Partial Label Learning via Conditional-Label-Aware Disambiguation
Partial label learning is a weakly supervised learning framework in which each instance is associated with multiple candidate labels, among which only one is the ground-truth label. This paper proposes a unified formulation that employs proper label constraints for training models while simultaneous...
Saved in:
Published in | Journal of computer science and technology Vol. 36; no. 3; pp. 590 - 605 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Singapore
Springer Singapore
01.06.2021
Springer Springer Nature B.V Key Laboratory of Data Engineering and Knowledge Engineering (Renmin University of China),Ministry of Education Beijing 100087,China%School of Information,Renmin University of China,Beijing 100087,China |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Partial label learning is a weakly supervised learning framework in which each instance is associated with multiple candidate labels, among which only one is the ground-truth label. This paper proposes a unified formulation that employs proper label constraints for training models while simultaneously performing pseudo-labeling. Unlike existing partial label learning approaches that only leverage similarities in the feature space without utilizing label constraints, our pseudo-labeling process leverages similarities and differences in the feature space using the same candidate label constraints and then disambiguates noise labels. Extensive experiments on artificial and real-world partial label datasets show that our approach significantly outperforms state-of-the-art counterparts on classification prediction. |
---|---|
AbstractList | Partial label learning is a weakly supervised learning framework in which each instance is associated with multiple candidate labels, among which only one is the ground-truth label. This paper proposes a unified formulation that employs proper label constraints for training models while simultaneously performing pseudo-labeling. Unlike existing partial label learning approaches that only leverage similarities in the feature space without utilizing label constraints, our pseudo-labeling process leverages similarities and differences in the feature space using the same candidate label constraints and then disambiguates noise labels. Extensive experiments on artificial and real-world partial label datasets show that our approach significantly outperforms state-of-the-art counterparts on classification prediction. Keywords disambiguation, partial label learning, similarity and dissimilarity, weak supervision Partial label learning is a weakly supervised learning framework in which each instance is associated with multiple candidate labels, among which only one is the ground-truth label. This paper proposes a unified formulation that employs proper label constraints for training models while simultaneously performing pseudo-labeling. Unlike existing partial label learning approaches that only leverage similarities in the feature space without utilizing label constraints, our pseudo-labeling process leverages similarities and differences in the feature space using the same candidate label constraints and then disambiguates noise labels. Extensive experiments on artificial and real-world partial label datasets show that our approach significantly outperforms state-of-the-art counterparts on classification prediction. |
Audience | Academic |
Author | Ni, Peng Li, Cui-Ping Chen, Hong Zhao, Su-Yun Dai, Zhi-Gang |
AuthorAffiliation | Key Laboratory of Data Engineering and Knowledge Engineering (Renmin University of China),Ministry of Education Beijing 100087,China%School of Information,Renmin University of China,Beijing 100087,China |
AuthorAffiliation_xml | – name: Key Laboratory of Data Engineering and Knowledge Engineering (Renmin University of China),Ministry of Education Beijing 100087,China%School of Information,Renmin University of China,Beijing 100087,China |
Author_xml | – sequence: 1 givenname: Peng surname: Ni fullname: Ni, Peng organization: Key Laboratory of Data Engineering and Knowledge Engineering (Renmin University of China), Ministry of Education, School of Information, Renmin University of China – sequence: 2 givenname: Su-Yun surname: Zhao fullname: Zhao, Su-Yun email: zhaosuyun@ruc.edu.cn organization: Key Laboratory of Data Engineering and Knowledge Engineering (Renmin University of China), Ministry of Education, School of Information, Renmin University of China – sequence: 3 givenname: Zhi-Gang surname: Dai fullname: Dai, Zhi-Gang organization: Key Laboratory of Data Engineering and Knowledge Engineering (Renmin University of China), Ministry of Education, School of Information, Renmin University of China – sequence: 4 givenname: Hong surname: Chen fullname: Chen, Hong organization: Key Laboratory of Data Engineering and Knowledge Engineering (Renmin University of China), Ministry of Education, School of Information, Renmin University of China – sequence: 5 givenname: Cui-Ping surname: Li fullname: Li, Cui-Ping organization: Key Laboratory of Data Engineering and Knowledge Engineering (Renmin University of China), Ministry of Education, School of Information, Renmin University of China |
BookMark | eNp9kU1v3CAQhlGVSE02_QG9rdRrSQdsFnNcbT-lldpDckaDDRauF6fgbbb_vrNxpUiVWiEGxLwPA-9cs4s0Jc_YawG3AkC_K0JUBjhIwcEYyU8v2JVoNsBrXZsL2gMANxResutSBoBKQ11fse03zHPEcb1H5yl6zCmmfv0z4no3pS7OcUo48qc03z5i9uv3seDBxf6I5-QNuww4Fv_qz7pi9x8_3O0-8_3XT1922z1vKyNnLkEp2WmnlWg7gRg2nXDBOxmUFKGplWvAQeu8AaNU1_m6QRJ3bQXBiY2qVuztcu8jpoCpt8N0zPS0YocyfD8N5eSsl2QAVEBzxd4s8oc8_Tj6Mj_rpSFnhKpkRarbRdXj6G1MYZoztjQ6f4gtWRwinW-10KAbqQUBYgHaPJWSfbAPOR4w_7IC7LkTdumEpYfYcyfsiRj9F9PG-ck7KhbH_5JyIQtVSb3Pz5_4N_QbZ6aerQ |
CitedBy_id | crossref_primary_10_1145_3494565 crossref_primary_10_1007_s00521_023_08793_6 crossref_primary_10_1016_j_ijar_2024_109358 crossref_primary_10_1016_j_patcog_2022_109133 crossref_primary_10_1007_s13042_021_01470_x crossref_primary_10_1016_j_ins_2024_121163 crossref_primary_10_1016_j_neucom_2023_126870 crossref_primary_10_1016_j_neucom_2024_127822 crossref_primary_10_1016_j_neucom_2024_128312 crossref_primary_10_1016_j_neunet_2023_02_019 crossref_primary_10_1016_j_ins_2022_04_044 crossref_primary_10_1145_3569421 crossref_primary_10_1016_j_knosys_2024_112278 crossref_primary_10_1016_j_neunet_2025_107137 |
Cites_doi | 10.1109/TKDE.2017.2721942 10.1007/s11704-019-8208-z 10.1007/s10994-010-5226-3 10.1007/s10994-016-5606-4 10.1007/s13042-020-01129-z 10.1162/08997660360581958 10.1007/s11704-018-7452-y 10.1007/s11704-017-7031-7 10.1109/TCYB.2017.2669639 10.3233/IDA-2006-10503 10.1109/TIFS.2014.2359642 10.1145/2939672.2939788 10.1145/2339530.2339616 10.1145/3292500.3330840 10.1609/aaai.v32i1.11644 10.1609/aaai.v31i1.10775 10.7551/mitpress/4175.001.0001 10.1007/978-3-642-15549-9_46 10.1109/CVPR.2013.97 10.1609/aaai.v33i01.33015016 10.1609/aaai.v33i01.33015557 10.1109/ICDM.2018.00192 10.24963/ijcai.2019/318 10.24963/ijcai.2018/291 10.1145/1401890.1401958 10.1609/aaai.v33i01.33013518 |
ContentType | Journal Article |
Copyright | Institute of Computing Technology, Chinese Academy of Sciences 2021 COPYRIGHT 2021 Springer Institute of Computing Technology, Chinese Academy of Sciences 2021. Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
Copyright_xml | – notice: Institute of Computing Technology, Chinese Academy of Sciences 2021 – notice: COPYRIGHT 2021 Springer – notice: Institute of Computing Technology, Chinese Academy of Sciences 2021. – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
DBID | AAYXX CITATION 3V. 7SC 7WY 7WZ 7XB 87Z 8AL 8FD 8FE 8FG 8FK 8FL ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU DWQXO FRNLG F~G GNUQQ HCIFZ JQ2 K60 K6~ K7- L.- L6V L7M L~C L~D M0C M0N M7S P5Z P62 PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U 2B. 4A8 92I 93N PSX TCJ |
DOI | 10.1007/s11390-021-0992-x |
DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Business Premium Collection Technology Collection ProQuest One ProQuest Central Korea Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database ABI/INFORM Professional Advanced ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ABI/INFORM Global Computing Database Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection ProQuest Central Basic Wanfang Data Journals - Hong Kong WANFANG Data Centre Wanfang Data Journals 万方数据期刊 - 香港版 China Online Journals (COJ) China Online Journals (COJ) |
DatabaseTitle | CrossRef ABI/INFORM Global (Corporate) ProQuest Business Collection (Alumni Edition) ProQuest One Business Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ABI/INFORM Complete ProQuest Central ABI/INFORM Professional Advanced ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace ABI/INFORM Complete (Alumni Edition) Engineering Collection Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global ProQuest Computing Engineering Database ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest Business Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Business (Alumni) ProQuest One Academic ProQuest Central (Alumni) ProQuest One Academic (New) Business Premium Collection (Alumni) |
DatabaseTitleList | ABI/INFORM Global (Corporate) |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1860-4749 |
EndPage | 605 |
ExternalDocumentID | jsjkxjsxb_e202103010 A717078271 10_1007_s11390_021_0992_x |
GrantInformation_xml | – fundername: The work was supported by the National Key Research & Develop Plan of China under Grant Nos.2017YFB1400700 and 2018YFB1004401; the National Natural Science Foundation of China under Grant Nos.61732006,61702522,61772536,61772537,62076245; and 62072460; (and Beijing Natural Science Foundation under Grant ) funderid: The work was supported by the National Key Research & Develop Plan of China under Grant Nos.2017YFB1400700 and 2018YFB1004401; the National Natural Science Foundation of China under Grant Nos.61732006,61702522,61772536,61772537,62076245; and 62072460; (and Beijing Natural Science Foundation under Grant ) |
GroupedDBID | -4Z -59 -5G -BR -EM -SI -S~ -Y2 -~C .86 .VR 06D 0R~ 0VY 1N0 1SB 2.D 28- 29K 2B. 2C0 2J2 2JN 2JY 2KG 2KM 2LR 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 5GY 5QI 5VR 5VS 5XA 5XJ 67Z 6NX 7WY 8FE 8FG 8FL 8TC 8UJ 92H 92I 92R 93N 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAXDM AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFUIB AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARMRJ ASPBG AVWKF AXYYD AZFZN AZQEC B-. BA0 BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS CAG CAJEI CCEZO CCPQU CHBEP COF CS3 CSCUP CUBFJ CW9 D-I DDRTE DNIVK DPUIP DU5 DWQXO EBLON EBS EIOEI EJD ESBYG F5P FA0 FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GXS H13 HCIFZ HF~ HG6 HMJXF HQYDN HRMNR HVGLF HZ~ IAO IHE IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C JBSCW JCJTX JZLTJ K60 K6V K6~ K7- KDC KOV LAK LLZTM M0C M0N M4Y M7S MA- N2Q NB0 NDZJH NF0 NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P P62 P9O PF0 PQBIZ PQBZA PQQKQ PROAC PT4 PT5 PTHSS Q-- Q2X QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCL SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TCJ TGT TSG TSK TSV TUC U1G U2A U5S UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z7R Z7U Z7X Z81 Z83 Z88 Z8R Z8W Z92 ZMTXR ~A9 ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION ICD IVC PHGZM PHGZT TGMPQ AEIIB PMFND 7SC 7XB 8AL 8FD 8FK ABRTQ JQ2 L.- L6V L7M L~C L~D PKEHL PQEST PQGLB PQUKI PRINS Q9U 4A8 PSX |
ID | FETCH-LOGICAL-c392t-20552d7b751cd1aaf6d1bfeb2f521f845b80b0cbe90955dde48ab75dc30fb1653 |
IEDL.DBID | U2A |
ISSN | 1000-9000 |
IngestDate | Thu May 29 04:00:16 EDT 2025 Fri Jul 25 10:46:35 EDT 2025 Tue Jun 10 20:38:16 EDT 2025 Thu Apr 24 22:58:41 EDT 2025 Tue Jul 01 01:48:57 EDT 2025 Fri Feb 21 02:48:10 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | similarity and dissimilarity disambiguation partial label learning weak supervision |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c392t-20552d7b751cd1aaf6d1bfeb2f521f845b80b0cbe90955dde48ab75dc30fb1653 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2918615323 |
PQPubID | 326258 |
PageCount | 16 |
ParticipantIDs | wanfang_journals_jsjkxjsxb_e202103010 proquest_journals_2918615323 gale_infotracacademiconefile_A717078271 crossref_primary_10_1007_s11390_021_0992_x crossref_citationtrail_10_1007_s11390_021_0992_x springer_journals_10_1007_s11390_021_0992_x |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-06-01 |
PublicationDateYYYYMMDD | 2021-06-01 |
PublicationDate_xml | – month: 06 year: 2021 text: 2021-06-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Singapore |
PublicationPlace_xml | – name: Singapore – name: Beijing |
PublicationTitle | Journal of computer science and technology |
PublicationTitleAbbrev | J. Comput. Sci. Technol |
PublicationTitle_FL | Journal of Computer Science & Technology |
PublicationYear | 2021 |
Publisher | Springer Singapore Springer Springer Nature B.V Key Laboratory of Data Engineering and Knowledge Engineering (Renmin University of China),Ministry of Education Beijing 100087,China%School of Information,Renmin University of China,Beijing 100087,China |
Publisher_xml | – name: Springer Singapore – name: Springer – name: Springer Nature B.V – name: Key Laboratory of Data Engineering and Knowledge Engineering (Renmin University of China),Ministry of Education Beijing 100087,China%School of Information,Renmin University of China,Beijing 100087,China |
References | Zhang, Li, Liu (CR5) 2018; 12 Chen, Patel, Chellappa, Phillips (CR2) 2014; 9 CR19 CR17 CR16 CR15 CR14 Dong, Yu, Cao, Shi, Ma (CR4) 2020; 14 CR13 CR12 Gong, Liu, Tang, Yang, Yang, Tao (CR29) 2018; 48 CR32 CR31 CR30 Xu, Yang, Zhou, Zheng, Liu, He (CR6) 2020; 11 Sriperumbudur, Torres, Lanckriet (CR28) 2011; 85 Hüllermeier, Beringer (CR11) 2006; 10 CR3 Zhang, Yu, Tang (CR10) 2017; 29 CR8 CR7 CR9 CR26 CR24 CR23 CR22 CR21 CR20 Yuille, Rangarajan (CR27) 2003; 15 Yu, Zhang (CR18) 2017; 106 Sun, Ge, Kang (CR25) 2019; 13 Cour, Sapp, Taskar (CR1) 2011; 12 992_CR3 XB Dong (992_CR4) 2020; 14 BK Sriperumbudur (992_CR28) 2011; 85 ML Zhang (992_CR10) 2017; 29 992_CR8 992_CR31 992_CR9 992_CR32 992_CR30 992_CR13 992_CR14 992_CR7 992_CR12 T Cour (992_CR1) 2011; 12 992_CR26 AL Yuille (992_CR27) 2003; 15 C Gong (992_CR29) 2018; 48 992_CR20 ML Zhang (992_CR5) 2018; 12 992_CR21 L Sun (992_CR25) 2019; 13 992_CR24 992_CR22 992_CR23 992_CR17 992_CR15 992_CR16 YC Chen (992_CR2) 2014; 9 992_CR19 F Yu (992_CR18) 2017; 106 S Xu (992_CR6) 2020; 11 E Hüllermeier (992_CR11) 2006; 10 |
References_xml | – ident: CR22 – volume: 29 start-page: 2155 issue: 10 year: 2017 end-page: 2167 ident: CR10 article-title: Disambiguation free partial label learning publication-title: IEEE Transactions on Knowledge and Data Engineering doi: 10.1109/TKDE.2017.2721942 – volume: 14 start-page: 241 issue: 2 year: 2020 end-page: 258 ident: CR4 article-title: A survey on ensemble learning publication-title: Frontiers of Computer doi: 10.1007/s11704-019-8208-z – volume: 85 start-page: 3 issue: 1/2 year: 2011 end-page: 39 ident: CR28 article-title: A majorization-minimization approach to the sparse generalized eigenvalue problem publication-title: Machine Learning doi: 10.1007/s10994-010-5226-3 – ident: CR14 – ident: CR16 – ident: CR12 – volume: 106 start-page: 573 issue: 4 year: 2017 end-page: 593 ident: CR18 article-title: Maximum margin partial label learning publication-title: Machine Learning doi: 10.1007/s10994-016-5606-4 – ident: CR30 – volume: 11 start-page: 2453 year: 2020 end-page: 2460 ident: CR6 article-title: Partial label metric learning by collapsing classes publication-title: International Journal of Machine Learning and Cybernetics doi: 10.1007/s13042-020-01129-z – volume: 15 start-page: 915 issue: 4 year: 2003 end-page: 936 ident: CR27 article-title: The concave-convex procedure publication-title: Neural Computation doi: 10.1162/08997660360581958 – volume: 13 start-page: 1243 issue: 6 year: 2019 end-page: 1254 ident: CR25 article-title: Non-negative matrix factorization based modeling and training algorithm for multi-label learning publication-title: Frontiers of Computer Science doi: 10.1007/s11704-018-7452-y – ident: CR8 – volume: 12 start-page: 1501 year: 2011 end-page: 1536 ident: CR1 article-title: Learning from partial labels publication-title: Journal of Machine Learning Research – ident: CR23 – ident: CR21 – ident: CR19 – ident: CR3 – ident: CR15 – ident: CR17 – ident: CR31 – ident: CR13 – ident: CR9 – volume: 12 start-page: 191 issue: 2 year: 2018 end-page: 202 ident: CR5 article-title: Binary relevance for multilabel learning: An overview publication-title: Frontiers of Computer Science doi: 10.1007/s11704-017-7031-7 – volume: 48 start-page: 967 issue: 3 year: 2018 end-page: 978 ident: CR29 article-title: A regularization approach for instance-based superset label learning publication-title: IEEE Transactions on Cybernetics doi: 10.1109/TCYB.2017.2669639 – ident: CR32 – volume: 10 start-page: 419 issue: 5 year: 2006 end-page: 439 ident: CR11 article-title: Learning from ambiguously labeled examples publication-title: Intelligent Data Analysis doi: 10.3233/IDA-2006-10503 – ident: CR7 – volume: 9 start-page: 2076 issue: 12 year: 2014 end-page: 2088 ident: CR2 article-title: Ambiguously labeled learning using dictionaries publication-title: IEEE Transactions on Information Forensics and Security doi: 10.1109/TIFS.2014.2359642 – ident: CR26 – ident: CR24 – ident: CR20 – ident: 992_CR9 – ident: 992_CR7 – volume: 13 start-page: 1243 issue: 6 year: 2019 ident: 992_CR25 publication-title: Frontiers of Computer Science doi: 10.1007/s11704-018-7452-y – volume: 14 start-page: 241 issue: 2 year: 2020 ident: 992_CR4 publication-title: Frontiers of Computer doi: 10.1007/s11704-019-8208-z – ident: 992_CR12 – volume: 85 start-page: 3 issue: 1/2 year: 2011 ident: 992_CR28 publication-title: Machine Learning doi: 10.1007/s10994-010-5226-3 – volume: 12 start-page: 1501 year: 2011 ident: 992_CR1 publication-title: Journal of Machine Learning Research – ident: 992_CR3 doi: 10.1145/2939672.2939788 – ident: 992_CR32 doi: 10.1145/2339530.2339616 – ident: 992_CR16 doi: 10.1145/3292500.3330840 – ident: 992_CR21 doi: 10.1609/aaai.v32i1.11644 – ident: 992_CR17 doi: 10.1609/aaai.v31i1.10775 – ident: 992_CR26 doi: 10.7551/mitpress/4175.001.0001 – volume: 48 start-page: 967 issue: 3 year: 2018 ident: 992_CR29 publication-title: IEEE Transactions on Cybernetics doi: 10.1109/TCYB.2017.2669639 – ident: 992_CR31 doi: 10.1007/978-3-642-15549-9_46 – ident: 992_CR8 doi: 10.1109/CVPR.2013.97 – volume: 29 start-page: 2155 issue: 10 year: 2017 ident: 992_CR10 publication-title: IEEE Transactions on Knowledge and Data Engineering doi: 10.1109/TKDE.2017.2721942 – volume: 10 start-page: 419 issue: 5 year: 2006 ident: 992_CR11 publication-title: Intelligent Data Analysis doi: 10.3233/IDA-2006-10503 – ident: 992_CR24 doi: 10.1609/aaai.v33i01.33015016 – ident: 992_CR19 doi: 10.1609/aaai.v33i01.33015557 – ident: 992_CR30 – ident: 992_CR22 doi: 10.1109/ICDM.2018.00192 – ident: 992_CR20 doi: 10.24963/ijcai.2019/318 – ident: 992_CR15 doi: 10.24963/ijcai.2018/291 – volume: 15 start-page: 915 issue: 4 year: 2003 ident: 992_CR27 publication-title: Neural Computation doi: 10.1162/08997660360581958 – ident: 992_CR13 – ident: 992_CR14 doi: 10.1145/1401890.1401958 – volume: 11 start-page: 2453 year: 2020 ident: 992_CR6 publication-title: International Journal of Machine Learning and Cybernetics doi: 10.1007/s13042-020-01129-z – volume: 106 start-page: 573 issue: 4 year: 2017 ident: 992_CR18 publication-title: Machine Learning doi: 10.1007/s10994-016-5606-4 – volume: 9 start-page: 2076 issue: 12 year: 2014 ident: 992_CR2 publication-title: IEEE Transactions on Information Forensics and Security doi: 10.1109/TIFS.2014.2359642 – ident: 992_CR23 doi: 10.1609/aaai.v33i01.33013518 – volume: 12 start-page: 191 issue: 2 year: 2018 ident: 992_CR5 publication-title: Frontiers of Computer Science doi: 10.1007/s11704-017-7031-7 |
SSID | ssj0037044 |
Score | 2.356807 |
Snippet | Partial label learning is a weakly supervised learning framework in which each instance is associated with multiple candidate labels, among which only one is... Partial label learning is a weakly supervised learning framework in which each instance is associated with multiple candidate labels,among which only one is... |
SourceID | wanfang proquest gale crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 590 |
SubjectTerms | Artificial Intelligence Computer Science Constraint modelling Data mining Data Structures and Information Theory Information Systems Applications (incl.Internet) Labeling Labels Regular Paper Similarity Software Engineering Supervised learning Theory of Computation |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfR3LSsQwMPi4ePEtri96UAQlmPSZnmR9IaIiouAt5FXZVbtqV93Pd6abuuphLz000ybMTOaZzBCybVIjUtCzVOVFTmMjGNWZ5bRQYa4tONl5Xafg6jo9v48vHpIHH3Cr_LHKRibWgtr2DMbID8KcCzROwujw9Y1i1yjMrvoWGpNkGkSwAOdr-uj0-ua2kcVRxup2rhjEptges8lr1pfnwPhhFI8oMDyCOfijmf7L51-J0vp6T1mo8vGXJjqbJ7PehAzaQ5ovkAlXLpK5pj1D4HfrEmnfIFsA5KXSDp4-CBJ8dlRw3MNUdR0GpPUwbX-pdxecdCr1ojuPwwLgy-T-7PTu-Jz6jgnUgJ3TB5ZPktBmOku4sVypIrVcF-A8F6ClCxEnWjDNjHY5Vp4DyRYLBcDWRKzQPE2iFTJV9kq3SgJ4lwrHdKwMj5PM5jno8sSlzkbcOiVahDXYksaXE8euFs9yVAgZESwBwRIRLActsvfzyeuwlsY44F0kgcR9Bv81yl8XgNVhxSrZBj8UzZuMt8hGQyXpN2AlR-zSIvsN5UbDY6bd8cQdAXer7tOgWw20dCG6yCAT2dr4SdfJTFhzFoZrNshU__3DbYL10tdbnkW_AfHL6qY priority: 102 providerName: ProQuest |
Title | Partial Label Learning via Conditional-Label-Aware Disambiguation |
URI | https://link.springer.com/article/10.1007/s11390-021-0992-x https://www.proquest.com/docview/2918615323 https://d.wanfangdata.com.cn/periodical/jsjkxjsxb-e202103010 |
Volume | 36 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlR1db9Mw8ATbCy98IwqjygMICWTJTuLEeUxHu4mPakJUGk-WvzK1gwwtBfrzuUsdOhCaxEssJRcn8p3v03cH8NwVThUoZ5mpmorlTnFmSy9YY9LKejSyq75OwYd5cbzI357K05jH3Q2n3YeQZM-pd8luqKxwRkcKOB2ZRMVxX5LpjkS8SOuB_WYl7zu4kt-aUUfMIZT5ryn-EEZ_s-QrsdE-o6dtTHt2RfjM7sLtqDUm9RbN9-BGaO_DnaEjQxI36AOoT4gSEPK9sQGv0e-R_Fia5PCCotO954_1j1n901yG5M2yM1_t8mxb8_shLGbTT4fHLDZJYA5VmzVSuZSpL20phfPCmKbwwjZoLzcomBuVS6u45c6GiorNITPLlUFg7zLeWFHI7BHstRdteAwJ3itU4DY3TuSy9FWF4luGIvhM-GDUCPiwWtrFCuLUyOKL3tU-pgXWuMCaFlhvRvDq9yvftuUzrgN-SSjQtLVwXmdihgD-HRWp0jWanqTRlGIEBwOWdNxznU4roUh9TbMRvB4wt3t8zWdfROTugFfd6nyz6jZWh5SsYmSD_Ml_zfoUbqU9oZHD5gD21pffwzPUX9Z2DDfV7GgM-_VsMpnTePT53RTHyXR-8nHcU_Mv6ELr3Q |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3JbhMx1KrKAS7siECBOVAhgSzsWe0DqqKWkNK04tBKvRlvUyWFSekEmv5Uv7HvOWNSOOTWyxzGbxa9fbHfI-StLa0owc5SLWtJcysYNZXjtNapNA6CbBn6FOwflMOj_OtxcbxGruJZGNxWGXViUNRuajFH_jGVXKBzkmZbZ78oTo3C6mocobFgiz1_eQEhW_tpdwfou5mmg8-H20PaTRWgFnyBGbBFUaSuMlXBreNa16XjpoYAswZLVou8MIIZZo2X2J0NpD8XGoCdzVhteIlTIkDl38mzTKJEicGXqPmzioXhsZgypziMM1ZRw1E9cLUYxQ0RDDd8zv-xg_9bgxtl2XCYqKl1c3LD7g0ekvudw5r0Fxz2iKz55jF5EIdBJJ1ueEL635AJAXKkjYdrl3JJ_ox1sj3FwnhIOtKwTPsX-twnO-NW_zTjk0W78afk6FYw-YysN9PGPycJ3CuFZybXludF5aQEz6HwpXcZd16LHmERW8p2zctxhsYPtWy7jAhWgGCFCFbzHnn_95GzReeOVcDvkAQKpRrea3V3OAH-DvtjqT5EvehMVbxHNiKVVCfurVoyZ498iJRbLq_47GZH3CXwpJ2czift3CifYkAOGpi9WP3RN-Tu8HB_pEa7B3svyb00cBkmijbI-uz8t38FftPMvA7MmpDvty0d1xhFJ1c |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlR3LbtNAcIVaCXGh5SXSpuADCAm06q7fPlopUYBS5UCk3lb7rJKCE8Vum8_vjL0mAaFKXHywx2trZnaeOzOEvNOpzlPQs1QWrqCxzhlVmeHUybBQBpzsou1T8P0inczir5fJpZ9zWven3fuUZFfTgF2aquZ0ZdzptvANDBdG8XgBw-OTYETugzTmyNazsOxFcZSxdporxrApTsfs05r_WuIPxfS3eN7Jk7bVPZWT1dWOIhofkqfeggzKjuTPyCNbPScH_XSGwG_WF6ScIlcA5LlUFq4-BhLczmUwWmKmuo0C0vYxLe_k2gZn81r-UvOrrv_3SzIbf_4xmlA_MIFqMHMa4PgkCU2msoRrw6V0qeHKge_sQEm7PE5UzhTTyhbYeA4EW5xLADY6Yk7xNIlekb1qWdnXJIB7aW6ZiqXmcZKZogBVntjUmogbK_MBYT22hPbdxHGoxU-x7YOMCBaAYIEIFpsB-fj7lVXXSuMh4A9IAoHbDNbV0lcLwN9hwypRghuK1k3GB2TYU0n4_VeLsOA5mrJhNCCfesptHz_w2feeuFvgRb243izqjRI2RA8ZRCI7-q9V35LH07OxOP9y8e2YPAlbnsM4zpDsNesbewJmTaPetKx7DxxO7Xw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Partial+Label+Learning+via+Conditional-Label-Aware+Disambiguation&rft.jtitle=Journal+of+computer+science+and+technology&rft.au=Ni%2C+Peng&rft.au=Zhao%2C+Su-Yun&rft.au=Dai%2C+Zhi-Gang&rft.au=Chen%2C+Hong&rft.date=2021-06-01&rft.pub=Springer+Singapore&rft.issn=1000-9000&rft.eissn=1860-4749&rft.volume=36&rft.issue=3&rft.spage=590&rft.epage=605&rft_id=info:doi/10.1007%2Fs11390-021-0992-x&rft.externalDocID=10_1007_s11390_021_0992_x |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fjsjkxjsxb-e%2Fjsjkxjsxb-e.jpg |