Energy, exergy and environmental assessments of biodiesel and diesel fuels for an internal combustion engine using silicon carbide particulate filter

In this study, an internal combustion engine is experimentally analyzed under 100 Nm engine load using biodiesel and diesel fuels. The analyses of energy, exergy and environment are also applied to the internal combustion engine without after treatment system (Engine-Out) and with silicon carbide-ba...

Full description

Saved in:
Bibliographic Details
Published inJournal of thermal analysis and calorimetry Vol. 145; no. 3; pp. 739 - 750
Main Authors Yildiz, Ibrahim, Caliskan, Hakan, Mori, Kazutoshi
Format Journal Article
LanguageEnglish
Published Cham Springer International Publishing 01.08.2021
Springer
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In this study, an internal combustion engine is experimentally analyzed under 100 Nm engine load using biodiesel and diesel fuels. The analyses of energy, exergy and environment are also applied to the internal combustion engine without after treatment system (Engine-Out) and with silicon carbide-based diesel particle filter (SiC-DPF) after treatment system. The impact of the utilization of SiC-DPF on the exhaust emissions and energy, exergy, environmental analyses results are examined. It is determined that (1) the work rate of diesel-fueled engine is higher than the biodiesel-fueled engine. (2) When energy and exergy losses are taken into consideration, the use of SiC-DPF has a positive effect on the emissions of the biodiesel-fueled engine, but it does not have the same effect for the diesel-fueled engine. (3) The biodiesel-fueled engine has higher energy and exergy efficiencies than diesel-fueled engine with and without after treatment systems. (4) In terms of exergy destruction, the results of the diesel-fueled engine have the maximum value with the use of SiC-DPF after treatment system, while the results of the biodiesel-fueled engine have the minimum value with the use of SiC-DPF. This reveals the effectiveness of the use of SiC-DPF after treatment system. (5) The emission rate of CO 2 is obtained as maximum for the biodiesel-fueled engine. Also, the minimum CO 2 emission rate is determined for the diesel-fueled engine without after treatment system. The use of SiC-DPF contributes to a reduction in CO 2 emission for the biodiesel fuel, while it causes an increase for the diesel fuel. (6) The entropy generation rate of the biodiesel-fueled engine is lower than the diesel-fueled engine with and without after treatment options. This study could help future studies on the choice of fuels and utilization of after treatment systems in the internal combustion engines in terms of better environment.
AbstractList In this study, an internal combustion engine is experimentally analyzed under 100 Nm engine load using biodiesel and diesel fuels. The analyses of energy, exergy and environment are also applied to the internal combustion engine without after treatment system (Engine-Out) and with silicon carbide-based diesel particle filter (SiC-DPF) after treatment system. The impact of the utilization of SiC-DPF on the exhaust emissions and energy, exergy, environmental analyses results are examined. It is determined that (1) the work rate of diesel-fueled engine is higher than the biodiesel-fueled engine. (2) When energy and exergy losses are taken into consideration, the use of SiC-DPF has a positive effect on the emissions of the biodiesel-fueled engine, but it does not have the same effect for the diesel-fueled engine. (3) The biodiesel-fueled engine has higher energy and exergy efficiencies than diesel-fueled engine with and without after treatment systems. (4) In terms of exergy destruction, the results of the diesel-fueled engine have the maximum value with the use of SiC-DPF after treatment system, while the results of the biodiesel-fueled engine have the minimum value with the use of SiC-DPF. This reveals the effectiveness of the use of SiC-DPF after treatment system. (5) The emission rate of CO.sub.2 is obtained as maximum for the biodiesel-fueled engine. Also, the minimum CO.sub.2 emission rate is determined for the diesel-fueled engine without after treatment system. The use of SiC-DPF contributes to a reduction in CO.sub.2 emission for the biodiesel fuel, while it causes an increase for the diesel fuel. (6) The entropy generation rate of the biodiesel-fueled engine is lower than the diesel-fueled engine with and without after treatment options. This study could help future studies on the choice of fuels and utilization of after treatment systems in the internal combustion engines in terms of better environment.
In this study, an internal combustion engine is experimentally analyzed under 100 Nm engine load using biodiesel and diesel fuels. The analyses of energy, exergy and environment are also applied to the internal combustion engine without after treatment system (Engine-Out) and with silicon carbide-based diesel particle filter (SiC-DPF) after treatment system. The impact of the utilization of SiC-DPF on the exhaust emissions and energy, exergy, environmental analyses results are examined. It is determined that (1) the work rate of diesel-fueled engine is higher than the biodiesel-fueled engine. (2) When energy and exergy losses are taken into consideration, the use of SiC-DPF has a positive effect on the emissions of the biodiesel-fueled engine, but it does not have the same effect for the diesel-fueled engine. (3) The biodiesel-fueled engine has higher energy and exergy efficiencies than diesel-fueled engine with and without after treatment systems. (4) In terms of exergy destruction, the results of the diesel-fueled engine have the maximum value with the use of SiC-DPF after treatment system, while the results of the biodiesel-fueled engine have the minimum value with the use of SiC-DPF. This reveals the effectiveness of the use of SiC-DPF after treatment system. (5) The emission rate of CO 2 is obtained as maximum for the biodiesel-fueled engine. Also, the minimum CO 2 emission rate is determined for the diesel-fueled engine without after treatment system. The use of SiC-DPF contributes to a reduction in CO 2 emission for the biodiesel fuel, while it causes an increase for the diesel fuel. (6) The entropy generation rate of the biodiesel-fueled engine is lower than the diesel-fueled engine with and without after treatment options. This study could help future studies on the choice of fuels and utilization of after treatment systems in the internal combustion engines in terms of better environment.
In this study, an internal combustion engine is experimentally analyzed under 100 Nm engine load using biodiesel and diesel fuels. The analyses of energy, exergy and environment are also applied to the internal combustion engine without after treatment system (Engine-Out) and with silicon carbide-based diesel particle filter (SiC-DPF) after treatment system. The impact of the utilization of SiC-DPF on the exhaust emissions and energy, exergy, environmental analyses results are examined. It is determined that (1) the work rate of diesel-fueled engine is higher than the biodiesel-fueled engine. (2) When energy and exergy losses are taken into consideration, the use of SiC-DPF has a positive effect on the emissions of the biodiesel-fueled engine, but it does not have the same effect for the diesel-fueled engine. (3) The biodiesel-fueled engine has higher energy and exergy efficiencies than diesel-fueled engine with and without after treatment systems. (4) In terms of exergy destruction, the results of the diesel-fueled engine have the maximum value with the use of SiC-DPF after treatment system, while the results of the biodiesel-fueled engine have the minimum value with the use of SiC-DPF. This reveals the effectiveness of the use of SiC-DPF after treatment system. (5) The emission rate of CO2 is obtained as maximum for the biodiesel-fueled engine. Also, the minimum CO2 emission rate is determined for the diesel-fueled engine without after treatment system. The use of SiC-DPF contributes to a reduction in CO2 emission for the biodiesel fuel, while it causes an increase for the diesel fuel. (6) The entropy generation rate of the biodiesel-fueled engine is lower than the diesel-fueled engine with and without after treatment options. This study could help future studies on the choice of fuels and utilization of after treatment systems in the internal combustion engines in terms of better environment.
Audience Academic
Author Yildiz, Ibrahim
Caliskan, Hakan
Mori, Kazutoshi
Author_xml – sequence: 1
  givenname: Ibrahim
  orcidid: 0000-0002-1103-2951
  surname: Yildiz
  fullname: Yildiz, Ibrahim
  organization: Department of Mechanical Engineering, Graduate Education Institute, Usak University
– sequence: 2
  givenname: Hakan
  orcidid: 0000-0002-6571-0965
  surname: Caliskan
  fullname: Caliskan, Hakan
  email: hakan.caliskan@usak.edu.tr
  organization: Department of Mechanical Engineering, Faculty of Engineering, Usak University
– sequence: 3
  givenname: Kazutoshi
  surname: Mori
  fullname: Mori, Kazutoshi
  organization: Department of Mechanical and Precision System Engineering, Faculty of Science and Engineering, Teikyo University
BookMark eNp9kctq3TAQhk1JoUnaF-hK0FWhTnSxrKNlCGkbCAR6WQtZHhkFH-lUIzfJg_R9K8eBkk3RQqPh-4YR_0lzFFOEpnnP6BmjVJ0jo1qJlnLaMso60d6_ao6Z3O1arnl_VGtR655J-qY5QbyjlGpN2XHz5ypCnh4_EXhYb2LjSCD-DjnFPcRiZ2IRAXF9IEmeDCGNARDmJ_S59AvMSHzKtUlCLJBjNV3aDwuWkGIdOYUIZMEQJ4JhDq42nc1DGIEcbC7BLbMtQHyYq_22ee3tjPDu-T5tfn6--nH5tb25_XJ9eXHTOqF5abkcmNOd5gK42I1Kq270kg5agVCj7ITqLPdq5N7bgXk9Dg6koP1OWTFICeK0-bDNPeT0awEs5i4t6-5ouJSScUVpX6mzjZrsDCZEn0q2rp4R9utHoC4N5qLvdd9L2ekqfHwhVKbAQ5nsgmiuv397yfKNdTkhZvDmkMPe5kfDqFmzNVu2pmZrnrI191USm4QVjhPkf3v_x_oL8pmr1Q
CitedBy_id crossref_primary_10_1007_s10973_023_12186_1
crossref_primary_10_1080_15567036_2023_2247373
crossref_primary_10_1007_s10973_021_10879_z
crossref_primary_10_1007_s10973_022_11330_7
crossref_primary_10_1016_j_est_2022_104593
crossref_primary_10_3390_pr10050993
crossref_primary_10_1016_j_energy_2022_126022
crossref_primary_10_1002_ente_202300676
crossref_primary_10_1007_s10098_023_02685_y
crossref_primary_10_1007_s10973_022_11500_7
crossref_primary_10_1080_17597269_2023_2191386
crossref_primary_10_1177_09544070221075428
crossref_primary_10_3390_en15051834
crossref_primary_10_1007_s10973_022_11486_2
crossref_primary_10_1007_s10973_023_11993_w
crossref_primary_10_3390_en16093736
crossref_primary_10_1002_htj_23098
crossref_primary_10_3390_en14175385
crossref_primary_10_3390_en15051795
crossref_primary_10_1007_s10973_022_11357_w
crossref_primary_10_1115_1_4051297
Cites_doi 10.1016/j.cattod.2006.06.044
10.1504/IJEX.2010.029612
10.1016/j.enconman.2018.07.095
10.1016/j.trd.2017.08.009
10.1016/j.tsep.2018.12.007
10.1002/ep.13269
10.1016/j.fuel.2019.116336
10.1016/j.tsep.2018.09.001
10.1007/s10973-019-08463-7
10.1016/j.atmosenv.2005.04.040
10.1016/j.asej.2017.04.004
10.1016/j.enconman.2014.09.067
10.1016/j.joei.2020.01.024
10.1016/j.rser.2016.11.203
10.1061/(ASCE)EY.1943-7897.0000270
10.1007/s10973-019-08375-6
10.1002/ep.13322
10.1016/j.energy.2006.07.002
10.1016/j.energy.2017.04.014
10.1016/j.ijhydene.2019.11.172
10.1504/IJEX.2010.031986
10.1016/j.joei.2017.05.010
10.1016/j.triboint.2013.10.018
10.1016/j.fuel.2017.11.060
10.1016/j.trd.2008.07.004
10.1007/s10973-018-7933-0
10.4271/2015-01-1932
10.1016/j.jenvman.2019.02.113
ContentType Journal Article
Copyright Akadémiai Kiadó, Budapest, Hungary 2020
COPYRIGHT 2021 Springer
Akadémiai Kiadó, Budapest, Hungary 2020.
Copyright_xml – notice: Akadémiai Kiadó, Budapest, Hungary 2020
– notice: COPYRIGHT 2021 Springer
– notice: Akadémiai Kiadó, Budapest, Hungary 2020.
DBID AAYXX
CITATION
ISR
DOI 10.1007/s10973-020-10143-w
DatabaseName CrossRef
Science in Context
DatabaseTitle CrossRef
DatabaseTitleList


DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1588-2926
EndPage 750
ExternalDocumentID A669665549
10_1007_s10973_020_10143_w
GroupedDBID -4Y
-58
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06C
06D
0R~
0VY
1N0
2.D
203
29L
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
53G
5GY
5QI
5VS
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AABYN
AAFGU
AAGCJ
AAHNG
AAIAL
AAIKT
AANZL
AARHV
AARTL
AATNV
AATVU
AAUCO
AAUYE
AAWCG
AAYFA
AAYIU
AAYQN
AAYTO
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFGW
ABFTV
ABHLI
ABHQN
ABJOX
ABKAS
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABPTK
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACBMV
ACBRV
ACBXY
ACBYP
ACGFS
ACHSB
ACHXU
ACIGE
ACIPQ
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACSNA
ACTTH
ACVWB
ACWMK
ADHIR
ADINQ
ADKNI
ADKPE
ADMDM
ADOXG
ADPHR
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEEQQ
AEFIE
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFEXP
AFGCZ
AFLOW
AFNRJ
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQMX
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AI.
AIAKS
AIIXL
AILAN
AIMYW
AITGF
AJBLW
AJDOV
AJGSW
AJRNO
AJZVZ
AKQUC
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AOCGG
ARMRJ
AXYYD
AYJHY
AZFZN
B-.
B0M
BA0
BDATZ
BGNMA
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EAD
EAP
EBLON
EBS
EIOEI
EJD
EMK
EPL
ESBYG
ESX
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
IAO
IHE
IJ-
IKXTQ
ISR
ITC
ITM
IWAJR
IXC
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
LAK
LLZTM
M4Y
MA-
MET
MKB
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P9N
PF0
PT4
PT5
QOK
QOR
QOS
R89
R9I
RKA
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCG
SCLPG
SCM
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SQXTU
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UNUBA
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VH1
W23
W48
W4F
WJK
WK8
YLTOR
Z45
Z5O
Z7R
Z7S
Z7U
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z85
Z86
Z87
Z88
Z8M
Z8N
Z8O
Z8P
Z8Q
Z8R
Z8T
Z8W
Z91
Z92
ZE2
ZMTXR
~02
~8M
AACDK
AAEOY
AAJBT
AASML
AAYXX
AAYZH
ABAKF
ACAOD
ACDTI
ACZOJ
AEFQL
AEMSY
AFBBN
AGJZZ
AGQEE
AGRTI
AIGIU
CITATION
H13
ID FETCH-LOGICAL-c392t-25b1c94923e238d7974df50b97e37d54374a2f7d2ffab1f9dbce530687a3b55e3
IEDL.DBID AGYKE
ISSN 1388-6150
IngestDate Tue Nov 19 04:48:24 EST 2024
Tue Nov 12 23:18:44 EST 2024
Thu Aug 01 19:17:21 EDT 2024
Thu Nov 21 21:32:57 EST 2024
Sat Dec 16 12:09:37 EST 2023
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Diesel
Silicon carbide
Exergy
Efficiency
After treatment system
Biodiesel
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c392t-25b1c94923e238d7974df50b97e37d54374a2f7d2ffab1f9dbce530687a3b55e3
ORCID 0000-0002-6571-0965
0000-0002-1103-2951
PQID 2555127006
PQPubID 2043843
PageCount 12
ParticipantIDs proquest_journals_2555127006
gale_infotracacademiconefile_A669665549
gale_incontextgauss_ISR_A669665549
crossref_primary_10_1007_s10973_020_10143_w
springer_journals_10_1007_s10973_020_10143_w
PublicationCentury 2000
PublicationDate 2021-08-01
PublicationDateYYYYMMDD 2021-08-01
PublicationDate_xml – month: 08
  year: 2021
  text: 2021-08-01
  day: 01
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: Dordrecht
PublicationSubtitle An International Forum for Thermal Studies
PublicationTitle Journal of thermal analysis and calorimetry
PublicationTitleAbbrev J Therm Anal Calorim
PublicationYear 2021
Publisher Springer International Publishing
Springer
Springer Nature B.V
Publisher_xml – name: Springer International Publishing
– name: Springer
– name: Springer Nature B.V
References CaliskanHTatMEHepbasliAVan GerpenJHExergy analysis of engines fuelled with biodiesel from high oleic soybeans based on experimental valuesInt J Exergy20107203610.1504/IJEX.2010.029612
Takagi O, Hayama S. A new SiC-based DPF for the automotive industry. Glob Powertrain Congr 2008, GPC 2008 Chicago—Proc [Internet]. Michigan; 2008. pp. 505–26. https://www.energy.gov/eere/vehicles/downloads/new-sic-based-dpfautomotive-%0Aindustry. Accessed 6 July 2018.
Kotas TJ. The Exergy Method of Thermal Plant Analysis. 1985. https://www.elsevier.com/books/the-exergy-method-of-thermal-plant-analysis/kotas/978-0-408-01350-5. Accessed 19 May 2020.
Coban T. Properties of ideal gases [Internet]. 2018. p. 1. http://www.turhancoban.com/programlar/idealgaz/GasTable.html. Accessed 6 July 2018.
European Union: EU. Reducing CO2 emissions from passenger cars—before 2020 [Internet]. 2020. p. 1. https://ec.europa.eu/clima/policies/transport/vehicles/cars_en. Accessed 19 May 2020.
TwiggMVRôles of catalytic oxidation in control of vehicle exhaust emissionsCatal Today20061174074181:CAS:528:DC%2BD28Xps1Wktb0%3D10.1016/j.cattod.2006.06.044
NaeimiABidiMAhmadiMHKumarRSadeghzadehMAlhuyi NazariMDesign and exergy analysis of waste heat recovery system and gas engine for power generation in Tehran cement factoryTherm Sci Eng Prog2019929930710.1016/j.tsep.2018.12.007
AnbarasuAKarthikeyanAPerformance and emission characteristics of a diesel engine using cerium oxide nanoparticle blended biodiesel emulsion fuelJ Energy Eng.20161421710.1061/(ASCE)EY.1943-7897.0000270
PraveenaVMartinMLJA review on various after treatment techniques to reduce NOx emissions in a CI engineJ Energy Inst2018917047201:CAS:528:DC%2BC1MXotVGjtw%3D%3D10.1016/j.joei.2017.05.010
MadheshiyaAKVedrtnamAEnergy-exergy analysis of biodiesel fuels produced from waste cooking oil and mustard oilFuel20182143864081:CAS:528:DC%2BC2sXhvVKksrnI10.1016/j.fuel.2017.11.060
Coquelin L, Fischer N, Mace T, Motzkus C, Gensdarmes F, Fleury G, et al. Scanning Mobility Particle Sizer : Fast data Inversion and uncertainty analysis. Eur Aerosol Conf 2012. Grenade, Spain; 2012. p. 1978.
CaliskanHNovel approaches to exergy and economy based enhanced environmental analyses for energy systemsEnergy Convers Manag20158915616110.1016/j.enconman.2014.09.067
LópezJMJiménezFAparicioFFloresNOn-road emissions from urban buses with SCR + Urea and EGR + DPF systems using diesel and biodieselTransp Res Part D Transp Environ2009141510.1016/j.trd.2008.07.004
CaliskanHMoriKEnvironmental, enviroeconomic and enhanced thermodynamic analyses of a diesel engine with diesel oxidation catalyst (DOC) and diesel particulate filter (DPF) after treatment systemsEnergy20171281281441:CAS:528:DC%2BC2sXlvFynsLk%3D10.1016/j.energy.2017.04.014
Liebherr. Liebherr Exhaust Gas Aftertreatment Systems for Diesel Engines [Internet]. 2018. https://www.liebherr.com/shared/media/components/documents/combustion-engines/dieselmotoren/liebherr-exhaust-gas-aftertreatment.pdf. Accessed 6 July 2018.
ManigandanSPonnusamyVKDeviPBOkeSASohretYVenkateshSEffect of nanoparticles and hydrogen on combustion performance and exhaust emission of corn blended biodiesel in compression ignition engine with advanced timingInt J Hydrogen Energy202045332733391:CAS:528:DC%2BC1MXitlOlsr%2FK10.1016/j.ijhydene.2019.11.172
King RT. Design of a Selective Catalytic Reduction System to Reduce Nitrogen Oxide Emissions of the 2003 West Virginia University FutureTruck [Internet]. West Virginia University; 2007. https://books.google.com/books?id=LZkaFBcQtlAC&pgis=1. Accessed 6 July 2018.
BharathirajaMVenkatachalamRPerformanceSenthilmurugan Vemission, energy and exergy analyses of gasoline fumigated DI diesel engineJ Therm Anal Calorim20191362812931:CAS:528:DC%2BC1cXitlKmt7jE10.1007/s10973-018-7933-0
Çengel YA, Boles MA. EXERGY: A MEASURE OF WORK POTENTIAL. Thermodyn An Eng Approach [Internet]. 2011. p. 424. https://books.google.com.tr/books/about/Thermodynamics_An_Engineering_Approach.html?id=Ao95ngEACAAJ&redir_esc=y. Accessed 6 July 2018.
Javadi MA, Ahmadi MH, Khalaji M. Exergetic, economic, and environmental analyses of combined cooling and power plants with parabolic solar collector. Environ Prog Sustain Energy [Internet]. 2020;39. https://onlinelibrary.wiley.com/doi/abs/10.1002/ep.13322.
Akbari VakilabadiMBidiMNajafiAFAhmadiMHEnergy, exergy analysis and performance evaluation of a vacuum evaporator for solar thermal power plant Zero Liquid Discharge SystemsJ Therm Anal Calorim2020139127512901:CAS:528:DC%2BC1MXht1WmtL%2FK10.1007/s10973-019-08463-7
DasAKHansdahDMohapatraAKPandaAKEnergy, exergy and emission analysis on a DI single cylinder diesel engine using pyrolytic waste plastic oil diesel blendJ Energy Inst202010.1016/j.joei.2020.01.024
ABC Companies. Cummins ISX Regeneration Process [Internet]. 2020. p. 1. https://www.abc-companies.com/grab-n-go/. Accessed 19 May 2020.
University M. Centre for Atmospheric Science Scanning Mobility Particle Sizer (SMPS) [Internet]. 2020. p. 1. www.cas.manchester.ac.uk/restools/instruments/aerosol/scanning/. Accessed 19 May 2020.
Castillo MarcanoSJBensaidSDeorsolaFARussoNFinoDNanolubricants for diesel engines: related emissions and compatibility with the after-treatment catalystsTribol Int2014721982071:CAS:528:DC%2BC3sXhvVSlsbrJ10.1016/j.triboint.2013.10.018
CaliskanHTatMEHepbasliAA review on exergetic analysis and assessment of various types of enginesInt J Exergy2010728731010.1504/IJEX.2010.031986
Couch EJ. Thermodynamic Properties of Nitrous Oxide. ESDU Int plc [Internet]. 1956;1–24. http://edge.rit.edu/edge/P07106/public/Nox.pdf.
Yildiz I. Thermodynamic analysis and emission assessment of a diesel engine fueled with various fuels. Usak University; 2018.
TsatsaronisGDefinitions and nomenclature in exergy analysis and exergoeconomicsEnergy.20073224925310.1016/j.energy.2006.07.002
CaliskanHMoriKThermodynamic, environmental and economic effects of diesel and biodiesel fuels on exhaust emissions and nano-particles of a diesel engineTransp Res Part D Transp Environ20175620322110.1016/j.trd.2017.08.009
AbbasiMChahartaghiMHashemianSMEnergy, exergy, and economic evaluations of a CCHP system by using the internal combustion engines and gas turbine as prime moversEnergy Convers Manag201817335937410.1016/j.enconman.2018.07.095
CaliskanHEnergy, exergy, environmental, enviroeconomic, exergoenvironmental (EXEN) and exergoenviroeconomic (EXENEC) analyses of solar collectorsRenew Sustain Energy Rev20176948849210.1016/j.rser.2016.11.203
Mori K, Sorimachi K, Eguchi K, Kawase J, Suzuki R. Study for effects of bio-diesel fuel and engine oil on exhaust emission and PN of diesel engine. SAE Tech Pap. 2015;2015-Septe.
GürbüzHŞöhretYAkçayHEnvironmental and enviroeconomic assessment of an LPG fueled SI engine at partial loadJ Environ Manage201924163163610.1016/j.jenvman.2019.02.113
AçıkkalpEAhmadiMHExergetic ecological index as a new exergetic indicator and an application for the heat enginesTherm Sci Eng Prog.2018820421010.1016/j.tsep.2018.09.001
Gouda N, Singh RK, Das AK, Panda AK. Performance, emission, energy, and exergy analysis of CI engine using Kaner seed pyrolysis oil blended diesel. Environ Prog Sustain Energy. 2019;38.
DincerIRosenMExergy: Energy environment and sustainable development2007AmsterdamElsevier
World Health Organization: (WHO). Air pollution [Internet]. 2020 [cited 2020 May 19]. p. 1. https://www.who.int/health-topics/air-pollution. Accessed 19 May 2020.
PrabuANanoparticles as additive in biodiesel on the working characteristics of a DI diesel engineAin Shams Eng J201892343234910.1016/j.asej.2017.04.004
ManigandanSSarweswaranRBooma DeviPSohretYKondratievAVenkateshSComparative study of nanoadditives TiO2, CNT, Al2O3, CuO and CeO2 on reduction of diesel engine emission operating on hydrogen fuel blendsFuel20202621163361:CAS:528:DC%2BC1MXitV2gtbrO10.1016/j.fuel.2019.116336
AbdollahpourAGhasempourRKasaeianAAhmadiMHExergoeconomic analysis and optimization of a transcritical CO2 power cycle driven by solar energy based on nanofluid with liquefied natural gas as its heat sinkJ Therm Anal Calorim20201394514731:CAS:528:DC%2BC1MXhtVagt7%2FP10.1007/s10973-019-08375-6
NtziachristosLSamarasZZervasEDorlhènePEffects of a catalysed and an additized particle filter on the emissions of a diesel passenger car operating on low sulphur fuelsAtmos Environ200539492549361:CAS:528:DC%2BD2MXntlSns7k%3D10.1016/j.atmosenv.2005.04.040
SJ Castillo Marcano (10143_CR21) 2014; 72
H Caliskan (10143_CR16) 2010; 7
10143_CR39
10143_CR8
10143_CR36
10143_CR37
H Caliskan (10143_CR42) 2015; 89
S Manigandan (10143_CR14) 2020; 262
10143_CR19
H Caliskan (10143_CR15) 2017; 69
A Prabu (10143_CR9) 2018; 9
V Praveena (10143_CR41) 2018; 91
10143_CR1
M Akbari Vakilabadi (10143_CR18) 2020; 139
G Tsatsaronis (10143_CR38) 2007; 32
AK Das (10143_CR26) 2020
A Abdollahpour (10143_CR5) 2020; 139
L Ntziachristos (10143_CR28) 2005; 39
H Caliskan (10143_CR17) 2010; 7
AK Madheshiya (10143_CR24) 2018; 214
A Naeimi (10143_CR4) 2019; 9
10143_CR27
10143_CR25
A Anbarasu (10143_CR7) 2016; 142
H Caliskan (10143_CR13) 2017; 56
10143_CR29
M Abbasi (10143_CR23) 2018; 173
MV Twigg (10143_CR30) 2006; 117
E Açıkkalp (10143_CR2) 2018; 8
10143_CR31
I Dincer (10143_CR40) 2007
10143_CR12
H Caliskan (10143_CR22) 2017; 128
10143_CR34
JM López (10143_CR20) 2009; 14
10143_CR35
M Bharathiraja (10143_CR3) 2019; 136
S Manigandan (10143_CR6) 2020; 45
10143_CR10
10143_CR32
H Gürbüz (10143_CR11) 2019; 241
10143_CR33
References_xml – volume: 117
  start-page: 407
  year: 2006
  ident: 10143_CR30
  publication-title: Catal Today
  doi: 10.1016/j.cattod.2006.06.044
  contributor:
    fullname: MV Twigg
– volume: 7
  start-page: 20
  year: 2010
  ident: 10143_CR16
  publication-title: Int J Exergy
  doi: 10.1504/IJEX.2010.029612
  contributor:
    fullname: H Caliskan
– ident: 10143_CR29
– ident: 10143_CR27
– ident: 10143_CR33
– ident: 10143_CR31
– volume: 173
  start-page: 359
  year: 2018
  ident: 10143_CR23
  publication-title: Energy Convers Manag
  doi: 10.1016/j.enconman.2018.07.095
  contributor:
    fullname: M Abbasi
– ident: 10143_CR39
– volume: 56
  start-page: 203
  year: 2017
  ident: 10143_CR13
  publication-title: Transp Res Part D Transp Environ
  doi: 10.1016/j.trd.2017.08.009
  contributor:
    fullname: H Caliskan
– ident: 10143_CR12
– ident: 10143_CR35
– volume: 9
  start-page: 299
  year: 2019
  ident: 10143_CR4
  publication-title: Therm Sci Eng Prog
  doi: 10.1016/j.tsep.2018.12.007
  contributor:
    fullname: A Naeimi
– ident: 10143_CR37
– ident: 10143_CR25
  doi: 10.1002/ep.13269
– volume: 262
  start-page: 116336
  year: 2020
  ident: 10143_CR14
  publication-title: Fuel
  doi: 10.1016/j.fuel.2019.116336
  contributor:
    fullname: S Manigandan
– volume: 8
  start-page: 204
  year: 2018
  ident: 10143_CR2
  publication-title: Therm Sci Eng Prog.
  doi: 10.1016/j.tsep.2018.09.001
  contributor:
    fullname: E Açıkkalp
– volume: 139
  start-page: 1275
  year: 2020
  ident: 10143_CR18
  publication-title: J Therm Anal Calorim
  doi: 10.1007/s10973-019-08463-7
  contributor:
    fullname: M Akbari Vakilabadi
– volume: 39
  start-page: 4925
  year: 2005
  ident: 10143_CR28
  publication-title: Atmos Environ
  doi: 10.1016/j.atmosenv.2005.04.040
  contributor:
    fullname: L Ntziachristos
– volume: 9
  start-page: 2343
  year: 2018
  ident: 10143_CR9
  publication-title: Ain Shams Eng J
  doi: 10.1016/j.asej.2017.04.004
  contributor:
    fullname: A Prabu
– volume: 89
  start-page: 156
  year: 2015
  ident: 10143_CR42
  publication-title: Energy Convers Manag
  doi: 10.1016/j.enconman.2014.09.067
  contributor:
    fullname: H Caliskan
– year: 2020
  ident: 10143_CR26
  publication-title: J Energy Inst
  doi: 10.1016/j.joei.2020.01.024
  contributor:
    fullname: AK Das
– volume: 69
  start-page: 488
  year: 2017
  ident: 10143_CR15
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2016.11.203
  contributor:
    fullname: H Caliskan
– volume-title: Exergy: Energy environment and sustainable development
  year: 2007
  ident: 10143_CR40
  contributor:
    fullname: I Dincer
– volume: 142
  start-page: 1
  year: 2016
  ident: 10143_CR7
  publication-title: J Energy Eng.
  doi: 10.1061/(ASCE)EY.1943-7897.0000270
  contributor:
    fullname: A Anbarasu
– volume: 139
  start-page: 451
  year: 2020
  ident: 10143_CR5
  publication-title: J Therm Anal Calorim
  doi: 10.1007/s10973-019-08375-6
  contributor:
    fullname: A Abdollahpour
– ident: 10143_CR8
  doi: 10.1002/ep.13322
– volume: 32
  start-page: 249
  year: 2007
  ident: 10143_CR38
  publication-title: Energy.
  doi: 10.1016/j.energy.2006.07.002
  contributor:
    fullname: G Tsatsaronis
– ident: 10143_CR32
– volume: 128
  start-page: 128
  year: 2017
  ident: 10143_CR22
  publication-title: Energy
  doi: 10.1016/j.energy.2017.04.014
  contributor:
    fullname: H Caliskan
– volume: 45
  start-page: 3327
  year: 2020
  ident: 10143_CR6
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2019.11.172
  contributor:
    fullname: S Manigandan
– volume: 7
  start-page: 287
  year: 2010
  ident: 10143_CR17
  publication-title: Int J Exergy
  doi: 10.1504/IJEX.2010.031986
  contributor:
    fullname: H Caliskan
– volume: 91
  start-page: 704
  year: 2018
  ident: 10143_CR41
  publication-title: J Energy Inst
  doi: 10.1016/j.joei.2017.05.010
  contributor:
    fullname: V Praveena
– volume: 72
  start-page: 198
  year: 2014
  ident: 10143_CR21
  publication-title: Tribol Int
  doi: 10.1016/j.triboint.2013.10.018
  contributor:
    fullname: SJ Castillo Marcano
– volume: 214
  start-page: 386
  year: 2018
  ident: 10143_CR24
  publication-title: Fuel
  doi: 10.1016/j.fuel.2017.11.060
  contributor:
    fullname: AK Madheshiya
– volume: 14
  start-page: 1
  year: 2009
  ident: 10143_CR20
  publication-title: Transp Res Part D Transp Environ
  doi: 10.1016/j.trd.2008.07.004
  contributor:
    fullname: JM López
– volume: 136
  start-page: 281
  year: 2019
  ident: 10143_CR3
  publication-title: J Therm Anal Calorim
  doi: 10.1007/s10973-018-7933-0
  contributor:
    fullname: M Bharathiraja
– ident: 10143_CR1
– ident: 10143_CR34
– ident: 10143_CR10
  doi: 10.4271/2015-01-1932
– ident: 10143_CR19
– ident: 10143_CR36
– volume: 241
  start-page: 631
  year: 2019
  ident: 10143_CR11
  publication-title: J Environ Manage
  doi: 10.1016/j.jenvman.2019.02.113
  contributor:
    fullname: H Gürbüz
SSID ssj0009901
Score 2.4769542
Snippet In this study, an internal combustion engine is experimentally analyzed under 100 Nm engine load using biodiesel and diesel fuels. The analyses of energy,...
SourceID proquest
gale
crossref
springer
SourceType Aggregation Database
Publisher
StartPage 739
SubjectTerms Analysis
Analytical Chemistry
Biodiesel fuels
Carbon dioxide
Chemistry
Chemistry and Materials Science
Combustion
Diesel engines
Diesel fuels
Emissions control
Exergy
Exhaust systems
Fluid filters
Inorganic Chemistry
Internal combustion engines
Measurement Science and Instrumentation
Physical Chemistry
Polymer Sciences
Silicon
Silicon carbide
Title Energy, exergy and environmental assessments of biodiesel and diesel fuels for an internal combustion engine using silicon carbide particulate filter
URI https://link.springer.com/article/10.1007/s10973-020-10143-w
https://www.proquest.com/docview/2555127006
Volume 145
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwELYKHNpL31W3pSurqtRDMcrmZXxc0C60VTm0rERPlp-rqKsEbbJC8D_6fzvjJCwUOHCLkonl2GP7m8zMN4R8ysUI_Xmcidw6lmoeM8Ujz1QIqrFOeY75zj-O86NZ-u00O13ncYdg994jGTbqa7lugqPLMWJYXjZh5xtkC84eXI1b48Pf3ydrrl0RtXYWKAHynXe5Mne3cuM8-n9XvuUeDafO9Bk56XN32mCTP7urRu-ay9tUjg_5oOfkaYdC6bhVmxfkkStfkscHffG3V-TvJOQE7lAsyTS_oKq09FpOHLyrrig9a1p5qosK4xHdIoh2l34FJy8FWAw3adH-e1xQ6J7GGmJVCU0iGyLF4Ps5rYsFqGVJjVrqwjp6FrQay4s56gv06r8ms-nk5OCIdRUcmAHc1bA40yMjkAPOATSwHIwX67NIC-4SbrM04amKQRti75UeeWG1cRkYMXtcJTrLXPKGbJZV6d4SmjoAh3muAA6ZNNnzwhuAOgLsUWjRmmhAvvTzKM9aog65pmTGoZYw1DIMtTwfkI841RIZMEoMsZmrVV3Lr79-ynGegwkIKEsMyOdOyFfNUhnVZSxAh5A064bkdq8ystsDagnGWhb8-vmA7PQqsH58f-fePUz8PXkSY6BNiErcJpvNcuU-AFJq9BBWxnR__3jYrZAh2ZjF43_lFw5B
link.rule.ids 314,780,784,27924,27925,41081,41523,42150,42592,52111,52234
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT9wwEB219EAvVSkgtlCwKqQewFI2X8bHFQItFDi0rMTNsmN7FWmVoM2uED-E_8uMN-lCgQO3KJlYlt_EnsnMvAHYz2Wf4nmCy9w6nhoRcy0iz3VIqrFOe0H1zpdX-XCUnt9kN21RWNNlu3chybBTPyl2k4JijhGn_rIJv_sIn1DjJPUtGMWDJdWujBZuFuoA0Z23pTKvj_HsOPp_U34RHQ2HzulX-NJai2ywgHcNPrjqG6wed03a1uHhJNTuHTJqnTS-Z7qy7EntGr6r_1FvNqz2zJQ15Q26SRBtL_0cT0iG5iveZOXiH-GE4bIY6vVVVzgksRYySpIfs6acoPpUrNBTU1rHboP2URswx3xJ0fcNGJ2eXB8PedtpgRdoH814nJl-IYmrzeERbgU6GdZnkZHCJcJmaSJSHSNqsffa9L20pnAZOhtHQicmy1yyCStVXbktYKlDIy7PNZotRZoceekLNEkk-o04oi2iHhx0C65uF4QaakmdTPAohEcFeNRdD34SJoqYKipKhRnredOos79_1CDP0VVDa0j24Fcr5OvZVBe6rSzACRG51TPJnQ5b1X6rjUKnKgvx97wHhx3ey8dvT-77-8T3YHV4fXmhLs6ufm_D55iSY0Im4Q6szKZz9wOtm5nZDcr8CLEn8nw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9RAEB9sBeuL-FV6WnURwQe7NJev7T4etUfrRxH1oG_Lbnb3CBzJcclR_EP8f53ZJN5V7YNvIZksYX-TzExm5jcAb3I5pnye4DK3jqdGxFyLyHMdimqs015Qv_Pny_x8ln64yq62uvhDtfuQkux6GoilqWqPl9YfbzW-SUH5x4jTrNmEX-_AXTJFpOmzeLKh3ZVRF3KhPhD1ed828-81bpimPz_Qf2VKgwGaPoQHvefIJh3Uj-COqx7D3ukwsO0J_DwLfXxHjMYozX8wXVm21ceG9-rfNJwNqz0zZU01hG4RRPtDv0ZrydCVxZOs7P4XLhhukaG5X3WFSxKDIaOC-TlrygWqUsUKvTKldWwZNJFGgjnmS8rEP4XZ9Oz76Tnvpy7wAn2llseZGReSeNscmnMrMOCwPouMFC4RNksTkeoYEYy912bspTWFyzDwOBE6MVnmkn3YrerKHQBLHTp0ea7RhSnS5MRLX6B7IjGGxBVtEY3g3bDhatmRa6gNjTLBoxAeFeBR1yN4TZgoYq2oqCxmrtdNoy6-fVWTPMewDT0jOYK3vZCv25UudN9lgA9ERFc3JA8HbFX_3jYKA6ws5OLzERwNeG8u3_5wz_5P_BXc-_J-qj5dXH58DvdjqpMJRYWHsNuu1u4FOjqteRl0-Rd3sva4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Energy%2C+exergy+and+environmental+assessments+of+biodiesel+and+diesel+fuels+for+an+internal+combustion+engine+using+silicon+carbide+particulate+filter&rft.jtitle=Journal+of+thermal+analysis+and+calorimetry&rft.au=Yildiz%2C+Ibrahim&rft.au=Caliskan%2C+Hakan&rft.au=Mori%2C+Kazutoshi&rft.date=2021-08-01&rft.pub=Springer&rft.issn=1388-6150&rft.eissn=1588-2926&rft.volume=145&rft.issue=3&rft.spage=739&rft_id=info:doi/10.1007%2Fs10973-020-10143-w&rft.externalDBID=ISR&rft.externalDocID=A669665549
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1388-6150&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1388-6150&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1388-6150&client=summon