DP-Share: Privacy-Preserving Software Defect Prediction Model Sharing Through Differential Privacy

In current software defect prediction (SDP) research, most previous empirical studies only use datasets provided by PROMISE repository and this may cause a threat to the external validity of previous empirical results. Instead of SDP dataset sharing, SDP model sharing is a potential solution to alle...

Full description

Saved in:
Bibliographic Details
Published inJournal of computer science and technology Vol. 34; no. 5; pp. 1020 - 1038
Main Authors Chen, Xiang, Zhang, Dun, Cui, Zhan-Qi, Gu, Qing, Ju, Xiao-Lin
Format Journal Article
LanguageEnglish
Published New York Springer US 01.09.2019
Springer
Springer Nature B.V
State Key Laboratory for Novel Software Technology, Nanjing University, Nanjing 210023, China
School of Information Science and Technology, Nantong University, Nantong 226019, China
School of Computer Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore%School of Information Science and Technology, Nantong University, Nantong 226019, China%State Key Laboratory for Novel Software Technology, Nanjing University, Nanjing 210023, China
Computer School, Beijing Information Science and Technology University, Beijing 100101, China%State Key Laboratory for Novel Software Technology, Nanjing University, Nanjing 210023, China%School of Information Science and Technology, Nantong University, Nantong 226019, China
Subjects
Online AccessGet full text
ISSN1000-9000
1860-4749
DOI10.1007/s11390-019-1958-0

Cover

Abstract In current software defect prediction (SDP) research, most previous empirical studies only use datasets provided by PROMISE repository and this may cause a threat to the external validity of previous empirical results. Instead of SDP dataset sharing, SDP model sharing is a potential solution to alleviate this problem and can encourage researchers in the research community and practitioners in the industrial community to share more models. However, directly sharing models may result in privacy disclosure, such as model inversion attack. To the best of our knowledge, we are the first to apply differential privacy (DP) to privacy-preserving SDP model sharing and then propose a novel method DP-Share, since DP mechanisms can prevent this attack when the privacy budget is carefully selected. In particular, DP-Share first performs data preprocessing for the dataset, such as over-sampling for minority instances (i.e., defective modules) and conducting discretization for continuous features to optimize privacy budget allocation. Then, it uses a novel sampling strategy to create a set of training sets. Finally it constructs decision trees based on these training sets and these decision trees can form a random forest (i.e., model). The last phase of DP-Share uses Laplace and exponential mechanisms to satisfy the requirements of DP. In our empirical studies, we choose nine experimental subjects from real software projects. Then, we use AUC (area under ROC curve) as the performance measure and holdout as our model validation technique. After privacy and utility analysis, we find that DP-Share can achieve better performance than a baseline method DF-Enhance in most cases when using the same privacy budget. Moreover, we also provide guidelines to effectively use our proposed method. Our work attempts to fill the research gap in terms of differential privacy for SDP, which can encourage researchers and practitioners to share more SDP models and then effectively advance the state of the art of SDP.
AbstractList In current software defect prediction (SDP) research, most previous empirical studies only use datasets provided by PROMISE repository and this may cause a threat to the external validity of previous empirical results. Instead of SDP dataset sharing, SDP model sharing is a potential solution to alleviate this problem and can encourage researchers in the research community and practitioners in the industrial community to share more models. However, directly sharing models may result in privacy disclosure, such as model inversion attack. To the best of our knowledge, we are the first to apply differential privacy (DP) to privacy-preserving SDP model sharing and then propose a novel method DP-Share, since DP mechanisms can prevent this attack when the privacy budget is carefully selected. In particular, DP-Share first performs data preprocessing for the dataset, such as over-sampling for minority instances (i.e., defective modules) and conducting discretization for continuous features to optimize privacy budget allocation. Then, it uses a novel sampling strategy to create a set of training sets. Finally it constructs decision trees based on these training sets and these decision trees can form a random forest (i.e., model). The last phase of DP-Share uses Laplace and exponential mechanisms to satisfy the requirements of DP. In our empirical studies, we choose nine experimental subjects from real software projects. Then, we use AUC (area under ROC curve) as the performance measure and holdout as our model validation technique. After privacy and utility analysis, we find that DP-Share can achieve better performance than a baseline method DF-Enhance in most cases when using the same privacy budget. Moreover, we also provide guidelines to effectively use our proposed method. Our work attempts to fill the research gap in terms of differential privacy for SDP, which can encourage researchers and practitioners to share more SDP models and then effectively advance the state of the art of SDP.
In current software defect prediction (SDP) research, most previous empirical studies only use datasets provided by PROMISE repository and this may cause a threat to the external validity of previous empirical results. Instead of SDP dataset sharing, SDP model sharing is a potential solution to alleviate this problem and can encourage researchers in the research community and practitioners in the industrial community to share more models. However, directly sharing models may result in privacy disclosure, such as model inversion attack. To the best of our knowledge, we are the first to apply differential privacy (DP) to privacy-preserving SDP model sharing and then propose a novel method DP-Share, since DP mechanisms can prevent this attack when the privacy budget is carefully selected. In particular, DP-Share first performs data preprocessing for the dataset, such as over-sampling for minority instances (i.e., defective modules) and conducting discretization for continuous features to optimize privacy budget allocation. Then, it uses a novel sampling strategy to create a set of training sets. Finally it constructs decision trees based on these training sets and these decision trees can form a random forest (i.e., model). The last phase of DP-Share uses Laplace and exponential mechanisms to satisfy the requirements of DP. In our empirical studies, we choose nine experimental subjects from real software projects. Then, we use AUC (area under ROC curve) as the performance measure and holdout as our model validation technique. After privacy and utility analysis, we find that DP-Share can achieve better performance than a baseline method DF-Enhance in most cases when using the same privacy budget. Moreover, we also provide guidelines to effectively use our proposed method. Our work attempts to fill the research gap in terms of differential privacy for SDP, which can encourage researchers and practitioners to share more SDP models and then effectively advance the state of the art of SDP. Keywords software defect prediction, model sharing, differential privacy, cross project defect prediction, empirical study
Audience Academic
Author Zhang, Dun
Gu, Qing
Ju, Xiao-Lin
Cui, Zhan-Qi
Chen, Xiang
AuthorAffiliation School of Information Science and Technology, Nantong University, Nantong 226019, China;State Key Laboratory for Novel Software Technology, Nanjing University, Nanjing 210023, China;School of Computer Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore%School of Information Science and Technology, Nantong University, Nantong 226019, China%State Key Laboratory for Novel Software Technology, Nanjing University, Nanjing 210023, China;Computer School, Beijing Information Science and Technology University, Beijing 100101, China%State Key Laboratory for Novel Software Technology, Nanjing University, Nanjing 210023, China%School of Information Science and Technology, Nantong University, Nantong 226019, China;State Key Laboratory for Novel Software Technology, Nanjing University, Nanjing 210023, China
AuthorAffiliation_xml – name: School of Information Science and Technology, Nantong University, Nantong 226019, China;State Key Laboratory for Novel Software Technology, Nanjing University, Nanjing 210023, China;School of Computer Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore%School of Information Science and Technology, Nantong University, Nantong 226019, China%State Key Laboratory for Novel Software Technology, Nanjing University, Nanjing 210023, China;Computer School, Beijing Information Science and Technology University, Beijing 100101, China%State Key Laboratory for Novel Software Technology, Nanjing University, Nanjing 210023, China%School of Information Science and Technology, Nantong University, Nantong 226019, China;State Key Laboratory for Novel Software Technology, Nanjing University, Nanjing 210023, China
Author_xml – sequence: 1
  givenname: Xiang
  surname: Chen
  fullname: Chen, Xiang
  email: xchencs@ntu.edu.cn
  organization: School of Information Science and Technology, Nantong University, State Key Laboratory for Novel Software Technology, Nanjing University, School of Computer Science and Engineering, Nanyang Technological University
– sequence: 2
  givenname: Dun
  surname: Zhang
  fullname: Zhang, Dun
  organization: School of Information Science and Technology, Nantong University
– sequence: 3
  givenname: Zhan-Qi
  surname: Cui
  fullname: Cui, Zhan-Qi
  organization: State Key Laboratory for Novel Software Technology, Nanjing University, Computer School, Beijing Information Science and Technology University
– sequence: 4
  givenname: Qing
  surname: Gu
  fullname: Gu, Qing
  organization: State Key Laboratory for Novel Software Technology, Nanjing University
– sequence: 5
  givenname: Xiao-Lin
  surname: Ju
  fullname: Ju, Xiao-Lin
  organization: School of Information Science and Technology, Nantong University, State Key Laboratory for Novel Software Technology, Nanjing University
BookMark eNp9kd1r3SAYh0PpYG3XP2B3gd3O7lVjorsrPfuClh1oey0meT3HNNUzzenHfz9DVgqDDUFFn-f143dcHPrgsSjeUzijAM2nRClXQIAqQpWQBA6KIyprIFVTqcM8BwCicve2OE5pAOANVNVR0a7W5HprIn4u19E9mO6ZrCMmjA_Ob8rrYKfHvFmu0GI3ZQR7100u-PIq9DiWszqDN9sY9pttuXLWYkQ_OTO-FHxXvLFmTHj6Zzwpbr9-ubn4Ti5_fvtxcX5JOq7YRKjEvuLC1rWhfQ89a7msWsEEo6rBnnMmDW1b1SK0rFHCcCnRCtFISS2vGn5SfFzqPhpvjd_oIeyjzyfqIQ13T0N6ajWy_EMgAOqMf1jwXQy_9pimV54pKoUEJUSmzhZqY0bUztswRdPl1uO963IG1uX184YqSRWvZ4EuQhdDShGt3kV3b-KzpqDnqPQSlc4X0XNUGrLT_OV0bjLzN-fD3Phfky1m2s05YHx9xL-l3z_UqOo
CitedBy_id crossref_primary_10_1109_ACCESS_2022_3151784
crossref_primary_10_3390_app121910168
crossref_primary_10_1109_ACCESS_2019_2961129
crossref_primary_10_1109_TII_2021_3083596
crossref_primary_10_1007_s11042_024_18456_w
crossref_primary_10_1049_2023_6293074
crossref_primary_10_1109_TR_2024_3356515
crossref_primary_10_1109_ACCESS_2021_3078265
crossref_primary_10_1007_s13198_021_01582_1
crossref_primary_10_1049_sfw2_12006
crossref_primary_10_3233_IDA_205504
crossref_primary_10_1016_j_advengsoft_2022_103138
Cites_doi 10.1109/32.295895
10.1109/TKDE.2012.35
10.1007/s10664-008-9082-8
10.1016/j.infsof.2014.11.006
10.1109/TSE.2016.2584050
10.1109/TKDE.2008.239
10.1145/1866739.1866758
10.1613/jair.953
10.1023/A:1008202821328
10.1007/s11390-017-1785-0
10.1109/TSE.2013.6
10.1016/j.infsof.2013.02.009
10.1109/TR.2014.2316951
10.1016/j.infsof.2017.07.004
10.1109/TSE.2012.43
10.1109/TR.2015.2461676
10.1109/TSE.2017.2724538
10.1016/j.infsof.2017.06.004
10.1109/TKDE.2009.191
10.1109/TR.2018.2804922
10.1109/TSE.2017.2731766
10.1109/TSE.2011.103
10.1016/j.infsof.2018.10.003
10.1007/s11390-015-1575-5
10.1109/TR.2013.2259203
10.1007/s10515-010-0069-5
10.1109/TKDE.2017.2697856
10.1109/TSE.2017.2770124
10.1198/016214501753168398
10.1126/science.aaa9375
10.1016/j.infsof.2017.08.004
10.1109/TSE.2016.2597849
10.1007/978-3-540-79228-4_1
10.1109/COMPSAC.2015.58
10.1109/ICSE.2012.6227194
10.1109/SANER.2016.56
10.1145/2810103.2813677
10.1145/2970276.2970339
10.1145/1835804.1835868
10.1109/ICSE.2015.92
10.1145/3180155.3180197
10.1145/1559845.1559850
10.1109/ICSME.2017.57
10.1109/COMPSAC.2014.66
10.1145/1065167.1065184
10.1145/1368088.1368114
10.1109/SmartWorld.2018.00266
10.1145/2884781.2884804
10.1145/3183519.3183547
10.1109/FOCS.2007.66
10.1145/2884781.2884857
10.1109/ICSE.2015.139
10.1109/ICACCI.2014.6968348
10.1145/2884781.2884839
10.1145/1868328.1868342
10.1201/9781420089653.ch10
ContentType Journal Article
Copyright Springer Science+Business Media, LLC & Science Press, China 2019
COPYRIGHT 2019 Springer
Springer Science+Business Media, LLC & Science Press, China 2019.
Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Springer Science+Business Media, LLC & Science Press, China 2019
– notice: COPYRIGHT 2019 Springer
– notice: Springer Science+Business Media, LLC & Science Press, China 2019.
– notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID AAYXX
CITATION
3V.
7SC
7WY
7WZ
7XB
87Z
8AL
8FD
8FE
8FG
8FK
8FL
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
HCIFZ
JQ2
K60
K6~
K7-
L.-
L6V
L7M
L~C
L~D
M0C
M0N
M7S
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PTHSS
Q9U
2B.
4A8
92I
93N
PSX
TCJ
DOI 10.1007/s11390-019-1958-0
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
ProQuest Technology Collection
ProQuest One
ProQuest Central Korea
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global
Computing Database
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Engineering Collection
ProQuest Central Basic
Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitle CrossRef
ABI/INFORM Global (Corporate)
ProQuest Business Collection (Alumni Edition)
ProQuest One Business
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ABI/INFORM Complete
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
Engineering Collection
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
ProQuest Computing
Engineering Database
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Business Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Business (Alumni)
ProQuest One Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
Business Premium Collection (Alumni)
DatabaseTitleList ABI/INFORM Global (Corporate)



Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1860-4749
EndPage 1038
ExternalDocumentID jsjkxjsxb_e201905006
A719819365
10_1007_s11390_019_1958_0
GrantInformation_xml – fundername: This work was partially supported by the National Natural Science Foundation of China under Grant Nos. 61702041 and 61872263, the Open Project of State Key Laboratory for Novel Software Technology at Nanjing University under Grant No. KFKT2019B14, the Science and Technology Project of Beijing Municipal Education Commission under Grant No. KM201811232016, the Nantong Application Research Plan under Grant No. JC2018134, and Jiangsu Government Scholarship for Overseas Studies
GroupedDBID -4Z
-59
-5G
-BR
-EM
-SI
-S~
-Y2
-~C
.86
.VR
06D
0R~
0VY
1N0
1SB
2.D
28-
29K
2B.
2C0
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5QI
5VR
5VS
5XA
5XJ
67Z
6NX
7WY
8FE
8FG
8FL
8TC
8UJ
92H
92I
92R
93N
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAXDM
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFUIB
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CAJEI
CCEZO
CCPQU
CHBEP
COF
CS3
CSCUP
CUBFJ
CW9
D-I
DDRTE
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
F5P
FA0
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GXS
H13
HCIFZ
HF~
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
IAO
IHE
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
LAK
LLZTM
M0C
M0N
M4Y
M7S
MA-
N2Q
NB0
NDZJH
NF0
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P62
P9O
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
PTHSS
Q--
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCL
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TCJ
TGT
TSG
TSK
TSV
TUC
U1G
U2A
U5S
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z7R
Z7U
Z7X
Z81
Z83
Z88
Z8R
Z8W
Z92
ZMTXR
~A9
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
ICD
IVC
PHGZM
PHGZT
TGMPQ
AEIIB
PMFND
7SC
7XB
8AL
8FD
8FK
ABRTQ
JQ2
L.-
L6V
L7M
L~C
L~D
PKEHL
PQEST
PQGLB
PQUKI
Q9U
4A8
PSX
ID FETCH-LOGICAL-c392t-18ed435f66a1dd0d2b384b5252197ed3328a1bb9be0b2795a388ef557881f3473
IEDL.DBID 8FG
ISSN 1000-9000
IngestDate Thu May 29 04:00:16 EDT 2025
Fri Jul 25 12:19:12 EDT 2025
Tue Jun 10 20:52:12 EDT 2025
Tue Jul 01 01:48:57 EDT 2025
Thu Apr 24 23:04:57 EDT 2025
Fri Feb 21 02:40:05 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords model sharing
empirical study
software defect prediction
differential privacy
cross project defect prediction
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c392t-18ed435f66a1dd0d2b384b5252197ed3328a1bb9be0b2795a388ef557881f3473
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2918580955
PQPubID 326258
PageCount 19
ParticipantIDs wanfang_journals_jsjkxjsxb_e201905006
proquest_journals_2918580955
gale_infotracacademiconefile_A719819365
crossref_primary_10_1007_s11390_019_1958_0
crossref_citationtrail_10_1007_s11390_019_1958_0
springer_journals_10_1007_s11390_019_1958_0
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-09-01
PublicationDateYYYYMMDD 2019-09-01
PublicationDate_xml – month: 09
  year: 2019
  text: 2019-09-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Beijing
PublicationTitle Journal of computer science and technology
PublicationTitleAbbrev J. Comput. Sci. Technol
PublicationTitle_FL Journal of Computer Science & Technology
PublicationYear 2019
Publisher Springer US
Springer
Springer Nature B.V
State Key Laboratory for Novel Software Technology, Nanjing University, Nanjing 210023, China
School of Information Science and Technology, Nantong University, Nantong 226019, China
School of Computer Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore%School of Information Science and Technology, Nantong University, Nantong 226019, China%State Key Laboratory for Novel Software Technology, Nanjing University, Nanjing 210023, China
Computer School, Beijing Information Science and Technology University, Beijing 100101, China%State Key Laboratory for Novel Software Technology, Nanjing University, Nanjing 210023, China%School of Information Science and Technology, Nantong University, Nantong 226019, China
Publisher_xml – name: Springer US
– name: Springer
– name: Springer Nature B.V
– name: School of Information Science and Technology, Nantong University, Nantong 226019, China
– name: State Key Laboratory for Novel Software Technology, Nanjing University, Nanjing 210023, China
– name: School of Computer Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore%School of Information Science and Technology, Nantong University, Nantong 226019, China%State Key Laboratory for Novel Software Technology, Nanjing University, Nanjing 210023, China
– name: Computer School, Beijing Information Science and Technology University, Beijing 100101, China%State Key Laboratory for Novel Software Technology, Nanjing University, Nanjing 210023, China%School of Information Science and Technology, Nantong University, Nantong 226019, China
References Dwork, Feldman, Hardt, Pitassi, Reingold, Roth (CR45) 2015; 349
CR39
Hosseini, Turhan, Gunarathna (CR4) 2019; 45
Wang, Yao (CR28) 2013; 62
CR38
CR36
CR35
He, Garcia (CR30) 2009; 21
CR34
CR33
Dwork (CR5) 2006
Hansen, Yu (CR32) 2001; 96
García, Luengo, Sáez, López, Herrera (CR31) 2013; 25
Storn, Price (CR57) 1997; 11
Peters, Menzies, Gong, Zhang (CR17) 2013; 39
Wu, Jing, Sun, Sun, Huang, Cui, Sun (CR49) 2018; 67
CR2
He, Li, Liu, Chen, Ma (CR37) 2015; 59
CR3
Tantithamthavorn, McIntosh, Hassan, Matsumoto (CR44) 2017; 43
Jing, Wu, Dong, Xu (CR50) 2017; 43
CR7
Pan, Yang (CR48) 2010; 22
CR9
Shivaji, Whitehead, Akella, Kim (CR46) 2013; 39
Liu, Miao, Zhang (CR27) 2014; 63
Chawla, Bowyer, Hall, Kegelmeyer (CR8) 2002; 16
CR43
Bennin, Keung, Phannachitta, Monden, Mensah (CR26) 2018; 44
Öztürk (CR29) 2017; 92
CR41
Weyuker, Ostrand, Bell (CR16) 2008; 13
Liu, Liu, Gu, Chen, Chen, Chen (CR42) 2016; 65
CR19
CR18
CR15
CR58
CR12
CR11
CR55
Zhu, Li, Zhou, Yu (CR6) 2017; 29
CR10
Herbold, Trautsch, Grabowski (CR47) 2018; 44
CR52
Chen, Zhao, Wang, Yuan (CR13) 2018; 93
Chen, Zhang, Zhao, Cui, Ni (CR59) 2019; 106
Dwork (CR22) 2011; 54
Hall, Beecham, Bowes, Gray, Counsell (CR1) 2012; 38
Chidamber, Kemerer (CR40) 1994; 20
Ryu, Jang, Baik (CR53) 2015; 30
Menzies, Milton, Turhan, Cukic, Jiang, Bener (CR56) 2010; 17
Hosseini, Turhan, Mantyla (CR54) 2018; 95
CR25
CR24
CR23
Radjenovic, Hericko, Torkar, Zivkovic (CR14) 2013; 55
CR21
CR20
Ni, Liu, Chen, Gu, Chen, Huang (CR51) 2017; 32
C Dwork (1958_CR22) 2011; 54
C Tantithamthavorn (1958_CR44) 2017; 43
S Shivaji (1958_CR46) 2013; 39
X Chen (1958_CR13) 2018; 93
1958_CR52
1958_CR10
1958_CR11
1958_CR55
1958_CR12
1958_CR58
1958_CR15
1958_CR18
1958_CR19
EJ Weyuker (1958_CR16) 2008; 13
1958_CR2
H He (1958_CR30) 2009; 21
SR Chidamber (1958_CR40) 1994; 20
T Zhu (1958_CR6) 2017; 29
R Storn (1958_CR57) 1997; 11
M Liu (1958_CR27) 2014; 63
P He (1958_CR37) 2015; 59
1958_CR20
XY Jing (1958_CR50) 2017; 43
1958_CR21
SJ Pan (1958_CR48) 2010; 22
1958_CR23
1958_CR24
1958_CR25
S García (1958_CR31) 2013; 25
1958_CR9
F Peters (1958_CR17) 2013; 39
S Hosseini (1958_CR4) 2019; 45
1958_CR7
T Hall (1958_CR1) 2012; 38
D Radjenovic (1958_CR14) 2013; 55
1958_CR3
T Menzies (1958_CR56) 2010; 17
NV Chawla (1958_CR8) 2002; 16
S Wang (1958_CR28) 2013; 62
KE Bennin (1958_CR26) 2018; 44
D Ryu (1958_CR53) 2015; 30
S Herbold (1958_CR47) 2018; 44
X Chen (1958_CR59) 2019; 106
1958_CR33
1958_CR34
1958_CR35
1958_CR36
1958_CR38
1958_CR39
Cynthia Dwork (1958_CR5) 2006
C Dwork (1958_CR45) 2015; 349
MM Öztürk (1958_CR29) 2017; 92
F Wu (1958_CR49) 2018; 67
C Ni (1958_CR51) 2017; 32
MH Hansen (1958_CR32) 2001; 96
1958_CR41
1958_CR43
W Liu (1958_CR42) 2016; 65
S Hosseini (1958_CR54) 2018; 95
References_xml – volume: 20
  start-page: 476
  issue: 6
  year: 1994
  end-page: 493
  ident: CR40
  article-title: A metrics suite for object oriented design
  publication-title: IEEE Transactions on Software Engineering
  doi: 10.1109/32.295895
– volume: 25
  start-page: 734
  issue: 4
  year: 2013
  end-page: 750
  ident: CR31
  article-title: A survey of discretization techniques: Taxonomy and empirical analysis in supervised learning
  publication-title: IEEE Transactions on Knowledge and Data Engineering
  doi: 10.1109/TKDE.2012.35
– volume: 13
  start-page: 539
  issue: 5
  year: 2008
  end-page: 559
  ident: CR16
  article-title: Do too many cooks spoil the broth? Using the number of developers to enhance defect prediction models
  publication-title: Empirical Software Engineering
  doi: 10.1007/s10664-008-9082-8
– ident: CR39
– volume: 59
  start-page: 170
  year: 2015
  end-page: 190
  ident: CR37
  article-title: An empirical study on software defect prediction with a simplified metric set
  publication-title: Information and Software Technology
  doi: 10.1016/j.infsof.2014.11.006
– ident: CR12
– volume: 43
  start-page: 1
  issue: 1
  year: 2017
  end-page: 18
  ident: CR44
  article-title: An empirical comparison of model validation techniques for defect prediction models
  publication-title: IEEE Transactions on Software Engineering
  doi: 10.1109/TSE.2016.2584050
– volume: 21
  start-page: 1263
  issue: 9
  year: 2009
  end-page: 1284
  ident: CR30
  article-title: Learning from imbalanced data
  publication-title: IEEE Transactions on Knowledge and Data Engineering
  doi: 10.1109/TKDE.2008.239
– ident: CR35
– volume: 54
  start-page: 86
  issue: 1
  year: 2011
  end-page: 95
  ident: CR22
  article-title: A firm foundation for private data analysis
  publication-title: Communications of the ACM
  doi: 10.1145/1866739.1866758
– volume: 16
  start-page: 321
  issue: 1
  year: 2002
  end-page: 357
  ident: CR8
  article-title: SMOTE: Synthetic minority over-sampling technique
  publication-title: Journal of Artificial Intelligence Research
  doi: 10.1613/jair.953
– ident: CR58
– volume: 11
  start-page: 341
  issue: 4
  year: 1997
  end-page: 359
  ident: CR57
  article-title: Differential evolution — A simple and efficient heuristic for global optimization over continuous spaces
  publication-title: Journal of Global Optimization
  doi: 10.1023/A:1008202821328
– ident: CR25
– volume: 32
  start-page: 1090
  issue: 6
  year: 2017
  end-page: 1107
  ident: CR51
  article-title: A cluster based feature selection method for cross-project software defect prediction
  publication-title: Journal of Computer Science and Technology
  doi: 10.1007/s11390-017-1785-0
– ident: CR21
– ident: CR19
– volume: 39
  start-page: 1054
  issue: 8
  year: 2013
  end-page: 1068
  ident: CR17
  article-title: Balancing privacy and utility in cross-company defect prediction
  publication-title: IEEE Transactions on Software Engineering
  doi: 10.1109/TSE.2013.6
– volume: 55
  start-page: 1397
  issue: 8
  year: 2013
  end-page: 1418
  ident: CR14
  article-title: Software fault prediction metrics: A systematic literature review
  publication-title: Information and Software Technology
  doi: 10.1016/j.infsof.2013.02.009
– volume: 63
  start-page: 676
  issue: 2
  year: 2014
  end-page: 686
  ident: CR27
  article-title: Two-stage cost-sensitive learning for software defect prediction
  publication-title: IEEE Transactions on Reliability
  doi: 10.1109/TR.2014.2316951
– ident: CR15
– ident: CR11
– volume: 92
  start-page: 17
  year: 2017
  end-page: 29
  ident: CR29
  article-title: Which type of metrics are useful to deal with class imbalance in software defect prediction?
  publication-title: Information and Software Technology
  doi: 10.1016/j.infsof.2017.07.004
– ident: CR9
– ident: CR36
– volume: 39
  start-page: 552
  issue: 4
  year: 2013
  end-page: 569
  ident: CR46
  article-title: Reducing features to improve code change-based bug prediction
  publication-title: IEEE Transactions on Software Engineering
  doi: 10.1109/TSE.2012.43
– volume: 65
  start-page: 38
  issue: 1
  year: 2016
  end-page: 53
  ident: CR42
  article-title: Empirical studies of a two-stage data preprocessing approach for software fault prediction
  publication-title: IEEE Transactions on Reliability
  doi: 10.1109/TR.2015.2461676
– ident: CR18
– ident: CR43
– volume: 44
  start-page: 811
  issue: 9
  year: 2018
  end-page: 833
  ident: CR47
  article-title: A comparative study to benchmark cross-project defect prediction approaches
  publication-title: IEEE Transactions on Software Engineering
  doi: 10.1109/TSE.2017.2724538
– volume: 95
  start-page: 296
  year: 2018
  end-page: 312
  ident: CR54
  article-title: A benchmark study on the effectiveness of search-based data selection and feature selection for cross project defect prediction
  publication-title: Information and Software Technology
  doi: 10.1016/j.infsof.2017.06.004
– ident: CR2
– volume: 22
  start-page: 1345
  issue: 10
  year: 2010
  end-page: 1359
  ident: CR48
  article-title: A survey on transfer learning
  publication-title: IEEE Transactions on Knowledge and Data Engineering
  doi: 10.1109/TKDE.2009.191
– volume: 67
  start-page: 581
  issue: 2
  year: 2018
  end-page: 597
  ident: CR49
  article-title: Cross-project and within-project semisupervised software defect prediction: A unified approach
  publication-title: IEEE Transactions on Reliability
  doi: 10.1109/TR.2018.2804922
– ident: CR10
– ident: CR33
– volume: 44
  start-page: 534
  issue: 6
  year: 2018
  end-page: 550
  ident: CR26
  article-title: MAHAKIL: Diversity based oversampling approach to alleviate the class imbalance issue in software defect prediction
  publication-title: IEEE Transactions on Software Engineering
  doi: 10.1109/TSE.2017.2731766
– start-page: 1
  year: 2006
  end-page: 12
  ident: CR5
  article-title: Differential Privacy
  publication-title: Automata, Languages and Programming
– volume: 38
  start-page: 1276
  issue: 6
  year: 2012
  end-page: 1304
  ident: CR1
  article-title: A systematic literature review on fault prediction performance in software engineering
  publication-title: IEEE Transactions on Software Engineering
  doi: 10.1109/TSE.2011.103
– volume: 106
  start-page: 161
  year: 2019
  end-page: 181
  ident: CR59
  article-title: Software defect number prediction: Unsupervised vs supervised methods
  publication-title: Information and Software Technology
  doi: 10.1016/j.infsof.2018.10.003
– ident: CR23
– volume: 30
  start-page: 969
  issue: 5
  year: 2015
  end-page: 980
  ident: CR53
  article-title: A hybrid instance selection using nearest-neighbor for cross-project defect prediction
  publication-title: Journal of Computer Science and Technology
  doi: 10.1007/s11390-015-1575-5
– volume: 62
  start-page: 434
  issue: 2
  year: 2013
  end-page: 443
  ident: CR28
  article-title: Using class imbalance learning for software defect prediction
  publication-title: IEEE Transactions on Reliability
  doi: 10.1109/TR.2013.2259203
– volume: 17
  start-page: 375
  issue: 4
  year: 2010
  end-page: 407
  ident: CR56
  article-title: Defect prediction from static code features: Current results, limitations, new approaches
  publication-title: Automated Software Engineering
  doi: 10.1007/s10515-010-0069-5
– volume: 29
  start-page: 1619
  issue: 8
  year: 2017
  end-page: 1638
  ident: CR6
  article-title: Differentially private data publishing and analysis: A survey
  publication-title: IEEE Transactions on Knowledge and Data Engineering
  doi: 10.1109/TKDE.2017.2697856
– ident: CR3
– ident: CR38
– ident: CR52
– volume: 45
  start-page: 111
  issue: 2
  year: 2019
  end-page: 147
  ident: CR4
  article-title: A systematic literature review and meta-analysis on cross project defect prediction
  publication-title: IEEE Transactions on Software Engineering
  doi: 10.1109/TSE.2017.2770124
– volume: 96
  start-page: 746
  issue: 454
  year: 2001
  end-page: 774
  ident: CR32
  article-title: Model selection and the principle of minimum description length
  publication-title: Journal of the American Statistical Association
  doi: 10.1198/016214501753168398
– ident: CR34
– volume: 349
  start-page: 636
  issue: 6248
  year: 2015
  end-page: 638
  ident: CR45
  article-title: The reusable holdout: Preserving validity in adaptive data analysis
  publication-title: Science
  doi: 10.1126/science.aaa9375
– ident: CR55
– ident: CR7
– ident: CR41
– ident: CR24
– volume: 93
  start-page: 1
  year: 2018
  end-page: 13
  ident: CR13
  article-title: MULTI: Multi-objective effort-aware just-in-time software defect prediction
  publication-title: Information and Software Technology
  doi: 10.1016/j.infsof.2017.08.004
– ident: CR20
– volume: 43
  start-page: 321
  issue: 4
  year: 2017
  end-page: 339
  ident: CR50
  article-title: An improved SDA based defect prediction framework for both within project and cross-project class-imbalance problems
  publication-title: IEEE Transactions on Software Engineering
  doi: 10.1109/TSE.2016.2597849
– ident: 1958_CR21
  doi: 10.1007/978-3-540-79228-4_1
– ident: 1958_CR41
  doi: 10.1109/COMPSAC.2015.58
– ident: 1958_CR15
  doi: 10.1109/ICSE.2012.6227194
– volume: 54
  start-page: 86
  issue: 1
  year: 2011
  ident: 1958_CR22
  publication-title: Communications of the ACM
  doi: 10.1145/1866739.1866758
– volume: 22
  start-page: 1345
  issue: 10
  year: 2010
  ident: 1958_CR48
  publication-title: IEEE Transactions on Knowledge and Data Engineering
  doi: 10.1109/TKDE.2009.191
– volume: 67
  start-page: 581
  issue: 2
  year: 2018
  ident: 1958_CR49
  publication-title: IEEE Transactions on Reliability
  doi: 10.1109/TR.2018.2804922
– ident: 1958_CR9
– ident: 1958_CR2
  doi: 10.1109/SANER.2016.56
– ident: 1958_CR3
  doi: 10.1145/2810103.2813677
– volume: 39
  start-page: 1054
  issue: 8
  year: 2013
  ident: 1958_CR17
  publication-title: IEEE Transactions on Software Engineering
  doi: 10.1109/TSE.2013.6
– ident: 1958_CR52
  doi: 10.1145/2970276.2970339
– volume: 106
  start-page: 161
  year: 2019
  ident: 1958_CR59
  publication-title: Information and Software Technology
  doi: 10.1016/j.infsof.2018.10.003
– ident: 1958_CR7
  doi: 10.1145/1835804.1835868
– ident: 1958_CR18
  doi: 10.1109/ICSE.2015.92
– ident: 1958_CR58
  doi: 10.1145/3180155.3180197
– ident: 1958_CR24
  doi: 10.1145/1559845.1559850
– ident: 1958_CR19
  doi: 10.1109/ICSME.2017.57
– ident: 1958_CR43
  doi: 10.1109/COMPSAC.2014.66
– ident: 1958_CR38
– start-page: 1
  volume-title: Automata, Languages and Programming
  year: 2006
  ident: 1958_CR5
– volume: 93
  start-page: 1
  year: 2018
  ident: 1958_CR13
  publication-title: Information and Software Technology
  doi: 10.1016/j.infsof.2017.08.004
– volume: 32
  start-page: 1090
  issue: 6
  year: 2017
  ident: 1958_CR51
  publication-title: Journal of Computer Science and Technology
  doi: 10.1007/s11390-017-1785-0
– ident: 1958_CR20
  doi: 10.1145/1065167.1065184
– volume: 349
  start-page: 636
  issue: 6248
  year: 2015
  ident: 1958_CR45
  publication-title: Science
  doi: 10.1126/science.aaa9375
– volume: 29
  start-page: 1619
  issue: 8
  year: 2017
  ident: 1958_CR6
  publication-title: IEEE Transactions on Knowledge and Data Engineering
  doi: 10.1109/TKDE.2017.2697856
– volume: 16
  start-page: 321
  issue: 1
  year: 2002
  ident: 1958_CR8
  publication-title: Journal of Artificial Intelligence Research
  doi: 10.1613/jair.953
– volume: 96
  start-page: 746
  issue: 454
  year: 2001
  ident: 1958_CR32
  publication-title: Journal of the American Statistical Association
  doi: 10.1198/016214501753168398
– volume: 44
  start-page: 811
  issue: 9
  year: 2018
  ident: 1958_CR47
  publication-title: IEEE Transactions on Software Engineering
  doi: 10.1109/TSE.2017.2724538
– ident: 1958_CR55
  doi: 10.1145/1368088.1368114
– ident: 1958_CR11
  doi: 10.1109/SmartWorld.2018.00266
– volume: 55
  start-page: 1397
  issue: 8
  year: 2013
  ident: 1958_CR14
  publication-title: Information and Software Technology
  doi: 10.1016/j.infsof.2013.02.009
– volume: 62
  start-page: 434
  issue: 2
  year: 2013
  ident: 1958_CR28
  publication-title: IEEE Transactions on Reliability
  doi: 10.1109/TR.2013.2259203
– ident: 1958_CR34
  doi: 10.1145/2884781.2884804
– volume: 20
  start-page: 476
  issue: 6
  year: 1994
  ident: 1958_CR40
  publication-title: IEEE Transactions on Software Engineering
  doi: 10.1109/32.295895
– volume: 44
  start-page: 534
  issue: 6
  year: 2018
  ident: 1958_CR26
  publication-title: IEEE Transactions on Software Engineering
  doi: 10.1109/TSE.2017.2731766
– ident: 1958_CR12
  doi: 10.1145/3183519.3183547
– volume: 65
  start-page: 38
  issue: 1
  year: 2016
  ident: 1958_CR42
  publication-title: IEEE Transactions on Reliability
  doi: 10.1109/TR.2015.2461676
– volume: 63
  start-page: 676
  issue: 2
  year: 2014
  ident: 1958_CR27
  publication-title: IEEE Transactions on Reliability
  doi: 10.1109/TR.2014.2316951
– volume: 45
  start-page: 111
  issue: 2
  year: 2019
  ident: 1958_CR4
  publication-title: IEEE Transactions on Software Engineering
  doi: 10.1109/TSE.2017.2770124
– volume: 21
  start-page: 1263
  issue: 9
  year: 2009
  ident: 1958_CR30
  publication-title: IEEE Transactions on Knowledge and Data Engineering
  doi: 10.1109/TKDE.2008.239
– volume: 25
  start-page: 734
  issue: 4
  year: 2013
  ident: 1958_CR31
  publication-title: IEEE Transactions on Knowledge and Data Engineering
  doi: 10.1109/TKDE.2012.35
– volume: 59
  start-page: 170
  year: 2015
  ident: 1958_CR37
  publication-title: Information and Software Technology
  doi: 10.1016/j.infsof.2014.11.006
– ident: 1958_CR23
  doi: 10.1109/FOCS.2007.66
– volume: 38
  start-page: 1276
  issue: 6
  year: 2012
  ident: 1958_CR1
  publication-title: IEEE Transactions on Software Engineering
  doi: 10.1109/TSE.2011.103
– volume: 39
  start-page: 552
  issue: 4
  year: 2013
  ident: 1958_CR46
  publication-title: IEEE Transactions on Software Engineering
  doi: 10.1109/TSE.2012.43
– ident: 1958_CR35
  doi: 10.1145/2884781.2884857
– volume: 95
  start-page: 296
  year: 2018
  ident: 1958_CR54
  publication-title: Information and Software Technology
  doi: 10.1016/j.infsof.2017.06.004
– volume: 92
  start-page: 17
  year: 2017
  ident: 1958_CR29
  publication-title: Information and Software Technology
  doi: 10.1016/j.infsof.2017.07.004
– volume: 17
  start-page: 375
  issue: 4
  year: 2010
  ident: 1958_CR56
  publication-title: Automated Software Engineering
  doi: 10.1007/s10515-010-0069-5
– volume: 30
  start-page: 969
  issue: 5
  year: 2015
  ident: 1958_CR53
  publication-title: Journal of Computer Science and Technology
  doi: 10.1007/s11390-015-1575-5
– volume: 11
  start-page: 341
  issue: 4
  year: 1997
  ident: 1958_CR57
  publication-title: Journal of Global Optimization
  doi: 10.1023/A:1008202821328
– volume: 43
  start-page: 1
  issue: 1
  year: 2017
  ident: 1958_CR44
  publication-title: IEEE Transactions on Software Engineering
  doi: 10.1109/TSE.2016.2584050
– ident: 1958_CR25
  doi: 10.1109/ICSE.2015.139
– ident: 1958_CR10
  doi: 10.1109/ICACCI.2014.6968348
– ident: 1958_CR36
  doi: 10.1145/2884781.2884839
– volume: 43
  start-page: 321
  issue: 4
  year: 2017
  ident: 1958_CR50
  publication-title: IEEE Transactions on Software Engineering
  doi: 10.1109/TSE.2016.2597849
– volume: 13
  start-page: 539
  issue: 5
  year: 2008
  ident: 1958_CR16
  publication-title: Empirical Software Engineering
  doi: 10.1007/s10664-008-9082-8
– ident: 1958_CR39
  doi: 10.1145/1868328.1868342
– ident: 1958_CR33
  doi: 10.1201/9781420089653.ch10
SSID ssj0037044
Score 2.2411327
Snippet In current software defect prediction (SDP) research, most previous empirical studies only use datasets provided by PROMISE repository and this may cause a...
SourceID wanfang
proquest
gale
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1020
SubjectTerms Artificial Intelligence
Budgets
Computer Science
Data Structures and Information Theory
Datasets
Decision trees
Defects
Empirical analysis
Information Systems Applications (incl.Internet)
Prediction models
Privacy
Regular Paper
Sampling
Software
Software Engineering
Theory of Computation
SummonAdditionalLinks – databaseName: SpringerLINK - Czech Republic Consortium
  dbid: AGYKE
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dSxwxEB_kfPGl2trSs1ryUCm0RHY3m_3w7ej5gdIi9AT7FJJNIp7HWrzT2v71nblNPCtF8DmTbDbJTH67M_MbgA_Oi0Kmjeep8JrnOndca-u5t1Y6mYpGJJQo_PVbcXiaH53Js5DHPY3R7tElObfUi2Q3BCsURFVzIkjh-J2-LNOqrnqwPDj4cbwXDbAok3kNV_pzzakmZnRm_m-Qf66jx0b5gXd0ntPTet2eP7h-9ldhFCfeRZ1c7tzMzE7z5xGn4zPfbA1eBDjKBt35eQlLrn0Fq7HUAwuavw5meMKJ29ntspPri1vd_OYUvEGGpj1n39GW_8JGNnQUHYIi5P6hLWdUa23CqCsJjrqqQGwYyrKgeZnEAV_D6f7e6MshD-UZeIOgasbTylkEW74odGptYjMjqtzIDAFBXTorRFbp1JjauMRkZS21qCrnpSQCey_yUryBXnvVurfAjJOJwC4Fwk1s8MYiLKy1ybyQOnG6D0ncJdUE7nIqoTFRC9ZlWkOFa6hoDVXSh0_3XX52xB1PCX-krVek1Dhuo0NuAs6O6LHUoExrhE54rPuwGU-HCto-VVmNqKciMr8-fI5bvGh-4rHb4VAthMfT8eXdeHpnlMsoz1-iWdx41qjvYIV6doFwm9CbXd-4LUROM_M-aMpfNrsOEg
  priority: 102
  providerName: Springer Nature
Title DP-Share: Privacy-Preserving Software Defect Prediction Model Sharing Through Differential Privacy
URI https://link.springer.com/article/10.1007/s11390-019-1958-0
https://www.proquest.com/docview/2918580955
https://d.wanfangdata.com.cn/periodical/jsjkxjsxb-e201905006
Volume 34
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LbxMxEB5Be-EC5SUCpfIBhASy8K7X--CCEpK0AhFF0EjlZNlru2qIto8EKP-emY2XFA45-eCxvdrPnhnZM_MBvPBB5iqpA09kMDwzmefGuMCDc8qrRNZSUKLw50l-NMs-nqiTeOG2jGGVnU5sFbU7r-mO_G1aoWUpqWDa-4tLTqxR9LoaKTRuw26Clob2eTk-7DSxLERL5kpX2JzIMbtXzTZ1Dl0fCsmqOJVb4eIfu_S_dr7xTNom9zTBNKc37NB4D-5GB5L114jfh1u-eQD3OnIGFs_qQ7DDKadqzP4dm16d_TT1b07hFqQamlP2FbXvL-xkQ0_xHChCDzYEEiN2tAWjoSR4vObxYcNIpIIKYdFN-Ahm49HxhyMeCRV4jW7Qiield-gehTw3iXPCpVaWmVUpmvCq8E7KtDSJtZX1wqZFpYwsSx-UopLzQWaFfAw7zXnjnwCzXgmJQ3J0ELEjWIeOXGVsGqQywpseiO536jpWGyfSi4Xe1EkmBDQioAkBLXrw-u-Qi3WpjW3CrwgjTccQ561NzCbAr6OCVrpfJBU6O7gRe7Dfwajj-VzqzW7qwZsO2k33lmVfRvQ3wvPl_Pv1fHlttU8pM1-hInu6fdFncIdE17Fq-7Czuvrhn6Nzs7IH7Q4-gN3-eDCYUHv47dMI28FoMv2CvbO0_wfwyfpD
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6V9AAX3oi0BfZAhQRaYXu9fiAhVEirlLZRBKnU23bXu1sRIrc0gbZ_it_ITOwlhUNuPe_Dlmf8zdg7830AL50XmYwrz2PhNU916rjW1nNvrXQyFpWIqFH4YJD1D9PPR_JoBX6HXhgqqwyYOAdqe1rRP_K3SYmRpSDCtA9nPzipRtHpapDQaNxiz11d4Cfb9P1uD-27mSQ726NPfd6qCvAKc4EZjwtnMUfwWaZjayObGFGkRiYYx8rcWSGSQsfGlMZFJslLqUVROC8l8a57keYC970Fqyl1tHZg9eP2YPglYL_Io7l8LP005yTHGc5R5816mGxREVjJieCFR_9Ewv_jwbWD2Xk7Ue11fXIt8u3ch7ttysq2Gh97ACuufgj3ghwEa9HhEZjekBP_s3vHhufffunqilOBB4FRfcK-It5f4CDrOaogwSl0RERuwUiPbcJoKU0cNcpBrNdKtyAETcKGj-HwRh72E-jUp7V7Csw4GQlckmFKigPeWEwdS20SL6SOnO5CFB6nqlp-c5LZmKgFMzNZQKEFFFlARV14_XfJWUPusWzyK7KRohcf961027-Ad0cUWmorj0tMr9D1u7ARzKhaRJiqhf924U0w7WJ4yWU3W-svJo-n4--X4-mlUS4hLgCJ0Lm2_KIv4HZ_dLCv9ncHe-twh5Y1lXIb0Jmd_3TPMLWameetPzM4vulX6A_snDHQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1ba9swFBalg7KXde02ljZb9bAx2BCxLcuXvYWlId0lBJZA3oRkSaVpcEuSbt2_3zmx1GSlFPYs6djkk44-51w-Qt5ZxzMRV47F3CmWqtQypYxjzhhhRcwrHmGh8I9hNpikX6di6nVOlyHbPYQkm5oG7NJUrzrXxnU2hW9AXDChqmTYLIXBN_sT8MYxbvRJ0g2umOfRWs0V_8NmqI4ZwpoPmfjnYrrvnrfipOvqntqp-nzrIuo_J888g6TdBvIDsmPrQ7If1BmoP6wviO6NGLZjtp_paHHxS1V_GOZboG-oz-lPcL-_YZD2LCZ0wBSM2CBKFOXR5hSX4sRxI-RDe15JBTzCPBh8SSb90_GXAfOKCqwCHrRicWEN8COXZSo2JjKJ5kWqRQJ3eJlbw3lSqFjrUttIJ3kpFC8K64TAnvOOpzl_RXbrq9q-JlRbEXFYkgFDhAGnDTC5UunEcaEiq1okCj-nrHy7cVS9mMtNo2REQAICEhGQUYt8vFty3fTaeGzyB8RI4jkEu5Xy5QTwdtjRSnbzuAS2AzuxRdoBRukP6FImJRCVAvvvtcinAO1m-JHHvvfobybPlrPL29nyVkubYGm-AE929F9WT8jeqNeX38-G347JUzTSpLG1ye5qcWPfAO9Z6bfrvf0X9qn4Vg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=DP-Share%3A+Privacy-Preserving+Software+Defect+Prediction+Model+Sharing+Through+Differential+Privacy&rft.jtitle=Journal+of+computer+science+and+technology&rft.au=Chen%2C+Xiang&rft.au=Zhang%2C+Dun&rft.au=Cui%2C+Zhan-Qi&rft.au=Gu%2C+Qing&rft.date=2019-09-01&rft.pub=Springer+Nature+B.V&rft.issn=1000-9000&rft.eissn=1860-4749&rft.volume=34&rft.issue=5&rft.spage=1020&rft.epage=1038&rft_id=info:doi/10.1007%2Fs11390-019-1958-0
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fjsjkxjsxb-e%2Fjsjkxjsxb-e.jpg