Partial Label Learning via Conditional-Label-Aware Disambiguation

Partial label learning is a weakly supervised learning framework in which each instance is associated with multiple candidate labels, among which only one is the ground-truth label. This paper proposes a unified formulation that employs proper label constraints for training models while simultaneous...

Full description

Saved in:
Bibliographic Details
Published inJournal of computer science and technology Vol. 36; no. 3; pp. 590 - 605
Main Authors Ni, Peng, Zhao, Su-Yun, Dai, Zhi-Gang, Chen, Hong, Li, Cui-Ping
Format Journal Article
LanguageEnglish
Published Singapore Springer Singapore 01.06.2021
Springer
Springer Nature B.V
Key Laboratory of Data Engineering and Knowledge Engineering (Renmin University of China),Ministry of Education Beijing 100087,China%School of Information,Renmin University of China,Beijing 100087,China
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Partial label learning is a weakly supervised learning framework in which each instance is associated with multiple candidate labels, among which only one is the ground-truth label. This paper proposes a unified formulation that employs proper label constraints for training models while simultaneously performing pseudo-labeling. Unlike existing partial label learning approaches that only leverage similarities in the feature space without utilizing label constraints, our pseudo-labeling process leverages similarities and differences in the feature space using the same candidate label constraints and then disambiguates noise labels. Extensive experiments on artificial and real-world partial label datasets show that our approach significantly outperforms state-of-the-art counterparts on classification prediction.
AbstractList Partial label learning is a weakly supervised learning framework in which each instance is associated with multiple candidate labels, among which only one is the ground-truth label. This paper proposes a unified formulation that employs proper label constraints for training models while simultaneously performing pseudo-labeling. Unlike existing partial label learning approaches that only leverage similarities in the feature space without utilizing label constraints, our pseudo-labeling process leverages similarities and differences in the feature space using the same candidate label constraints and then disambiguates noise labels. Extensive experiments on artificial and real-world partial label datasets show that our approach significantly outperforms state-of-the-art counterparts on classification prediction. Keywords disambiguation, partial label learning, similarity and dissimilarity, weak supervision
Partial label learning is a weakly supervised learning framework in which each instance is associated with multiple candidate labels, among which only one is the ground-truth label. This paper proposes a unified formulation that employs proper label constraints for training models while simultaneously performing pseudo-labeling. Unlike existing partial label learning approaches that only leverage similarities in the feature space without utilizing label constraints, our pseudo-labeling process leverages similarities and differences in the feature space using the same candidate label constraints and then disambiguates noise labels. Extensive experiments on artificial and real-world partial label datasets show that our approach significantly outperforms state-of-the-art counterparts on classification prediction.
Audience Academic
Author Ni, Peng
Li, Cui-Ping
Chen, Hong
Zhao, Su-Yun
Dai, Zhi-Gang
AuthorAffiliation Key Laboratory of Data Engineering and Knowledge Engineering (Renmin University of China),Ministry of Education Beijing 100087,China%School of Information,Renmin University of China,Beijing 100087,China
AuthorAffiliation_xml – name: Key Laboratory of Data Engineering and Knowledge Engineering (Renmin University of China),Ministry of Education Beijing 100087,China%School of Information,Renmin University of China,Beijing 100087,China
Author_xml – sequence: 1
  givenname: Peng
  surname: Ni
  fullname: Ni, Peng
  organization: Key Laboratory of Data Engineering and Knowledge Engineering (Renmin University of China), Ministry of Education, School of Information, Renmin University of China
– sequence: 2
  givenname: Su-Yun
  surname: Zhao
  fullname: Zhao, Su-Yun
  email: zhaosuyun@ruc.edu.cn
  organization: Key Laboratory of Data Engineering and Knowledge Engineering (Renmin University of China), Ministry of Education, School of Information, Renmin University of China
– sequence: 3
  givenname: Zhi-Gang
  surname: Dai
  fullname: Dai, Zhi-Gang
  organization: Key Laboratory of Data Engineering and Knowledge Engineering (Renmin University of China), Ministry of Education, School of Information, Renmin University of China
– sequence: 4
  givenname: Hong
  surname: Chen
  fullname: Chen, Hong
  organization: Key Laboratory of Data Engineering and Knowledge Engineering (Renmin University of China), Ministry of Education, School of Information, Renmin University of China
– sequence: 5
  givenname: Cui-Ping
  surname: Li
  fullname: Li, Cui-Ping
  organization: Key Laboratory of Data Engineering and Knowledge Engineering (Renmin University of China), Ministry of Education, School of Information, Renmin University of China
BookMark eNp9kU1v3CAQhlGVSE02_QG9rdRrSQdsFnNcbT-lldpDckaDDRauF6fgbbb_vrNxpUiVWiEGxLwPA-9cs4s0Jc_YawG3AkC_K0JUBjhIwcEYyU8v2JVoNsBrXZsL2gMANxResutSBoBKQ11fse03zHPEcb1H5yl6zCmmfv0z4no3pS7OcUo48qc03z5i9uv3seDBxf6I5-QNuww4Fv_qz7pi9x8_3O0-8_3XT1922z1vKyNnLkEp2WmnlWg7gRg2nXDBOxmUFKGplWvAQeu8AaNU1_m6QRJ3bQXBiY2qVuztcu8jpoCpt8N0zPS0YocyfD8N5eSsl2QAVEBzxd4s8oc8_Tj6Mj_rpSFnhKpkRarbRdXj6G1MYZoztjQ6f4gtWRwinW-10KAbqQUBYgHaPJWSfbAPOR4w_7IC7LkTdumEpYfYcyfsiRj9F9PG-ck7KhbH_5JyIQtVSb3Pz5_4N_QbZ6aerQ
CitedBy_id crossref_primary_10_1145_3494565
crossref_primary_10_1007_s00521_023_08793_6
crossref_primary_10_1016_j_ijar_2024_109358
crossref_primary_10_1016_j_patcog_2022_109133
crossref_primary_10_1007_s13042_021_01470_x
crossref_primary_10_1016_j_ins_2024_121163
crossref_primary_10_1016_j_neucom_2023_126870
crossref_primary_10_1016_j_neucom_2024_127822
crossref_primary_10_1016_j_neucom_2024_128312
crossref_primary_10_1016_j_neunet_2023_02_019
crossref_primary_10_1016_j_ins_2022_04_044
crossref_primary_10_1145_3569421
crossref_primary_10_1016_j_knosys_2024_112278
crossref_primary_10_1016_j_neunet_2025_107137
Cites_doi 10.1109/TKDE.2017.2721942
10.1007/s11704-019-8208-z
10.1007/s10994-010-5226-3
10.1007/s10994-016-5606-4
10.1007/s13042-020-01129-z
10.1162/08997660360581958
10.1007/s11704-018-7452-y
10.1007/s11704-017-7031-7
10.1109/TCYB.2017.2669639
10.3233/IDA-2006-10503
10.1109/TIFS.2014.2359642
10.1145/2939672.2939788
10.1145/2339530.2339616
10.1145/3292500.3330840
10.1609/aaai.v32i1.11644
10.1609/aaai.v31i1.10775
10.7551/mitpress/4175.001.0001
10.1007/978-3-642-15549-9_46
10.1109/CVPR.2013.97
10.1609/aaai.v33i01.33015016
10.1609/aaai.v33i01.33015557
10.1109/ICDM.2018.00192
10.24963/ijcai.2019/318
10.24963/ijcai.2018/291
10.1145/1401890.1401958
10.1609/aaai.v33i01.33013518
ContentType Journal Article
Copyright Institute of Computing Technology, Chinese Academy of Sciences 2021
COPYRIGHT 2021 Springer
Institute of Computing Technology, Chinese Academy of Sciences 2021.
Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Institute of Computing Technology, Chinese Academy of Sciences 2021
– notice: COPYRIGHT 2021 Springer
– notice: Institute of Computing Technology, Chinese Academy of Sciences 2021.
– notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID AAYXX
CITATION
3V.
7SC
7WY
7WZ
7XB
87Z
8AL
8FD
8FE
8FG
8FK
8FL
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
HCIFZ
JQ2
K60
K6~
K7-
L.-
L6V
L7M
L~C
L~D
M0C
M0N
M7S
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
2B.
4A8
92I
93N
PSX
TCJ
DOI 10.1007/s11390-021-0992-x
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
Technology Collection
ProQuest One
ProQuest Central Korea
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global
Computing Database
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitle CrossRef
ABI/INFORM Global (Corporate)
ProQuest Business Collection (Alumni Edition)
ProQuest One Business
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ABI/INFORM Complete
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
Engineering Collection
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
ProQuest Computing
Engineering Database
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Business Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Business (Alumni)
ProQuest One Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
Business Premium Collection (Alumni)
DatabaseTitleList

ABI/INFORM Global (Corporate)

Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1860-4749
EndPage 605
ExternalDocumentID jsjkxjsxb_e202103010
A717078271
10_1007_s11390_021_0992_x
GrantInformation_xml – fundername: The work was supported by the National Key Research & Develop Plan of China under Grant Nos.2017YFB1400700 and 2018YFB1004401; the National Natural Science Foundation of China under Grant Nos.61732006,61702522,61772536,61772537,62076245; and 62072460; (and Beijing Natural Science Foundation under Grant )
  funderid: The work was supported by the National Key Research & Develop Plan of China under Grant Nos.2017YFB1400700 and 2018YFB1004401; the National Natural Science Foundation of China under Grant Nos.61732006,61702522,61772536,61772537,62076245; and 62072460; (and Beijing Natural Science Foundation under Grant )
GroupedDBID -4Z
-59
-5G
-BR
-EM
-SI
-S~
-Y2
-~C
.86
.VR
06D
0R~
0VY
1N0
1SB
2.D
28-
29K
2B.
2C0
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5QI
5VR
5VS
5XA
5XJ
67Z
6NX
7WY
8FE
8FG
8FL
8TC
8UJ
92H
92I
92R
93N
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAXDM
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFUIB
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CAJEI
CCEZO
CCPQU
CHBEP
COF
CS3
CSCUP
CUBFJ
CW9
D-I
DDRTE
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
F5P
FA0
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GXS
H13
HCIFZ
HF~
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
IAO
IHE
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
LAK
LLZTM
M0C
M0N
M4Y
M7S
MA-
N2Q
NB0
NDZJH
NF0
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P62
P9O
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
PTHSS
Q--
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCL
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TCJ
TGT
TSG
TSK
TSV
TUC
U1G
U2A
U5S
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z7R
Z7U
Z7X
Z81
Z83
Z88
Z8R
Z8W
Z92
ZMTXR
~A9
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
ICD
IVC
PHGZM
PHGZT
TGMPQ
AEIIB
PMFND
7SC
7XB
8AL
8FD
8FK
ABRTQ
JQ2
L.-
L6V
L7M
L~C
L~D
PKEHL
PQEST
PQGLB
PQUKI
PRINS
Q9U
4A8
PSX
ID FETCH-LOGICAL-c392t-20552d7b751cd1aaf6d1bfeb2f521f845b80b0cbe90955dde48ab75dc30fb1653
IEDL.DBID U2A
ISSN 1000-9000
IngestDate Thu May 29 04:00:16 EDT 2025
Fri Jul 25 10:46:35 EDT 2025
Tue Jun 10 20:38:16 EDT 2025
Thu Apr 24 22:58:41 EDT 2025
Tue Jul 01 01:48:57 EDT 2025
Fri Feb 21 02:48:10 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords similarity and dissimilarity
disambiguation
partial label learning
weak supervision
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c392t-20552d7b751cd1aaf6d1bfeb2f521f845b80b0cbe90955dde48ab75dc30fb1653
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2918615323
PQPubID 326258
PageCount 16
ParticipantIDs wanfang_journals_jsjkxjsxb_e202103010
proquest_journals_2918615323
gale_infotracacademiconefile_A717078271
crossref_primary_10_1007_s11390_021_0992_x
crossref_citationtrail_10_1007_s11390_021_0992_x
springer_journals_10_1007_s11390_021_0992_x
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-06-01
PublicationDateYYYYMMDD 2021-06-01
PublicationDate_xml – month: 06
  year: 2021
  text: 2021-06-01
  day: 01
PublicationDecade 2020
PublicationPlace Singapore
PublicationPlace_xml – name: Singapore
– name: Beijing
PublicationTitle Journal of computer science and technology
PublicationTitleAbbrev J. Comput. Sci. Technol
PublicationTitle_FL Journal of Computer Science & Technology
PublicationYear 2021
Publisher Springer Singapore
Springer
Springer Nature B.V
Key Laboratory of Data Engineering and Knowledge Engineering (Renmin University of China),Ministry of Education Beijing 100087,China%School of Information,Renmin University of China,Beijing 100087,China
Publisher_xml – name: Springer Singapore
– name: Springer
– name: Springer Nature B.V
– name: Key Laboratory of Data Engineering and Knowledge Engineering (Renmin University of China),Ministry of Education Beijing 100087,China%School of Information,Renmin University of China,Beijing 100087,China
References Zhang, Li, Liu (CR5) 2018; 12
Chen, Patel, Chellappa, Phillips (CR2) 2014; 9
CR19
CR17
CR16
CR15
CR14
Dong, Yu, Cao, Shi, Ma (CR4) 2020; 14
CR13
CR12
Gong, Liu, Tang, Yang, Yang, Tao (CR29) 2018; 48
CR32
CR31
CR30
Xu, Yang, Zhou, Zheng, Liu, He (CR6) 2020; 11
Sriperumbudur, Torres, Lanckriet (CR28) 2011; 85
Hüllermeier, Beringer (CR11) 2006; 10
CR3
Zhang, Yu, Tang (CR10) 2017; 29
CR8
CR7
CR9
CR26
CR24
CR23
CR22
CR21
CR20
Yuille, Rangarajan (CR27) 2003; 15
Yu, Zhang (CR18) 2017; 106
Sun, Ge, Kang (CR25) 2019; 13
Cour, Sapp, Taskar (CR1) 2011; 12
992_CR3
XB Dong (992_CR4) 2020; 14
BK Sriperumbudur (992_CR28) 2011; 85
ML Zhang (992_CR10) 2017; 29
992_CR8
992_CR31
992_CR9
992_CR32
992_CR30
992_CR13
992_CR14
992_CR7
992_CR12
T Cour (992_CR1) 2011; 12
992_CR26
AL Yuille (992_CR27) 2003; 15
C Gong (992_CR29) 2018; 48
992_CR20
ML Zhang (992_CR5) 2018; 12
992_CR21
L Sun (992_CR25) 2019; 13
992_CR24
992_CR22
992_CR23
992_CR17
992_CR15
992_CR16
YC Chen (992_CR2) 2014; 9
992_CR19
F Yu (992_CR18) 2017; 106
S Xu (992_CR6) 2020; 11
E Hüllermeier (992_CR11) 2006; 10
References_xml – ident: CR22
– volume: 29
  start-page: 2155
  issue: 10
  year: 2017
  end-page: 2167
  ident: CR10
  article-title: Disambiguation free partial label learning
  publication-title: IEEE Transactions on Knowledge and Data Engineering
  doi: 10.1109/TKDE.2017.2721942
– volume: 14
  start-page: 241
  issue: 2
  year: 2020
  end-page: 258
  ident: CR4
  article-title: A survey on ensemble learning
  publication-title: Frontiers of Computer
  doi: 10.1007/s11704-019-8208-z
– volume: 85
  start-page: 3
  issue: 1/2
  year: 2011
  end-page: 39
  ident: CR28
  article-title: A majorization-minimization approach to the sparse generalized eigenvalue problem
  publication-title: Machine Learning
  doi: 10.1007/s10994-010-5226-3
– ident: CR14
– ident: CR16
– ident: CR12
– volume: 106
  start-page: 573
  issue: 4
  year: 2017
  end-page: 593
  ident: CR18
  article-title: Maximum margin partial label learning
  publication-title: Machine Learning
  doi: 10.1007/s10994-016-5606-4
– ident: CR30
– volume: 11
  start-page: 2453
  year: 2020
  end-page: 2460
  ident: CR6
  article-title: Partial label metric learning by collapsing classes
  publication-title: International Journal of Machine Learning and Cybernetics
  doi: 10.1007/s13042-020-01129-z
– volume: 15
  start-page: 915
  issue: 4
  year: 2003
  end-page: 936
  ident: CR27
  article-title: The concave-convex procedure
  publication-title: Neural Computation
  doi: 10.1162/08997660360581958
– volume: 13
  start-page: 1243
  issue: 6
  year: 2019
  end-page: 1254
  ident: CR25
  article-title: Non-negative matrix factorization based modeling and training algorithm for multi-label learning
  publication-title: Frontiers of Computer Science
  doi: 10.1007/s11704-018-7452-y
– ident: CR8
– volume: 12
  start-page: 1501
  year: 2011
  end-page: 1536
  ident: CR1
  article-title: Learning from partial labels
  publication-title: Journal of Machine Learning Research
– ident: CR23
– ident: CR21
– ident: CR19
– ident: CR3
– ident: CR15
– ident: CR17
– ident: CR31
– ident: CR13
– ident: CR9
– volume: 12
  start-page: 191
  issue: 2
  year: 2018
  end-page: 202
  ident: CR5
  article-title: Binary relevance for multilabel learning: An overview
  publication-title: Frontiers of Computer Science
  doi: 10.1007/s11704-017-7031-7
– volume: 48
  start-page: 967
  issue: 3
  year: 2018
  end-page: 978
  ident: CR29
  article-title: A regularization approach for instance-based superset label learning
  publication-title: IEEE Transactions on Cybernetics
  doi: 10.1109/TCYB.2017.2669639
– ident: CR32
– volume: 10
  start-page: 419
  issue: 5
  year: 2006
  end-page: 439
  ident: CR11
  article-title: Learning from ambiguously labeled examples
  publication-title: Intelligent Data Analysis
  doi: 10.3233/IDA-2006-10503
– ident: CR7
– volume: 9
  start-page: 2076
  issue: 12
  year: 2014
  end-page: 2088
  ident: CR2
  article-title: Ambiguously labeled learning using dictionaries
  publication-title: IEEE Transactions on Information Forensics and Security
  doi: 10.1109/TIFS.2014.2359642
– ident: CR26
– ident: CR24
– ident: CR20
– ident: 992_CR9
– ident: 992_CR7
– volume: 13
  start-page: 1243
  issue: 6
  year: 2019
  ident: 992_CR25
  publication-title: Frontiers of Computer Science
  doi: 10.1007/s11704-018-7452-y
– volume: 14
  start-page: 241
  issue: 2
  year: 2020
  ident: 992_CR4
  publication-title: Frontiers of Computer
  doi: 10.1007/s11704-019-8208-z
– ident: 992_CR12
– volume: 85
  start-page: 3
  issue: 1/2
  year: 2011
  ident: 992_CR28
  publication-title: Machine Learning
  doi: 10.1007/s10994-010-5226-3
– volume: 12
  start-page: 1501
  year: 2011
  ident: 992_CR1
  publication-title: Journal of Machine Learning Research
– ident: 992_CR3
  doi: 10.1145/2939672.2939788
– ident: 992_CR32
  doi: 10.1145/2339530.2339616
– ident: 992_CR16
  doi: 10.1145/3292500.3330840
– ident: 992_CR21
  doi: 10.1609/aaai.v32i1.11644
– ident: 992_CR17
  doi: 10.1609/aaai.v31i1.10775
– ident: 992_CR26
  doi: 10.7551/mitpress/4175.001.0001
– volume: 48
  start-page: 967
  issue: 3
  year: 2018
  ident: 992_CR29
  publication-title: IEEE Transactions on Cybernetics
  doi: 10.1109/TCYB.2017.2669639
– ident: 992_CR31
  doi: 10.1007/978-3-642-15549-9_46
– ident: 992_CR8
  doi: 10.1109/CVPR.2013.97
– volume: 29
  start-page: 2155
  issue: 10
  year: 2017
  ident: 992_CR10
  publication-title: IEEE Transactions on Knowledge and Data Engineering
  doi: 10.1109/TKDE.2017.2721942
– volume: 10
  start-page: 419
  issue: 5
  year: 2006
  ident: 992_CR11
  publication-title: Intelligent Data Analysis
  doi: 10.3233/IDA-2006-10503
– ident: 992_CR24
  doi: 10.1609/aaai.v33i01.33015016
– ident: 992_CR19
  doi: 10.1609/aaai.v33i01.33015557
– ident: 992_CR30
– ident: 992_CR22
  doi: 10.1109/ICDM.2018.00192
– ident: 992_CR20
  doi: 10.24963/ijcai.2019/318
– ident: 992_CR15
  doi: 10.24963/ijcai.2018/291
– volume: 15
  start-page: 915
  issue: 4
  year: 2003
  ident: 992_CR27
  publication-title: Neural Computation
  doi: 10.1162/08997660360581958
– ident: 992_CR13
– ident: 992_CR14
  doi: 10.1145/1401890.1401958
– volume: 11
  start-page: 2453
  year: 2020
  ident: 992_CR6
  publication-title: International Journal of Machine Learning and Cybernetics
  doi: 10.1007/s13042-020-01129-z
– volume: 106
  start-page: 573
  issue: 4
  year: 2017
  ident: 992_CR18
  publication-title: Machine Learning
  doi: 10.1007/s10994-016-5606-4
– volume: 9
  start-page: 2076
  issue: 12
  year: 2014
  ident: 992_CR2
  publication-title: IEEE Transactions on Information Forensics and Security
  doi: 10.1109/TIFS.2014.2359642
– ident: 992_CR23
  doi: 10.1609/aaai.v33i01.33013518
– volume: 12
  start-page: 191
  issue: 2
  year: 2018
  ident: 992_CR5
  publication-title: Frontiers of Computer Science
  doi: 10.1007/s11704-017-7031-7
SSID ssj0037044
Score 2.356807
Snippet Partial label learning is a weakly supervised learning framework in which each instance is associated with multiple candidate labels, among which only one is...
Partial label learning is a weakly supervised learning framework in which each instance is associated with multiple candidate labels,among which only one is...
SourceID wanfang
proquest
gale
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 590
SubjectTerms Artificial Intelligence
Computer Science
Constraint modelling
Data mining
Data Structures and Information Theory
Information Systems Applications (incl.Internet)
Labeling
Labels
Regular Paper
Similarity
Software Engineering
Supervised learning
Theory of Computation
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfR3LSsQwMPi4ePEtri96UAQlmPSZnmR9IaIiouAt5FXZVbtqV93Pd6abuuphLz000ybMTOaZzBCybVIjUtCzVOVFTmMjGNWZ5bRQYa4tONl5Xafg6jo9v48vHpIHH3Cr_LHKRibWgtr2DMbID8KcCzROwujw9Y1i1yjMrvoWGpNkGkSwAOdr-uj0-ua2kcVRxup2rhjEptges8lr1pfnwPhhFI8oMDyCOfijmf7L51-J0vp6T1mo8vGXJjqbJ7PehAzaQ5ovkAlXLpK5pj1D4HfrEmnfIFsA5KXSDp4-CBJ8dlRw3MNUdR0GpPUwbX-pdxecdCr1ojuPwwLgy-T-7PTu-Jz6jgnUgJ3TB5ZPktBmOku4sVypIrVcF-A8F6ClCxEnWjDNjHY5Vp4DyRYLBcDWRKzQPE2iFTJV9kq3SgJ4lwrHdKwMj5PM5jno8sSlzkbcOiVahDXYksaXE8euFs9yVAgZESwBwRIRLActsvfzyeuwlsY44F0kgcR9Bv81yl8XgNVhxSrZBj8UzZuMt8hGQyXpN2AlR-zSIvsN5UbDY6bd8cQdAXer7tOgWw20dCG6yCAT2dr4SdfJTFhzFoZrNshU__3DbYL10tdbnkW_AfHL6qY
  priority: 102
  providerName: ProQuest
Title Partial Label Learning via Conditional-Label-Aware Disambiguation
URI https://link.springer.com/article/10.1007/s11390-021-0992-x
https://www.proquest.com/docview/2918615323
https://d.wanfangdata.com.cn/periodical/jsjkxjsxb-e202103010
Volume 36
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlR1db9Mw8ATbCy98IwqjygMICWTJTuLEeUxHu4mPakJUGk-WvzK1gwwtBfrzuUsdOhCaxEssJRcn8p3v03cH8NwVThUoZ5mpmorlTnFmSy9YY9LKejSyq75OwYd5cbzI357K05jH3Q2n3YeQZM-pd8luqKxwRkcKOB2ZRMVxX5LpjkS8SOuB_WYl7zu4kt-aUUfMIZT5ryn-EEZ_s-QrsdE-o6dtTHt2RfjM7sLtqDUm9RbN9-BGaO_DnaEjQxI36AOoT4gSEPK9sQGv0e-R_Fia5PCCotO954_1j1n901yG5M2yM1_t8mxb8_shLGbTT4fHLDZJYA5VmzVSuZSpL20phfPCmKbwwjZoLzcomBuVS6u45c6GiorNITPLlUFg7zLeWFHI7BHstRdteAwJ3itU4DY3TuSy9FWF4luGIvhM-GDUCPiwWtrFCuLUyOKL3tU-pgXWuMCaFlhvRvDq9yvftuUzrgN-SSjQtLVwXmdihgD-HRWp0jWanqTRlGIEBwOWdNxznU4roUh9TbMRvB4wt3t8zWdfROTugFfd6nyz6jZWh5SsYmSD_Ml_zfoUbqU9oZHD5gD21pffwzPUX9Z2DDfV7GgM-_VsMpnTePT53RTHyXR-8nHcU_Mv6ELr3Q
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3JbhMx1KrKAS7siECBOVAhgSzsWe0DqqKWkNK04tBKvRlvUyWFSekEmv5Uv7HvOWNSOOTWyxzGbxa9fbHfI-StLa0owc5SLWtJcysYNZXjtNapNA6CbBn6FOwflMOj_OtxcbxGruJZGNxWGXViUNRuajFH_jGVXKBzkmZbZ78oTo3C6mocobFgiz1_eQEhW_tpdwfou5mmg8-H20PaTRWgFnyBGbBFUaSuMlXBreNa16XjpoYAswZLVou8MIIZZo2X2J0NpD8XGoCdzVhteIlTIkDl38mzTKJEicGXqPmzioXhsZgypziMM1ZRw1E9cLUYxQ0RDDd8zv-xg_9bgxtl2XCYqKl1c3LD7g0ekvudw5r0Fxz2iKz55jF5EIdBJJ1ueEL635AJAXKkjYdrl3JJ_ox1sj3FwnhIOtKwTPsX-twnO-NW_zTjk0W78afk6FYw-YysN9PGPycJ3CuFZybXludF5aQEz6HwpXcZd16LHmERW8p2zctxhsYPtWy7jAhWgGCFCFbzHnn_95GzReeOVcDvkAQKpRrea3V3OAH-DvtjqT5EvehMVbxHNiKVVCfurVoyZ498iJRbLq_47GZH3CXwpJ2czift3CifYkAOGpi9WP3RN-Tu8HB_pEa7B3svyb00cBkmijbI-uz8t38FftPMvA7MmpDvty0d1xhFJ1c
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlR3LbtNAcIVaCXGh5SXSpuADCAm06q7fPlopUYBS5UCk3lb7rJKCE8Vum8_vjL0mAaFKXHywx2trZnaeOzOEvNOpzlPQs1QWrqCxzhlVmeHUybBQBpzsou1T8P0inczir5fJpZ9zWven3fuUZFfTgF2aquZ0ZdzptvANDBdG8XgBw-OTYETugzTmyNazsOxFcZSxdporxrApTsfs05r_WuIPxfS3eN7Jk7bVPZWT1dWOIhofkqfeggzKjuTPyCNbPScH_XSGwG_WF6ScIlcA5LlUFq4-BhLczmUwWmKmuo0C0vYxLe_k2gZn81r-UvOrrv_3SzIbf_4xmlA_MIFqMHMa4PgkCU2msoRrw6V0qeHKge_sQEm7PE5UzhTTyhbYeA4EW5xLADY6Yk7xNIlekb1qWdnXJIB7aW6ZiqXmcZKZogBVntjUmogbK_MBYT22hPbdxHGoxU-x7YOMCBaAYIEIFpsB-fj7lVXXSuMh4A9IAoHbDNbV0lcLwN9hwypRghuK1k3GB2TYU0n4_VeLsOA5mrJhNCCfesptHz_w2feeuFvgRb243izqjRI2RA8ZRCI7-q9V35LH07OxOP9y8e2YPAlbnsM4zpDsNesbewJmTaPetKx7DxxO7Xw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Partial+Label+Learning+via+Conditional-Label-Aware+Disambiguation&rft.jtitle=Journal+of+computer+science+and+technology&rft.au=Ni%2C+Peng&rft.au=Zhao%2C+Su-Yun&rft.au=Dai%2C+Zhi-Gang&rft.au=Chen%2C+Hong&rft.date=2021-06-01&rft.pub=Springer+Singapore&rft.issn=1000-9000&rft.eissn=1860-4749&rft.volume=36&rft.issue=3&rft.spage=590&rft.epage=605&rft_id=info:doi/10.1007%2Fs11390-021-0992-x&rft.externalDocID=10_1007_s11390_021_0992_x
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fjsjkxjsxb-e%2Fjsjkxjsxb-e.jpg