Semisupervised Tripled Dictionary Learning for Standard-Dose PET Image Prediction Using Low-Dose PET and Multimodal MRI

Objective: To obtain high-quality positron emission tomography (PET) image with low-dose tracer injection, this study attempts to predict the standard-dose PET (S-PET) image from both its low-dose PET (L-PET) counterpart and corresponding magnetic resonance imaging (MRI). Methods: It was achieved by...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on biomedical engineering Vol. 64; no. 3; pp. 569 - 579
Main Authors Wang, Yan, Ma, Guangkai, An, Le, Shi, Feng, Zhang, Pei, Lalush, David S., Wu, Xi, Pu, Yifei, Zhou, Jiliu, Shen, Dinggang
Format Journal Article
LanguageEnglish
Published United States IEEE 01.03.2017
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Objective: To obtain high-quality positron emission tomography (PET) image with low-dose tracer injection, this study attempts to predict the standard-dose PET (S-PET) image from both its low-dose PET (L-PET) counterpart and corresponding magnetic resonance imaging (MRI). Methods: It was achieved by patch-based sparse representation (SR), using the training samples with a complete set of MRI, L-PET and S-PET modalities for dictionary construction. However, the number of training samples with complete modalities is often limited. In practice, many samples generally have incomplete modalities (i.e., with one or two missing modalities) that thus cannot be used in the prediction process. In light of this, we develop a semisupervised tripled dictionary learning (SSTDL) method for S-PET image prediction, which can utilize not only the samples with complete modalities (called complete samples) but also the samples with incomplete modalities (called incomplete samples), to take advantage of the large number of available training samples and thus further improve the prediction performance. Results: Validation was done on a real human brain dataset consisting of 18 subjects, and the results show that our method is superior to the SR and other baseline methods. Conclusion: This paper proposed a new S-PET prediction method, which can significantly improve the PET image quality with low-dose injection. Significance: The proposed method is favorable in clinical application since it can decrease the potential radiation risk for patients.
AbstractList To obtain high-quality positron emission tomography (PET) image with low-dose tracer injection, this study attempts to predict the standard-dose PET (S-PET) image from both its low-dose PET (L-PET) counterpart and corresponding magnetic resonance imaging (MRI). It was achieved by patch-based sparse representation (SR), using the training samples with a complete set of MRI, L-PET and S-PET modalities for dictionary construction. However, the number of training samples with complete modalities is often limited. In practice, many samples generally have incomplete modalities (i.e., with one or two missing modalities) that thus cannot be used in the prediction process. In light of this, we develop a semisupervised tripled dictionary learning (SSTDL) method for S-PET image prediction, which can utilize not only the samples with complete modalities (called complete samples) but also the samples with incomplete modalities (called incomplete samples), to take advantage of the large number of available training samples and thus further improve the prediction performance. Validation was done on a real human brain dataset consisting of 18 subjects, and the results show that our method is superior to the SR and other baseline methods. This paper proposed a new S-PET prediction method, which can significantly improve the PET image quality with low-dose injection. The proposed method is favorable in clinical application since it can decrease the potential radiation risk for patients.
Objective: To obtain high-quality positron emission tomography (PET) image with low-dose tracer injection, this study attempts to predict the standard-dose PET (S-PET) image from both its low-dose PET (L-PET) counterpart and corresponding magnetic resonance imaging (MRI). Methods: It was achieved by patch-based sparse representation (SR), using the training samples with a complete set of MRI, L-PET and S-PET modalities for dictionary construction. However, the number of training samples with complete modalities is often limited. In practice, many samples generally have incomplete modalities (i.e., with one or two missing modalities) that thus cannot be used in the prediction process. In light of this, we develop a semisupervised tripled dictionary learning (SSTDL) method for S-PET image prediction, which can utilize not only the samples with complete modalities (called complete samples) but also the samples with incomplete modalities (called incomplete samples), to take advantage of the large number of available training samples and thus further improve the prediction performance. Results: Validation was done on a real human brain dataset consisting of 18 subjects, and the results show that our method is superior to the SR and other baseline methods. Conclusion: This paper proposed a new S-PET prediction method, which can significantly improve the PET image quality with low-dose injection. Significance: The proposed method is favorable in clinical application since it can decrease the potential radiation risk for patients.
To obtain high-quality positron emission tomography (PET) image with low-dose tracer injection, this study attempts to predict the standard-dose PET (S-PET) image from both its low-dose PET (L-PET) counterpart and corresponding magnetic resonance imaging (MRI).OBJECTIVETo obtain high-quality positron emission tomography (PET) image with low-dose tracer injection, this study attempts to predict the standard-dose PET (S-PET) image from both its low-dose PET (L-PET) counterpart and corresponding magnetic resonance imaging (MRI).It was achieved by patch-based sparse representation (SR), using the training samples with a complete set of MRI, L-PET and S-PET modalities for dictionary construction. However, the number of training samples with complete modalities is often limited. In practice, many samples generally have incomplete modalities (i.e., with one or two missing modalities) that thus cannot be used in the prediction process. In light of this, we develop a semisupervised tripled dictionary learning (SSTDL) method for S-PET image prediction, which can utilize not only the samples with complete modalities (called complete samples) but also the samples with incomplete modalities (called incomplete samples), to take advantage of the large number of available training samples and thus further improve the prediction performance.METHODSIt was achieved by patch-based sparse representation (SR), using the training samples with a complete set of MRI, L-PET and S-PET modalities for dictionary construction. However, the number of training samples with complete modalities is often limited. In practice, many samples generally have incomplete modalities (i.e., with one or two missing modalities) that thus cannot be used in the prediction process. In light of this, we develop a semisupervised tripled dictionary learning (SSTDL) method for S-PET image prediction, which can utilize not only the samples with complete modalities (called complete samples) but also the samples with incomplete modalities (called incomplete samples), to take advantage of the large number of available training samples and thus further improve the prediction performance.Validation was done on a real human brain dataset consisting of 18 subjects, and the results show that our method is superior to the SR and other baseline methods.RESULTSValidation was done on a real human brain dataset consisting of 18 subjects, and the results show that our method is superior to the SR and other baseline methods.This paper proposed a new S-PET prediction method, which can significantly improve the PET image quality with low-dose injection.CONCLUSIONThis paper proposed a new S-PET prediction method, which can significantly improve the PET image quality with low-dose injection.The proposed method is favorable in clinical application since it can decrease the potential radiation risk for patients.SIGNIFICANCEThe proposed method is favorable in clinical application since it can decrease the potential radiation risk for patients.
Author Pu, Yifei
Shi, Feng
Zhou, Jiliu
An, Le
Zhang, Pei
Wu, Xi
Shen, Dinggang
Ma, Guangkai
Lalush, David S.
Wang, Yan
Author_xml – sequence: 1
  givenname: Yan
  surname: Wang
  fullname: Wang, Yan
  organization: College of Computer Science, Sichuan University, Chengdu, Sichuan, China
– sequence: 2
  givenname: Guangkai
  surname: Ma
  fullname: Ma, Guangkai
  organization: Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
– sequence: 3
  givenname: Le
  surname: An
  fullname: An, Le
  organization: Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
– sequence: 4
  givenname: Feng
  surname: Shi
  fullname: Shi, Feng
  organization: Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
– sequence: 5
  givenname: Pei
  surname: Zhang
  fullname: Zhang, Pei
  organization: Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
– sequence: 6
  givenname: David S.
  surname: Lalush
  fullname: Lalush, David S.
  organization: Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC, USA
– sequence: 7
  givenname: Xi
  surname: Wu
  fullname: Wu, Xi
  organization: Department of Computer Science, Chengdu University of Information Technology, Chengdu, Sichuan, China
– sequence: 8
  givenname: Yifei
  surname: Pu
  fullname: Pu, Yifei
  organization: College of Computer Science, Sichuan University, Chengdu, Sichuan, China
– sequence: 9
  givenname: Jiliu
  surname: Zhou
  fullname: Zhou, Jiliu
  organization: College of Computer Science, Sichuan University and also with the Department of Computer Science, Chengdu University of Information Technology, Chengdu, Sichuan, China
– sequence: 10
  givenname: Dinggang
  surname: Shen
  fullname: Shen, Dinggang
  email: dgshen@med.unc.edu
  organization: Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27187939$$D View this record in MEDLINE/PubMed
BookMark eNp9kcFu1DAQhi1URLeFB0BIKBIXLllsx3bsI20XWGlXIBrOkWOPK1dJvNgJFW-Po12K1AOnsaXvG3vmv0BnYxgBodcErwnB6kNztd-sKSZiTblgjOFnaEU4lyXlFTlDK4yJLBVV7BxdpHSfr0wy8QKd05rIWlVqhR5uYfBpPkD85RPYoon-0Od6483kw6jj72IHOo5-vCtciMXtpEeroy1vQoLi26YptoO-y6cI9qgUP9IC78LDPyY7xX7uJz8Eq_ti_337Ej13uk_w6lQvUfNp01x_KXdfP2-vP-5KUyk65UGU7bgmhmLBwYDtnMPCUScdYaqqaW1qZ3hnGbbYSs4Mpx3TrOuA1qKrLtH7Y9tDDD9nSFObpzXQ93qEMKeWSCqEXJpn9N0T9D7MccyfaympWUUJJzRTb0_U3A1g20P0Q15S-3ejGSBHwMSQUgT3iBDcLqm1S2rtklp7Si079RPH-Ekvy5yi9v1_zTdH0wPA40s1E6qSuPoDpXWjqQ
CODEN IEBEAX
CitedBy_id crossref_primary_10_1016_j_jneumeth_2020_108988
crossref_primary_10_1016_j_cviu_2023_103856
crossref_primary_10_1016_j_media_2021_102335
crossref_primary_10_1016_j_ejmp_2021_03_008
crossref_primary_10_1088_1361_6560_ab0dc0
crossref_primary_10_1109_TMI_2018_2884053
crossref_primary_10_1148_radiol_2018182573
crossref_primary_10_1007_s11222_023_10282_8
crossref_primary_10_1109_TCI_2023_3308388
crossref_primary_10_1109_TMI_2020_2969630
crossref_primary_10_1109_TCSVT_2024_3398686
crossref_primary_10_1109_TII_2021_3064369
crossref_primary_10_1016_j_neucom_2021_04_060
crossref_primary_10_1002_mp_14402
crossref_primary_10_1109_TMI_2023_3273029
crossref_primary_10_1007_s00259_025_07122_4
crossref_primary_10_1016_j_nima_2021_165908
crossref_primary_10_1109_JPROC_2019_2936809
crossref_primary_10_1016_j_media_2023_102983
crossref_primary_10_1016_j_ejmp_2020_07_028
crossref_primary_10_1007_s12021_018_9370_4
crossref_primary_10_1016_j_media_2021_102187
crossref_primary_10_1053_j_semnuclmed_2023_11_004
crossref_primary_10_1088_1361_6560_ab4891
crossref_primary_10_3389_fnume_2024_1469490
crossref_primary_10_1016_j_neuroimage_2018_03_045
crossref_primary_10_1088_1361_6560_ab3242
crossref_primary_10_1109_TMI_2022_3156614
crossref_primary_10_1109_TNNLS_2023_3266551
crossref_primary_10_1177_1729881417738100
crossref_primary_10_1109_ACCESS_2019_2948220
crossref_primary_10_1186_s40658_022_00465_z
crossref_primary_10_1002_mp_15368
crossref_primary_10_1186_s40658_024_00706_3
crossref_primary_10_1007_s00259_024_06823_6
crossref_primary_10_1007_s00530_017_0577_2
crossref_primary_10_3390_bioengineering10060716
crossref_primary_10_1007_s13042_023_02019_w
crossref_primary_10_1007_s00259_021_05644_1
crossref_primary_10_1002_mp_15350
crossref_primary_10_1109_ACCESS_2023_3243854
crossref_primary_10_1109_JSTSP_2020_3013418
crossref_primary_10_1007_s00259_022_05746_4
crossref_primary_10_1109_JBHI_2021_3088866
crossref_primary_10_1109_JBHI_2023_3260180
crossref_primary_10_1109_TMI_2019_2895894
crossref_primary_10_1109_TBME_2020_3042907
crossref_primary_10_1109_TCYB_2017_2697968
crossref_primary_10_1007_s00259_023_06417_8
crossref_primary_10_1016_j_compbiomed_2023_107391
crossref_primary_10_1016_j_media_2020_101770
Cites_doi 10.1118/1.4889207
10.1109/TIP.2006.881969
10.1109/TIP.2014.2361204
10.1109/TIP.2010.2050625
10.1016/j.neurobiolaging.2005.09.021
10.1053/j.semnuclmed.2012.08.006
10.1097/MNM.0000000000000346
10.1117/12.932246
10.1002/gps.2640
10.1016/j.neuroimage.2012.05.042
10.5244/C.24.36
10.1023/A:1010933404324
10.2967/jnumed.106.037689
10.1177/0284185113476021
10.1007/978-3-319-24888-2_16
10.1007/978-3-319-10581-9_35
10.1088/0031-9155/57/1/173
10.1109/TPAMI.2013.145
10.1088/0031-9155/57/24/8217
10.1111/j.2517-6161.1996.tb02080.x
10.1109/TMI.2011.2156806
10.1016/S1536-1632(02)00071-9
10.1016/j.neuroimage.2004.07.051
10.1109/42.363108
10.1109/TPAMI.2008.79
10.1016/j.neuroimage.2013.02.069
10.1088/0031-9155/60/2/807
10.1088/0031-9155/60/15/5853
10.1109/CVPR.2006.142
10.2174/1874471010902040224
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017
DBID 97E
RIA
RIE
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
DOI 10.1109/TBME.2016.2564440
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Civil Engineering Abstracts
Aluminium Industry Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Ceramic Abstracts
Materials Business File
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Aerospace Database
Engineered Materials Abstracts
Biotechnology Research Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
MEDLINE - Academic
DatabaseTitleList MEDLINE
Materials Research Database

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
EISSN 1558-2531
EndPage 579
ExternalDocumentID 27187939
10_1109_TBME_2016_2564440
7469380
Genre orig-research
Evaluation Studies
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: STMSP
  grantid: 2014RZ0027
– fundername: National Institutes of Health
  grantid: MH100217; AG042599; MH070890; EB006733; EB008374; EB009634; NS055754; MH064065; HD053000
  funderid: 10.13039/100000002
– fundername: NIBIB NIH HHS
  grantid: R01 EB006733
– fundername: NIMH NIH HHS
  grantid: U01 MH070890
– fundername: NIBIB NIH HHS
  grantid: R01 EB009634
– fundername: NIA NIH HHS
  grantid: R01 AG042599
– fundername: NICHD NIH HHS
  grantid: R01 HD053000
– fundername: NIMH NIH HHS
  grantid: P50 MH064065
– fundername: NIMH NIH HHS
  grantid: R01 MH070890
– fundername: NINDS NIH HHS
  grantid: R01 NS055754
– fundername: NIBIB NIH HHS
  grantid: R01 EB008374
– fundername: NIA NIH HHS
  grantid: R01 AG041721
GroupedDBID ---
-~X
.55
.DC
.GJ
0R~
29I
4.4
53G
5GY
5RE
5VS
6IF
6IK
6IL
6IN
85S
97E
AAJGR
AARMG
AASAJ
AAWTH
AAYJJ
ABAZT
ABJNI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACKIV
ACNCT
ACPRK
ADZIZ
AENEX
AETIX
AFFNX
AFRAH
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CHZPO
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IEGSK
IFIPE
IFJZH
IPLJI
JAVBF
LAI
MS~
O9-
OCL
P2P
RIA
RIE
RIL
RNS
TAE
TN5
VH1
VJK
X7M
ZGI
ZXP
AAYXX
CITATION
RIG
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
ID FETCH-LOGICAL-c392t-259db5a1c2065ecedbff06f2f8f1493727c7fc5bd40d0d854c52b4a4bbe276b3
IEDL.DBID RIE
ISSN 0018-9294
1558-2531
IngestDate Fri Jul 11 09:25:08 EDT 2025
Mon Jun 30 08:36:32 EDT 2025
Mon Jul 21 05:35:59 EDT 2025
Tue Jul 01 03:28:28 EDT 2025
Thu Apr 24 23:12:37 EDT 2025
Wed Aug 27 02:30:43 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c392t-259db5a1c2065ecedbff06f2f8f1493727c7fc5bd40d0d854c52b4a4bbe276b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Undefined-1
ObjectType-Feature-3
content type line 23
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/5383421
PMID 27187939
PQID 2174321512
PQPubID 85474
PageCount 11
ParticipantIDs ieee_primary_7469380
proquest_journals_2174321512
crossref_primary_10_1109_TBME_2016_2564440
crossref_citationtrail_10_1109_TBME_2016_2564440
proquest_miscellaneous_1826682065
pubmed_primary_27187939
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-03-01
PublicationDateYYYYMMDD 2017-03-01
PublicationDate_xml – month: 03
  year: 2017
  text: 2017-03-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on biomedical engineering
PublicationTitleAbbrev TBME
PublicationTitleAlternate IEEE Trans Biomed Eng
PublicationYear 2017
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref31
ref30
ref33
ref11
ref32
ref10
ref2
ref1
ref17
ref16
ref19
tibshirani (ref23) 1994; 58
ref24
ref26
ref25
ref22
ref21
ref28
ref27
ref29
ref8
ref7
yu (ref18) 2009; 22
ref9
ref4
ref3
ref6
ref5
zhou (ref20) 0
20483687 - IEEE Trans Image Process. 2010 Nov;19(11):2861-73
19110489 - IEEE Trans Pattern Anal Mach Intell. 2009 Feb;31(2):210-27
16271804 - Neurobiol Aging. 2006 Nov;27(11):1564-76
23178087 - Semin Nucl Med. 2013 Jan;43(1):30-44
17704239 - J Nucl Med. 2007 Sep;48(9):1468-81
14537108 - Mol Imaging Biol. 2002 Oct;4(5):338-51
25565039 - Phys Med Biol. 2015 Jan 21;60(2):807-23
17153947 - IEEE Trans Image Process. 2006 Dec;15(12):3736-45
25296404 - IEEE Trans Image Process. 2014 Dec;23(12):5108-22
23192234 - Phys Med Biol. 2012 Dec 21;57(24):8217-29
24457510 - IEEE Trans Pattern Anal Mach Intell. 2014 Mar;36(3):550-63
22634859 - Neuroimage. 2012 Sep;62(3):1975-86
26035516 - Nucl Med Commun. 2015 Oct;36(10 ):971-85
22155989 - Phys Med Biol. 2012 Jan 7;57(1):173-89
21905095 - Int J Geriatr Psychiatry. 2011 Oct;26(10 ):991-9
26732849 - Phys Med Biol. 2016 Jan 21;61(2):791-812
15501092 - Neuroimage. 2004;23 Suppl 1:S208-19
21606021 - IEEE Trans Med Imaging. 2011 Oct;30(10):1852-62
23463863 - Acta Radiol. 2013 Jun;54(5):534-9
18218538 - IEEE Trans Med Imaging. 1994;13(4):601-9
26161630 - Phys Med Biol. 2015 Aug 7;60(15):5853-71
References_xml – ident: ref12
  doi: 10.1118/1.4889207
– ident: ref10
  doi: 10.1109/TIP.2006.881969
– ident: ref21
  doi: 10.1109/TIP.2014.2361204
– ident: ref8
  doi: 10.1109/TIP.2010.2050625
– ident: ref31
  doi: 10.1016/j.neurobiolaging.2005.09.021
– ident: ref7
  doi: 10.1053/j.semnuclmed.2012.08.006
– ident: ref3
  doi: 10.1097/MNM.0000000000000346
– ident: ref15
  doi: 10.1117/12.932246
– ident: ref6
  doi: 10.1002/gps.2640
– ident: ref27
  doi: 10.1016/j.neuroimage.2012.05.042
– ident: ref22
  doi: 10.5244/C.24.36
– ident: ref33
  doi: 10.1023/A:1010933404324
– ident: ref5
  doi: 10.2967/jnumed.106.037689
– ident: ref2
  doi: 10.1177/0284185113476021
– ident: ref30
  doi: 10.1007/978-3-319-24888-2_16
– ident: ref32
  doi: 10.1007/978-3-319-10581-9_35
– ident: ref14
  doi: 10.1088/0031-9155/57/1/173
– ident: ref19
  doi: 10.1109/TPAMI.2013.145
– ident: ref16
  doi: 10.1088/0031-9155/57/24/8217
– volume: 58
  start-page: 267
  year: 1994
  ident: ref23
  article-title: Regression shrinkage and selection via the lasso
  publication-title: J R Statist Soc (Series B)
  doi: 10.1111/j.2517-6161.1996.tb02080.x
– ident: ref24
  doi: 10.1109/TIP.2006.881969
– ident: ref28
  doi: 10.1109/TMI.2011.2156806
– ident: ref4
  doi: 10.1016/S1536-1632(02)00071-9
– ident: ref26
  doi: 10.1016/j.neuroimage.2004.07.051
– ident: ref25
  doi: 10.1109/42.363108
– ident: ref11
  doi: 10.1109/TPAMI.2008.79
– ident: ref29
  doi: 10.1016/j.neuroimage.2013.02.069
– start-page: 141
  year: 0
  ident: ref20
  article-title: Image classification using super-vector coding of local image descriptors
  publication-title: Proc Eur Conf Comput Vis
– ident: ref13
  doi: 10.1088/0031-9155/60/2/807
– ident: ref17
  doi: 10.1088/0031-9155/60/15/5853
– ident: ref9
  doi: 10.1109/CVPR.2006.142
– ident: ref1
  doi: 10.2174/1874471010902040224
– volume: 22
  start-page: 2223
  year: 2009
  ident: ref18
  article-title: Nonlinear learning using local coordinate coding
  publication-title: Adv in Neural Info Proc Syst
– reference: 26732849 - Phys Med Biol. 2016 Jan 21;61(2):791-812
– reference: 20483687 - IEEE Trans Image Process. 2010 Nov;19(11):2861-73
– reference: 26035516 - Nucl Med Commun. 2015 Oct;36(10 ):971-85
– reference: 18218538 - IEEE Trans Med Imaging. 1994;13(4):601-9
– reference: 24457510 - IEEE Trans Pattern Anal Mach Intell. 2014 Mar;36(3):550-63
– reference: 23192234 - Phys Med Biol. 2012 Dec 21;57(24):8217-29
– reference: 14537108 - Mol Imaging Biol. 2002 Oct;4(5):338-51
– reference: 22634859 - Neuroimage. 2012 Sep;62(3):1975-86
– reference: 17704239 - J Nucl Med. 2007 Sep;48(9):1468-81
– reference: 26161630 - Phys Med Biol. 2015 Aug 7;60(15):5853-71
– reference: 25565039 - Phys Med Biol. 2015 Jan 21;60(2):807-23
– reference: 22155989 - Phys Med Biol. 2012 Jan 7;57(1):173-89
– reference: 21606021 - IEEE Trans Med Imaging. 2011 Oct;30(10):1852-62
– reference: 23463863 - Acta Radiol. 2013 Jun;54(5):534-9
– reference: 16271804 - Neurobiol Aging. 2006 Nov;27(11):1564-76
– reference: 17153947 - IEEE Trans Image Process. 2006 Dec;15(12):3736-45
– reference: 25296404 - IEEE Trans Image Process. 2014 Dec;23(12):5108-22
– reference: 15501092 - Neuroimage. 2004;23 Suppl 1:S208-19
– reference: 23178087 - Semin Nucl Med. 2013 Jan;43(1):30-44
– reference: 21905095 - Int J Geriatr Psychiatry. 2011 Oct;26(10 ):991-9
– reference: 19110489 - IEEE Trans Pattern Anal Mach Intell. 2009 Feb;31(2):210-27
SSID ssj0014846
Score 2.505123
Snippet Objective: To obtain high-quality positron emission tomography (PET) image with low-dose tracer injection, this study attempts to predict the standard-dose PET...
To obtain high-quality positron emission tomography (PET) image with low-dose tracer injection, this study attempts to predict the standard-dose PET (S-PET)...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 569
SubjectTerms Algorithms
Brain
Dictionaries
Emission analysis
Humans
Image edge detection
Image Enhancement - methods
Image quality
Image reconstruction
Injection
Local coordinate coding (LCC)
Magnetic resonance imaging
Magnetic Resonance Imaging - methods
Medical imaging
Multimodal Imaging - methods
Neuroimaging
NMR
Nuclear magnetic resonance
Pattern Recognition, Automated - methods
Positron emission
Positron emission tomography
positron emission tomography (PET)
Positron-Emission Tomography - methods
Radiation Dosage
Radiation Exposure - prevention & control
Radiation Protection - methods
Reproducibility of Results
semisupervised tripled dictionary learning (SSTDL)
Sensitivity and Specificity
sparse representation (SR)
Subtraction Technique
Supervised Machine Learning
Tomography
Training
Title Semisupervised Tripled Dictionary Learning for Standard-Dose PET Image Prediction Using Low-Dose PET and Multimodal MRI
URI https://ieeexplore.ieee.org/document/7469380
https://www.ncbi.nlm.nih.gov/pubmed/27187939
https://www.proquest.com/docview/2174321512
https://www.proquest.com/docview/1826682065
Volume 64
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VHhAceLQ8AgUZiRMiWyex8zgC3apFBFU0SL1F8atC0E21u1EFv54ZxxsqBIhbpNiOoxnb3-d5AbyUicuU4DpWvCuQoFQ2rqyTMYJXV-qc29RS7HD9MT_6LN6fybMteD3FwlhrvfOZndGjt-WbXg90VbZfIJfLSiToN5C4jbFak8VAlGNQDk9wAaeVCBbMhFf7zdt6Tk5c-QzPdyEEVX9LCyqzTSXCrx1Hvr7K36GmP3IO70K9mezoafJ1NqzVTP_4LY_j__7NPbgTsCd7MyrLfdiyix24fS0j4Q7crIOtfReuTqkU3HBJm8nKGtYs6U7esIMvPhSiW35nITnrOUPky07DpUR80K8sO5k37PgCNyt2sqQhqQvz_gnsQ3_1qw32YT4I-KI3OLf60_EDaA7nzbujOJRpiDWCq3WMBMoo2SU6RThjtTXKOZ671JUO6VeGAEkXTktlBDfclFJomSrRCaVsWuQqewjbi35hHwOrlEtNrjWvVEeFsMskk4Znxsi8NLi1RsA3wmp1SGFOlTS-tZ7K8KolUbck6jaIOoJXU5fLMX_HvxrvkpimhkFCEextNKINK3zVeirn8VIEL6bXKBcyuHQL2w-rlrhbTgnyZQSPRk2axt4o4JM_f_Mp3EoJQHhvtz3YXi8H-wzhz1o993r_E5im_c8
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bb9MwFD6ahgTsgcvGJTDASDwh0jmOnSaPwDq10EwTC9LeoviG0FgztY0m-PX4OG6YECDeIsV2HJ1j-_t8bgCvRGJTyamKJW3GjqAUJi6MFbEDrzZXGTXMYOxweZxNP_MPZ-JsC94MsTDGGO98Zkb46G35ulUdXpUdjB2XS3NH0G-4c1-wPlprsBnwvA_LoYlbwqzgwYaZ0OKgeldO0I0rG7kTnnOO9d_YGAttY5HwaweSr7Dyd7DpD52ju1Buptv7mpyPurUcqR-_ZXL83_-5B3cC-iRve3W5D1tmsQs713IS7sLNMljb9-DqFIvBdZe4nayMJtUSb-U1OfzqgyGa5XcS0rN-IQ77ktNwLREftitDTiYVmV247YqcLHFI7EK8hwKZt1e_2rg-xIcBX7Taza38NHsA1dGkej-NQ6GGWDl4tY4dhdJSNIliDtAYZbS0lmaW2dw6ApY6iKTGVgmpOdVU54IrwSRvuJSGjTOZPoTtRbswj4EU0jKdKUUL2WAp7DxJhaap1iLLtdtcI6AbYdUqJDHHWhrfak9maFGjqGsUdR1EHcHroctln8HjX433UExDwyChCPY3GlGHNb6qPZnziCmCl8NrJxc0uTQL03arGtlbhinyRQSPek0axt4o4JM_f_MF3JpW5byez44_PoXbDOGE933bh-31sjPPHBhay-d-DfwE_foBKA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Semisupervised+Tripled+Dictionary+Learning+for+Standard-Dose+PET+Image+Prediction+Using+Low-Dose+PET+and+Multimodal+MRI&rft.jtitle=IEEE+transactions+on+biomedical+engineering&rft.au=Wang%2C+Yan&rft.au=Ma%2C+Guangkai&rft.au=An%2C+Le&rft.au=Shi%2C+Feng&rft.date=2017-03-01&rft.pub=IEEE&rft.issn=0018-9294&rft.volume=64&rft.issue=3&rft.spage=569&rft.epage=579&rft_id=info:doi/10.1109%2FTBME.2016.2564440&rft_id=info%3Apmid%2F27187939&rft.externalDocID=7469380
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9294&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9294&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9294&client=summon