Semisupervised Tripled Dictionary Learning for Standard-Dose PET Image Prediction Using Low-Dose PET and Multimodal MRI
Objective: To obtain high-quality positron emission tomography (PET) image with low-dose tracer injection, this study attempts to predict the standard-dose PET (S-PET) image from both its low-dose PET (L-PET) counterpart and corresponding magnetic resonance imaging (MRI). Methods: It was achieved by...
Saved in:
Published in | IEEE transactions on biomedical engineering Vol. 64; no. 3; pp. 569 - 579 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.03.2017
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Objective: To obtain high-quality positron emission tomography (PET) image with low-dose tracer injection, this study attempts to predict the standard-dose PET (S-PET) image from both its low-dose PET (L-PET) counterpart and corresponding magnetic resonance imaging (MRI). Methods: It was achieved by patch-based sparse representation (SR), using the training samples with a complete set of MRI, L-PET and S-PET modalities for dictionary construction. However, the number of training samples with complete modalities is often limited. In practice, many samples generally have incomplete modalities (i.e., with one or two missing modalities) that thus cannot be used in the prediction process. In light of this, we develop a semisupervised tripled dictionary learning (SSTDL) method for S-PET image prediction, which can utilize not only the samples with complete modalities (called complete samples) but also the samples with incomplete modalities (called incomplete samples), to take advantage of the large number of available training samples and thus further improve the prediction performance. Results: Validation was done on a real human brain dataset consisting of 18 subjects, and the results show that our method is superior to the SR and other baseline methods. Conclusion: This paper proposed a new S-PET prediction method, which can significantly improve the PET image quality with low-dose injection. Significance: The proposed method is favorable in clinical application since it can decrease the potential radiation risk for patients. |
---|---|
AbstractList | To obtain high-quality positron emission tomography (PET) image with low-dose tracer injection, this study attempts to predict the standard-dose PET (S-PET) image from both its low-dose PET (L-PET) counterpart and corresponding magnetic resonance imaging (MRI).
It was achieved by patch-based sparse representation (SR), using the training samples with a complete set of MRI, L-PET and S-PET modalities for dictionary construction. However, the number of training samples with complete modalities is often limited. In practice, many samples generally have incomplete modalities (i.e., with one or two missing modalities) that thus cannot be used in the prediction process. In light of this, we develop a semisupervised tripled dictionary learning (SSTDL) method for S-PET image prediction, which can utilize not only the samples with complete modalities (called complete samples) but also the samples with incomplete modalities (called incomplete samples), to take advantage of the large number of available training samples and thus further improve the prediction performance.
Validation was done on a real human brain dataset consisting of 18 subjects, and the results show that our method is superior to the SR and other baseline methods.
This paper proposed a new S-PET prediction method, which can significantly improve the PET image quality with low-dose injection.
The proposed method is favorable in clinical application since it can decrease the potential radiation risk for patients. Objective: To obtain high-quality positron emission tomography (PET) image with low-dose tracer injection, this study attempts to predict the standard-dose PET (S-PET) image from both its low-dose PET (L-PET) counterpart and corresponding magnetic resonance imaging (MRI). Methods: It was achieved by patch-based sparse representation (SR), using the training samples with a complete set of MRI, L-PET and S-PET modalities for dictionary construction. However, the number of training samples with complete modalities is often limited. In practice, many samples generally have incomplete modalities (i.e., with one or two missing modalities) that thus cannot be used in the prediction process. In light of this, we develop a semisupervised tripled dictionary learning (SSTDL) method for S-PET image prediction, which can utilize not only the samples with complete modalities (called complete samples) but also the samples with incomplete modalities (called incomplete samples), to take advantage of the large number of available training samples and thus further improve the prediction performance. Results: Validation was done on a real human brain dataset consisting of 18 subjects, and the results show that our method is superior to the SR and other baseline methods. Conclusion: This paper proposed a new S-PET prediction method, which can significantly improve the PET image quality with low-dose injection. Significance: The proposed method is favorable in clinical application since it can decrease the potential radiation risk for patients. To obtain high-quality positron emission tomography (PET) image with low-dose tracer injection, this study attempts to predict the standard-dose PET (S-PET) image from both its low-dose PET (L-PET) counterpart and corresponding magnetic resonance imaging (MRI).OBJECTIVETo obtain high-quality positron emission tomography (PET) image with low-dose tracer injection, this study attempts to predict the standard-dose PET (S-PET) image from both its low-dose PET (L-PET) counterpart and corresponding magnetic resonance imaging (MRI).It was achieved by patch-based sparse representation (SR), using the training samples with a complete set of MRI, L-PET and S-PET modalities for dictionary construction. However, the number of training samples with complete modalities is often limited. In practice, many samples generally have incomplete modalities (i.e., with one or two missing modalities) that thus cannot be used in the prediction process. In light of this, we develop a semisupervised tripled dictionary learning (SSTDL) method for S-PET image prediction, which can utilize not only the samples with complete modalities (called complete samples) but also the samples with incomplete modalities (called incomplete samples), to take advantage of the large number of available training samples and thus further improve the prediction performance.METHODSIt was achieved by patch-based sparse representation (SR), using the training samples with a complete set of MRI, L-PET and S-PET modalities for dictionary construction. However, the number of training samples with complete modalities is often limited. In practice, many samples generally have incomplete modalities (i.e., with one or two missing modalities) that thus cannot be used in the prediction process. In light of this, we develop a semisupervised tripled dictionary learning (SSTDL) method for S-PET image prediction, which can utilize not only the samples with complete modalities (called complete samples) but also the samples with incomplete modalities (called incomplete samples), to take advantage of the large number of available training samples and thus further improve the prediction performance.Validation was done on a real human brain dataset consisting of 18 subjects, and the results show that our method is superior to the SR and other baseline methods.RESULTSValidation was done on a real human brain dataset consisting of 18 subjects, and the results show that our method is superior to the SR and other baseline methods.This paper proposed a new S-PET prediction method, which can significantly improve the PET image quality with low-dose injection.CONCLUSIONThis paper proposed a new S-PET prediction method, which can significantly improve the PET image quality with low-dose injection.The proposed method is favorable in clinical application since it can decrease the potential radiation risk for patients.SIGNIFICANCEThe proposed method is favorable in clinical application since it can decrease the potential radiation risk for patients. |
Author | Pu, Yifei Shi, Feng Zhou, Jiliu An, Le Zhang, Pei Wu, Xi Shen, Dinggang Ma, Guangkai Lalush, David S. Wang, Yan |
Author_xml | – sequence: 1 givenname: Yan surname: Wang fullname: Wang, Yan organization: College of Computer Science, Sichuan University, Chengdu, Sichuan, China – sequence: 2 givenname: Guangkai surname: Ma fullname: Ma, Guangkai organization: Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA – sequence: 3 givenname: Le surname: An fullname: An, Le organization: Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA – sequence: 4 givenname: Feng surname: Shi fullname: Shi, Feng organization: Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA – sequence: 5 givenname: Pei surname: Zhang fullname: Zhang, Pei organization: Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA – sequence: 6 givenname: David S. surname: Lalush fullname: Lalush, David S. organization: Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC, USA – sequence: 7 givenname: Xi surname: Wu fullname: Wu, Xi organization: Department of Computer Science, Chengdu University of Information Technology, Chengdu, Sichuan, China – sequence: 8 givenname: Yifei surname: Pu fullname: Pu, Yifei organization: College of Computer Science, Sichuan University, Chengdu, Sichuan, China – sequence: 9 givenname: Jiliu surname: Zhou fullname: Zhou, Jiliu organization: College of Computer Science, Sichuan University and also with the Department of Computer Science, Chengdu University of Information Technology, Chengdu, Sichuan, China – sequence: 10 givenname: Dinggang surname: Shen fullname: Shen, Dinggang email: dgshen@med.unc.edu organization: Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/27187939$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kcFu1DAQhi1URLeFB0BIKBIXLllsx3bsI20XWGlXIBrOkWOPK1dJvNgJFW-Po12K1AOnsaXvG3vmv0BnYxgBodcErwnB6kNztd-sKSZiTblgjOFnaEU4lyXlFTlDK4yJLBVV7BxdpHSfr0wy8QKd05rIWlVqhR5uYfBpPkD85RPYoon-0Od6483kw6jj72IHOo5-vCtciMXtpEeroy1vQoLi26YptoO-y6cI9qgUP9IC78LDPyY7xX7uJz8Eq_ti_337Ej13uk_w6lQvUfNp01x_KXdfP2-vP-5KUyk65UGU7bgmhmLBwYDtnMPCUScdYaqqaW1qZ3hnGbbYSs4Mpx3TrOuA1qKrLtH7Y9tDDD9nSFObpzXQ93qEMKeWSCqEXJpn9N0T9D7MccyfaympWUUJJzRTb0_U3A1g20P0Q15S-3ejGSBHwMSQUgT3iBDcLqm1S2rtklp7Si079RPH-Ekvy5yi9v1_zTdH0wPA40s1E6qSuPoDpXWjqQ |
CODEN | IEBEAX |
CitedBy_id | crossref_primary_10_1016_j_jneumeth_2020_108988 crossref_primary_10_1016_j_cviu_2023_103856 crossref_primary_10_1016_j_media_2021_102335 crossref_primary_10_1016_j_ejmp_2021_03_008 crossref_primary_10_1088_1361_6560_ab0dc0 crossref_primary_10_1109_TMI_2018_2884053 crossref_primary_10_1148_radiol_2018182573 crossref_primary_10_1007_s11222_023_10282_8 crossref_primary_10_1109_TCI_2023_3308388 crossref_primary_10_1109_TMI_2020_2969630 crossref_primary_10_1109_TCSVT_2024_3398686 crossref_primary_10_1109_TII_2021_3064369 crossref_primary_10_1016_j_neucom_2021_04_060 crossref_primary_10_1002_mp_14402 crossref_primary_10_1109_TMI_2023_3273029 crossref_primary_10_1007_s00259_025_07122_4 crossref_primary_10_1016_j_nima_2021_165908 crossref_primary_10_1109_JPROC_2019_2936809 crossref_primary_10_1016_j_media_2023_102983 crossref_primary_10_1016_j_ejmp_2020_07_028 crossref_primary_10_1007_s12021_018_9370_4 crossref_primary_10_1016_j_media_2021_102187 crossref_primary_10_1053_j_semnuclmed_2023_11_004 crossref_primary_10_1088_1361_6560_ab4891 crossref_primary_10_3389_fnume_2024_1469490 crossref_primary_10_1016_j_neuroimage_2018_03_045 crossref_primary_10_1088_1361_6560_ab3242 crossref_primary_10_1109_TMI_2022_3156614 crossref_primary_10_1109_TNNLS_2023_3266551 crossref_primary_10_1177_1729881417738100 crossref_primary_10_1109_ACCESS_2019_2948220 crossref_primary_10_1186_s40658_022_00465_z crossref_primary_10_1002_mp_15368 crossref_primary_10_1186_s40658_024_00706_3 crossref_primary_10_1007_s00259_024_06823_6 crossref_primary_10_1007_s00530_017_0577_2 crossref_primary_10_3390_bioengineering10060716 crossref_primary_10_1007_s13042_023_02019_w crossref_primary_10_1007_s00259_021_05644_1 crossref_primary_10_1002_mp_15350 crossref_primary_10_1109_ACCESS_2023_3243854 crossref_primary_10_1109_JSTSP_2020_3013418 crossref_primary_10_1007_s00259_022_05746_4 crossref_primary_10_1109_JBHI_2021_3088866 crossref_primary_10_1109_JBHI_2023_3260180 crossref_primary_10_1109_TMI_2019_2895894 crossref_primary_10_1109_TBME_2020_3042907 crossref_primary_10_1109_TCYB_2017_2697968 crossref_primary_10_1007_s00259_023_06417_8 crossref_primary_10_1016_j_compbiomed_2023_107391 crossref_primary_10_1016_j_media_2020_101770 |
Cites_doi | 10.1118/1.4889207 10.1109/TIP.2006.881969 10.1109/TIP.2014.2361204 10.1109/TIP.2010.2050625 10.1016/j.neurobiolaging.2005.09.021 10.1053/j.semnuclmed.2012.08.006 10.1097/MNM.0000000000000346 10.1117/12.932246 10.1002/gps.2640 10.1016/j.neuroimage.2012.05.042 10.5244/C.24.36 10.1023/A:1010933404324 10.2967/jnumed.106.037689 10.1177/0284185113476021 10.1007/978-3-319-24888-2_16 10.1007/978-3-319-10581-9_35 10.1088/0031-9155/57/1/173 10.1109/TPAMI.2013.145 10.1088/0031-9155/57/24/8217 10.1111/j.2517-6161.1996.tb02080.x 10.1109/TMI.2011.2156806 10.1016/S1536-1632(02)00071-9 10.1016/j.neuroimage.2004.07.051 10.1109/42.363108 10.1109/TPAMI.2008.79 10.1016/j.neuroimage.2013.02.069 10.1088/0031-9155/60/2/807 10.1088/0031-9155/60/15/5853 10.1109/CVPR.2006.142 10.2174/1874471010902040224 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017 |
DBID | 97E RIA RIE AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8 |
DOI | 10.1109/TBME.2016.2564440 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Civil Engineering Abstracts Aluminium Industry Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Ceramic Abstracts Materials Business File METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Aerospace Database Engineered Materials Abstracts Biotechnology Research Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering MEDLINE - Academic |
DatabaseTitleList | MEDLINE Materials Research Database MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Engineering |
EISSN | 1558-2531 |
EndPage | 579 |
ExternalDocumentID | 27187939 10_1109_TBME_2016_2564440 7469380 |
Genre | orig-research Evaluation Studies Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: STMSP grantid: 2014RZ0027 – fundername: National Institutes of Health grantid: MH100217; AG042599; MH070890; EB006733; EB008374; EB009634; NS055754; MH064065; HD053000 funderid: 10.13039/100000002 – fundername: NIBIB NIH HHS grantid: R01 EB006733 – fundername: NIMH NIH HHS grantid: U01 MH070890 – fundername: NIBIB NIH HHS grantid: R01 EB009634 – fundername: NIA NIH HHS grantid: R01 AG042599 – fundername: NICHD NIH HHS grantid: R01 HD053000 – fundername: NIMH NIH HHS grantid: P50 MH064065 – fundername: NIMH NIH HHS grantid: R01 MH070890 – fundername: NINDS NIH HHS grantid: R01 NS055754 – fundername: NIBIB NIH HHS grantid: R01 EB008374 – fundername: NIA NIH HHS grantid: R01 AG041721 |
GroupedDBID | --- -~X .55 .DC .GJ 0R~ 29I 4.4 53G 5GY 5RE 5VS 6IF 6IK 6IL 6IN 85S 97E AAJGR AARMG AASAJ AAWTH AAYJJ ABAZT ABJNI ABQJQ ABVLG ACGFO ACGFS ACIWK ACKIV ACNCT ACPRK ADZIZ AENEX AETIX AFFNX AFRAH AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CHZPO CS3 DU5 EBS EJD F5P HZ~ H~9 IAAWW IBMZZ ICLAB IDIHD IEGSK IFIPE IFJZH IPLJI JAVBF LAI MS~ O9- OCL P2P RIA RIE RIL RNS TAE TN5 VH1 VJK X7M ZGI ZXP AAYXX CITATION RIG CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8 |
ID | FETCH-LOGICAL-c392t-259db5a1c2065ecedbff06f2f8f1493727c7fc5bd40d0d854c52b4a4bbe276b3 |
IEDL.DBID | RIE |
ISSN | 0018-9294 1558-2531 |
IngestDate | Fri Jul 11 09:25:08 EDT 2025 Mon Jun 30 08:36:32 EDT 2025 Mon Jul 21 05:35:59 EDT 2025 Tue Jul 01 03:28:28 EDT 2025 Thu Apr 24 23:12:37 EDT 2025 Wed Aug 27 02:30:43 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c392t-259db5a1c2065ecedbff06f2f8f1493727c7fc5bd40d0d854c52b4a4bbe276b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Article-2 ObjectType-Undefined-1 ObjectType-Feature-3 content type line 23 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/5383421 |
PMID | 27187939 |
PQID | 2174321512 |
PQPubID | 85474 |
PageCount | 11 |
ParticipantIDs | ieee_primary_7469380 proquest_journals_2174321512 crossref_primary_10_1109_TBME_2016_2564440 crossref_citationtrail_10_1109_TBME_2016_2564440 proquest_miscellaneous_1826682065 pubmed_primary_27187939 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-03-01 |
PublicationDateYYYYMMDD | 2017-03-01 |
PublicationDate_xml | – month: 03 year: 2017 text: 2017-03-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: New York |
PublicationTitle | IEEE transactions on biomedical engineering |
PublicationTitleAbbrev | TBME |
PublicationTitleAlternate | IEEE Trans Biomed Eng |
PublicationYear | 2017 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref12 ref15 ref14 ref31 ref30 ref33 ref11 ref32 ref10 ref2 ref1 ref17 ref16 ref19 tibshirani (ref23) 1994; 58 ref24 ref26 ref25 ref22 ref21 ref28 ref27 ref29 ref8 ref7 yu (ref18) 2009; 22 ref9 ref4 ref3 ref6 ref5 zhou (ref20) 0 20483687 - IEEE Trans Image Process. 2010 Nov;19(11):2861-73 19110489 - IEEE Trans Pattern Anal Mach Intell. 2009 Feb;31(2):210-27 16271804 - Neurobiol Aging. 2006 Nov;27(11):1564-76 23178087 - Semin Nucl Med. 2013 Jan;43(1):30-44 17704239 - J Nucl Med. 2007 Sep;48(9):1468-81 14537108 - Mol Imaging Biol. 2002 Oct;4(5):338-51 25565039 - Phys Med Biol. 2015 Jan 21;60(2):807-23 17153947 - IEEE Trans Image Process. 2006 Dec;15(12):3736-45 25296404 - IEEE Trans Image Process. 2014 Dec;23(12):5108-22 23192234 - Phys Med Biol. 2012 Dec 21;57(24):8217-29 24457510 - IEEE Trans Pattern Anal Mach Intell. 2014 Mar;36(3):550-63 22634859 - Neuroimage. 2012 Sep;62(3):1975-86 26035516 - Nucl Med Commun. 2015 Oct;36(10 ):971-85 22155989 - Phys Med Biol. 2012 Jan 7;57(1):173-89 21905095 - Int J Geriatr Psychiatry. 2011 Oct;26(10 ):991-9 26732849 - Phys Med Biol. 2016 Jan 21;61(2):791-812 15501092 - Neuroimage. 2004;23 Suppl 1:S208-19 21606021 - IEEE Trans Med Imaging. 2011 Oct;30(10):1852-62 23463863 - Acta Radiol. 2013 Jun;54(5):534-9 18218538 - IEEE Trans Med Imaging. 1994;13(4):601-9 26161630 - Phys Med Biol. 2015 Aug 7;60(15):5853-71 |
References_xml | – ident: ref12 doi: 10.1118/1.4889207 – ident: ref10 doi: 10.1109/TIP.2006.881969 – ident: ref21 doi: 10.1109/TIP.2014.2361204 – ident: ref8 doi: 10.1109/TIP.2010.2050625 – ident: ref31 doi: 10.1016/j.neurobiolaging.2005.09.021 – ident: ref7 doi: 10.1053/j.semnuclmed.2012.08.006 – ident: ref3 doi: 10.1097/MNM.0000000000000346 – ident: ref15 doi: 10.1117/12.932246 – ident: ref6 doi: 10.1002/gps.2640 – ident: ref27 doi: 10.1016/j.neuroimage.2012.05.042 – ident: ref22 doi: 10.5244/C.24.36 – ident: ref33 doi: 10.1023/A:1010933404324 – ident: ref5 doi: 10.2967/jnumed.106.037689 – ident: ref2 doi: 10.1177/0284185113476021 – ident: ref30 doi: 10.1007/978-3-319-24888-2_16 – ident: ref32 doi: 10.1007/978-3-319-10581-9_35 – ident: ref14 doi: 10.1088/0031-9155/57/1/173 – ident: ref19 doi: 10.1109/TPAMI.2013.145 – ident: ref16 doi: 10.1088/0031-9155/57/24/8217 – volume: 58 start-page: 267 year: 1994 ident: ref23 article-title: Regression shrinkage and selection via the lasso publication-title: J R Statist Soc (Series B) doi: 10.1111/j.2517-6161.1996.tb02080.x – ident: ref24 doi: 10.1109/TIP.2006.881969 – ident: ref28 doi: 10.1109/TMI.2011.2156806 – ident: ref4 doi: 10.1016/S1536-1632(02)00071-9 – ident: ref26 doi: 10.1016/j.neuroimage.2004.07.051 – ident: ref25 doi: 10.1109/42.363108 – ident: ref11 doi: 10.1109/TPAMI.2008.79 – ident: ref29 doi: 10.1016/j.neuroimage.2013.02.069 – start-page: 141 year: 0 ident: ref20 article-title: Image classification using super-vector coding of local image descriptors publication-title: Proc Eur Conf Comput Vis – ident: ref13 doi: 10.1088/0031-9155/60/2/807 – ident: ref17 doi: 10.1088/0031-9155/60/15/5853 – ident: ref9 doi: 10.1109/CVPR.2006.142 – ident: ref1 doi: 10.2174/1874471010902040224 – volume: 22 start-page: 2223 year: 2009 ident: ref18 article-title: Nonlinear learning using local coordinate coding publication-title: Adv in Neural Info Proc Syst – reference: 26732849 - Phys Med Biol. 2016 Jan 21;61(2):791-812 – reference: 20483687 - IEEE Trans Image Process. 2010 Nov;19(11):2861-73 – reference: 26035516 - Nucl Med Commun. 2015 Oct;36(10 ):971-85 – reference: 18218538 - IEEE Trans Med Imaging. 1994;13(4):601-9 – reference: 24457510 - IEEE Trans Pattern Anal Mach Intell. 2014 Mar;36(3):550-63 – reference: 23192234 - Phys Med Biol. 2012 Dec 21;57(24):8217-29 – reference: 14537108 - Mol Imaging Biol. 2002 Oct;4(5):338-51 – reference: 22634859 - Neuroimage. 2012 Sep;62(3):1975-86 – reference: 17704239 - J Nucl Med. 2007 Sep;48(9):1468-81 – reference: 26161630 - Phys Med Biol. 2015 Aug 7;60(15):5853-71 – reference: 25565039 - Phys Med Biol. 2015 Jan 21;60(2):807-23 – reference: 22155989 - Phys Med Biol. 2012 Jan 7;57(1):173-89 – reference: 21606021 - IEEE Trans Med Imaging. 2011 Oct;30(10):1852-62 – reference: 23463863 - Acta Radiol. 2013 Jun;54(5):534-9 – reference: 16271804 - Neurobiol Aging. 2006 Nov;27(11):1564-76 – reference: 17153947 - IEEE Trans Image Process. 2006 Dec;15(12):3736-45 – reference: 25296404 - IEEE Trans Image Process. 2014 Dec;23(12):5108-22 – reference: 15501092 - Neuroimage. 2004;23 Suppl 1:S208-19 – reference: 23178087 - Semin Nucl Med. 2013 Jan;43(1):30-44 – reference: 21905095 - Int J Geriatr Psychiatry. 2011 Oct;26(10 ):991-9 – reference: 19110489 - IEEE Trans Pattern Anal Mach Intell. 2009 Feb;31(2):210-27 |
SSID | ssj0014846 |
Score | 2.505123 |
Snippet | Objective: To obtain high-quality positron emission tomography (PET) image with low-dose tracer injection, this study attempts to predict the standard-dose PET... To obtain high-quality positron emission tomography (PET) image with low-dose tracer injection, this study attempts to predict the standard-dose PET (S-PET)... |
SourceID | proquest pubmed crossref ieee |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 569 |
SubjectTerms | Algorithms Brain Dictionaries Emission analysis Humans Image edge detection Image Enhancement - methods Image quality Image reconstruction Injection Local coordinate coding (LCC) Magnetic resonance imaging Magnetic Resonance Imaging - methods Medical imaging Multimodal Imaging - methods Neuroimaging NMR Nuclear magnetic resonance Pattern Recognition, Automated - methods Positron emission Positron emission tomography positron emission tomography (PET) Positron-Emission Tomography - methods Radiation Dosage Radiation Exposure - prevention & control Radiation Protection - methods Reproducibility of Results semisupervised tripled dictionary learning (SSTDL) Sensitivity and Specificity sparse representation (SR) Subtraction Technique Supervised Machine Learning Tomography Training |
Title | Semisupervised Tripled Dictionary Learning for Standard-Dose PET Image Prediction Using Low-Dose PET and Multimodal MRI |
URI | https://ieeexplore.ieee.org/document/7469380 https://www.ncbi.nlm.nih.gov/pubmed/27187939 https://www.proquest.com/docview/2174321512 https://www.proquest.com/docview/1826682065 |
Volume | 64 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VHhAceLQ8AgUZiRMiWyex8zgC3apFBFU0SL1F8atC0E21u1EFv54ZxxsqBIhbpNiOoxnb3-d5AbyUicuU4DpWvCuQoFQ2rqyTMYJXV-qc29RS7HD9MT_6LN6fybMteD3FwlhrvfOZndGjt-WbXg90VbZfIJfLSiToN5C4jbFak8VAlGNQDk9wAaeVCBbMhFf7zdt6Tk5c-QzPdyEEVX9LCyqzTSXCrx1Hvr7K36GmP3IO70K9mezoafJ1NqzVTP_4LY_j__7NPbgTsCd7MyrLfdiyix24fS0j4Q7crIOtfReuTqkU3HBJm8nKGtYs6U7esIMvPhSiW35nITnrOUPky07DpUR80K8sO5k37PgCNyt2sqQhqQvz_gnsQ3_1qw32YT4I-KI3OLf60_EDaA7nzbujOJRpiDWCq3WMBMoo2SU6RThjtTXKOZ671JUO6VeGAEkXTktlBDfclFJomSrRCaVsWuQqewjbi35hHwOrlEtNrjWvVEeFsMskk4Znxsi8NLi1RsA3wmp1SGFOlTS-tZ7K8KolUbck6jaIOoJXU5fLMX_HvxrvkpimhkFCEextNKINK3zVeirn8VIEL6bXKBcyuHQL2w-rlrhbTgnyZQSPRk2axt4o4JM_f_Mp3EoJQHhvtz3YXi8H-wzhz1o993r_E5im_c8 |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bb9MwFD6ahgTsgcvGJTDASDwh0jmOnSaPwDq10EwTC9LeoviG0FgztY0m-PX4OG6YECDeIsV2HJ1j-_t8bgCvRGJTyamKJW3GjqAUJi6MFbEDrzZXGTXMYOxweZxNP_MPZ-JsC94MsTDGGO98Zkb46G35ulUdXpUdjB2XS3NH0G-4c1-wPlprsBnwvA_LoYlbwqzgwYaZ0OKgeldO0I0rG7kTnnOO9d_YGAttY5HwaweSr7Dyd7DpD52ju1Buptv7mpyPurUcqR-_ZXL83_-5B3cC-iRve3W5D1tmsQs713IS7sLNMljb9-DqFIvBdZe4nayMJtUSb-U1OfzqgyGa5XcS0rN-IQ77ktNwLREftitDTiYVmV247YqcLHFI7EK8hwKZt1e_2rg-xIcBX7Taza38NHsA1dGkej-NQ6GGWDl4tY4dhdJSNIliDtAYZbS0lmaW2dw6ApY6iKTGVgmpOdVU54IrwSRvuJSGjTOZPoTtRbswj4EU0jKdKUUL2WAp7DxJhaap1iLLtdtcI6AbYdUqJDHHWhrfak9maFGjqGsUdR1EHcHroctln8HjX433UExDwyChCPY3GlGHNb6qPZnziCmCl8NrJxc0uTQL03arGtlbhinyRQSPek0axt4o4JM_f_MF3JpW5byez44_PoXbDOGE933bh-31sjPPHBhay-d-DfwE_foBKA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Semisupervised+Tripled+Dictionary+Learning+for+Standard-Dose+PET+Image+Prediction+Using+Low-Dose+PET+and+Multimodal+MRI&rft.jtitle=IEEE+transactions+on+biomedical+engineering&rft.au=Wang%2C+Yan&rft.au=Ma%2C+Guangkai&rft.au=An%2C+Le&rft.au=Shi%2C+Feng&rft.date=2017-03-01&rft.pub=IEEE&rft.issn=0018-9294&rft.volume=64&rft.issue=3&rft.spage=569&rft.epage=579&rft_id=info:doi/10.1109%2FTBME.2016.2564440&rft_id=info%3Apmid%2F27187939&rft.externalDocID=7469380 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9294&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9294&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9294&client=summon |