DP-Share: Privacy-Preserving Software Defect Prediction Model Sharing Through Differential Privacy
In current software defect prediction (SDP) research, most previous empirical studies only use datasets provided by PROMISE repository and this may cause a threat to the external validity of previous empirical results. Instead of SDP dataset sharing, SDP model sharing is a potential solution to alle...
Saved in:
Cover
Abstract | In current software defect prediction (SDP) research, most previous empirical studies only use datasets provided by PROMISE repository and this may cause a threat to the external validity of previous empirical results. Instead of SDP dataset sharing, SDP model sharing is a potential solution to alleviate this problem and can encourage researchers in the research community and practitioners in the industrial community to share more models. However, directly sharing models may result in privacy disclosure, such as model inversion attack. To the best of our knowledge, we are the first to apply differential privacy (DP) to privacy-preserving SDP model sharing and then propose a novel method DP-Share, since DP mechanisms can prevent this attack when the privacy budget is carefully selected. In particular, DP-Share first performs data preprocessing for the dataset, such as over-sampling for minority instances (i.e., defective modules) and conducting discretization for continuous features to optimize privacy budget allocation. Then, it uses a novel sampling strategy to create a set of training sets. Finally it constructs decision trees based on these training sets and these decision trees can form a random forest (i.e., model). The last phase of DP-Share uses Laplace and exponential mechanisms to satisfy the requirements of DP. In our empirical studies, we choose nine experimental subjects from real software projects. Then, we use AUC (area under ROC curve) as the performance measure and holdout as our model validation technique. After privacy and utility analysis, we find that DP-Share can achieve better performance than a baseline method DF-Enhance in most cases when using the same privacy budget. Moreover, we also provide guidelines to effectively use our proposed method. Our work attempts to fill the research gap in terms of differential privacy for SDP, which can encourage researchers and practitioners to share more SDP models and then effectively advance the state of the art of SDP. |
---|---|
AbstractList | In current software defect prediction (SDP) research, most previous empirical studies only use datasets provided by PROMISE repository and this may cause a threat to the external validity of previous empirical results. Instead of SDP dataset sharing, SDP model sharing is a potential solution to alleviate this problem and can encourage researchers in the research community and practitioners in the industrial community to share more models. However, directly sharing models may result in privacy disclosure, such as model inversion attack. To the best of our knowledge, we are the first to apply differential privacy (DP) to privacy-preserving SDP model sharing and then propose a novel method DP-Share, since DP mechanisms can prevent this attack when the privacy budget is carefully selected. In particular, DP-Share first performs data preprocessing for the dataset, such as over-sampling for minority instances (i.e., defective modules) and conducting discretization for continuous features to optimize privacy budget allocation. Then, it uses a novel sampling strategy to create a set of training sets. Finally it constructs decision trees based on these training sets and these decision trees can form a random forest (i.e., model). The last phase of DP-Share uses Laplace and exponential mechanisms to satisfy the requirements of DP. In our empirical studies, we choose nine experimental subjects from real software projects. Then, we use AUC (area under ROC curve) as the performance measure and holdout as our model validation technique. After privacy and utility analysis, we find that DP-Share can achieve better performance than a baseline method DF-Enhance in most cases when using the same privacy budget. Moreover, we also provide guidelines to effectively use our proposed method. Our work attempts to fill the research gap in terms of differential privacy for SDP, which can encourage researchers and practitioners to share more SDP models and then effectively advance the state of the art of SDP. In current software defect prediction (SDP) research, most previous empirical studies only use datasets provided by PROMISE repository and this may cause a threat to the external validity of previous empirical results. Instead of SDP dataset sharing, SDP model sharing is a potential solution to alleviate this problem and can encourage researchers in the research community and practitioners in the industrial community to share more models. However, directly sharing models may result in privacy disclosure, such as model inversion attack. To the best of our knowledge, we are the first to apply differential privacy (DP) to privacy-preserving SDP model sharing and then propose a novel method DP-Share, since DP mechanisms can prevent this attack when the privacy budget is carefully selected. In particular, DP-Share first performs data preprocessing for the dataset, such as over-sampling for minority instances (i.e., defective modules) and conducting discretization for continuous features to optimize privacy budget allocation. Then, it uses a novel sampling strategy to create a set of training sets. Finally it constructs decision trees based on these training sets and these decision trees can form a random forest (i.e., model). The last phase of DP-Share uses Laplace and exponential mechanisms to satisfy the requirements of DP. In our empirical studies, we choose nine experimental subjects from real software projects. Then, we use AUC (area under ROC curve) as the performance measure and holdout as our model validation technique. After privacy and utility analysis, we find that DP-Share can achieve better performance than a baseline method DF-Enhance in most cases when using the same privacy budget. Moreover, we also provide guidelines to effectively use our proposed method. Our work attempts to fill the research gap in terms of differential privacy for SDP, which can encourage researchers and practitioners to share more SDP models and then effectively advance the state of the art of SDP. Keywords software defect prediction, model sharing, differential privacy, cross project defect prediction, empirical study |
Audience | Academic |
Author | Zhang, Dun Gu, Qing Ju, Xiao-Lin Cui, Zhan-Qi Chen, Xiang |
AuthorAffiliation | School of Information Science and Technology, Nantong University, Nantong 226019, China;State Key Laboratory for Novel Software Technology, Nanjing University, Nanjing 210023, China;School of Computer Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore%School of Information Science and Technology, Nantong University, Nantong 226019, China%State Key Laboratory for Novel Software Technology, Nanjing University, Nanjing 210023, China;Computer School, Beijing Information Science and Technology University, Beijing 100101, China%State Key Laboratory for Novel Software Technology, Nanjing University, Nanjing 210023, China%School of Information Science and Technology, Nantong University, Nantong 226019, China;State Key Laboratory for Novel Software Technology, Nanjing University, Nanjing 210023, China |
AuthorAffiliation_xml | – name: School of Information Science and Technology, Nantong University, Nantong 226019, China;State Key Laboratory for Novel Software Technology, Nanjing University, Nanjing 210023, China;School of Computer Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore%School of Information Science and Technology, Nantong University, Nantong 226019, China%State Key Laboratory for Novel Software Technology, Nanjing University, Nanjing 210023, China;Computer School, Beijing Information Science and Technology University, Beijing 100101, China%State Key Laboratory for Novel Software Technology, Nanjing University, Nanjing 210023, China%School of Information Science and Technology, Nantong University, Nantong 226019, China;State Key Laboratory for Novel Software Technology, Nanjing University, Nanjing 210023, China |
Author_xml | – sequence: 1 givenname: Xiang surname: Chen fullname: Chen, Xiang email: xchencs@ntu.edu.cn organization: School of Information Science and Technology, Nantong University, State Key Laboratory for Novel Software Technology, Nanjing University, School of Computer Science and Engineering, Nanyang Technological University – sequence: 2 givenname: Dun surname: Zhang fullname: Zhang, Dun organization: School of Information Science and Technology, Nantong University – sequence: 3 givenname: Zhan-Qi surname: Cui fullname: Cui, Zhan-Qi organization: State Key Laboratory for Novel Software Technology, Nanjing University, Computer School, Beijing Information Science and Technology University – sequence: 4 givenname: Qing surname: Gu fullname: Gu, Qing organization: State Key Laboratory for Novel Software Technology, Nanjing University – sequence: 5 givenname: Xiao-Lin surname: Ju fullname: Ju, Xiao-Lin organization: School of Information Science and Technology, Nantong University, State Key Laboratory for Novel Software Technology, Nanjing University |
BookMark | eNp9kd1r3SAYh0PpYG3XP2B3gd3O7lVjorsrPfuClh1oey0meT3HNNUzzenHfz9DVgqDDUFFn-f143dcHPrgsSjeUzijAM2nRClXQIAqQpWQBA6KIyprIFVTqcM8BwCicve2OE5pAOANVNVR0a7W5HprIn4u19E9mO6ZrCMmjA_Ob8rrYKfHvFmu0GI3ZQR7100u-PIq9DiWszqDN9sY9pttuXLWYkQ_OTO-FHxXvLFmTHj6Zzwpbr9-ubn4Ti5_fvtxcX5JOq7YRKjEvuLC1rWhfQ89a7msWsEEo6rBnnMmDW1b1SK0rFHCcCnRCtFISS2vGn5SfFzqPhpvjd_oIeyjzyfqIQ13T0N6ajWy_EMgAOqMf1jwXQy_9pimV54pKoUEJUSmzhZqY0bUztswRdPl1uO963IG1uX184YqSRWvZ4EuQhdDShGt3kV3b-KzpqDnqPQSlc4X0XNUGrLT_OV0bjLzN-fD3Phfky1m2s05YHx9xL-l3z_UqOo |
CitedBy_id | crossref_primary_10_1109_ACCESS_2022_3151784 crossref_primary_10_3390_app121910168 crossref_primary_10_1109_ACCESS_2019_2961129 crossref_primary_10_1109_TII_2021_3083596 crossref_primary_10_1007_s11042_024_18456_w crossref_primary_10_1049_2023_6293074 crossref_primary_10_1109_TR_2024_3356515 crossref_primary_10_1109_ACCESS_2021_3078265 crossref_primary_10_1007_s13198_021_01582_1 crossref_primary_10_1049_sfw2_12006 crossref_primary_10_3233_IDA_205504 crossref_primary_10_1016_j_advengsoft_2022_103138 |
Cites_doi | 10.1109/32.295895 10.1109/TKDE.2012.35 10.1007/s10664-008-9082-8 10.1016/j.infsof.2014.11.006 10.1109/TSE.2016.2584050 10.1109/TKDE.2008.239 10.1145/1866739.1866758 10.1613/jair.953 10.1023/A:1008202821328 10.1007/s11390-017-1785-0 10.1109/TSE.2013.6 10.1016/j.infsof.2013.02.009 10.1109/TR.2014.2316951 10.1016/j.infsof.2017.07.004 10.1109/TSE.2012.43 10.1109/TR.2015.2461676 10.1109/TSE.2017.2724538 10.1016/j.infsof.2017.06.004 10.1109/TKDE.2009.191 10.1109/TR.2018.2804922 10.1109/TSE.2017.2731766 10.1109/TSE.2011.103 10.1016/j.infsof.2018.10.003 10.1007/s11390-015-1575-5 10.1109/TR.2013.2259203 10.1007/s10515-010-0069-5 10.1109/TKDE.2017.2697856 10.1109/TSE.2017.2770124 10.1198/016214501753168398 10.1126/science.aaa9375 10.1016/j.infsof.2017.08.004 10.1109/TSE.2016.2597849 10.1007/978-3-540-79228-4_1 10.1109/COMPSAC.2015.58 10.1109/ICSE.2012.6227194 10.1109/SANER.2016.56 10.1145/2810103.2813677 10.1145/2970276.2970339 10.1145/1835804.1835868 10.1109/ICSE.2015.92 10.1145/3180155.3180197 10.1145/1559845.1559850 10.1109/ICSME.2017.57 10.1109/COMPSAC.2014.66 10.1145/1065167.1065184 10.1145/1368088.1368114 10.1109/SmartWorld.2018.00266 10.1145/2884781.2884804 10.1145/3183519.3183547 10.1109/FOCS.2007.66 10.1145/2884781.2884857 10.1109/ICSE.2015.139 10.1109/ICACCI.2014.6968348 10.1145/2884781.2884839 10.1145/1868328.1868342 10.1201/9781420089653.ch10 |
ContentType | Journal Article |
Copyright | Springer Science+Business Media, LLC & Science Press, China 2019 COPYRIGHT 2019 Springer Springer Science+Business Media, LLC & Science Press, China 2019. Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
Copyright_xml | – notice: Springer Science+Business Media, LLC & Science Press, China 2019 – notice: COPYRIGHT 2019 Springer – notice: Springer Science+Business Media, LLC & Science Press, China 2019. – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
DBID | AAYXX CITATION 3V. 7SC 7WY 7WZ 7XB 87Z 8AL 8FD 8FE 8FG 8FK 8FL ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU DWQXO FRNLG F~G GNUQQ HCIFZ JQ2 K60 K6~ K7- L.- L6V L7M L~C L~D M0C M0N M7S P5Z P62 PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI PTHSS Q9U 2B. 4A8 92I 93N PSX TCJ |
DOI | 10.1007/s11390-019-1958-0 |
DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Business Premium Collection ProQuest Technology Collection ProQuest One ProQuest Central Korea Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database ABI/INFORM Professional Advanced ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ABI/INFORM Global Computing Database Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Engineering Collection ProQuest Central Basic Wanfang Data Journals - Hong Kong WANFANG Data Centre Wanfang Data Journals 万方数据期刊 - 香港版 China Online Journals (COJ) China Online Journals (COJ) |
DatabaseTitle | CrossRef ABI/INFORM Global (Corporate) ProQuest Business Collection (Alumni Edition) ProQuest One Business Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ABI/INFORM Complete ProQuest Central ABI/INFORM Professional Advanced ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace ABI/INFORM Complete (Alumni Edition) Engineering Collection Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global ProQuest Computing Engineering Database ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest Business Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Business (Alumni) ProQuest One Academic ProQuest Central (Alumni) ProQuest One Academic (New) Business Premium Collection (Alumni) |
DatabaseTitleList | ABI/INFORM Global (Corporate) |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1860-4749 |
EndPage | 1038 |
ExternalDocumentID | jsjkxjsxb_e201905006 A719819365 10_1007_s11390_019_1958_0 |
GrantInformation_xml | – fundername: This work was partially supported by the National Natural Science Foundation of China under Grant Nos. 61702041 and 61872263, the Open Project of State Key Laboratory for Novel Software Technology at Nanjing University under Grant No. KFKT2019B14, the Science and Technology Project of Beijing Municipal Education Commission under Grant No. KM201811232016, the Nantong Application Research Plan under Grant No. JC2018134, and Jiangsu Government Scholarship for Overseas Studies |
GroupedDBID | -4Z -59 -5G -BR -EM -SI -S~ -Y2 -~C .86 .VR 06D 0R~ 0VY 1N0 1SB 2.D 28- 29K 2B. 2C0 2J2 2JN 2JY 2KG 2KM 2LR 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 5GY 5QI 5VR 5VS 5XA 5XJ 67Z 6NX 7WY 8FE 8FG 8FL 8TC 8UJ 92H 92I 92R 93N 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAXDM AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFUIB AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARMRJ ASPBG AVWKF AXYYD AZFZN AZQEC B-. BA0 BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS CAG CAJEI CCEZO CCPQU CHBEP COF CS3 CSCUP CUBFJ CW9 D-I DDRTE DNIVK DPUIP DU5 DWQXO EBLON EBS EIOEI EJD ESBYG F5P FA0 FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GXS H13 HCIFZ HF~ HG6 HMJXF HQYDN HRMNR HVGLF HZ~ IAO IHE IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C JBSCW JCJTX JZLTJ K60 K6V K6~ K7- KDC KOV LAK LLZTM M0C M0N M4Y M7S MA- N2Q NB0 NDZJH NF0 NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P P62 P9O PF0 PQBIZ PQBZA PQQKQ PROAC PT4 PT5 PTHSS Q-- Q2X QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCL SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TCJ TGT TSG TSK TSV TUC U1G U2A U5S UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z7R Z7U Z7X Z81 Z83 Z88 Z8R Z8W Z92 ZMTXR ~A9 ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION ICD IVC PHGZM PHGZT TGMPQ AEIIB PMFND 7SC 7XB 8AL 8FD 8FK ABRTQ JQ2 L.- L6V L7M L~C L~D PKEHL PQEST PQGLB PQUKI Q9U 4A8 PSX |
ID | FETCH-LOGICAL-c392t-18ed435f66a1dd0d2b384b5252197ed3328a1bb9be0b2795a388ef557881f3473 |
IEDL.DBID | 8FG |
ISSN | 1000-9000 |
IngestDate | Thu May 29 04:00:16 EDT 2025 Fri Jul 25 12:19:12 EDT 2025 Tue Jun 10 20:52:12 EDT 2025 Tue Jul 01 01:48:57 EDT 2025 Thu Apr 24 23:04:57 EDT 2025 Fri Feb 21 02:40:05 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | model sharing empirical study software defect prediction differential privacy cross project defect prediction |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c392t-18ed435f66a1dd0d2b384b5252197ed3328a1bb9be0b2795a388ef557881f3473 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2918580955 |
PQPubID | 326258 |
PageCount | 19 |
ParticipantIDs | wanfang_journals_jsjkxjsxb_e201905006 proquest_journals_2918580955 gale_infotracacademiconefile_A719819365 crossref_primary_10_1007_s11390_019_1958_0 crossref_citationtrail_10_1007_s11390_019_1958_0 springer_journals_10_1007_s11390_019_1958_0 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-09-01 |
PublicationDateYYYYMMDD | 2019-09-01 |
PublicationDate_xml | – month: 09 year: 2019 text: 2019-09-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York – name: Beijing |
PublicationTitle | Journal of computer science and technology |
PublicationTitleAbbrev | J. Comput. Sci. Technol |
PublicationTitle_FL | Journal of Computer Science & Technology |
PublicationYear | 2019 |
Publisher | Springer US Springer Springer Nature B.V State Key Laboratory for Novel Software Technology, Nanjing University, Nanjing 210023, China School of Information Science and Technology, Nantong University, Nantong 226019, China School of Computer Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore%School of Information Science and Technology, Nantong University, Nantong 226019, China%State Key Laboratory for Novel Software Technology, Nanjing University, Nanjing 210023, China Computer School, Beijing Information Science and Technology University, Beijing 100101, China%State Key Laboratory for Novel Software Technology, Nanjing University, Nanjing 210023, China%School of Information Science and Technology, Nantong University, Nantong 226019, China |
Publisher_xml | – name: Springer US – name: Springer – name: Springer Nature B.V – name: School of Information Science and Technology, Nantong University, Nantong 226019, China – name: State Key Laboratory for Novel Software Technology, Nanjing University, Nanjing 210023, China – name: School of Computer Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore%School of Information Science and Technology, Nantong University, Nantong 226019, China%State Key Laboratory for Novel Software Technology, Nanjing University, Nanjing 210023, China – name: Computer School, Beijing Information Science and Technology University, Beijing 100101, China%State Key Laboratory for Novel Software Technology, Nanjing University, Nanjing 210023, China%School of Information Science and Technology, Nantong University, Nantong 226019, China |
References | Dwork, Feldman, Hardt, Pitassi, Reingold, Roth (CR45) 2015; 349 CR39 Hosseini, Turhan, Gunarathna (CR4) 2019; 45 Wang, Yao (CR28) 2013; 62 CR38 CR36 CR35 He, Garcia (CR30) 2009; 21 CR34 CR33 Dwork (CR5) 2006 Hansen, Yu (CR32) 2001; 96 García, Luengo, Sáez, López, Herrera (CR31) 2013; 25 Storn, Price (CR57) 1997; 11 Peters, Menzies, Gong, Zhang (CR17) 2013; 39 Wu, Jing, Sun, Sun, Huang, Cui, Sun (CR49) 2018; 67 CR2 He, Li, Liu, Chen, Ma (CR37) 2015; 59 CR3 Tantithamthavorn, McIntosh, Hassan, Matsumoto (CR44) 2017; 43 Jing, Wu, Dong, Xu (CR50) 2017; 43 CR7 Pan, Yang (CR48) 2010; 22 CR9 Shivaji, Whitehead, Akella, Kim (CR46) 2013; 39 Liu, Miao, Zhang (CR27) 2014; 63 Chawla, Bowyer, Hall, Kegelmeyer (CR8) 2002; 16 CR43 Bennin, Keung, Phannachitta, Monden, Mensah (CR26) 2018; 44 Öztürk (CR29) 2017; 92 CR41 Weyuker, Ostrand, Bell (CR16) 2008; 13 Liu, Liu, Gu, Chen, Chen, Chen (CR42) 2016; 65 CR19 CR18 CR15 CR58 CR12 CR11 CR55 Zhu, Li, Zhou, Yu (CR6) 2017; 29 CR10 Herbold, Trautsch, Grabowski (CR47) 2018; 44 CR52 Chen, Zhao, Wang, Yuan (CR13) 2018; 93 Chen, Zhang, Zhao, Cui, Ni (CR59) 2019; 106 Dwork (CR22) 2011; 54 Hall, Beecham, Bowes, Gray, Counsell (CR1) 2012; 38 Chidamber, Kemerer (CR40) 1994; 20 Ryu, Jang, Baik (CR53) 2015; 30 Menzies, Milton, Turhan, Cukic, Jiang, Bener (CR56) 2010; 17 Hosseini, Turhan, Mantyla (CR54) 2018; 95 CR25 CR24 CR23 Radjenovic, Hericko, Torkar, Zivkovic (CR14) 2013; 55 CR21 CR20 Ni, Liu, Chen, Gu, Chen, Huang (CR51) 2017; 32 C Dwork (1958_CR22) 2011; 54 C Tantithamthavorn (1958_CR44) 2017; 43 S Shivaji (1958_CR46) 2013; 39 X Chen (1958_CR13) 2018; 93 1958_CR52 1958_CR10 1958_CR11 1958_CR55 1958_CR12 1958_CR58 1958_CR15 1958_CR18 1958_CR19 EJ Weyuker (1958_CR16) 2008; 13 1958_CR2 H He (1958_CR30) 2009; 21 SR Chidamber (1958_CR40) 1994; 20 T Zhu (1958_CR6) 2017; 29 R Storn (1958_CR57) 1997; 11 M Liu (1958_CR27) 2014; 63 P He (1958_CR37) 2015; 59 1958_CR20 XY Jing (1958_CR50) 2017; 43 1958_CR21 SJ Pan (1958_CR48) 2010; 22 1958_CR23 1958_CR24 1958_CR25 S García (1958_CR31) 2013; 25 1958_CR9 F Peters (1958_CR17) 2013; 39 S Hosseini (1958_CR4) 2019; 45 1958_CR7 T Hall (1958_CR1) 2012; 38 D Radjenovic (1958_CR14) 2013; 55 1958_CR3 T Menzies (1958_CR56) 2010; 17 NV Chawla (1958_CR8) 2002; 16 S Wang (1958_CR28) 2013; 62 KE Bennin (1958_CR26) 2018; 44 D Ryu (1958_CR53) 2015; 30 S Herbold (1958_CR47) 2018; 44 X Chen (1958_CR59) 2019; 106 1958_CR33 1958_CR34 1958_CR35 1958_CR36 1958_CR38 1958_CR39 Cynthia Dwork (1958_CR5) 2006 C Dwork (1958_CR45) 2015; 349 MM Öztürk (1958_CR29) 2017; 92 F Wu (1958_CR49) 2018; 67 C Ni (1958_CR51) 2017; 32 MH Hansen (1958_CR32) 2001; 96 1958_CR41 1958_CR43 W Liu (1958_CR42) 2016; 65 S Hosseini (1958_CR54) 2018; 95 |
References_xml | – volume: 20 start-page: 476 issue: 6 year: 1994 end-page: 493 ident: CR40 article-title: A metrics suite for object oriented design publication-title: IEEE Transactions on Software Engineering doi: 10.1109/32.295895 – volume: 25 start-page: 734 issue: 4 year: 2013 end-page: 750 ident: CR31 article-title: A survey of discretization techniques: Taxonomy and empirical analysis in supervised learning publication-title: IEEE Transactions on Knowledge and Data Engineering doi: 10.1109/TKDE.2012.35 – volume: 13 start-page: 539 issue: 5 year: 2008 end-page: 559 ident: CR16 article-title: Do too many cooks spoil the broth? Using the number of developers to enhance defect prediction models publication-title: Empirical Software Engineering doi: 10.1007/s10664-008-9082-8 – ident: CR39 – volume: 59 start-page: 170 year: 2015 end-page: 190 ident: CR37 article-title: An empirical study on software defect prediction with a simplified metric set publication-title: Information and Software Technology doi: 10.1016/j.infsof.2014.11.006 – ident: CR12 – volume: 43 start-page: 1 issue: 1 year: 2017 end-page: 18 ident: CR44 article-title: An empirical comparison of model validation techniques for defect prediction models publication-title: IEEE Transactions on Software Engineering doi: 10.1109/TSE.2016.2584050 – volume: 21 start-page: 1263 issue: 9 year: 2009 end-page: 1284 ident: CR30 article-title: Learning from imbalanced data publication-title: IEEE Transactions on Knowledge and Data Engineering doi: 10.1109/TKDE.2008.239 – ident: CR35 – volume: 54 start-page: 86 issue: 1 year: 2011 end-page: 95 ident: CR22 article-title: A firm foundation for private data analysis publication-title: Communications of the ACM doi: 10.1145/1866739.1866758 – volume: 16 start-page: 321 issue: 1 year: 2002 end-page: 357 ident: CR8 article-title: SMOTE: Synthetic minority over-sampling technique publication-title: Journal of Artificial Intelligence Research doi: 10.1613/jair.953 – ident: CR58 – volume: 11 start-page: 341 issue: 4 year: 1997 end-page: 359 ident: CR57 article-title: Differential evolution — A simple and efficient heuristic for global optimization over continuous spaces publication-title: Journal of Global Optimization doi: 10.1023/A:1008202821328 – ident: CR25 – volume: 32 start-page: 1090 issue: 6 year: 2017 end-page: 1107 ident: CR51 article-title: A cluster based feature selection method for cross-project software defect prediction publication-title: Journal of Computer Science and Technology doi: 10.1007/s11390-017-1785-0 – ident: CR21 – ident: CR19 – volume: 39 start-page: 1054 issue: 8 year: 2013 end-page: 1068 ident: CR17 article-title: Balancing privacy and utility in cross-company defect prediction publication-title: IEEE Transactions on Software Engineering doi: 10.1109/TSE.2013.6 – volume: 55 start-page: 1397 issue: 8 year: 2013 end-page: 1418 ident: CR14 article-title: Software fault prediction metrics: A systematic literature review publication-title: Information and Software Technology doi: 10.1016/j.infsof.2013.02.009 – volume: 63 start-page: 676 issue: 2 year: 2014 end-page: 686 ident: CR27 article-title: Two-stage cost-sensitive learning for software defect prediction publication-title: IEEE Transactions on Reliability doi: 10.1109/TR.2014.2316951 – ident: CR15 – ident: CR11 – volume: 92 start-page: 17 year: 2017 end-page: 29 ident: CR29 article-title: Which type of metrics are useful to deal with class imbalance in software defect prediction? publication-title: Information and Software Technology doi: 10.1016/j.infsof.2017.07.004 – ident: CR9 – ident: CR36 – volume: 39 start-page: 552 issue: 4 year: 2013 end-page: 569 ident: CR46 article-title: Reducing features to improve code change-based bug prediction publication-title: IEEE Transactions on Software Engineering doi: 10.1109/TSE.2012.43 – volume: 65 start-page: 38 issue: 1 year: 2016 end-page: 53 ident: CR42 article-title: Empirical studies of a two-stage data preprocessing approach for software fault prediction publication-title: IEEE Transactions on Reliability doi: 10.1109/TR.2015.2461676 – ident: CR18 – ident: CR43 – volume: 44 start-page: 811 issue: 9 year: 2018 end-page: 833 ident: CR47 article-title: A comparative study to benchmark cross-project defect prediction approaches publication-title: IEEE Transactions on Software Engineering doi: 10.1109/TSE.2017.2724538 – volume: 95 start-page: 296 year: 2018 end-page: 312 ident: CR54 article-title: A benchmark study on the effectiveness of search-based data selection and feature selection for cross project defect prediction publication-title: Information and Software Technology doi: 10.1016/j.infsof.2017.06.004 – ident: CR2 – volume: 22 start-page: 1345 issue: 10 year: 2010 end-page: 1359 ident: CR48 article-title: A survey on transfer learning publication-title: IEEE Transactions on Knowledge and Data Engineering doi: 10.1109/TKDE.2009.191 – volume: 67 start-page: 581 issue: 2 year: 2018 end-page: 597 ident: CR49 article-title: Cross-project and within-project semisupervised software defect prediction: A unified approach publication-title: IEEE Transactions on Reliability doi: 10.1109/TR.2018.2804922 – ident: CR10 – ident: CR33 – volume: 44 start-page: 534 issue: 6 year: 2018 end-page: 550 ident: CR26 article-title: MAHAKIL: Diversity based oversampling approach to alleviate the class imbalance issue in software defect prediction publication-title: IEEE Transactions on Software Engineering doi: 10.1109/TSE.2017.2731766 – start-page: 1 year: 2006 end-page: 12 ident: CR5 article-title: Differential Privacy publication-title: Automata, Languages and Programming – volume: 38 start-page: 1276 issue: 6 year: 2012 end-page: 1304 ident: CR1 article-title: A systematic literature review on fault prediction performance in software engineering publication-title: IEEE Transactions on Software Engineering doi: 10.1109/TSE.2011.103 – volume: 106 start-page: 161 year: 2019 end-page: 181 ident: CR59 article-title: Software defect number prediction: Unsupervised vs supervised methods publication-title: Information and Software Technology doi: 10.1016/j.infsof.2018.10.003 – ident: CR23 – volume: 30 start-page: 969 issue: 5 year: 2015 end-page: 980 ident: CR53 article-title: A hybrid instance selection using nearest-neighbor for cross-project defect prediction publication-title: Journal of Computer Science and Technology doi: 10.1007/s11390-015-1575-5 – volume: 62 start-page: 434 issue: 2 year: 2013 end-page: 443 ident: CR28 article-title: Using class imbalance learning for software defect prediction publication-title: IEEE Transactions on Reliability doi: 10.1109/TR.2013.2259203 – volume: 17 start-page: 375 issue: 4 year: 2010 end-page: 407 ident: CR56 article-title: Defect prediction from static code features: Current results, limitations, new approaches publication-title: Automated Software Engineering doi: 10.1007/s10515-010-0069-5 – volume: 29 start-page: 1619 issue: 8 year: 2017 end-page: 1638 ident: CR6 article-title: Differentially private data publishing and analysis: A survey publication-title: IEEE Transactions on Knowledge and Data Engineering doi: 10.1109/TKDE.2017.2697856 – ident: CR3 – ident: CR38 – ident: CR52 – volume: 45 start-page: 111 issue: 2 year: 2019 end-page: 147 ident: CR4 article-title: A systematic literature review and meta-analysis on cross project defect prediction publication-title: IEEE Transactions on Software Engineering doi: 10.1109/TSE.2017.2770124 – volume: 96 start-page: 746 issue: 454 year: 2001 end-page: 774 ident: CR32 article-title: Model selection and the principle of minimum description length publication-title: Journal of the American Statistical Association doi: 10.1198/016214501753168398 – ident: CR34 – volume: 349 start-page: 636 issue: 6248 year: 2015 end-page: 638 ident: CR45 article-title: The reusable holdout: Preserving validity in adaptive data analysis publication-title: Science doi: 10.1126/science.aaa9375 – ident: CR55 – ident: CR7 – ident: CR41 – ident: CR24 – volume: 93 start-page: 1 year: 2018 end-page: 13 ident: CR13 article-title: MULTI: Multi-objective effort-aware just-in-time software defect prediction publication-title: Information and Software Technology doi: 10.1016/j.infsof.2017.08.004 – ident: CR20 – volume: 43 start-page: 321 issue: 4 year: 2017 end-page: 339 ident: CR50 article-title: An improved SDA based defect prediction framework for both within project and cross-project class-imbalance problems publication-title: IEEE Transactions on Software Engineering doi: 10.1109/TSE.2016.2597849 – ident: 1958_CR21 doi: 10.1007/978-3-540-79228-4_1 – ident: 1958_CR41 doi: 10.1109/COMPSAC.2015.58 – ident: 1958_CR15 doi: 10.1109/ICSE.2012.6227194 – volume: 54 start-page: 86 issue: 1 year: 2011 ident: 1958_CR22 publication-title: Communications of the ACM doi: 10.1145/1866739.1866758 – volume: 22 start-page: 1345 issue: 10 year: 2010 ident: 1958_CR48 publication-title: IEEE Transactions on Knowledge and Data Engineering doi: 10.1109/TKDE.2009.191 – volume: 67 start-page: 581 issue: 2 year: 2018 ident: 1958_CR49 publication-title: IEEE Transactions on Reliability doi: 10.1109/TR.2018.2804922 – ident: 1958_CR9 – ident: 1958_CR2 doi: 10.1109/SANER.2016.56 – ident: 1958_CR3 doi: 10.1145/2810103.2813677 – volume: 39 start-page: 1054 issue: 8 year: 2013 ident: 1958_CR17 publication-title: IEEE Transactions on Software Engineering doi: 10.1109/TSE.2013.6 – ident: 1958_CR52 doi: 10.1145/2970276.2970339 – volume: 106 start-page: 161 year: 2019 ident: 1958_CR59 publication-title: Information and Software Technology doi: 10.1016/j.infsof.2018.10.003 – ident: 1958_CR7 doi: 10.1145/1835804.1835868 – ident: 1958_CR18 doi: 10.1109/ICSE.2015.92 – ident: 1958_CR58 doi: 10.1145/3180155.3180197 – ident: 1958_CR24 doi: 10.1145/1559845.1559850 – ident: 1958_CR19 doi: 10.1109/ICSME.2017.57 – ident: 1958_CR43 doi: 10.1109/COMPSAC.2014.66 – ident: 1958_CR38 – start-page: 1 volume-title: Automata, Languages and Programming year: 2006 ident: 1958_CR5 – volume: 93 start-page: 1 year: 2018 ident: 1958_CR13 publication-title: Information and Software Technology doi: 10.1016/j.infsof.2017.08.004 – volume: 32 start-page: 1090 issue: 6 year: 2017 ident: 1958_CR51 publication-title: Journal of Computer Science and Technology doi: 10.1007/s11390-017-1785-0 – ident: 1958_CR20 doi: 10.1145/1065167.1065184 – volume: 349 start-page: 636 issue: 6248 year: 2015 ident: 1958_CR45 publication-title: Science doi: 10.1126/science.aaa9375 – volume: 29 start-page: 1619 issue: 8 year: 2017 ident: 1958_CR6 publication-title: IEEE Transactions on Knowledge and Data Engineering doi: 10.1109/TKDE.2017.2697856 – volume: 16 start-page: 321 issue: 1 year: 2002 ident: 1958_CR8 publication-title: Journal of Artificial Intelligence Research doi: 10.1613/jair.953 – volume: 96 start-page: 746 issue: 454 year: 2001 ident: 1958_CR32 publication-title: Journal of the American Statistical Association doi: 10.1198/016214501753168398 – volume: 44 start-page: 811 issue: 9 year: 2018 ident: 1958_CR47 publication-title: IEEE Transactions on Software Engineering doi: 10.1109/TSE.2017.2724538 – ident: 1958_CR55 doi: 10.1145/1368088.1368114 – ident: 1958_CR11 doi: 10.1109/SmartWorld.2018.00266 – volume: 55 start-page: 1397 issue: 8 year: 2013 ident: 1958_CR14 publication-title: Information and Software Technology doi: 10.1016/j.infsof.2013.02.009 – volume: 62 start-page: 434 issue: 2 year: 2013 ident: 1958_CR28 publication-title: IEEE Transactions on Reliability doi: 10.1109/TR.2013.2259203 – ident: 1958_CR34 doi: 10.1145/2884781.2884804 – volume: 20 start-page: 476 issue: 6 year: 1994 ident: 1958_CR40 publication-title: IEEE Transactions on Software Engineering doi: 10.1109/32.295895 – volume: 44 start-page: 534 issue: 6 year: 2018 ident: 1958_CR26 publication-title: IEEE Transactions on Software Engineering doi: 10.1109/TSE.2017.2731766 – ident: 1958_CR12 doi: 10.1145/3183519.3183547 – volume: 65 start-page: 38 issue: 1 year: 2016 ident: 1958_CR42 publication-title: IEEE Transactions on Reliability doi: 10.1109/TR.2015.2461676 – volume: 63 start-page: 676 issue: 2 year: 2014 ident: 1958_CR27 publication-title: IEEE Transactions on Reliability doi: 10.1109/TR.2014.2316951 – volume: 45 start-page: 111 issue: 2 year: 2019 ident: 1958_CR4 publication-title: IEEE Transactions on Software Engineering doi: 10.1109/TSE.2017.2770124 – volume: 21 start-page: 1263 issue: 9 year: 2009 ident: 1958_CR30 publication-title: IEEE Transactions on Knowledge and Data Engineering doi: 10.1109/TKDE.2008.239 – volume: 25 start-page: 734 issue: 4 year: 2013 ident: 1958_CR31 publication-title: IEEE Transactions on Knowledge and Data Engineering doi: 10.1109/TKDE.2012.35 – volume: 59 start-page: 170 year: 2015 ident: 1958_CR37 publication-title: Information and Software Technology doi: 10.1016/j.infsof.2014.11.006 – ident: 1958_CR23 doi: 10.1109/FOCS.2007.66 – volume: 38 start-page: 1276 issue: 6 year: 2012 ident: 1958_CR1 publication-title: IEEE Transactions on Software Engineering doi: 10.1109/TSE.2011.103 – volume: 39 start-page: 552 issue: 4 year: 2013 ident: 1958_CR46 publication-title: IEEE Transactions on Software Engineering doi: 10.1109/TSE.2012.43 – ident: 1958_CR35 doi: 10.1145/2884781.2884857 – volume: 95 start-page: 296 year: 2018 ident: 1958_CR54 publication-title: Information and Software Technology doi: 10.1016/j.infsof.2017.06.004 – volume: 92 start-page: 17 year: 2017 ident: 1958_CR29 publication-title: Information and Software Technology doi: 10.1016/j.infsof.2017.07.004 – volume: 17 start-page: 375 issue: 4 year: 2010 ident: 1958_CR56 publication-title: Automated Software Engineering doi: 10.1007/s10515-010-0069-5 – volume: 30 start-page: 969 issue: 5 year: 2015 ident: 1958_CR53 publication-title: Journal of Computer Science and Technology doi: 10.1007/s11390-015-1575-5 – volume: 11 start-page: 341 issue: 4 year: 1997 ident: 1958_CR57 publication-title: Journal of Global Optimization doi: 10.1023/A:1008202821328 – volume: 43 start-page: 1 issue: 1 year: 2017 ident: 1958_CR44 publication-title: IEEE Transactions on Software Engineering doi: 10.1109/TSE.2016.2584050 – ident: 1958_CR25 doi: 10.1109/ICSE.2015.139 – ident: 1958_CR10 doi: 10.1109/ICACCI.2014.6968348 – ident: 1958_CR36 doi: 10.1145/2884781.2884839 – volume: 43 start-page: 321 issue: 4 year: 2017 ident: 1958_CR50 publication-title: IEEE Transactions on Software Engineering doi: 10.1109/TSE.2016.2597849 – volume: 13 start-page: 539 issue: 5 year: 2008 ident: 1958_CR16 publication-title: Empirical Software Engineering doi: 10.1007/s10664-008-9082-8 – ident: 1958_CR39 doi: 10.1145/1868328.1868342 – ident: 1958_CR33 doi: 10.1201/9781420089653.ch10 |
SSID | ssj0037044 |
Score | 2.2411327 |
Snippet | In current software defect prediction (SDP) research, most previous empirical studies only use datasets provided by PROMISE repository and this may cause a... |
SourceID | wanfang proquest gale crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1020 |
SubjectTerms | Artificial Intelligence Budgets Computer Science Data Structures and Information Theory Datasets Decision trees Defects Empirical analysis Information Systems Applications (incl.Internet) Prediction models Privacy Regular Paper Sampling Software Software Engineering Theory of Computation |
SummonAdditionalLinks | – databaseName: SpringerLINK - Czech Republic Consortium dbid: AGYKE link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dSxwxEB_kfPGl2trSs1ryUCm0RHY3m_3w7ej5gdIi9AT7FJJNIp7HWrzT2v71nblNPCtF8DmTbDbJTH67M_MbgA_Oi0Kmjeep8JrnOndca-u5t1Y6mYpGJJQo_PVbcXiaH53Js5DHPY3R7tElObfUi2Q3BCsURFVzIkjh-J2-LNOqrnqwPDj4cbwXDbAok3kNV_pzzakmZnRm_m-Qf66jx0b5gXd0ntPTet2eP7h-9ldhFCfeRZ1c7tzMzE7z5xGn4zPfbA1eBDjKBt35eQlLrn0Fq7HUAwuavw5meMKJ29ntspPri1vd_OYUvEGGpj1n39GW_8JGNnQUHYIi5P6hLWdUa23CqCsJjrqqQGwYyrKgeZnEAV_D6f7e6MshD-UZeIOgasbTylkEW74odGptYjMjqtzIDAFBXTorRFbp1JjauMRkZS21qCrnpSQCey_yUryBXnvVurfAjJOJwC4Fwk1s8MYiLKy1ybyQOnG6D0ncJdUE7nIqoTFRC9ZlWkOFa6hoDVXSh0_3XX52xB1PCX-krVek1Dhuo0NuAs6O6LHUoExrhE54rPuwGU-HCto-VVmNqKciMr8-fI5bvGh-4rHb4VAthMfT8eXdeHpnlMsoz1-iWdx41qjvYIV6doFwm9CbXd-4LUROM_M-aMpfNrsOEg priority: 102 providerName: Springer Nature |
Title | DP-Share: Privacy-Preserving Software Defect Prediction Model Sharing Through Differential Privacy |
URI | https://link.springer.com/article/10.1007/s11390-019-1958-0 https://www.proquest.com/docview/2918580955 https://d.wanfangdata.com.cn/periodical/jsjkxjsxb-e201905006 |
Volume | 34 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LbxMxEB5Be-EC5SUCpfIBhASy8K7X--CCEpK0AhFF0EjlZNlru2qIto8EKP-emY2XFA45-eCxvdrPnhnZM_MBvPBB5iqpA09kMDwzmefGuMCDc8qrRNZSUKLw50l-NMs-nqiTeOG2jGGVnU5sFbU7r-mO_G1aoWUpqWDa-4tLTqxR9LoaKTRuw26Clob2eTk-7DSxLERL5kpX2JzIMbtXzTZ1Dl0fCsmqOJVb4eIfu_S_dr7xTNom9zTBNKc37NB4D-5GB5L114jfh1u-eQD3OnIGFs_qQ7DDKadqzP4dm16d_TT1b07hFqQamlP2FbXvL-xkQ0_xHChCDzYEEiN2tAWjoSR4vObxYcNIpIIKYdFN-Ahm49HxhyMeCRV4jW7Qiield-gehTw3iXPCpVaWmVUpmvCq8E7KtDSJtZX1wqZFpYwsSx-UopLzQWaFfAw7zXnjnwCzXgmJQ3J0ELEjWIeOXGVsGqQywpseiO536jpWGyfSi4Xe1EkmBDQioAkBLXrw-u-Qi3WpjW3CrwgjTccQ561NzCbAr6OCVrpfJBU6O7gRe7Dfwajj-VzqzW7qwZsO2k33lmVfRvQ3wvPl_Pv1fHlttU8pM1-hInu6fdFncIdE17Fq-7Czuvrhn6Nzs7IH7Q4-gN3-eDCYUHv47dMI28FoMv2CvbO0_wfwyfpD |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6V9AAX3oi0BfZAhQRaYXu9fiAhVEirlLZRBKnU23bXu1sRIrc0gbZ_it_ITOwlhUNuPe_Dlmf8zdg7830AL50XmYwrz2PhNU916rjW1nNvrXQyFpWIqFH4YJD1D9PPR_JoBX6HXhgqqwyYOAdqe1rRP_K3SYmRpSDCtA9nPzipRtHpapDQaNxiz11d4Cfb9P1uD-27mSQ726NPfd6qCvAKc4EZjwtnMUfwWaZjayObGFGkRiYYx8rcWSGSQsfGlMZFJslLqUVROC8l8a57keYC970Fqyl1tHZg9eP2YPglYL_Io7l8LP005yTHGc5R5816mGxREVjJieCFR_9Ewv_jwbWD2Xk7Ue11fXIt8u3ch7ttysq2Gh97ACuufgj3ghwEa9HhEZjekBP_s3vHhufffunqilOBB4FRfcK-It5f4CDrOaogwSl0RERuwUiPbcJoKU0cNcpBrNdKtyAETcKGj-HwRh72E-jUp7V7Csw4GQlckmFKigPeWEwdS20SL6SOnO5CFB6nqlp-c5LZmKgFMzNZQKEFFFlARV14_XfJWUPusWzyK7KRohcf961027-Ad0cUWmorj0tMr9D1u7ARzKhaRJiqhf924U0w7WJ4yWU3W-svJo-n4--X4-mlUS4hLgCJ0Lm2_KIv4HZ_dLCv9ncHe-twh5Y1lXIb0Jmd_3TPMLWameetPzM4vulX6A_snDHQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1ba9swFBalg7KXde02ljZb9bAx2BCxLcuXvYWlId0lBJZA3oRkSaVpcEuSbt2_3zmx1GSlFPYs6djkk44-51w-Qt5ZxzMRV47F3CmWqtQypYxjzhhhRcwrHmGh8I9hNpikX6di6nVOlyHbPYQkm5oG7NJUrzrXxnU2hW9AXDChqmTYLIXBN_sT8MYxbvRJ0g2umOfRWs0V_8NmqI4ZwpoPmfjnYrrvnrfipOvqntqp-nzrIuo_J888g6TdBvIDsmPrQ7If1BmoP6wviO6NGLZjtp_paHHxS1V_GOZboG-oz-lPcL-_YZD2LCZ0wBSM2CBKFOXR5hSX4sRxI-RDe15JBTzCPBh8SSb90_GXAfOKCqwCHrRicWEN8COXZSo2JjKJ5kWqRQJ3eJlbw3lSqFjrUttIJ3kpFC8K64TAnvOOpzl_RXbrq9q-JlRbEXFYkgFDhAGnDTC5UunEcaEiq1okCj-nrHy7cVS9mMtNo2REQAICEhGQUYt8vFty3fTaeGzyB8RI4jkEu5Xy5QTwdtjRSnbzuAS2AzuxRdoBRukP6FImJRCVAvvvtcinAO1m-JHHvvfobybPlrPL29nyVkubYGm-AE929F9WT8jeqNeX38-G347JUzTSpLG1ye5qcWPfAO9Z6bfrvf0X9qn4Vg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=DP-Share%3A+Privacy-Preserving+Software+Defect+Prediction+Model+Sharing+Through+Differential+Privacy&rft.jtitle=Journal+of+computer+science+and+technology&rft.au=Chen%2C+Xiang&rft.au=Zhang%2C+Dun&rft.au=Cui%2C+Zhan-Qi&rft.au=Gu%2C+Qing&rft.date=2019-09-01&rft.pub=Springer+Nature+B.V&rft.issn=1000-9000&rft.eissn=1860-4749&rft.volume=34&rft.issue=5&rft.spage=1020&rft.epage=1038&rft_id=info:doi/10.1007%2Fs11390-019-1958-0 |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fjsjkxjsxb-e%2Fjsjkxjsxb-e.jpg |