Energy, exergy and environmental assessments of biodiesel and diesel fuels for an internal combustion engine using silicon carbide particulate filter
In this study, an internal combustion engine is experimentally analyzed under 100 Nm engine load using biodiesel and diesel fuels. The analyses of energy, exergy and environment are also applied to the internal combustion engine without after treatment system (Engine-Out) and with silicon carbide-ba...
Saved in:
Published in | Journal of thermal analysis and calorimetry Vol. 145; no. 3; pp. 739 - 750 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Cham
Springer International Publishing
01.08.2021
Springer Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In this study, an internal combustion engine is experimentally analyzed under 100 Nm engine load using biodiesel and diesel fuels. The analyses of energy, exergy and environment are also applied to the internal combustion engine without after treatment system (Engine-Out) and with silicon carbide-based diesel particle filter (SiC-DPF) after treatment system. The impact of the utilization of SiC-DPF on the exhaust emissions and energy, exergy, environmental analyses results are examined. It is determined that (1) the work rate of diesel-fueled engine is higher than the biodiesel-fueled engine. (2) When energy and exergy losses are taken into consideration, the use of SiC-DPF has a positive effect on the emissions of the biodiesel-fueled engine, but it does not have the same effect for the diesel-fueled engine. (3) The biodiesel-fueled engine has higher energy and exergy efficiencies than diesel-fueled engine with and without after treatment systems. (4) In terms of exergy destruction, the results of the diesel-fueled engine have the maximum value with the use of SiC-DPF after treatment system, while the results of the biodiesel-fueled engine have the minimum value with the use of SiC-DPF. This reveals the effectiveness of the use of SiC-DPF after treatment system. (5) The emission rate of CO
2
is obtained as maximum for the biodiesel-fueled engine. Also, the minimum CO
2
emission rate is determined for the diesel-fueled engine without after treatment system. The use of SiC-DPF contributes to a reduction in CO
2
emission for the biodiesel fuel, while it causes an increase for the diesel fuel. (6) The entropy generation rate of the biodiesel-fueled engine is lower than the diesel-fueled engine with and without after treatment options. This study could help future studies on the choice of fuels and utilization of after treatment systems in the internal combustion engines in terms of better environment. |
---|---|
AbstractList | In this study, an internal combustion engine is experimentally analyzed under 100 Nm engine load using biodiesel and diesel fuels. The analyses of energy, exergy and environment are also applied to the internal combustion engine without after treatment system (Engine-Out) and with silicon carbide-based diesel particle filter (SiC-DPF) after treatment system. The impact of the utilization of SiC-DPF on the exhaust emissions and energy, exergy, environmental analyses results are examined. It is determined that (1) the work rate of diesel-fueled engine is higher than the biodiesel-fueled engine. (2) When energy and exergy losses are taken into consideration, the use of SiC-DPF has a positive effect on the emissions of the biodiesel-fueled engine, but it does not have the same effect for the diesel-fueled engine. (3) The biodiesel-fueled engine has higher energy and exergy efficiencies than diesel-fueled engine with and without after treatment systems. (4) In terms of exergy destruction, the results of the diesel-fueled engine have the maximum value with the use of SiC-DPF after treatment system, while the results of the biodiesel-fueled engine have the minimum value with the use of SiC-DPF. This reveals the effectiveness of the use of SiC-DPF after treatment system. (5) The emission rate of CO.sub.2 is obtained as maximum for the biodiesel-fueled engine. Also, the minimum CO.sub.2 emission rate is determined for the diesel-fueled engine without after treatment system. The use of SiC-DPF contributes to a reduction in CO.sub.2 emission for the biodiesel fuel, while it causes an increase for the diesel fuel. (6) The entropy generation rate of the biodiesel-fueled engine is lower than the diesel-fueled engine with and without after treatment options. This study could help future studies on the choice of fuels and utilization of after treatment systems in the internal combustion engines in terms of better environment. In this study, an internal combustion engine is experimentally analyzed under 100 Nm engine load using biodiesel and diesel fuels. The analyses of energy, exergy and environment are also applied to the internal combustion engine without after treatment system (Engine-Out) and with silicon carbide-based diesel particle filter (SiC-DPF) after treatment system. The impact of the utilization of SiC-DPF on the exhaust emissions and energy, exergy, environmental analyses results are examined. It is determined that (1) the work rate of diesel-fueled engine is higher than the biodiesel-fueled engine. (2) When energy and exergy losses are taken into consideration, the use of SiC-DPF has a positive effect on the emissions of the biodiesel-fueled engine, but it does not have the same effect for the diesel-fueled engine. (3) The biodiesel-fueled engine has higher energy and exergy efficiencies than diesel-fueled engine with and without after treatment systems. (4) In terms of exergy destruction, the results of the diesel-fueled engine have the maximum value with the use of SiC-DPF after treatment system, while the results of the biodiesel-fueled engine have the minimum value with the use of SiC-DPF. This reveals the effectiveness of the use of SiC-DPF after treatment system. (5) The emission rate of CO 2 is obtained as maximum for the biodiesel-fueled engine. Also, the minimum CO 2 emission rate is determined for the diesel-fueled engine without after treatment system. The use of SiC-DPF contributes to a reduction in CO 2 emission for the biodiesel fuel, while it causes an increase for the diesel fuel. (6) The entropy generation rate of the biodiesel-fueled engine is lower than the diesel-fueled engine with and without after treatment options. This study could help future studies on the choice of fuels and utilization of after treatment systems in the internal combustion engines in terms of better environment. In this study, an internal combustion engine is experimentally analyzed under 100 Nm engine load using biodiesel and diesel fuels. The analyses of energy, exergy and environment are also applied to the internal combustion engine without after treatment system (Engine-Out) and with silicon carbide-based diesel particle filter (SiC-DPF) after treatment system. The impact of the utilization of SiC-DPF on the exhaust emissions and energy, exergy, environmental analyses results are examined. It is determined that (1) the work rate of diesel-fueled engine is higher than the biodiesel-fueled engine. (2) When energy and exergy losses are taken into consideration, the use of SiC-DPF has a positive effect on the emissions of the biodiesel-fueled engine, but it does not have the same effect for the diesel-fueled engine. (3) The biodiesel-fueled engine has higher energy and exergy efficiencies than diesel-fueled engine with and without after treatment systems. (4) In terms of exergy destruction, the results of the diesel-fueled engine have the maximum value with the use of SiC-DPF after treatment system, while the results of the biodiesel-fueled engine have the minimum value with the use of SiC-DPF. This reveals the effectiveness of the use of SiC-DPF after treatment system. (5) The emission rate of CO2 is obtained as maximum for the biodiesel-fueled engine. Also, the minimum CO2 emission rate is determined for the diesel-fueled engine without after treatment system. The use of SiC-DPF contributes to a reduction in CO2 emission for the biodiesel fuel, while it causes an increase for the diesel fuel. (6) The entropy generation rate of the biodiesel-fueled engine is lower than the diesel-fueled engine with and without after treatment options. This study could help future studies on the choice of fuels and utilization of after treatment systems in the internal combustion engines in terms of better environment. |
Audience | Academic |
Author | Yildiz, Ibrahim Caliskan, Hakan Mori, Kazutoshi |
Author_xml | – sequence: 1 givenname: Ibrahim orcidid: 0000-0002-1103-2951 surname: Yildiz fullname: Yildiz, Ibrahim organization: Department of Mechanical Engineering, Graduate Education Institute, Usak University – sequence: 2 givenname: Hakan orcidid: 0000-0002-6571-0965 surname: Caliskan fullname: Caliskan, Hakan email: hakan.caliskan@usak.edu.tr organization: Department of Mechanical Engineering, Faculty of Engineering, Usak University – sequence: 3 givenname: Kazutoshi surname: Mori fullname: Mori, Kazutoshi organization: Department of Mechanical and Precision System Engineering, Faculty of Science and Engineering, Teikyo University |
BookMark | eNp9kctq3TAQhk1JoUnaF-hK0FWhTnSxrKNlCGkbCAR6WQtZHhkFH-lUIzfJg_R9K8eBkk3RQqPh-4YR_0lzFFOEpnnP6BmjVJ0jo1qJlnLaMso60d6_ao6Z3O1arnl_VGtR655J-qY5QbyjlGpN2XHz5ypCnh4_EXhYb2LjSCD-DjnFPcRiZ2IRAXF9IEmeDCGNARDmJ_S59AvMSHzKtUlCLJBjNV3aDwuWkGIdOYUIZMEQJ4JhDq42nc1DGIEcbC7BLbMtQHyYq_22ee3tjPDu-T5tfn6--nH5tb25_XJ9eXHTOqF5abkcmNOd5gK42I1Kq270kg5agVCj7ITqLPdq5N7bgXk9Dg6koP1OWTFICeK0-bDNPeT0awEs5i4t6-5ouJSScUVpX6mzjZrsDCZEn0q2rp4R9utHoC4N5qLvdd9L2ekqfHwhVKbAQ5nsgmiuv397yfKNdTkhZvDmkMPe5kfDqFmzNVu2pmZrnrI191USm4QVjhPkf3v_x_oL8pmr1Q |
CitedBy_id | crossref_primary_10_1007_s10973_023_12186_1 crossref_primary_10_1080_15567036_2023_2247373 crossref_primary_10_1007_s10973_021_10879_z crossref_primary_10_1007_s10973_022_11330_7 crossref_primary_10_1016_j_est_2022_104593 crossref_primary_10_3390_pr10050993 crossref_primary_10_1016_j_energy_2022_126022 crossref_primary_10_1002_ente_202300676 crossref_primary_10_1007_s10098_023_02685_y crossref_primary_10_1007_s10973_022_11500_7 crossref_primary_10_1080_17597269_2023_2191386 crossref_primary_10_1177_09544070221075428 crossref_primary_10_3390_en15051834 crossref_primary_10_1007_s10973_022_11486_2 crossref_primary_10_1007_s10973_023_11993_w crossref_primary_10_3390_en16093736 crossref_primary_10_1002_htj_23098 crossref_primary_10_3390_en14175385 crossref_primary_10_3390_en15051795 crossref_primary_10_1007_s10973_022_11357_w crossref_primary_10_1115_1_4051297 |
Cites_doi | 10.1016/j.cattod.2006.06.044 10.1504/IJEX.2010.029612 10.1016/j.enconman.2018.07.095 10.1016/j.trd.2017.08.009 10.1016/j.tsep.2018.12.007 10.1002/ep.13269 10.1016/j.fuel.2019.116336 10.1016/j.tsep.2018.09.001 10.1007/s10973-019-08463-7 10.1016/j.atmosenv.2005.04.040 10.1016/j.asej.2017.04.004 10.1016/j.enconman.2014.09.067 10.1016/j.joei.2020.01.024 10.1016/j.rser.2016.11.203 10.1061/(ASCE)EY.1943-7897.0000270 10.1007/s10973-019-08375-6 10.1002/ep.13322 10.1016/j.energy.2006.07.002 10.1016/j.energy.2017.04.014 10.1016/j.ijhydene.2019.11.172 10.1504/IJEX.2010.031986 10.1016/j.joei.2017.05.010 10.1016/j.triboint.2013.10.018 10.1016/j.fuel.2017.11.060 10.1016/j.trd.2008.07.004 10.1007/s10973-018-7933-0 10.4271/2015-01-1932 10.1016/j.jenvman.2019.02.113 |
ContentType | Journal Article |
Copyright | Akadémiai Kiadó, Budapest, Hungary 2020 COPYRIGHT 2021 Springer Akadémiai Kiadó, Budapest, Hungary 2020. |
Copyright_xml | – notice: Akadémiai Kiadó, Budapest, Hungary 2020 – notice: COPYRIGHT 2021 Springer – notice: Akadémiai Kiadó, Budapest, Hungary 2020. |
DBID | AAYXX CITATION ISR |
DOI | 10.1007/s10973-020-10143-w |
DatabaseName | CrossRef Science in Context |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1588-2926 |
EndPage | 750 |
ExternalDocumentID | A669665549 10_1007_s10973_020_10143_w |
GroupedDBID | -4Y -58 -5G -BR -EM -Y2 -~C .86 .VR 06C 06D 0R~ 0VY 1N0 2.D 203 29L 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 53G 5GY 5QI 5VS 67Z 6NX 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AABYN AAFGU AAGCJ AAHNG AAIAL AAIKT AANZL AARHV AARTL AATNV AATVU AAUCO AAUYE AAWCG AAYFA AAYIU AAYQN AAYTO ABBBX ABBXA ABDBF ABDZT ABECU ABFGW ABFTV ABHLI ABHQN ABJOX ABKAS ABKCH ABKTR ABMNI ABMQK ABNWP ABPTK ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACBMV ACBRV ACBXY ACBYP ACGFS ACHSB ACHXU ACIGE ACIPQ ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACSNA ACTTH ACVWB ACWMK ADHIR ADINQ ADKNI ADKPE ADMDM ADOXG ADPHR ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEEQQ AEFIE AEGAL AEGNC AEJHL AEJRE AEKMD AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFEXP AFGCZ AFLOW AFNRJ AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQMX AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AI. AIAKS AIIXL AILAN AIMYW AITGF AJBLW AJDOV AJGSW AJRNO AJZVZ AKQUC ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AOCGG ARMRJ AXYYD AYJHY AZFZN B-. B0M BA0 BDATZ BGNMA CAG COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EAD EAP EBLON EBS EIOEI EJD EMK EPL ESBYG ESX F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F IAO IHE IJ- IKXTQ ISR ITC ITM IWAJR IXC IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV LAK LLZTM M4Y MA- MET MKB N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P9N PF0 PT4 PT5 QOK QOR QOS R89 R9I RKA RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCG SCLPG SCM SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SQXTU SRMVM SSLCW STPWE SZN T13 T16 TEORI TSG TSK TSV TUC TUS U2A UG4 UNUBA UOJIU UTJUX UZXMN VC2 VFIZW VH1 W23 W48 W4F WJK WK8 YLTOR Z45 Z5O Z7R Z7S Z7U Z7V Z7W Z7X Z7Y Z7Z Z81 Z83 Z85 Z86 Z87 Z88 Z8M Z8N Z8O Z8P Z8Q Z8R Z8T Z8W Z91 Z92 ZE2 ZMTXR ~02 ~8M AACDK AAEOY AAJBT AASML AAYXX AAYZH ABAKF ACAOD ACDTI ACZOJ AEFQL AEMSY AFBBN AGJZZ AGQEE AGRTI AIGIU CITATION H13 |
ID | FETCH-LOGICAL-c392t-25b1c94923e238d7974df50b97e37d54374a2f7d2ffab1f9dbce530687a3b55e3 |
IEDL.DBID | AGYKE |
ISSN | 1388-6150 |
IngestDate | Tue Nov 19 04:48:24 EST 2024 Tue Nov 12 23:18:44 EST 2024 Thu Aug 01 19:17:21 EDT 2024 Thu Nov 21 21:32:57 EST 2024 Sat Dec 16 12:09:37 EST 2023 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | Diesel Silicon carbide Exergy Efficiency After treatment system Biodiesel |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c392t-25b1c94923e238d7974df50b97e37d54374a2f7d2ffab1f9dbce530687a3b55e3 |
ORCID | 0000-0002-6571-0965 0000-0002-1103-2951 |
PQID | 2555127006 |
PQPubID | 2043843 |
PageCount | 12 |
ParticipantIDs | proquest_journals_2555127006 gale_infotracacademiconefile_A669665549 gale_incontextgauss_ISR_A669665549 crossref_primary_10_1007_s10973_020_10143_w springer_journals_10_1007_s10973_020_10143_w |
PublicationCentury | 2000 |
PublicationDate | 2021-08-01 |
PublicationDateYYYYMMDD | 2021-08-01 |
PublicationDate_xml | – month: 08 year: 2021 text: 2021-08-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Cham |
PublicationPlace_xml | – name: Cham – name: Dordrecht |
PublicationSubtitle | An International Forum for Thermal Studies |
PublicationTitle | Journal of thermal analysis and calorimetry |
PublicationTitleAbbrev | J Therm Anal Calorim |
PublicationYear | 2021 |
Publisher | Springer International Publishing Springer Springer Nature B.V |
Publisher_xml | – name: Springer International Publishing – name: Springer – name: Springer Nature B.V |
References | CaliskanHTatMEHepbasliAVan GerpenJHExergy analysis of engines fuelled with biodiesel from high oleic soybeans based on experimental valuesInt J Exergy20107203610.1504/IJEX.2010.029612 Takagi O, Hayama S. A new SiC-based DPF for the automotive industry. Glob Powertrain Congr 2008, GPC 2008 Chicago—Proc [Internet]. Michigan; 2008. pp. 505–26. https://www.energy.gov/eere/vehicles/downloads/new-sic-based-dpfautomotive-%0Aindustry. Accessed 6 July 2018. Kotas TJ. The Exergy Method of Thermal Plant Analysis. 1985. https://www.elsevier.com/books/the-exergy-method-of-thermal-plant-analysis/kotas/978-0-408-01350-5. Accessed 19 May 2020. Coban T. Properties of ideal gases [Internet]. 2018. p. 1. http://www.turhancoban.com/programlar/idealgaz/GasTable.html. Accessed 6 July 2018. European Union: EU. Reducing CO2 emissions from passenger cars—before 2020 [Internet]. 2020. p. 1. https://ec.europa.eu/clima/policies/transport/vehicles/cars_en. Accessed 19 May 2020. TwiggMVRôles of catalytic oxidation in control of vehicle exhaust emissionsCatal Today20061174074181:CAS:528:DC%2BD28Xps1Wktb0%3D10.1016/j.cattod.2006.06.044 NaeimiABidiMAhmadiMHKumarRSadeghzadehMAlhuyi NazariMDesign and exergy analysis of waste heat recovery system and gas engine for power generation in Tehran cement factoryTherm Sci Eng Prog2019929930710.1016/j.tsep.2018.12.007 AnbarasuAKarthikeyanAPerformance and emission characteristics of a diesel engine using cerium oxide nanoparticle blended biodiesel emulsion fuelJ Energy Eng.20161421710.1061/(ASCE)EY.1943-7897.0000270 PraveenaVMartinMLJA review on various after treatment techniques to reduce NOx emissions in a CI engineJ Energy Inst2018917047201:CAS:528:DC%2BC1MXotVGjtw%3D%3D10.1016/j.joei.2017.05.010 MadheshiyaAKVedrtnamAEnergy-exergy analysis of biodiesel fuels produced from waste cooking oil and mustard oilFuel20182143864081:CAS:528:DC%2BC2sXhvVKksrnI10.1016/j.fuel.2017.11.060 Coquelin L, Fischer N, Mace T, Motzkus C, Gensdarmes F, Fleury G, et al. Scanning Mobility Particle Sizer : Fast data Inversion and uncertainty analysis. Eur Aerosol Conf 2012. Grenade, Spain; 2012. p. 1978. CaliskanHNovel approaches to exergy and economy based enhanced environmental analyses for energy systemsEnergy Convers Manag20158915616110.1016/j.enconman.2014.09.067 LópezJMJiménezFAparicioFFloresNOn-road emissions from urban buses with SCR + Urea and EGR + DPF systems using diesel and biodieselTransp Res Part D Transp Environ2009141510.1016/j.trd.2008.07.004 CaliskanHMoriKEnvironmental, enviroeconomic and enhanced thermodynamic analyses of a diesel engine with diesel oxidation catalyst (DOC) and diesel particulate filter (DPF) after treatment systemsEnergy20171281281441:CAS:528:DC%2BC2sXlvFynsLk%3D10.1016/j.energy.2017.04.014 Liebherr. Liebherr Exhaust Gas Aftertreatment Systems for Diesel Engines [Internet]. 2018. https://www.liebherr.com/shared/media/components/documents/combustion-engines/dieselmotoren/liebherr-exhaust-gas-aftertreatment.pdf. Accessed 6 July 2018. ManigandanSPonnusamyVKDeviPBOkeSASohretYVenkateshSEffect of nanoparticles and hydrogen on combustion performance and exhaust emission of corn blended biodiesel in compression ignition engine with advanced timingInt J Hydrogen Energy202045332733391:CAS:528:DC%2BC1MXitlOlsr%2FK10.1016/j.ijhydene.2019.11.172 King RT. Design of a Selective Catalytic Reduction System to Reduce Nitrogen Oxide Emissions of the 2003 West Virginia University FutureTruck [Internet]. West Virginia University; 2007. https://books.google.com/books?id=LZkaFBcQtlAC&pgis=1. Accessed 6 July 2018. BharathirajaMVenkatachalamRPerformanceSenthilmurugan Vemission, energy and exergy analyses of gasoline fumigated DI diesel engineJ Therm Anal Calorim20191362812931:CAS:528:DC%2BC1cXitlKmt7jE10.1007/s10973-018-7933-0 Çengel YA, Boles MA. EXERGY: A MEASURE OF WORK POTENTIAL. Thermodyn An Eng Approach [Internet]. 2011. p. 424. https://books.google.com.tr/books/about/Thermodynamics_An_Engineering_Approach.html?id=Ao95ngEACAAJ&redir_esc=y. Accessed 6 July 2018. Javadi MA, Ahmadi MH, Khalaji M. Exergetic, economic, and environmental analyses of combined cooling and power plants with parabolic solar collector. Environ Prog Sustain Energy [Internet]. 2020;39. https://onlinelibrary.wiley.com/doi/abs/10.1002/ep.13322. Akbari VakilabadiMBidiMNajafiAFAhmadiMHEnergy, exergy analysis and performance evaluation of a vacuum evaporator for solar thermal power plant Zero Liquid Discharge SystemsJ Therm Anal Calorim2020139127512901:CAS:528:DC%2BC1MXht1WmtL%2FK10.1007/s10973-019-08463-7 DasAKHansdahDMohapatraAKPandaAKEnergy, exergy and emission analysis on a DI single cylinder diesel engine using pyrolytic waste plastic oil diesel blendJ Energy Inst202010.1016/j.joei.2020.01.024 ABC Companies. Cummins ISX Regeneration Process [Internet]. 2020. p. 1. https://www.abc-companies.com/grab-n-go/. Accessed 19 May 2020. University M. Centre for Atmospheric Science Scanning Mobility Particle Sizer (SMPS) [Internet]. 2020. p. 1. www.cas.manchester.ac.uk/restools/instruments/aerosol/scanning/. Accessed 19 May 2020. Castillo MarcanoSJBensaidSDeorsolaFARussoNFinoDNanolubricants for diesel engines: related emissions and compatibility with the after-treatment catalystsTribol Int2014721982071:CAS:528:DC%2BC3sXhvVSlsbrJ10.1016/j.triboint.2013.10.018 CaliskanHTatMEHepbasliAA review on exergetic analysis and assessment of various types of enginesInt J Exergy2010728731010.1504/IJEX.2010.031986 Couch EJ. Thermodynamic Properties of Nitrous Oxide. ESDU Int plc [Internet]. 1956;1–24. http://edge.rit.edu/edge/P07106/public/Nox.pdf. Yildiz I. Thermodynamic analysis and emission assessment of a diesel engine fueled with various fuels. Usak University; 2018. TsatsaronisGDefinitions and nomenclature in exergy analysis and exergoeconomicsEnergy.20073224925310.1016/j.energy.2006.07.002 CaliskanHMoriKThermodynamic, environmental and economic effects of diesel and biodiesel fuels on exhaust emissions and nano-particles of a diesel engineTransp Res Part D Transp Environ20175620322110.1016/j.trd.2017.08.009 AbbasiMChahartaghiMHashemianSMEnergy, exergy, and economic evaluations of a CCHP system by using the internal combustion engines and gas turbine as prime moversEnergy Convers Manag201817335937410.1016/j.enconman.2018.07.095 CaliskanHEnergy, exergy, environmental, enviroeconomic, exergoenvironmental (EXEN) and exergoenviroeconomic (EXENEC) analyses of solar collectorsRenew Sustain Energy Rev20176948849210.1016/j.rser.2016.11.203 Mori K, Sorimachi K, Eguchi K, Kawase J, Suzuki R. Study for effects of bio-diesel fuel and engine oil on exhaust emission and PN of diesel engine. SAE Tech Pap. 2015;2015-Septe. GürbüzHŞöhretYAkçayHEnvironmental and enviroeconomic assessment of an LPG fueled SI engine at partial loadJ Environ Manage201924163163610.1016/j.jenvman.2019.02.113 AçıkkalpEAhmadiMHExergetic ecological index as a new exergetic indicator and an application for the heat enginesTherm Sci Eng Prog.2018820421010.1016/j.tsep.2018.09.001 Gouda N, Singh RK, Das AK, Panda AK. Performance, emission, energy, and exergy analysis of CI engine using Kaner seed pyrolysis oil blended diesel. Environ Prog Sustain Energy. 2019;38. DincerIRosenMExergy: Energy environment and sustainable development2007AmsterdamElsevier World Health Organization: (WHO). Air pollution [Internet]. 2020 [cited 2020 May 19]. p. 1. https://www.who.int/health-topics/air-pollution. Accessed 19 May 2020. PrabuANanoparticles as additive in biodiesel on the working characteristics of a DI diesel engineAin Shams Eng J201892343234910.1016/j.asej.2017.04.004 ManigandanSSarweswaranRBooma DeviPSohretYKondratievAVenkateshSComparative study of nanoadditives TiO2, CNT, Al2O3, CuO and CeO2 on reduction of diesel engine emission operating on hydrogen fuel blendsFuel20202621163361:CAS:528:DC%2BC1MXitV2gtbrO10.1016/j.fuel.2019.116336 AbdollahpourAGhasempourRKasaeianAAhmadiMHExergoeconomic analysis and optimization of a transcritical CO2 power cycle driven by solar energy based on nanofluid with liquefied natural gas as its heat sinkJ Therm Anal Calorim20201394514731:CAS:528:DC%2BC1MXhtVagt7%2FP10.1007/s10973-019-08375-6 NtziachristosLSamarasZZervasEDorlhènePEffects of a catalysed and an additized particle filter on the emissions of a diesel passenger car operating on low sulphur fuelsAtmos Environ200539492549361:CAS:528:DC%2BD2MXntlSns7k%3D10.1016/j.atmosenv.2005.04.040 SJ Castillo Marcano (10143_CR21) 2014; 72 H Caliskan (10143_CR16) 2010; 7 10143_CR39 10143_CR8 10143_CR36 10143_CR37 H Caliskan (10143_CR42) 2015; 89 S Manigandan (10143_CR14) 2020; 262 10143_CR19 H Caliskan (10143_CR15) 2017; 69 A Prabu (10143_CR9) 2018; 9 V Praveena (10143_CR41) 2018; 91 10143_CR1 M Akbari Vakilabadi (10143_CR18) 2020; 139 G Tsatsaronis (10143_CR38) 2007; 32 AK Das (10143_CR26) 2020 A Abdollahpour (10143_CR5) 2020; 139 L Ntziachristos (10143_CR28) 2005; 39 H Caliskan (10143_CR17) 2010; 7 AK Madheshiya (10143_CR24) 2018; 214 A Naeimi (10143_CR4) 2019; 9 10143_CR27 10143_CR25 A Anbarasu (10143_CR7) 2016; 142 H Caliskan (10143_CR13) 2017; 56 10143_CR29 M Abbasi (10143_CR23) 2018; 173 MV Twigg (10143_CR30) 2006; 117 E Açıkkalp (10143_CR2) 2018; 8 10143_CR31 I Dincer (10143_CR40) 2007 10143_CR12 H Caliskan (10143_CR22) 2017; 128 10143_CR34 JM López (10143_CR20) 2009; 14 10143_CR35 M Bharathiraja (10143_CR3) 2019; 136 S Manigandan (10143_CR6) 2020; 45 10143_CR10 10143_CR32 H Gürbüz (10143_CR11) 2019; 241 10143_CR33 |
References_xml | – volume: 117 start-page: 407 year: 2006 ident: 10143_CR30 publication-title: Catal Today doi: 10.1016/j.cattod.2006.06.044 contributor: fullname: MV Twigg – volume: 7 start-page: 20 year: 2010 ident: 10143_CR16 publication-title: Int J Exergy doi: 10.1504/IJEX.2010.029612 contributor: fullname: H Caliskan – ident: 10143_CR29 – ident: 10143_CR27 – ident: 10143_CR33 – ident: 10143_CR31 – volume: 173 start-page: 359 year: 2018 ident: 10143_CR23 publication-title: Energy Convers Manag doi: 10.1016/j.enconman.2018.07.095 contributor: fullname: M Abbasi – ident: 10143_CR39 – volume: 56 start-page: 203 year: 2017 ident: 10143_CR13 publication-title: Transp Res Part D Transp Environ doi: 10.1016/j.trd.2017.08.009 contributor: fullname: H Caliskan – ident: 10143_CR12 – ident: 10143_CR35 – volume: 9 start-page: 299 year: 2019 ident: 10143_CR4 publication-title: Therm Sci Eng Prog doi: 10.1016/j.tsep.2018.12.007 contributor: fullname: A Naeimi – ident: 10143_CR37 – ident: 10143_CR25 doi: 10.1002/ep.13269 – volume: 262 start-page: 116336 year: 2020 ident: 10143_CR14 publication-title: Fuel doi: 10.1016/j.fuel.2019.116336 contributor: fullname: S Manigandan – volume: 8 start-page: 204 year: 2018 ident: 10143_CR2 publication-title: Therm Sci Eng Prog. doi: 10.1016/j.tsep.2018.09.001 contributor: fullname: E Açıkkalp – volume: 139 start-page: 1275 year: 2020 ident: 10143_CR18 publication-title: J Therm Anal Calorim doi: 10.1007/s10973-019-08463-7 contributor: fullname: M Akbari Vakilabadi – volume: 39 start-page: 4925 year: 2005 ident: 10143_CR28 publication-title: Atmos Environ doi: 10.1016/j.atmosenv.2005.04.040 contributor: fullname: L Ntziachristos – volume: 9 start-page: 2343 year: 2018 ident: 10143_CR9 publication-title: Ain Shams Eng J doi: 10.1016/j.asej.2017.04.004 contributor: fullname: A Prabu – volume: 89 start-page: 156 year: 2015 ident: 10143_CR42 publication-title: Energy Convers Manag doi: 10.1016/j.enconman.2014.09.067 contributor: fullname: H Caliskan – year: 2020 ident: 10143_CR26 publication-title: J Energy Inst doi: 10.1016/j.joei.2020.01.024 contributor: fullname: AK Das – volume: 69 start-page: 488 year: 2017 ident: 10143_CR15 publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2016.11.203 contributor: fullname: H Caliskan – volume-title: Exergy: Energy environment and sustainable development year: 2007 ident: 10143_CR40 contributor: fullname: I Dincer – volume: 142 start-page: 1 year: 2016 ident: 10143_CR7 publication-title: J Energy Eng. doi: 10.1061/(ASCE)EY.1943-7897.0000270 contributor: fullname: A Anbarasu – volume: 139 start-page: 451 year: 2020 ident: 10143_CR5 publication-title: J Therm Anal Calorim doi: 10.1007/s10973-019-08375-6 contributor: fullname: A Abdollahpour – ident: 10143_CR8 doi: 10.1002/ep.13322 – volume: 32 start-page: 249 year: 2007 ident: 10143_CR38 publication-title: Energy. doi: 10.1016/j.energy.2006.07.002 contributor: fullname: G Tsatsaronis – ident: 10143_CR32 – volume: 128 start-page: 128 year: 2017 ident: 10143_CR22 publication-title: Energy doi: 10.1016/j.energy.2017.04.014 contributor: fullname: H Caliskan – volume: 45 start-page: 3327 year: 2020 ident: 10143_CR6 publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2019.11.172 contributor: fullname: S Manigandan – volume: 7 start-page: 287 year: 2010 ident: 10143_CR17 publication-title: Int J Exergy doi: 10.1504/IJEX.2010.031986 contributor: fullname: H Caliskan – volume: 91 start-page: 704 year: 2018 ident: 10143_CR41 publication-title: J Energy Inst doi: 10.1016/j.joei.2017.05.010 contributor: fullname: V Praveena – volume: 72 start-page: 198 year: 2014 ident: 10143_CR21 publication-title: Tribol Int doi: 10.1016/j.triboint.2013.10.018 contributor: fullname: SJ Castillo Marcano – volume: 214 start-page: 386 year: 2018 ident: 10143_CR24 publication-title: Fuel doi: 10.1016/j.fuel.2017.11.060 contributor: fullname: AK Madheshiya – volume: 14 start-page: 1 year: 2009 ident: 10143_CR20 publication-title: Transp Res Part D Transp Environ doi: 10.1016/j.trd.2008.07.004 contributor: fullname: JM López – volume: 136 start-page: 281 year: 2019 ident: 10143_CR3 publication-title: J Therm Anal Calorim doi: 10.1007/s10973-018-7933-0 contributor: fullname: M Bharathiraja – ident: 10143_CR1 – ident: 10143_CR34 – ident: 10143_CR10 doi: 10.4271/2015-01-1932 – ident: 10143_CR19 – ident: 10143_CR36 – volume: 241 start-page: 631 year: 2019 ident: 10143_CR11 publication-title: J Environ Manage doi: 10.1016/j.jenvman.2019.02.113 contributor: fullname: H Gürbüz |
SSID | ssj0009901 |
Score | 2.4769542 |
Snippet | In this study, an internal combustion engine is experimentally analyzed under 100 Nm engine load using biodiesel and diesel fuels. The analyses of energy,... |
SourceID | proquest gale crossref springer |
SourceType | Aggregation Database Publisher |
StartPage | 739 |
SubjectTerms | Analysis Analytical Chemistry Biodiesel fuels Carbon dioxide Chemistry Chemistry and Materials Science Combustion Diesel engines Diesel fuels Emissions control Exergy Exhaust systems Fluid filters Inorganic Chemistry Internal combustion engines Measurement Science and Instrumentation Physical Chemistry Polymer Sciences Silicon Silicon carbide |
Title | Energy, exergy and environmental assessments of biodiesel and diesel fuels for an internal combustion engine using silicon carbide particulate filter |
URI | https://link.springer.com/article/10.1007/s10973-020-10143-w https://www.proquest.com/docview/2555127006 |
Volume | 145 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwELYKHNpL31W3pSurqtRDMcrmZXxc0C60VTm0rERPlp-rqKsEbbJC8D_6fzvjJCwUOHCLkonl2GP7m8zMN4R8ysUI_Xmcidw6lmoeM8Ujz1QIqrFOeY75zj-O86NZ-u00O13ncYdg994jGTbqa7lugqPLMWJYXjZh5xtkC84eXI1b48Pf3ydrrl0RtXYWKAHynXe5Mne3cuM8-n9XvuUeDafO9Bk56XN32mCTP7urRu-ay9tUjg_5oOfkaYdC6bhVmxfkkStfkscHffG3V-TvJOQE7lAsyTS_oKq09FpOHLyrrig9a1p5qosK4xHdIoh2l34FJy8FWAw3adH-e1xQ6J7GGmJVCU0iGyLF4Ps5rYsFqGVJjVrqwjp6FrQay4s56gv06r8ms-nk5OCIdRUcmAHc1bA40yMjkAPOATSwHIwX67NIC-4SbrM04amKQRti75UeeWG1cRkYMXtcJTrLXPKGbJZV6d4SmjoAh3muAA6ZNNnzwhuAOgLsUWjRmmhAvvTzKM9aog65pmTGoZYw1DIMtTwfkI841RIZMEoMsZmrVV3Lr79-ynGegwkIKEsMyOdOyFfNUhnVZSxAh5A064bkdq8ystsDagnGWhb8-vmA7PQqsH58f-fePUz8PXkSY6BNiErcJpvNcuU-AFJq9BBWxnR__3jYrZAh2ZjF43_lFw5B |
link.rule.ids | 314,780,784,27924,27925,41081,41523,42150,42592,52111,52234 |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT9wwEB219EAvVSkgtlCwKqQewFI2X8bHFQItFDi0rMTNsmN7FWmVoM2uED-E_8uMN-lCgQO3KJlYlt_EnsnMvAHYz2Wf4nmCy9w6nhoRcy0iz3VIqrFOe0H1zpdX-XCUnt9kN21RWNNlu3chybBTPyl2k4JijhGn_rIJv_sIn1DjJPUtGMWDJdWujBZuFuoA0Z23pTKvj_HsOPp_U34RHQ2HzulX-NJai2ywgHcNPrjqG6wed03a1uHhJNTuHTJqnTS-Z7qy7EntGr6r_1FvNqz2zJQ15Q26SRBtL_0cT0iG5iveZOXiH-GE4bIY6vVVVzgksRYySpIfs6acoPpUrNBTU1rHboP2URswx3xJ0fcNGJ2eXB8PedtpgRdoH814nJl-IYmrzeERbgU6GdZnkZHCJcJmaSJSHSNqsffa9L20pnAZOhtHQicmy1yyCStVXbktYKlDIy7PNZotRZoceekLNEkk-o04oi2iHhx0C65uF4QaakmdTPAohEcFeNRdD34SJoqYKipKhRnredOos79_1CDP0VVDa0j24Fcr5OvZVBe6rSzACRG51TPJnQ5b1X6rjUKnKgvx97wHhx3ey8dvT-77-8T3YHV4fXmhLs6ufm_D55iSY0Im4Q6szKZz9wOtm5nZDcr8CLEn8nw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9RAEB9sBeuL-FV6WnURwQe7NJev7T4etUfrRxH1oG_Lbnb3CBzJcclR_EP8f53ZJN5V7YNvIZksYX-TzExm5jcAb3I5pnye4DK3jqdGxFyLyHMdimqs015Qv_Pny_x8ln64yq62uvhDtfuQkux6GoilqWqPl9YfbzW-SUH5x4jTrNmEX-_AXTJFpOmzeLKh3ZVRF3KhPhD1ed828-81bpimPz_Qf2VKgwGaPoQHvefIJh3Uj-COqx7D3ukwsO0J_DwLfXxHjMYozX8wXVm21ceG9-rfNJwNqz0zZU01hG4RRPtDv0ZrydCVxZOs7P4XLhhukaG5X3WFSxKDIaOC-TlrygWqUsUKvTKldWwZNJFGgjnmS8rEP4XZ9Oz76Tnvpy7wAn2llseZGReSeNscmnMrMOCwPouMFC4RNksTkeoYEYy912bspTWFyzDwOBE6MVnmkn3YrerKHQBLHTp0ea7RhSnS5MRLX6B7IjGGxBVtEY3g3bDhatmRa6gNjTLBoxAeFeBR1yN4TZgoYq2oqCxmrtdNoy6-fVWTPMewDT0jOYK3vZCv25UudN9lgA9ERFc3JA8HbFX_3jYKA6ws5OLzERwNeG8u3_5wz_5P_BXc-_J-qj5dXH58DvdjqpMJRYWHsNuu1u4FOjqteRl0-Rd3sva4 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Energy%2C+exergy+and+environmental+assessments+of+biodiesel+and+diesel+fuels+for+an+internal+combustion+engine+using+silicon+carbide+particulate+filter&rft.jtitle=Journal+of+thermal+analysis+and+calorimetry&rft.au=Yildiz%2C+Ibrahim&rft.au=Caliskan%2C+Hakan&rft.au=Mori%2C+Kazutoshi&rft.date=2021-08-01&rft.pub=Springer&rft.issn=1388-6150&rft.eissn=1588-2926&rft.volume=145&rft.issue=3&rft.spage=739&rft_id=info:doi/10.1007%2Fs10973-020-10143-w&rft.externalDBID=ISR&rft.externalDocID=A669665549 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1388-6150&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1388-6150&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1388-6150&client=summon |