AtNDB2 Is the Main External NADH Dehydrogenase in Mitochondria and Is Important for Tolerance to Environmental Stress

In addition to the classical electron transport pathway coupled to ATP synthesis, plant mitochondria have an alternative pathway that involves type II NAD(P)H dehydrogenases (NDs) and alternative oxidase (AOX). This alternative pathway participates in thermogenesis in select organs of some species a...

Full description

Saved in:
Bibliographic Details
Published inPlant physiology (Bethesda) Vol. 181; no. 2; pp. 774 - 788
Main Authors Sweetman, Crystal, Waterman, Christopher D, Rainbird, Barry M, Smith, Penelope M C, Jenkins, Colin D, Day, David A, Soole, Kathleen L
Format Journal Article
LanguageEnglish
Published United States 01.10.2019
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:In addition to the classical electron transport pathway coupled to ATP synthesis, plant mitochondria have an alternative pathway that involves type II NAD(P)H dehydrogenases (NDs) and alternative oxidase (AOX). This alternative pathway participates in thermogenesis in select organs of some species and is thought to help prevent cellular damage during exposure to environmental stress. Here, we investigated the function and role of one alternative path component, AtNDB2, using a transgenic approach in Arabidopsis ( ). Disruption of expression via T-DNA insertion led to a 90% decrease of external NADH oxidation in isolated mitochondria. Overexpression of led to increased AtNDB2 protein abundance in mitochondria but did not enhance external NADH oxidation significantly unless was concomitantly overexpressed and activated, demonstrating a functional link between these enzymes. Plants lacking either or were more sensitive to combined drought and elevated light treatments, whereas plants overexpressing these components showed increased tolerance and capacity for poststress recovery. We conclude that AtNDB2 is the predominant external NADH dehydrogenase in mitochondria and together with AtAOX1A forms a complete, functional, nonphosphorylating pathway of electron transport, whose operation enhances tolerance to environmental stress. This study demonstrates that at least one of the alternative NDs, as well as AOX, are important for the stress response.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0032-0889
1532-2548
1532-2548
DOI:10.1104/pp.19.00877