun, Huang, Wang (b0145) 2016; 27 Morrison, Ellis (b0360) 1997; 14 Brodribb, Feild (b0065) 2010; 13 Walker, Yang, Moore, Mikenas, Timoneda, Brockington, Smith (b0545) 2017; 104 Kadereit, Borsch, Weising, Freitag (b0235) 2003; 164 Zhong, Deusch, Goremykin, Penny, Biggs, Atherton, Nikiforova, Lockhart (b0680) 2011; 3 Braukmann, Kuzmina, Stefanovic (b0050) 2009; 55 Zhang, Lu, Wortley, Wang, Li, Blackmore (b0665) 2017; 102 Bell, Soltis, Soltis (b0030) 2010; 97 Miller, M.A., Pfeiffer, W., Schwartz, T., 2010. Creating the CIPRES Science Gateway for inference of large phylogenetics trees. In: Proceedings of the Gateway Computing Environments Workshop (GCE). New Orleans, LA, pp. 1–8. Ellison, Gotelli (b0140) 2001; 16 Giannasi (b0175) 1992; 17 Smith, O’Meara (b0490) 2012; 28 Chaney, Mangelson, Ramaraj, Jellen, Maughan (b0080) 2016; 4 Cosner, Raubeson, Jansen (b0095) 2004; 4 Jarvis, Ho, Lightfoot, Schmockel, Li, Boem, Borm, Ohyanagi, Mineta, Michell, Saber, Kharbatia, Rupper, Sharp, Dally, Boughton, Woo, Gao, Schijlen, Guo, Momin, Negrão, Al-Babili, Gehring, Roessner, Jung, Murphy, Arold, Gojobori, van der Linden, van Loo, Jellen, Maughan, Tester (b0220) 2017; 542 Zhang, Jin, Chen, Chase, Soltis, Li, Yang, Li, Yi (b0670) 2017; 214 Kearse, Moir, Wilson, Stones-Havas, Cheung, Sturrock, Buxton, Cooper, Markowitz, Duran, Thierer, Ashton, Meintjes, Drummond (b0250) 2012; 28 Méndez, Karlsson (b0345) 1999; 86 Rambaut, A., Suchard, M.A., Drummond, A.J., 2014. Tracer v1.6. Stamatakis (b0520) 2006 Goremykin, Nikiforova, Bininda-Emonds (b0185) 2010; 71 Li, Cao, Cai, Wang, Qu, Huang (b0285) 2014; 25 Philippe, Brinkmann, Lavrov, Littlewood, Manuel, Wörheide, Baurain (b0400) 2011; 9 Rodriguez-Ezpeleta, Brinkmann, Roure, Lartillot, Lang, Philippe (b0440) 2007; 56 Cuénoud (10.1016/j.ympev.2018.12.023_b0110) 2002; 89 10.1016/j.ympev.2018.12.023_b0475 Jarvis (10.1016/j.ympev.2018.12.023_b0220) 2017; 542 Kadereit (10.1016/j.ympev.2018.12.023_b0235) 2003; 164 Martín (10.1016/j.ympev.2018.12.023_b0330) 2010; 48 Soltis (10.1016/j.ympev.2018.12.023_b0500) 2011; 98 Koenen (10.1016/j.ympev.2018.12.023_b0260) 2015; 207 Fu (10.1016/j.ympev.2018.12.023_b0160) 2017; 18 10.1016/j.ympev.2018.12.023_b0350 Schmitz-Linneweber (10.1016/j.ympev.2018.12.023_b0470) 2001; 45 Smith (10.1016/j.ympev.2018.12.023_b0490) 2012; 28 Stamatakis (10.1016/j.ympev.2018.12.023_b0515) 2006; 22 Morrison (10.1016/j.ympev.2018.12.023_b0360) 1997; 14 Palmer (10.1016/j.ympev.2018.12.023_b0380) 1988; 75 Sage (10.1016/j.ympev.2018.12.023_b0455) 2011; 62 Castresana (10.1016/j.ympev.2018.12.023_b0075) 2000; 17 Bergsten (10.1016/j.ympev.2018.12.023_b0035) 2005; 21 Pick (10.1016/j.ympev.2018.12.023_b0405) 2010; 27 Funk (10.1016/j.ympev.2018.12.023_b0165) 2007; 7 Brockington (10.1016/j.ympev.2018.12.023_b0060) 2009; 170 Posada (10.1016/j.ympev.2018.12.023_b0415) 2008; 25 Sloan (10.1016/j.ympev.2018.12.023_b0480) 2014; 72 Kearse (10.1016/j.ympev.2018.12.023_b0250) 2012; 28 McElwain (10.1016/j.ympev.2018.12.023_b0340) 2005; 177 Yang (10.1016/j.ympev.2018.12.023_b0635) 2014; 14 Ruhfel (10.1016/j.ympev.2018.12.023_b0445) 2014; 14 Som (10.1016/j.ympev.2018.12.023_b0510) 2015; 16 Giannasi (10.1016/j.ympev.2018.12.023_b0175) 1992; 17 Drew (10.1016/j.ympev.2018.12.023_b0120) 2014; 63 Dong (10.1016/j.ympev.2018.12.023_b0130) 2016; 4 Hertle (10.1016/j.ympev.2018.12.023_b0210) 2013; 49 Xi (10.1016/j.ympev.2018.12.023_b0620) 2012; 109 Hernández-Ledesma (10.1016/j.ympev.2018.12.023_b0205) 2015; 45 Lidgard (10.1016/j.ympev.2018.12.023_b0295) 1988; 331 Parks (10.1016/j.ympev.2018.12.023_b0390) 2012; 12 10.1016/j.ympev.2018.12.023_b0410 10.1016/j.ympev.2018.12.023_b0530 Li (10.1016/j.ympev.2018.12.023_b0285) 2014; 25 Zhang (10.1016/j.ympev.2018.12.023_b0665) 2017; 102 Smith (10.1016/j.ympev.2018.12.023_b0485) 2008; 322 Brodribb (10.1016/j.ympev.2018.12.023_b0065) 2010; 13 Welsh (10.1016/j.ympev.2018.12.023_b0565) 2003 Martins (10.1016/j.ympev.2018.12.023_b0335) 1997; 149 Daniell (10.1016/j.ympev.2018.12.023_b0115) 2016; 17 Smith (10.1016/j.ympev.2018.12.023_b0495) 2018; 217 Soltis (10.1016/j.ympev.2018.12.023_b0505) 1999; 402 Paradis (10.1016/j.ympev.2018.12.023_b0385) 2004; 20 Cai (10.1016/j.ympev.2018.12.023_b0070) 2008; 67 Lopez-Nieves (10.1016/j.ympev.2018.12.023_b0310) 2018; 217 Barrett (10.1016/j.ympev.2018.12.023_b0020) 2014; 31 Philippe (10.1016/j.ympev.2018.12.023_b0400) 2011; 9 Zhang (10.1016/j.ympev.2018.12.023_b0660) 2016; 8 Wang (10.1016/j.ympev.2018.12.023_b0555) 2009; 106 Bouckaert (10.1016/j.ympev.2018.12.023_b0045) 2014; 10 Rodriguez-Ezpeleta (10.1016/j.ympev.2018.12.023_b0440) 2007; 56 Wyman (10.1016/j.ympev.2018.12.023_b0615) 2004; 20 Galtier (10.1016/j.ympev.2018.12.023_b0170) 2008; 363 Chumley (10.1016/j.ympev.2018.12.023_b0090) 2006; 23 Raman (10.1016/j.ympev.2018.12.023_b0425) 2015; 10 Pozzi (10.1016/j.ympev.2018.12.023_b0420) 2016; 43 Wikström (10.1016/j.ympev.2018.12.023_b0610) 2001; 268 Fan (10.1016/j.ympev.2018.12.023_b0145) 2016; 27 Peredo (10.1016/j.ympev.2018.12.023_b0395) 2013; 8 Feild (10.1016/j.ympev.2018.12.023_b0155) 2011; 108 Xia (10.1016/j.ympev.2018.12.023_b0625) 2013; 30 Ma (10.1016/j.ympev.2018.12.023_b0320) 2014; 63 Walker (10.1016/j.ympev.2018.12.023_b0545) 2017; 104 Stull (10.1016/j.ympev.2018.12.023_b0535) 2013; 1 Jiang (10.1016/j.ympev.2018.12.023_b0230) 2014; 80 Katoh (10.1016/j.ympev.2018.12.023_b0245) 2013; 30 Arakaki (10.1016/j.ympev.2018.12.023_b0010) 2011; 108 Stamatakis (10.1016/j.ympev.2018.12.023_b0520) 2006 Kung (10.1016/j.ympev.2018.12.023_b0275) 1979 Luo (10.1016/j.ympev.2018.12.023_b0315) 2015; 101 Braukmann (10.1016/j.ympev.2018.12.023_b0055) 2012; 79 Kang (10.1016/j.ympev.2018.12.023_b0240) 2015; 27 Angiosperm Phylogeny Group (APG) (10.1016/j.ympev.2018.12.023_b0005) 2016; 181 10.1016/j.ympev.2018.12.023_b0430 10.1016/j.ympev.2018.12.023_b0435 Walker (10.1016/j.ympev.2018.12.023_b0550) 2018; 105 Hahn (10.1016/j.ympev.2018.12.023_b0195) 2013; 41 Kubitzki (10.1016/j.ympev.2018.12.023_b0265) 1993 Wicke (10.1016/j.ympev.2018.12.023_b0585) 2014; 31 Sanderson (10.1016/j.ympev.2018.12.023_b0460) 2015; 102 Blazier (10.1016/j.ympev.2018.12.023_b0040) 2011; 76 Gurusamy (10.1016/j.ympev.2018.12.023_b0190) 2016; 27 Zhu (10.1016/j.ympev.2018.12.023_b0685) 2016; 209 Crawley (10.1016/j.ympev.2018.12.023_b0100) 2012; 50 Doyle (10.1016/j.ympev.2018.12.023_b0135) 1991 Zheng (10.1016/j.ympev.2018.12.023_b0675) 2015; 85 Cho (10.1016/j.ympev.2018.12.023_b0085) 2015; 10 Ruhlman (10.1016/j.ympev.2018.12.023_b0450) 2014 Felsenstein (10.1016/j.ympev.2018.12.023_b0150) 1978; 27 Chaney (10.1016/j.ympev.2018.12.023_b0080) 2016; 4 Méndez (10.1016/j.ympev.2018.12.023_b0345) 1999; 86 Ogden (10.1016/j.ympev.2018.12.023_b0375) 2006; 55 Ellison (10.1016/j.ympev.2018.12.023_b0140) 2001; 16 Thulin (10.1016/j.ympev.2018.12.023_b0540) 2016; 65 Logacheva (10.1016/j.ympev.2018.12.023_b0305) 2008; 8 Jeffroy (10.1016/j.ympev.2018.12.023_b0225) 2006; 22 Whitfield (10.1016/j.ympev.2018.12.023_b0570) 2007; 22 Goremykin (10.1016/j.ympev.2018.12.023_b0185) 2010; 71 Wicke (10.1016/j.ympev.2018.12.023_b0580) 2013; 25 Zeng (10.1016/j.ympev.2018.12.023_b0655) 2017; 214 Wiens (10.1016/j.ympev.2018.12.023_b0595) 2003; 52 Wick (10.1016/j.ympev.2018.12.023_b0575) 2015; 31 Wiens (10.1016/j.ympev.2018.12.023_b0600) 2005; 54 Bankevich (10.1016/j.ympev.2018.12.023_b0015) 2012; 19 Crawley (10.1016/j.ympev.2018.12.023_b0105) 2012; 298 Wikström (10.1016/j.ympev.2018.12.023_b0605) 2015; 10 Schäferhoff (10.1016/j.ympev.2018.12.023_b0465) 2009; 39 Halbritter (10.1016/j.ympev.2018.12.023_b0200) 2012; 51 Xiang (10.1016/j.ympev.2018.12.023_b0630) 2016; 34 Bell (10.1016/j.ympev.2018.12.023_b0030) 2010; 97 Moore (10.1016/j.ympev.2018.12.023_b0355) 2010; 107 Li (10.1016/j.ympev.2018.12.023_b0290) 2010; 20 Braukmann (10.1016/j.ympev.2018.12.023_b0050) 2009; 55 Yang (10.1016/j.ympev.2018.12.023_b0645) 2018; 217 Kumar (10.1016/j.ympev.2018.12.023_b0270) 2016; 33 Wickett (10.1016/j.ympev.2018.12.023_b0590) 2008; 25 Yang (10.1016/j.ympev.2018.12.023_b0640) 2015; 32 Magallón (10.1016/j.ympev.2018.12.023_b0325) 2015; 207 Givnish (10.1016/j.ympev.2018.12.023_b0180) 2015; 282 Steflova (10.1016/j.ympev.2018.12.023_b0525) 2014; 142 Lanfear (10.1016/j.ympev.2018.12.023_b0280) 2012; 29 Zhang (10.1016/j.ympev.2018.12.023_b0670) 2017; 214 Cosner (10.1016/j.ympev.2018.12.023_b0095) 2004; 4 Liu (10.1016/j.ympev.2018.12.023_b0300) 2015; 23 Jansen (10.1016/j.ympev.2018.12.023_b0215) 2007; 104 Yu (10.1016/j.ympev.2018.12.023_b0650) 2018; 103 Müller (10.1016/j.ympev.2018.12.023_b0365) 2005; 92 Zhong (10.1016/j.ympev.2018.12.023_b0680) 2011; 3 Behnke (10.1016/j.ympev.2018.12.023_b0025) 1976; 126 Kim (10.1016/j.ympev.2018.12.023_b0255) 2015; 10 Wang (10.1016/j.ympev.2018.12.023_b0560) 2012; 195 Dohm (10.1016/j.ympev.2018.12.023_b0125) 2014; 505 Nienaber (10.1016/j.ympev.2018.12.023_b0370) 2003 |
References_xml | – volume: 50 start-page: 387 year: 2012 end-page: 410 ident: b0100 article-title: Caryophyllales: Evaluating phylogenetic signal in publication-title: J. Syst. Evol. – volume: 27 start-page: 2015 year: 2016 end-page: 2017 ident: b0190 article-title: The complete chloroplast genome sequence of publication-title: Mitochondrial DNA – volume: 33 start-page: 1870 year: 2016 end-page: 1874 ident: b0270 article-title: MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets publication-title: Mol. Biol. Evol. – volume: 106 start-page: 3853 year: 2009 end-page: 3858 ident: b0555 article-title: Rosid radiation and the rapid rise of angiosperm-dominated forests publication-title: PNAS – reference: Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D., R Core Team., 2016. _nlme: Linear and nonlinear mixed effects models_.R package version 3.1-128, < – volume: 22 start-page: 225 year: 2006 end-page: 231 ident: b0225 article-title: Phylogenomics: the beginning of incongruence? publication-title: Trends Genet. – volume: 72 start-page: 82 year: 2014 end-page: 89 ident: b0480 article-title: A recurring syndrome of accelerated plastid genome evolution in the angiosperm tribe Sileneae (Caryophyllaceae) publication-title: Mol. Phylogenet. Evol. – volume: 55 start-page: 323 year: 2009 end-page: 337 ident: b0050 article-title: Loss of all plastid publication-title: Curr. Genet. – volume: 10 year: 2015 ident: b0425 article-title: Analysis of the complete chloroplast genome of a medicinal plant, publication-title: PLoS ONE – volume: 16 start-page: 623 year: 2001 end-page: 629 ident: b0140 article-title: Evolutionary ecology of carnivorous plants publication-title: Trends Ecol. Evol. – volume: 9 year: 2011 ident: b0400 article-title: Resolving difficult phylogenetic questions: why more sequences are not enough publication-title: PLoS Biol. – volume: 268 start-page: 2211 year: 2001 end-page: 2220 ident: b0610 article-title: Evolution of the angiosperms: calibrating the family tree publication-title: Proc. Roy. Soc. Lond. B Biol. Sci. – volume: 142 start-page: 59 year: 2014 end-page: 65 ident: b0525 article-title: Strong accumulation of chloroplast DNA in the Y chromosomes of publication-title: Cytogenet. Genome Res. – volume: 1 start-page: 1200497 year: 2013 ident: b0535 article-title: A targeted enrichment strategy for massively parallel sequencing of angiosperm plastid genomes publication-title: Appl. Plant Sci. – volume: 282 start-page: 2108 year: 2015 end-page: 2111 ident: b0180 article-title: Orchid phylogenomics and multiple drivers of their extraordinary diversification publication-title: Proc. Roy. Soc. B. Biol. Sci. – volume: 104 start-page: 858 year: 2017 end-page: 867 ident: b0545 article-title: Widespread paleopolyploidy, gene tree conflict, and recalcitrant relationships among the carnivorous Caryophyllales publication-title: Am. J. Bot. – volume: 20 start-page: 3252 year: 2004 end-page: 3255 ident: b0615 article-title: Automatic annotation of organellar genomes with DOGMA publication-title: Bioinformatics – volume: 71 start-page: 319 year: 2010 end-page: 331 ident: b0185 article-title: Automated removal of noisy data in phylogenomic analyses publication-title: J. Mol. Evol. – volume: 79 start-page: 5 year: 2012 end-page: 20 ident: b0055 article-title: Plastid genome evolution in mycoheterotrophic Ericaceae publication-title: Plant Mol. Biol. – volume: 22 start-page: 2688 year: 2006 end-page: 2690 ident: b0515 article-title: RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models publication-title: Bioinformatics – volume: 4 year: 2016 ident: b0130 article-title: Comparative analysis of the complete chloroplast genome sequences in psammophytic publication-title: PeerJ – volume: 31 start-page: 3350 year: 2015 end-page: 3352 ident: b0575 article-title: Bandage: interactive visualization of de novo genome assemblies publication-title: Bioinformatics – volume: 164 start-page: 959 year: 2003 end-page: 986 ident: b0235 article-title: Phylogeny of amaranthaceae and chenopodiaceae and the evolution of C publication-title: Int. J. Plant Sci. – volume: 322 start-page: 86 year: 2008 end-page: 89 ident: b0485 article-title: Rates of molecular evolution are linked to life history in flowering plants publication-title: Science – volume: 17 start-page: 540 year: 2000 end-page: 552 ident: b0075 article-title: Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis publication-title: Mol. Biol. Evol. – volume: 39 start-page: 209 year: 2009 end-page: 228 ident: b0465 article-title: Caryophyllales phylogenetics: disentangling Phytolaccaceae and Molluginaceae and description of Microteaceae as a new isolated family publication-title: Willdenowia – volume: 30 start-page: 772 year: 2013 end-page: 780 ident: b0245 article-title: MAFFT multiple sequence alignment software version 7: improvements in performance and usability publication-title: Mol. Biol. Evol. – volume: 402 start-page: 402 year: 1999 end-page: 404 ident: b0505 article-title: Angiosperm phylogeny inferred from multiple genes as a tool for comparative biology publication-title: Nature – volume: 8 year: 2013 ident: b0395 article-title: The plastid genome of publication-title: PLoS ONE – volume: 51 start-page: 148 year: 2012 end-page: 157 ident: b0200 article-title: The unique design of pollen tetrads in publication-title: Grana – volume: 25 start-page: 3711 year: 2013 end-page: 3725 ident: b0580 article-title: Mechanisms of functional and physical genome reduction in photosynthetic and nonphotosynthetic parasitic plants of the broomrape family publication-title: Plant Cell – volume: 102 start-page: 1115 year: 2015 end-page: 1127 ident: b0460 article-title: Exceptional reduction of the plastid genome of saguaro cactus ( publication-title: Am. J. Bot. – volume: 49 start-page: 511 year: 2013 end-page: 523 ident: b0210 article-title: PGRL1 is the elusive ferredoxin-plastoquinone reductase in phptosynthetic cyclic electron flow publication-title: Mol. Cell – start-page: 3 year: 2003 end-page: 11 ident: b0370 article-title: Phytolaccaceae publication-title: Flora of North America North of Mexico 4 – volume: 27 start-page: 4677 year: 2015 end-page: 4678 ident: b0240 article-title: The complete chloroplast genome of antarctic pearlwort, publication-title: DNA Seq. – volume: 12 start-page: 100 year: 2012 ident: b0390 article-title: Separating the wheat from the chaff: mitigating the effects of noise in a plastome phylogenomic dataset from publication-title: BMC Evol. Biol. – volume: 27 start-page: 1983 year: 2010 end-page: 1987 ident: b0405 article-title: Improved phylogenomic taxon sampling noticeably affects nonbilaterian relationships publication-title: Mol. Biol. Evol. – volume: 25 start-page: 393 year: 2008 end-page: 401 ident: b0590 article-title: Functional gene losses occur with minimal size reduction in the plastid genome of the parasitic liverwort publication-title: Mol. Biol. Evol. – volume: 4 start-page: 27 year: 2004 ident: b0095 article-title: Chloroplast DNA rearrangements in Campanulaceae: phylogenetic utility of highly rearranged genomes publication-title: BMC Evol. Biol. – start-page: 258 year: 2003 end-page: 404 ident: b0565 article-title: Chenopodiaceae publication-title: Flora of North America North of Mexico 4 – volume: 13 start-page: 175 year: 2010 end-page: 183 ident: b0065 article-title: Leaf hydraulic evolution led a surge in leaf photosynthetic capacity during early angiosperm diversification publication-title: Ecol. Lett. – volume: 109 start-page: 17519 year: 2012 end-page: 17524 ident: b0620 article-title: Phylogenomics and a posteriori data partitioning resolve the Cretaceous angiosperm radiation Malpighiales publication-title: PNAS – volume: 55 start-page: 314 year: 2006 end-page: 328 ident: b0375 article-title: Multiple sequence alignment accuracy and phylogenetic inference publication-title: Syst. Biol. – volume: 207 start-page: 437 year: 2015 end-page: 453 ident: b0325 article-title: A metacalibrated time-tree cocuments the early rise of flowering plant phylogenetic diversity publication-title: New Phytol. – volume: 27 start-page: 401 year: 1978 end-page: 410 ident: b0150 article-title: Cases in which parsimony or compatibility methods will be positively misleading publication-title: Syst. Zool. – volume: 18 start-page: 956 year: 2017 ident: b0160 article-title: Comparative analyses of plastid genomes from fourteen Cornales species: inferences for phylogenetic relationships and genome evolution publication-title: BMC Genom. – volume: 209 start-page: 1747 year: 2016 end-page: 1756 ident: b0685 article-title: Evolutionary dynamics of the plastid inverted repeat: the effects of expansion, contraction, and loss on substitution rates publication-title: New Phytol. – volume: 108 start-page: 8363 year: 2011 end-page: 8366 ident: b0155 article-title: Fossil evidence for Cretaceous escalation in angiosperm leaf vein evolution publication-title: PNAS – volume: 8 start-page: 59 year: 2008 ident: b0305 article-title: Comparative chloroplast genomics and phylogenetics of publication-title: BMC Plant Biol. – start-page: 278 year: 2006 end-page: 286 ident: b0520 article-title: Phylogenetic models of rate heterogeneity: A high performance computing perspective publication-title: Proceedings of the 20th IEEE International Parallel & Distributed Processing Symposium (IPDPS2006) – volume: 20 start-page: 289 year: 2004 end-page: 290 ident: b0385 article-title: APE: analyses of phylogenetics and evolution in R language publication-title: Bioinformatics – volume: 4 start-page: 1600063 year: 2016 ident: b0080 article-title: The complete chloroplast genome sequences for four publication-title: Appl. Plant Sci. – volume: 80 start-page: 308 year: 2014 end-page: 318 ident: b0230 article-title: Should genes with missing data be excluded from phylogenetic analyses? publication-title: Mol. Phylogenet. Evol. – volume: 48 start-page: 636 year: 2010 end-page: 645 ident: b0330 article-title: Plastid publication-title: Plant Physiol. Biochem. – volume: 170 start-page: 627 year: 2009 end-page: 643 ident: b0060 article-title: Phylogeny of the Caryophyllales sensu lato: Revisiting hypotheses on pollination biology and perianth differentiation in the core Caryophyllales publication-title: Int. J. Plant Sci. – volume: 56 start-page: 389 year: 2007 end-page: 399 ident: b0440 article-title: Detecting and overcoming systematic errors in genome-scale phylogenies publication-title: Syst. Biol. – start-page: 169 year: 1991 end-page: 195 ident: b0135 article-title: Diversification of early angiosperm pollen in a cladistics context publication-title: Pollen and Spores: Pattern of Diversification – volume: 29 start-page: 1695 year: 2012 end-page: 1701 ident: b0280 article-title: PartitionFinder: combined selection of partitioning schemes and substitution models for phylogenetic analyses publication-title: Mol. Biol. Evol. – volume: 45 start-page: 307 year: 2001 end-page: 315 ident: b0470 article-title: The plastid chromosome of spinach ( publication-title: Plant Mol. Biol. – volume: 3 start-page: 1340 year: 2011 end-page: 1348 ident: b0680 article-title: Systematic error in seed plant phylogenomics publication-title: Genome Biol. Evol. – volume: 217 start-page: 836 year: 2018 end-page: 854 ident: b0495 article-title: Disparity, diversity, and duplications in the Caryophyllales publication-title: New Phytol. – volume: 92 start-page: 66 year: 2005 end-page: 102 ident: b0365 article-title: Phylogenetics of Amaranthaceae based on publication-title: Ann. Mol. Bot. Gard. – volume: 217 start-page: 896 year: 2018 end-page: 9008 ident: b0310 article-title: Relaxation of tyrosine pathway regulation underlies the evolution of betalain pigmentation in Caryophyllales publication-title: New Phytol. – volume: 126 start-page: 31 year: 1976 end-page: 54 ident: b0025 article-title: Ultrastructure of sieve-element plastids in Caryophyllales (Centrosperma), evidence for the delimitation and classification of the order publication-title: Plant Syst. Evol. – volume: 7 start-page: 45 year: 2007 ident: b0165 article-title: Complete DNA sequences of the plastid genomes of two parasitic flowering plant species, publication-title: BMC Plant Biol. – reference: ≥. – volume: 75 start-page: 1180 year: 1988 end-page: 1206 ident: b0380 article-title: Chloroplast and variation and plant phylogeny publication-title: Ann. Mol. Bot. Gard. – volume: 505 start-page: 546 year: 2014 end-page: 549 ident: b0125 article-title: The genome of the recently domesticated crop plant sugar beet ( publication-title: Nature – volume: 331 start-page: 344 year: 1988 end-page: 346 ident: b0295 article-title: Quantitative analyses of the early angiosperm radiation publication-title: Nature – volume: 10 year: 2015 ident: b0085 article-title: Complete Chloroplast Genome Sequence of Tartary Buckwheat ( publication-title: PLoS ONE – volume: 65 start-page: 775 year: 2016 end-page: 793 ident: b0540 article-title: Phylogeny and generic delimitation in Molluginaceae, new pigment data in Caryophyllales, and the new family Corbichoniaceae publication-title: Taxon – volume: 298 start-page: 297 year: 2012 end-page: 312 ident: b0105 article-title: Impact of missing data, gene choice, and taxon sampling on phylogenetic reconstruction: the Caryophyllales (angiosperms) publication-title: Plant Syst. Evol. – volume: 31 start-page: 529 year: 2014 end-page: 545 ident: b0585 article-title: Disproportional plastome-wide increase of substitution rates and relaxed purifying selection in genes of carnivorous Lentibulariaceae publication-title: Mol. Biol. Evol. – volume: 63 start-page: 368 year: 2014 end-page: 382 ident: b0120 article-title: Another look at the root of the angiosperms reveals a familiar tale publication-title: Syst. Biol. – volume: 20 start-page: 265 year: 2010 end-page: 272 ident: b0290 article-title: De novo assembly of human genomes with massively parallel short read sequencing publication-title: Genome Res. – volume: 103 start-page: 106 year: 2018 end-page: 161 ident: b0650 article-title: Evolution of angiosperm pollen. 5. Basal Superasteridae (Berberidopsidales, Caryophyllales, Cornales, Ericales and Santalales) plus Dilleniales publication-title: Ann. Mo. Bot. Gard. – reference: Stevens, P.F., 2001 onwards. Angiosperm Phylogeny Website. Version 12, July 2012 [and more or less continuously updated since]. < – volume: 542 start-page: 307 year: 2017 end-page: 312 ident: b0220 article-title: The genome of publication-title: Nature – volume: 207 start-page: 327 year: 2015 end-page: 339 ident: b0260 article-title: Recently evolved diversity and convergent radiations of rainforest mahoganies (Meliaceae) shed new light on the origins of rainforest hyperdiversity publication-title: New Phytol. – volume: 28 start-page: 2689 year: 2012 end-page: 2690 ident: b0490 article-title: treePL: divergence time estimation using penalized likelihood for large phylogenies publication-title: Bioinformatics – reference: Miller, M.A., Pfeiffer, W., Schwartz, T., 2010. Creating the CIPRES Science Gateway for inference of large phylogenetics trees. In: Proceedings of the Gateway Computing Environments Workshop (GCE). New Orleans, LA, pp. 1–8. – volume: 34 start-page: 262 year: 2016 end-page: 281 ident: b0630 article-title: Evolution of Rosaceae fruit types based on nuclear phylogeny in the context of geological times and genome duplication publication-title: Mol. Biol. Evol. – volume: 97 start-page: 1296 year: 2010 end-page: 1303 ident: b0030 article-title: The age and diversification of the angiosperms re-revisited publication-title: Am. J. Bot. – volume: 54 start-page: 731 year: 2005 end-page: 742 ident: b0600 article-title: Can incomplete taxa rescue phylogenetic analyses from long-branch attraction? publication-title: Syst. Biol. – volume: 23 start-page: 2175 year: 2006 end-page: 2190 ident: b0090 article-title: The complete chloroplast genome sequence of publication-title: Mol. Biol. Evol. – volume: 22 start-page: 258 year: 2007 end-page: 265 ident: b0570 article-title: Deciphering ancient rapid radiations publication-title: Trends Ecol. Evol. – volume: 10 year: 2015 ident: b0255 article-title: Seven new complete plastome sequences reveal rampant independent loss of the publication-title: PLoS ONE – volume: 14 start-page: 1024 year: 2014 end-page: 1031 ident: b0635 article-title: Highly effective sequencing whole chloroplast genomes of angiosperms by nine novel universal primer pairs publication-title: Mol. Ecol. Res. – volume: 28 start-page: 1647 year: 2012 end-page: 1649 ident: b0250 article-title: Geneious basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data publication-title: Bioinformatics – volume: 62 start-page: 3155 year: 2011 end-page: 3169 ident: b0455 article-title: The C publication-title: J. Exp. Bot. – volume: 214 start-page: 1338 year: 2017 end-page: 1354 ident: b0655 article-title: Resolution of deep eudicot phylogeny and their temporal diversification using nuclear genes from transcriptomic and genomic datasets publication-title: New Phytol. – reference: Rambaut, A., Suchard, M.A., Drummond, A.J., 2014. Tracer v1.6. < – volume: 85 start-page: 41 year: 2015 end-page: 49 ident: b0675 article-title: Do missing data influence the accuracy of divergence-time estimation with BEAST? publication-title: Mol. Phylogenet. Evol. – volume: 104 start-page: 19369 year: 2007 end-page: 19374 ident: b0215 article-title: Analysis of 81 genes from 64 plastid genomes resolves relationships in angiosperms and identifies genome-scale evolutionary patterns publication-title: PNAS – volume: 149 start-page: 646 year: 1997 end-page: 667 ident: b0335 article-title: Phylogenies and the comparative method: a general approach to incorporating phylogenetic information into the analysis of interspecific data publication-title: Am. Nat. – volume: 27 start-page: 2935 year: 2016 end-page: 2936 ident: b0145 article-title: The complete chloroplast genome sequence of the medicinal plant publication-title: Mitochondrial DNA A – volume: 217 start-page: 855 year: 2018 end-page: 870 ident: b0645 article-title: Improved transcriptome sampling pinpoints 26 ancient and more recent polyploidy event in Caryophyllales, including two allopolyploidy event publication-title: New Phytol. – year: 1979 ident: b0275 article-title: Flora Reipublicae Popularis Sinicae 25(2) – volume: 108 start-page: 8379 year: 2011 end-page: 8384 ident: b0010 article-title: Contemporaneous and recent radiations of the world's major succulent plant lineages publication-title: PNAS – reference: Schulte, P., Alegret, L., Arenillas, I., Arz, J.A., Barton, P.J., Bown, P.R., Bralower, T.J., Christeson, G.L., Claeys, P., Cockell, C.S., Collins, G.S., Deutsch, A., Goldin, T.J., Goto, K., Grajales-Nishimura, J.M., Grieve, R.A.F., Gulick, S.P.S., Johnson, K.R., Kiessling, W., Koeberl, Kring, C.D.A., MacLeod, K.G., Matsui, T., Melosh, J., Montanari, A., Morgan, J.V., Neal, C.R., Nichols, D.J., Norris, R.D., Pierazzo, E., Ravizza, G., Rebolledo-Vieyra, M., Reimold, W.U., Robin, E., Salge, T., Speijer, R.P., Sweet, A.R., Urrutia-Fucugauchi, J., Vajda, V., Whalen, M.T., Willumsen, P.S., 2010. The Chicxulub asteroid impact and mass extinction at the Cretaceous-Paleogene boundary. Science 327, pp. 1214–1218. – volume: 30 start-page: 1720 year: 2013 end-page: 1728 ident: b0625 article-title: DAMBE5: A comprehensive software package for data analysis in molecular biology and evolution publication-title: Mol. Biol. Evol. – volume: 10 year: 2014 ident: b0045 article-title: BEAST 2: a software platform for Bayesian evolutionary analysis publication-title: PLoS Computat. Biol. – volume: 10 year: 2015 ident: b0605 article-title: A revised time of the asterids: establishing a temporal framework for evolutionary studies of the coffee family (Rubiaceae) publication-title: PLoS ONE – start-page: 3 year: 2014 end-page: 38 ident: b0450 article-title: The plastid genomes of flowering plants publication-title: Chloroplast Biotechnology: Methods and Protocols, Methods in Molecular Biology – volume: 89 start-page: 132 year: 2002 end-page: 144 ident: b0110 article-title: Molecular phylogenetics of Caryophyllales based on nuclear 18S rDNA and plastid publication-title: Am. J. Bot. – volume: 32 start-page: 2001 year: 2015 end-page: 2014 ident: b0640 article-title: Dissecting molecular evolution in the highly diverse plant clade Caryophyllales using transcriptome sequencing publication-title: Mol. Biol. Evol. – reference: Rambaut, A., 2012. FigTree version 1.4.0. < – volume: 14 start-page: 23 year: 2014 ident: b0445 article-title: From algae to angiosperms – inferring the phylogeny of green plants (Viridiplantae) from 360 plastid genomes publication-title: BMC Evol. Biol. – volume: 16 start-page: 536 year: 2015 end-page: 548 ident: b0510 article-title: Causes, consequences and solutions of phylogenetic incongruence publication-title: Brief. Bioinform. – volume: 105 start-page: 446 year: 2018 end-page: 462 ident: b0550 article-title: From cacti to carnivores: Improved phylotranscriptomic sampling and hierarchical homology inference provide further insight to the evolution of Caryophyllales publication-title: Am. J. Bot. – volume: 181 start-page: 1 year: 2016 end-page: 20 ident: b0005 article-title: An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG IV publication-title: Bot. J. Linn. Soc. – volume: 363 start-page: 4023 year: 2008 end-page: 4029 ident: b0170 article-title: Dealing with incongruence in phylogenomic analyses publication-title: Philos. Trans. Roy. Soc. Lond. B Biol. Sci. – volume: 76 start-page: 263 year: 2011 end-page: 272 ident: b0040 article-title: Recent loss of plastid-encoded publication-title: Plant Mol. Biol. – volume: 214 start-page: 1355 year: 2017 end-page: 1367 ident: b0670 article-title: Diversification of Rosaceae since the Late Cretaceous based on plastid phylogenomics publication-title: New Phytol. – volume: 43 start-page: 1930 year: 2016 end-page: 1941 ident: b0420 article-title: The role of forest expansion and contraction in species diversification among galagos (primates: Galagidae) publication-title: J. Biogeogr. – volume: 67 start-page: 696 year: 2008 end-page: 704 ident: b0070 article-title: Extensive reorganization of the plastid genome of publication-title: J. Mol. Evol. – volume: 17 start-page: 134 year: 2016 ident: b0115 article-title: Chloroplast genomes: diversity, evolution, and applications in genetic engineering publication-title: Genome Biol. – volume: 14 start-page: 428 year: 1997 end-page: 441 ident: b0360 article-title: Effects of nucleotide sequence alignment on phylogeny estimation: a case study of 18S rDNAs of apicomplexa publication-title: Mol. Biol. Evol. – volume: 102 start-page: 141 year: 2017 end-page: 182 ident: b0665 article-title: Evolution of angiosperm pollen: 4. Basal eudicots publication-title: Ann. Mol. Bot. Gard. – volume: 98 start-page: 704 year: 2011 end-page: 730 ident: b0500 article-title: Angiosperm phylogeny: 17 genes, 640 taxa publication-title: Am. J. Bot. – volume: 41 year: 2013 ident: b0195 article-title: Reconstructing mitochondrial genomes directly from genomic next-generation sequencing reads – a baiting and iterative mapping approach publication-title: Nucl. Aci. Res. – volume: 17 start-page: 1 year: 1992 end-page: 15 ident: b0175 article-title: Ecolutionary relationships of the Caryophyllidae based on comparative publication-title: Syst. Biol. – volume: 177 start-page: 133 year: 2005 end-page: 165 ident: b0340 article-title: Cretaceous CO publication-title: Ecol. Stud. – volume: 21 start-page: 163 year: 2005 end-page: 193 ident: b0035 article-title: A review of long-branch attraction publication-title: Cladistics – volume: 25 start-page: 1253 year: 2008 end-page: 1256 ident: b0415 article-title: jModelTest: phylogenetic model averaging publication-title: Mol. Biol. Evol. – volume: 8 start-page: 622 year: 2016 end-page: 634 ident: b0660 article-title: Coevolution between Nuclear-Encoded DNA Replication, Recombination, and Repair Genes and Plastid Genome Complexity publication-title: Genome Biol. Evol. – volume: 31 start-page: 3095 year: 2014 end-page: 3112 ident: b0020 article-title: Investigating the path of plastid genome degradation in an early-transitional clade of heterotrophic orchids, and implications for heterotrophic angiosperms publication-title: Mol. Biol. Evol. – volume: 23 start-page: 225 year: 2015 end-page: 231 ident: b0300 article-title: Families and genera of Chinese angiosperms: a synoptic classification publication-title: Biod. Sci. – year: 1993 ident: b0265 article-title: The Families and Genera of Vascular Plants II – volume: 107 start-page: 4623 year: 2010 end-page: 4628 ident: b0355 article-title: Phylogenetic analysis of 83 plastid genes further resolves the early diversification of eudicots publication-title: PNAS – volume: 25 start-page: 209 year: 2014 end-page: 211 ident: b0285 article-title: The complete chloroplast genome sequence of sugar beet ( publication-title: Mitochondrial DNA – volume: 63 start-page: 933 year: 2014 end-page: 950 ident: b0320 article-title: Chloroplast phylogenomic analyses resolve deep-level relationships of an intracTable bamboo tribe Arundinarieae (Poaceae) publication-title: Syst. Biol. – volume: 19 start-page: 455 year: 2012 ident: b0015 article-title: SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing publication-title: J. Computat. Biol. – volume: 101 start-page: 406 year: 2015 end-page: 455 ident: b0315 article-title: Evolution of angiosperm pollen. 3 publication-title: Monocots. Ann. Mo. Bot. Gard. – volume: 45 start-page: 281 year: 2015 end-page: 383 ident: b0205 article-title: A taxonomic backbone for the global synthesis of species diversity in the angiosperm order Caryophyllales publication-title: Willdenowia – volume: 52 start-page: 528 year: 2003 end-page: 538 ident: b0595 article-title: Missing data, incomplete taxa, and phylogenetic accuracy publication-title: Syst. Biol. – volume: 86 start-page: 105 year: 1999 end-page: 112 ident: b0345 article-title: Costs and benefits of carnivory in plants: insights from the photosynthetic performance of four carnivorous plants in a subarctic environment publication-title: Oikos – volume: 195 start-page: 470 year: 2012 end-page: 478 ident: b0560 article-title: Menispermaceae and the diversification of tropical rainforests near the Cretaceous-Paleogene boundary publication-title: New Phytol. – volume: 7 start-page: 45 year: 2007 ident: 10.1016/j.ympev.2018.12.023_b0165 article-title: Complete DNA sequences of the plastid genomes of two parasitic flowering plant species, Cuscuta reflexa and Cuscuta gronovii publication-title: BMC Plant Biol. doi: 10.1186/1471-2229-7-45 – volume: 542 start-page: 307 year: 2017 ident: 10.1016/j.ympev.2018.12.023_b0220 article-title: The genome of Chenopodium quinoa publication-title: Nature doi: 10.1038/nature21370 – volume: 177 start-page: 133 year: 2005 ident: 10.1016/j.ympev.2018.12.023_b0340 article-title: Cretaceous CO2 decline and the radiation and diversification of Angiosperms publication-title: Ecol. Stud. doi: 10.1007/0-387-27048-5_7 – ident: 10.1016/j.ympev.2018.12.023_b0475 doi: 10.1126/science.1177265 – volume: 50 start-page: 387 year: 2012 ident: 10.1016/j.ympev.2018.12.023_b0100 article-title: Caryophyllales: Evaluating phylogenetic signal in trnK intron versus matK publication-title: J. Syst. Evol. doi: 10.1111/j.1759-6831.2012.00197.x – volume: 72 start-page: 82 year: 2014 ident: 10.1016/j.ympev.2018.12.023_b0480 article-title: A recurring syndrome of accelerated plastid genome evolution in the angiosperm tribe Sileneae (Caryophyllaceae) publication-title: Mol. Phylogenet. Evol. doi: 10.1016/j.ympev.2013.12.004 – volume: 31 start-page: 529 year: 2014 ident: 10.1016/j.ympev.2018.12.023_b0585 article-title: Disproportional plastome-wide increase of substitution rates and relaxed purifying selection in genes of carnivorous Lentibulariaceae publication-title: Mol. Biol. Evol. doi: 10.1093/molbev/mst261 – volume: 30 start-page: 1720 year: 2013 ident: 10.1016/j.ympev.2018.12.023_b0625 article-title: DAMBE5: A comprehensive software package for data analysis in molecular biology and evolution publication-title: Mol. Biol. Evol. doi: 10.1093/molbev/mst064 – volume: 102 start-page: 141 year: 2017 ident: 10.1016/j.ympev.2018.12.023_b0665 article-title: Evolution of angiosperm pollen: 4. Basal eudicots publication-title: Ann. Mol. Bot. Gard. doi: 10.3417/2015035 – volume: 71 start-page: 319 year: 2010 ident: 10.1016/j.ympev.2018.12.023_b0185 article-title: Automated removal of noisy data in phylogenomic analyses publication-title: J. Mol. Evol. doi: 10.1007/s00239-010-9398-z – ident: 10.1016/j.ympev.2018.12.023_b0410 – volume: 92 start-page: 66 year: 2005 ident: 10.1016/j.ympev.2018.12.023_b0365 article-title: Phylogenetics of Amaranthaceae based on matK/trnK sequence data – evidence from parsimony, likelihood, and Bayesian analyses publication-title: Ann. Mol. Bot. Gard. – volume: 109 start-page: 17519 year: 2012 ident: 10.1016/j.ympev.2018.12.023_b0620 article-title: Phylogenomics and a posteriori data partitioning resolve the Cretaceous angiosperm radiation Malpighiales publication-title: PNAS doi: 10.1073/pnas.1205818109 – volume: 32 start-page: 2001 year: 2015 ident: 10.1016/j.ympev.2018.12.023_b0640 article-title: Dissecting molecular evolution in the highly diverse plant clade Caryophyllales using transcriptome sequencing publication-title: Mol. Biol. Evol. doi: 10.1093/molbev/msv081 – start-page: 3 year: 2003 ident: 10.1016/j.ympev.2018.12.023_b0370 article-title: Phytolaccaceae – volume: 62 start-page: 3155 year: 2011 ident: 10.1016/j.ympev.2018.12.023_b0455 article-title: The C4 plant lineages of planet Earth publication-title: J. Exp. Bot. doi: 10.1093/jxb/err048 – volume: 4 year: 2016 ident: 10.1016/j.ympev.2018.12.023_b0130 article-title: Comparative analysis of the complete chloroplast genome sequences in psammophytic Haloxylon species (Amaranthaceae) publication-title: PeerJ doi: 10.7717/peerj.2699 – volume: 17 start-page: 540 year: 2000 ident: 10.1016/j.ympev.2018.12.023_b0075 article-title: Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis publication-title: Mol. Biol. Evol. doi: 10.1093/oxfordjournals.molbev.a026334 – volume: 52 start-page: 528 year: 2003 ident: 10.1016/j.ympev.2018.12.023_b0595 article-title: Missing data, incomplete taxa, and phylogenetic accuracy publication-title: Syst. Biol. doi: 10.1080/10635150390218330 – volume: 25 start-page: 1253 year: 2008 ident: 10.1016/j.ympev.2018.12.023_b0415 article-title: jModelTest: phylogenetic model averaging publication-title: Mol. Biol. Evol. doi: 10.1093/molbev/msn083 – volume: 322 start-page: 86 year: 2008 ident: 10.1016/j.ympev.2018.12.023_b0485 article-title: Rates of molecular evolution are linked to life history in flowering plants publication-title: Science doi: 10.1126/science.1163197 – volume: 214 start-page: 1338 year: 2017 ident: 10.1016/j.ympev.2018.12.023_b0655 article-title: Resolution of deep eudicot phylogeny and their temporal diversification using nuclear genes from transcriptomic and genomic datasets publication-title: New Phytol. doi: 10.1111/nph.14503 – volume: 55 start-page: 314 year: 2006 ident: 10.1016/j.ympev.2018.12.023_b0375 article-title: Multiple sequence alignment accuracy and phylogenetic inference publication-title: Syst. Biol. doi: 10.1080/10635150500541730 – volume: 268 start-page: 2211 year: 2001 ident: 10.1016/j.ympev.2018.12.023_b0610 article-title: Evolution of the angiosperms: calibrating the family tree publication-title: Proc. Roy. Soc. Lond. B Biol. Sci. doi: 10.1098/rspb.2001.1782 – volume: 27 start-page: 4677 year: 2015 ident: 10.1016/j.ympev.2018.12.023_b0240 article-title: The complete chloroplast genome of antarctic pearlwort, Colobanthus quitensis (kunth) bartl. (caryophyllaceae) publication-title: DNA Seq. – volume: 28 start-page: 1647 year: 2012 ident: 10.1016/j.ympev.2018.12.023_b0250 article-title: Geneious basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data publication-title: Bioinformatics doi: 10.1093/bioinformatics/bts199 – volume: 3 start-page: 1340 year: 2011 ident: 10.1016/j.ympev.2018.12.023_b0680 article-title: Systematic error in seed plant phylogenomics publication-title: Genome Biol. Evol. doi: 10.1093/gbe/evr105 – volume: 23 start-page: 225 year: 2015 ident: 10.1016/j.ympev.2018.12.023_b0300 article-title: Families and genera of Chinese angiosperms: a synoptic classification publication-title: Biod. Sci. doi: 10.17520/biods.2015052 – volume: 181 start-page: 1 year: 2016 ident: 10.1016/j.ympev.2018.12.023_b0005 article-title: An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG IV publication-title: Bot. J. Linn. Soc. doi: 10.1111/boj.12385 – volume: 27 start-page: 2935 year: 2016 ident: 10.1016/j.ympev.2018.12.023_b0145 article-title: The complete chloroplast genome sequence of the medicinal plant Rheum palmatum L. (Polygonaceae) publication-title: Mitochondrial DNA A doi: 10.3109/19401736.2015.1060448 – volume: 10 year: 2015 ident: 10.1016/j.ympev.2018.12.023_b0605 article-title: A revised time of the asterids: establishing a temporal framework for evolutionary studies of the coffee family (Rubiaceae) publication-title: PLoS ONE doi: 10.1371/journal.pone.0126690 – volume: 8 start-page: 622 year: 2016 ident: 10.1016/j.ympev.2018.12.023_b0660 article-title: Coevolution between Nuclear-Encoded DNA Replication, Recombination, and Repair Genes and Plastid Genome Complexity publication-title: Genome Biol. Evol. doi: 10.1093/gbe/evw033 – volume: 17 start-page: 134 year: 2016 ident: 10.1016/j.ympev.2018.12.023_b0115 article-title: Chloroplast genomes: diversity, evolution, and applications in genetic engineering publication-title: Genome Biol. doi: 10.1186/s13059-016-1004-2 – volume: 20 start-page: 3252 year: 2004 ident: 10.1016/j.ympev.2018.12.023_b0615 article-title: Automatic annotation of organellar genomes with DOGMA publication-title: Bioinformatics doi: 10.1093/bioinformatics/bth352 – volume: 10 year: 2015 ident: 10.1016/j.ympev.2018.12.023_b0085 article-title: Complete Chloroplast Genome Sequence of Tartary Buckwheat (Fagopyrum tataricum) and Comparative Analysis with Common Buckwheat (F. esculentum) publication-title: PLoS ONE – volume: 12 start-page: 100 year: 2012 ident: 10.1016/j.ympev.2018.12.023_b0390 article-title: Separating the wheat from the chaff: mitigating the effects of noise in a plastome phylogenomic dataset from Pinus L. (Pinaceae) publication-title: BMC Evol. Biol. doi: 10.1186/1471-2148-12-100 – ident: 10.1016/j.ympev.2018.12.023_b0530 – start-page: 3 year: 2014 ident: 10.1016/j.ympev.2018.12.023_b0450 article-title: The plastid genomes of flowering plants – volume: 39 start-page: 209 year: 2009 ident: 10.1016/j.ympev.2018.12.023_b0465 article-title: Caryophyllales phylogenetics: disentangling Phytolaccaceae and Molluginaceae and description of Microteaceae as a new isolated family publication-title: Willdenowia doi: 10.3372/wi.39.39201 – volume: 10 year: 2015 ident: 10.1016/j.ympev.2018.12.023_b0255 article-title: Seven new complete plastome sequences reveal rampant independent loss of the ndh gene family across orchids and associated instability of the inverted repeat/small single-copy region boundaries publication-title: PLoS ONE – volume: 142 start-page: 59 year: 2014 ident: 10.1016/j.ympev.2018.12.023_b0525 article-title: Strong accumulation of chloroplast DNA in the Y chromosomes of Rumex acetosa and Silene latifolia publication-title: Cytogenet. Genome Res. doi: 10.1159/000355212 – volume: 207 start-page: 327 year: 2015 ident: 10.1016/j.ympev.2018.12.023_b0260 article-title: Recently evolved diversity and convergent radiations of rainforest mahoganies (Meliaceae) shed new light on the origins of rainforest hyperdiversity publication-title: New Phytol. doi: 10.1111/nph.13490 – volume: 86 start-page: 105 year: 1999 ident: 10.1016/j.ympev.2018.12.023_b0345 article-title: Costs and benefits of carnivory in plants: insights from the photosynthetic performance of four carnivorous plants in a subarctic environment publication-title: Oikos doi: 10.2307/3546574 – volume: 214 start-page: 1355 year: 2017 ident: 10.1016/j.ympev.2018.12.023_b0670 article-title: Diversification of Rosaceae since the Late Cretaceous based on plastid phylogenomics publication-title: New Phytol. doi: 10.1111/nph.14461 – volume: 63 start-page: 933 year: 2014 ident: 10.1016/j.ympev.2018.12.023_b0320 article-title: Chloroplast phylogenomic analyses resolve deep-level relationships of an intracTable bamboo tribe Arundinarieae (Poaceae) publication-title: Syst. Biol. doi: 10.1093/sysbio/syu054 – volume: 79 start-page: 5 year: 2012 ident: 10.1016/j.ympev.2018.12.023_b0055 article-title: Plastid genome evolution in mycoheterotrophic Ericaceae publication-title: Plant Mol. Biol. doi: 10.1007/s11103-012-9884-3 – volume: 104 start-page: 858 year: 2017 ident: 10.1016/j.ympev.2018.12.023_b0545 article-title: Widespread paleopolyploidy, gene tree conflict, and recalcitrant relationships among the carnivorous Caryophyllales publication-title: Am. J. Bot. doi: 10.3732/ajb.1700083 – volume: 4 start-page: 1600063 year: 2016 ident: 10.1016/j.ympev.2018.12.023_b0080 article-title: The complete chloroplast genome sequences for four Amaranthus species (Amaranthaceae) publication-title: Appl. Plant Sci. doi: 10.3732/apps.1600063 – volume: 14 start-page: 23 year: 2014 ident: 10.1016/j.ympev.2018.12.023_b0445 article-title: From algae to angiosperms – inferring the phylogeny of green plants (Viridiplantae) from 360 plastid genomes publication-title: BMC Evol. Biol. doi: 10.1186/1471-2148-14-23 – volume: 22 start-page: 2688 year: 2006 ident: 10.1016/j.ympev.2018.12.023_b0515 article-title: RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models publication-title: Bioinformatics doi: 10.1093/bioinformatics/btl446 – volume: 106 start-page: 3853 year: 2009 ident: 10.1016/j.ympev.2018.12.023_b0555 article-title: Rosid radiation and the rapid rise of angiosperm-dominated forests publication-title: PNAS doi: 10.1073/pnas.0813376106 – volume: 49 start-page: 511 year: 2013 ident: 10.1016/j.ympev.2018.12.023_b0210 article-title: PGRL1 is the elusive ferredoxin-plastoquinone reductase in phptosynthetic cyclic electron flow publication-title: Mol. Cell doi: 10.1016/j.molcel.2012.11.030 – volume: 282 start-page: 2108 year: 2015 ident: 10.1016/j.ympev.2018.12.023_b0180 article-title: Orchid phylogenomics and multiple drivers of their extraordinary diversification publication-title: Proc. Roy. Soc. B. Biol. Sci. – volume: 331 start-page: 344 year: 1988 ident: 10.1016/j.ympev.2018.12.023_b0295 article-title: Quantitative analyses of the early angiosperm radiation publication-title: Nature doi: 10.1038/331344a0 – volume: 217 start-page: 896 year: 2018 ident: 10.1016/j.ympev.2018.12.023_b0310 article-title: Relaxation of tyrosine pathway regulation underlies the evolution of betalain pigmentation in Caryophyllales publication-title: New Phytol. doi: 10.1111/nph.14822 – volume: 108 start-page: 8379 year: 2011 ident: 10.1016/j.ympev.2018.12.023_b0010 article-title: Contemporaneous and recent radiations of the world's major succulent plant lineages publication-title: PNAS doi: 10.1073/pnas.1100628108 – volume: 41 year: 2013 ident: 10.1016/j.ympev.2018.12.023_b0195 article-title: Reconstructing mitochondrial genomes directly from genomic next-generation sequencing reads – a baiting and iterative mapping approach publication-title: Nucl. Aci. Res. doi: 10.1093/nar/gkt371 – volume: 505 start-page: 546 year: 2014 ident: 10.1016/j.ympev.2018.12.023_b0125 article-title: The genome of the recently domesticated crop plant sugar beet (Beta vulgaris) publication-title: Nature doi: 10.1038/nature12817 – volume: 23 start-page: 2175 year: 2006 ident: 10.1016/j.ympev.2018.12.023_b0090 article-title: The complete chloroplast genome sequence of Pelargonium × hortorum: Organization and evolution of the largest and most highly rearranged chloroplast genome of land plants publication-title: Mol. Biol. Evol. doi: 10.1093/molbev/msl089 – volume: 27 start-page: 401 year: 1978 ident: 10.1016/j.ympev.2018.12.023_b0150 article-title: Cases in which parsimony or compatibility methods will be positively misleading publication-title: Syst. Zool. doi: 10.2307/2412923 – volume: 20 start-page: 265 year: 2010 ident: 10.1016/j.ympev.2018.12.023_b0290 article-title: De novo assembly of human genomes with massively parallel short read sequencing publication-title: Genome Res. doi: 10.1101/gr.097261.109 – volume: 298 start-page: 297 year: 2012 ident: 10.1016/j.ympev.2018.12.023_b0105 article-title: Impact of missing data, gene choice, and taxon sampling on phylogenetic reconstruction: the Caryophyllales (angiosperms) publication-title: Plant Syst. Evol. doi: 10.1007/s00606-011-0544-x – volume: 16 start-page: 623 year: 2001 ident: 10.1016/j.ympev.2018.12.023_b0140 article-title: Evolutionary ecology of carnivorous plants publication-title: Trends Ecol. Evol. doi: 10.1016/S0169-5347(01)02269-8 – volume: 363 start-page: 4023 year: 2008 ident: 10.1016/j.ympev.2018.12.023_b0170 article-title: Dealing with incongruence in phylogenomic analyses publication-title: Philos. Trans. Roy. Soc. Lond. B Biol. Sci. doi: 10.1098/rstb.2008.0144 – volume: 105 start-page: 446 year: 2018 ident: 10.1016/j.ympev.2018.12.023_b0550 article-title: From cacti to carnivores: Improved phylotranscriptomic sampling and hierarchical homology inference provide further insight to the evolution of Caryophyllales publication-title: Am. J. Bot. doi: 10.1002/ajb2.1069 – volume: 76 start-page: 263 year: 2011 ident: 10.1016/j.ympev.2018.12.023_b0040 article-title: Recent loss of plastid-encoded ndh genes within Erodium (Geraniaceae) publication-title: Plant Mol. Biol. doi: 10.1007/s11103-011-9753-5 – volume: 34 start-page: 262 year: 2016 ident: 10.1016/j.ympev.2018.12.023_b0630 article-title: Evolution of Rosaceae fruit types based on nuclear phylogeny in the context of geological times and genome duplication publication-title: Mol. Biol. Evol. – volume: 48 start-page: 636 year: 2010 ident: 10.1016/j.ympev.2018.12.023_b0330 article-title: Plastid ndh genes in plant evolution publication-title: Plant Physiol. Biochem. doi: 10.1016/j.plaphy.2010.04.009 – volume: 1 start-page: 1200497 year: 2013 ident: 10.1016/j.ympev.2018.12.023_b0535 article-title: A targeted enrichment strategy for massively parallel sequencing of angiosperm plastid genomes publication-title: Appl. Plant Sci. doi: 10.3732/apps.1200497 – volume: 54 start-page: 731 year: 2005 ident: 10.1016/j.ympev.2018.12.023_b0600 article-title: Can incomplete taxa rescue phylogenetic analyses from long-branch attraction? publication-title: Syst. Biol. doi: 10.1080/10635150500234583 – volume: 33 start-page: 1870 year: 2016 ident: 10.1016/j.ympev.2018.12.023_b0270 article-title: MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets publication-title: Mol. Biol. Evol. doi: 10.1093/molbev/msw054 – volume: 22 start-page: 225 year: 2006 ident: 10.1016/j.ympev.2018.12.023_b0225 article-title: Phylogenomics: the beginning of incongruence? publication-title: Trends Genet. doi: 10.1016/j.tig.2006.02.003 – volume: 101 start-page: 406 year: 2015 ident: 10.1016/j.ympev.2018.12.023_b0315 article-title: Evolution of angiosperm pollen. 3 publication-title: Monocots. Ann. Mo. Bot. Gard. doi: 10.3417/2014014 – volume: 164 start-page: 959 year: 2003 ident: 10.1016/j.ympev.2018.12.023_b0235 article-title: Phylogeny of amaranthaceae and chenopodiaceae and the evolution of C4 photosynthesis publication-title: Int. J. Plant Sci. doi: 10.1086/378649 – volume: 13 start-page: 175 year: 2010 ident: 10.1016/j.ympev.2018.12.023_b0065 article-title: Leaf hydraulic evolution led a surge in leaf photosynthetic capacity during early angiosperm diversification publication-title: Ecol. Lett. doi: 10.1111/j.1461-0248.2009.01410.x – ident: 10.1016/j.ympev.2018.12.023_b0350 doi: 10.1109/GCE.2010.5676129 – volume: 9 year: 2011 ident: 10.1016/j.ympev.2018.12.023_b0400 article-title: Resolving difficult phylogenetic questions: why more sequences are not enough publication-title: PLoS Biol. doi: 10.1371/journal.pbio.1000602 – volume: 149 start-page: 646 year: 1997 ident: 10.1016/j.ympev.2018.12.023_b0335 article-title: Phylogenies and the comparative method: a general approach to incorporating phylogenetic information into the analysis of interspecific data publication-title: Am. Nat. doi: 10.1086/286013 – start-page: 278 year: 2006 ident: 10.1016/j.ympev.2018.12.023_b0520 article-title: Phylogenetic models of rate heterogeneity: A high performance computing perspective – volume: 16 start-page: 536 year: 2015 ident: 10.1016/j.ympev.2018.12.023_b0510 article-title: Causes, consequences and solutions of phylogenetic incongruence publication-title: Brief. Bioinform. doi: 10.1093/bib/bbu015 – volume: 18 start-page: 956 year: 2017 ident: 10.1016/j.ympev.2018.12.023_b0160 article-title: Comparative analyses of plastid genomes from fourteen Cornales species: inferences for phylogenetic relationships and genome evolution publication-title: BMC Genom. doi: 10.1186/s12864-017-4319-9 – volume: 19 start-page: 455 year: 2012 ident: 10.1016/j.ympev.2018.12.023_b0015 article-title: SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing publication-title: J. Computat. Biol. doi: 10.1089/cmb.2012.0021 – volume: 43 start-page: 1930 year: 2016 ident: 10.1016/j.ympev.2018.12.023_b0420 article-title: The role of forest expansion and contraction in species diversification among galagos (primates: Galagidae) publication-title: J. Biogeogr. doi: 10.1111/jbi.12846 – volume: 217 start-page: 855 year: 2018 ident: 10.1016/j.ympev.2018.12.023_b0645 article-title: Improved transcriptome sampling pinpoints 26 ancient and more recent polyploidy event in Caryophyllales, including two allopolyploidy event publication-title: New Phytol. doi: 10.1111/nph.14812 – volume: 103 start-page: 106 year: 2018 ident: 10.1016/j.ympev.2018.12.023_b0650 article-title: Evolution of angiosperm pollen. 5. Basal Superasteridae (Berberidopsidales, Caryophyllales, Cornales, Ericales and Santalales) plus Dilleniales publication-title: Ann. Mo. Bot. Gard. doi: 10.3417/2017017 – volume: 17 start-page: 1 year: 1992 ident: 10.1016/j.ympev.2018.12.023_b0175 article-title: Ecolutionary relationships of the Caryophyllidae based on comparative rbcL sequences publication-title: Syst. Biol. – volume: 97 start-page: 1296 year: 2010 ident: 10.1016/j.ympev.2018.12.023_b0030 article-title: The age and diversification of the angiosperms re-revisited publication-title: Am. J. Bot. doi: 10.3732/ajb.0900346 – volume: 14 start-page: 1024 year: 2014 ident: 10.1016/j.ympev.2018.12.023_b0635 article-title: Highly effective sequencing whole chloroplast genomes of angiosperms by nine novel universal primer pairs publication-title: Mol. Ecol. Res. – volume: 45 start-page: 281 year: 2015 ident: 10.1016/j.ympev.2018.12.023_b0205 article-title: A taxonomic backbone for the global synthesis of species diversity in the angiosperm order Caryophyllales publication-title: Willdenowia doi: 10.3372/wi.45.45301 – volume: 207 start-page: 437 year: 2015 ident: 10.1016/j.ympev.2018.12.023_b0325 article-title: A metacalibrated time-tree cocuments the early rise of flowering plant phylogenetic diversity publication-title: New Phytol. doi: 10.1111/nph.13264 – volume: 402 start-page: 402 year: 1999 ident: 10.1016/j.ympev.2018.12.023_b0505 article-title: Angiosperm phylogeny inferred from multiple genes as a tool for comparative biology publication-title: Nature doi: 10.1038/46528 – volume: 27 start-page: 2015 year: 2016 ident: 10.1016/j.ympev.2018.12.023_b0190 article-title: The complete chloroplast genome sequence of Dianthus superbus var. longicalycinus publication-title: Mitochondrial DNA – volume: 75 start-page: 1180 year: 1988 ident: 10.1016/j.ympev.2018.12.023_b0380 article-title: Chloroplast and variation and plant phylogeny publication-title: Ann. Mol. Bot. Gard. doi: 10.2307/2399279 – volume: 209 start-page: 1747 year: 2016 ident: 10.1016/j.ympev.2018.12.023_b0685 article-title: Evolutionary dynamics of the plastid inverted repeat: the effects of expansion, contraction, and loss on substitution rates publication-title: New Phytol. doi: 10.1111/nph.13743 – volume: 29 start-page: 1695 year: 2012 ident: 10.1016/j.ympev.2018.12.023_b0280 article-title: PartitionFinder: combined selection of partitioning schemes and substitution models for phylogenetic analyses publication-title: Mol. Biol. Evol. doi: 10.1093/molbev/mss020 – volume: 27 start-page: 1983 year: 2010 ident: 10.1016/j.ympev.2018.12.023_b0405 article-title: Improved phylogenomic taxon sampling noticeably affects nonbilaterian relationships publication-title: Mol. Biol. Evol. doi: 10.1093/molbev/msq089 – volume: 10 year: 2014 ident: 10.1016/j.ympev.2018.12.023_b0045 article-title: BEAST 2: a software platform for Bayesian evolutionary analysis publication-title: PLoS Computat. Biol. doi: 10.1371/journal.pcbi.1003537 – volume: 31 start-page: 3350 year: 2015 ident: 10.1016/j.ympev.2018.12.023_b0575 article-title: Bandage: interactive visualization of de novo genome assemblies publication-title: Bioinformatics doi: 10.1093/bioinformatics/btv383 – volume: 51 start-page: 148 year: 2012 ident: 10.1016/j.ympev.2018.12.023_b0200 article-title: The unique design of pollen tetrads in Dionaea and Drosera publication-title: Grana doi: 10.1080/00173134.2012.677856 – volume: 195 start-page: 470 year: 2012 ident: 10.1016/j.ympev.2018.12.023_b0560 article-title: Menispermaceae and the diversification of tropical rainforests near the Cretaceous-Paleogene boundary publication-title: New Phytol. doi: 10.1111/j.1469-8137.2012.04158.x – volume: 25 start-page: 209 year: 2014 ident: 10.1016/j.ympev.2018.12.023_b0285 article-title: The complete chloroplast genome sequence of sugar beet (Beta vulgaris ssp. vulgaris) publication-title: Mitochondrial DNA doi: 10.3109/19401736.2014.883611 – volume: 22 start-page: 258 year: 2007 ident: 10.1016/j.ympev.2018.12.023_b0570 article-title: Deciphering ancient rapid radiations publication-title: Trends Ecol. Evol. doi: 10.1016/j.tree.2007.01.012 – year: 1993 ident: 10.1016/j.ympev.2018.12.023_b0265 – volume: 108 start-page: 8363 year: 2011 ident: 10.1016/j.ympev.2018.12.023_b0155 article-title: Fossil evidence for Cretaceous escalation in angiosperm leaf vein evolution publication-title: PNAS doi: 10.1073/pnas.1014456108 – volume: 55 start-page: 323 year: 2009 ident: 10.1016/j.ympev.2018.12.023_b0050 article-title: Loss of all plastid ndh genes in Gnetales and conifers: extent and evolutionary significance for the seed plant phylogeny publication-title: Curr. Genet. doi: 10.1007/s00294-009-0249-7 – volume: 107 start-page: 4623 year: 2010 ident: 10.1016/j.ympev.2018.12.023_b0355 article-title: Phylogenetic analysis of 83 plastid genes further resolves the early diversification of eudicots publication-title: PNAS doi: 10.1073/pnas.0907801107 – volume: 10 year: 2015 ident: 10.1016/j.ympev.2018.12.023_b0425 article-title: Analysis of the complete chloroplast genome of a medicinal plant, Dianthus superbus var. longicalyncinus, from a comparative genomics perspective publication-title: PLoS ONE doi: 10.1371/journal.pone.0141329 – volume: 8 start-page: 59 year: 2008 ident: 10.1016/j.ympev.2018.12.023_b0305 article-title: Comparative chloroplast genomics and phylogenetics of Fagopyrum esculentum ssp. ancestrale–A wild ancestor of cultivated buckwheat publication-title: BMC Plant Biol. doi: 10.1186/1471-2229-8-59 – volume: 217 start-page: 836 year: 2018 ident: 10.1016/j.ympev.2018.12.023_b0495 article-title: Disparity, diversity, and duplications in the Caryophyllales publication-title: New Phytol. doi: 10.1111/nph.14772 – volume: 56 start-page: 389 year: 2007 ident: 10.1016/j.ympev.2018.12.023_b0440 article-title: Detecting and overcoming systematic errors in genome-scale phylogenies publication-title: Syst. Biol. doi: 10.1080/10635150701397643 – volume: 30 start-page: 772 year: 2013 ident: 10.1016/j.ympev.2018.12.023_b0245 article-title: MAFFT multiple sequence alignment software version 7: improvements in performance and usability publication-title: Mol. Biol. Evol. doi: 10.1093/molbev/mst010 – volume: 85 start-page: 41 year: 2015 ident: 10.1016/j.ympev.2018.12.023_b0675 article-title: Do missing data influence the accuracy of divergence-time estimation with BEAST? publication-title: Mol. Phylogenet. Evol. doi: 10.1016/j.ympev.2015.02.002 – volume: 65 start-page: 775 year: 2016 ident: 10.1016/j.ympev.2018.12.023_b0540 article-title: Phylogeny and generic delimitation in Molluginaceae, new pigment data in Caryophyllales, and the new family Corbichoniaceae publication-title: Taxon doi: 10.12705/654.6 – volume: 20 start-page: 289 year: 2004 ident: 10.1016/j.ympev.2018.12.023_b0385 article-title: APE: analyses of phylogenetics and evolution in R language publication-title: Bioinformatics doi: 10.1093/bioinformatics/btg412 – volume: 45 start-page: 307 year: 2001 ident: 10.1016/j.ympev.2018.12.023_b0470 article-title: The plastid chromosome of spinach (Spinacia oleracea): complete nucleotide sequence and gene organization publication-title: Plant Mol. Biol. doi: 10.1023/A:1006478403810 – volume: 104 start-page: 19369 year: 2007 ident: 10.1016/j.ympev.2018.12.023_b0215 article-title: Analysis of 81 genes from 64 plastid genomes resolves relationships in angiosperms and identifies genome-scale evolutionary patterns publication-title: PNAS doi: 10.1073/pnas.0709121104 – volume: 14 start-page: 428 year: 1997 ident: 10.1016/j.ympev.2018.12.023_b0360 article-title: Effects of nucleotide sequence alignment on phylogeny estimation: a case study of 18S rDNAs of apicomplexa publication-title: Mol. Biol. Evol. doi: 10.1093/oxfordjournals.molbev.a025779 – ident: 10.1016/j.ympev.2018.12.023_b0435 – volume: 170 start-page: 627 year: 2009 ident: 10.1016/j.ympev.2018.12.023_b0060 article-title: Phylogeny of the Caryophyllales sensu lato: Revisiting hypotheses on pollination biology and perianth differentiation in the core Caryophyllales publication-title: Int. J. Plant Sci. doi: 10.1086/597785 – volume: 89 start-page: 132 year: 2002 ident: 10.1016/j.ympev.2018.12.023_b0110 article-title: Molecular phylogenetics of Caryophyllales based on nuclear 18S rDNA and plastid rbcL, atpB, and matK DNA sequences publication-title: Am. J. Bot. doi: 10.3732/ajb.89.1.132 – volume: 28 start-page: 2689 year: 2012 ident: 10.1016/j.ympev.2018.12.023_b0490 article-title: treePL: divergence time estimation using penalized likelihood for large phylogenies publication-title: Bioinformatics doi: 10.1093/bioinformatics/bts492 – volume: 98 start-page: 704 year: 2011 ident: 10.1016/j.ympev.2018.12.023_b0500 article-title: Angiosperm phylogeny: 17 genes, 640 taxa publication-title: Am. J. Bot. doi: 10.3732/ajb.1000404 – year: 1979 ident: 10.1016/j.ympev.2018.12.023_b0275 – volume: 8 year: 2013 ident: 10.1016/j.ympev.2018.12.023_b0395 article-title: The plastid genome of Najas flexilis: adaptation to submersed environments is accompanied by the complete loss of the NDH complex in an aquatic angiosperm publication-title: PLoS ONE doi: 10.1371/journal.pone.0068591 – volume: 63 start-page: 368 year: 2014 ident: 10.1016/j.ympev.2018.12.023_b0120 article-title: Another look at the root of the angiosperms reveals a familiar tale publication-title: Syst. Biol. doi: 10.1093/sysbio/syt108 – volume: 80 start-page: 308 year: 2014 ident: 10.1016/j.ympev.2018.12.023_b0230 article-title: Should genes with missing data be excluded from phylogenetic analyses? publication-title: Mol. Phylogenet. Evol. doi: 10.1016/j.ympev.2014.08.006 – volume: 102 start-page: 1115 year: 2015 ident: 10.1016/j.ympev.2018.12.023_b0460 article-title: Exceptional reduction of the plastid genome of saguaro cactus (Carnegiea gigantea): Loss of the ndh gene suite and inverted repeat publication-title: Am. J. Bot. doi: 10.3732/ajb.1500184 – volume: 31 start-page: 3095 year: 2014 ident: 10.1016/j.ympev.2018.12.023_b0020 article-title: Investigating the path of plastid genome degradation in an early-transitional clade of heterotrophic orchids, and implications for heterotrophic angiosperms publication-title: Mol. Biol. Evol. doi: 10.1093/molbev/msu252 – start-page: 258 year: 2003 ident: 10.1016/j.ympev.2018.12.023_b0565 article-title: Chenopodiaceae – volume: 25 start-page: 3711 year: 2013 ident: 10.1016/j.ympev.2018.12.023_b0580 article-title: Mechanisms of functional and physical genome reduction in photosynthetic and nonphotosynthetic parasitic plants of the broomrape family publication-title: Plant Cell doi: 10.1105/tpc.113.113373 – volume: 126 start-page: 31 year: 1976 ident: 10.1016/j.ympev.2018.12.023_b0025 article-title: Ultrastructure of sieve-element plastids in Caryophyllales (Centrosperma), evidence for the delimitation and classification of the order publication-title: Plant Syst. Evol. doi: 10.1007/BF00986073 – volume: 67 start-page: 696 year: 2008 ident: 10.1016/j.ympev.2018.12.023_b0070 article-title: Extensive reorganization of the plastid genome of Trifolium subterraneum (Fabaceae) is associated with numerous repeated sequences and novel DNA insertions publication-title: J. Mol. Evol. doi: 10.1007/s00239-008-9180-7 – ident: 10.1016/j.ympev.2018.12.023_b0430 – volume: 4 start-page: 27 year: 2004 ident: 10.1016/j.ympev.2018.12.023_b0095 article-title: Chloroplast DNA rearrangements in Campanulaceae: phylogenetic utility of highly rearranged genomes publication-title: BMC Evol. Biol. doi: 10.1186/1471-2148-4-27 – volume: 25 start-page: 393 year: 2008 ident: 10.1016/j.ympev.2018.12.023_b0590 article-title: Functional gene losses occur with minimal size reduction in the plastid genome of the parasitic liverwort Aneura mirabilis publication-title: Mol. Biol. Evol. doi: 10.1093/molbev/msm267 – volume: 21 start-page: 163 year: 2005 ident: 10.1016/j.ympev.2018.12.023_b0035 article-title: A review of long-branch attraction publication-title: Cladistics doi: 10.1111/j.1096-0031.2005.00059.x – start-page: 169 year: 1991 ident: 10.1016/j.ympev.2018.12.023_b0135 article-title: Diversification of early angiosperm pollen in a cladistics context |
SSID | ssj0011595 |
Score | 2.5922477 |
Snippet | [Display omitted]
•Plastomes of 95 species (80 genera) within Caryophyllales were newly sequenced.•The deep-level relationships of Caryophyllales were... The Caryophyllales includes 40 families and 12,500 species, representing a large and diverse clade of angiosperms. Collectively, members of the clade grow on... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 74 |
SubjectTerms | C4 photosynthesis carnivores Caryophyllales Cretaceous period ecophysiology ecosystems Gene loss habitats Molecular dating Phylogenomics phylogeny Plastome Rapid radiation Substitution rate |
Title | Plastid phylogenomic insights into the evolution of Caryophyllales |
URI | https://dx.doi.org/10.1016/j.ympev.2018.12.023 https://www.ncbi.nlm.nih.gov/pubmed/30735725 https://www.proquest.com/docview/2183189296 https://www.proquest.com/docview/2221018238 |
Volume | 134 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA6iCF7Et-uLCh6tu02TtjnqoqxPxAd4C80LVqSV3a6wF3-7M2m74ME9eGoTJhC-TGe-NJMZQk5yYGw64Rgl7nohUzENBbDsMDHOGR6lKvEnpvcPyeCV3bzxtwXSb-_CYFhlY_trm-6tddPTbdDsfg6H3Wcs7ZgKr5TgiDjaYcZS1PKz71mYBxAeX3kFhUOUbjMP-RivKVDTL4zvyvw_QRr_5Z3-Yp_eC12tkdWGPgbn9QzXyYItNshyXVByukkuHoEMV0MTAHjQY_2d42BYjHELPoaXqgyA8QX2q9G4oHRBPx9NSxzwAc5ivEVery5f-oOwqZIQauA2VUhFRHOhFTPOaJsBhVKWUx0Zq52LY2EYAqRUZMGXc5PxTCXC5cZGKdCnno63yWJRFnaXBInjWsUizxmzLE1Vnva0hQ2IoD1oqKhDaIuO1E0Kcaxk8SHbWLF36SGVCKmMqARIO-R0NuizzqAxXzxpYZe_FEGCjZ8_8LhdJAmfCJ575IUtJ2OJLDDKgAcmc2QoxdxlQGA6ZKde4dls0QzylPK9_05tn6xAS9RxkgdksRpN7CFwmUodeWU9Ikvn_ae7R3xe3w4efgC-w_TX |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB5RUNVeKigtbHnUleDWsBsnTuIDB55aykOVAImbiV_SIpQgEqj2wp_iDzJ2kpU4sIdK3BLHtkYz45nP8XgGYCNHxKYS5qLE7SCIZUQDjig7SLS1moWpTPyJ6elZMryM_1yxqxl47u7CuLDK1vY3Nt1b67al33Kzfzca9c9daceUe6VER8RoG1l5bMb_cN9WbR_to5A3KT08uNgbBm1pgUAhIKgDykOacyVjbbUyGeIOaRhVoTbK2ijiOnazShkadIBMZyyTCbe5NmGKmGOgIpz3A8zFaC5c2YStp0lcCSIsX-rFURc48rpURz6obIxY-NEFlGX-JySN3nKHb8Fd7_YO5-FLi1fJTsOSBZgxxVf42FSwHC_C7l9E3_VIE5QWthh_yZmMisrt-St8qEuCEJOYx1bFSWnJXn4_Lt2AW_RO1Te4fBfefYfZoizMMpDEMiUjnudxbOI0lXk6UAZ3PJwO8EWGPaAdd4Rqc5a70hm3ogtOuxGepcKxVIRUIEt78Hsy6K5J2TG9e9KxXbzSPIFOZfrAX52QBK5Jd9CSF6Z8qISDnWGGwDOZ0odSlywNEVMPlhoJT6h1dpellP34X9J-wqfhxemJODk6O16Bz_iFN0GaqzBb3z-YNQRStVz3ikvg-r1XyguHKS_V |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Plastid+phylogenomic+insights+into+the+evolution+of+Caryophyllales&rft.jtitle=Molecular+phylogenetics+and+evolution&rft.au=Yao%2C+Gang&rft.au=Jin%2C+Jian-Jun&rft.au=Li%2C+Hong-Tao&rft.au=Yang%2C+Jun-Bo&rft.date=2019-05-01&rft.issn=1055-7903&rft.volume=134&rft.spage=74&rft.epage=86&rft_id=info:doi/10.1016%2Fj.ympev.2018.12.023&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ympev_2018_12_023 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1055-7903&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1055-7903&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1055-7903&client=summon |