TDCS increases cortical excitability: Direct evidence from TMS–EEG
Despite transcranial direct current stimulation (tDCS) is increasingly used in experimental and clinical settings, its precise mechanisms of action remain largely unknown. At a neuronal level, tDCS modulates the resting membrane potential in a polarity-dependent fashion: anodal stimulation increases...
Saved in:
Published in | Cortex Vol. 58; pp. 99 - 111 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Kidlington
Elsevier Ltd
01.09.2014
Elsevier |
Subjects | |
Online Access | Get full text |
ISSN | 0010-9452 1973-8102 1973-8102 |
DOI | 10.1016/j.cortex.2014.05.003 |
Cover
Loading…
Abstract | Despite transcranial direct current stimulation (tDCS) is increasingly used in experimental and clinical settings, its precise mechanisms of action remain largely unknown. At a neuronal level, tDCS modulates the resting membrane potential in a polarity-dependent fashion: anodal stimulation increases cortical excitability in the stimulated region, while cathodal decreases it. So far, the neurophysiological underpinnings of the immediate and delayed effects of tDCS, and to what extent the stimulation of a given cerebral region may affect the activity of anatomically connected regions, remain unclear. In the present study, we used a combination of Transcranial Magnetic Stimulation (TMS) and Electroencephalography (EEG) in order to explore local and global cortical excitability modulation during and after active and sham tDCS. Single pulse TMS was delivered over the left posterior parietal cortex (PPC), before, during, and after 15 min of tDCS over the right PPC, while EEG was recorded from 60 channels.
For each session, indexes of global and local cerebral excitability were obtained, computed as global and local mean field power (Global Mean Field Power, GMFP and Local Mean Field Power, LMFP) on mean TMS-evoked potentials (TEPs) for three temporal windows: 0–50, 50–100, and 100–150 msec. The global index was computed on all 60 channels. The local indexes were computed in six clusters of electrodes: left and right in frontal, parietal and temporal regions.
GMFP increased, compared to baseline, both during and after active tDCS in the 0–100 msec temporal window. LMFP increased after the end of stimulation in parietal and frontal clusters bilaterally, while no difference was found in the temporal clusters. In sum, a diffuse rise of cortical excitability occurred, both during and after active tDCS. This evidence highlights the spreading of the effects of anodal tDCS over remote cortical regions of stimulated and contralateral hemispheres. |
---|---|
AbstractList | Despite transcranial direct current stimulation (tDCS) is increasingly used in experimental and clinical settings, its precise mechanisms of action remain largely unknown. At a neuronal level, tDCS modulates the resting membrane potential in a polarity-dependent fashion: anodal stimulation increases cortical excitability in the stimulated region, while cathodal decreases it. So far, the neurophysiological underpinnings of the immediate and delayed effects of tDCS, and to what extent the stimulation of a given cerebral region may affect the activity of anatomically connected regions, remain unclear. In the present study, we used a combination of Transcranial Magnetic Stimulation (TMS) and Electroencephalography (EEG) in order to explore local and global cortical excitability modulation during and after active and sham tDCS. Single pulse TMS was delivered over the left posterior parietal cortex (PPC), before, during, and after 15 min of tDCS over the right PPC, while EEG was recorded from 60 channels. For each session, indexes of global and local cerebral excitability were obtained, computed as global and local mean field power (Global Mean Field Power, GMFP and Local Mean Field Power, LMFP) on mean TMS-evoked potentials (TEPs) for three temporal windows: 0-50, 50-100, and 100-150 msec. The global index was computed on all 60 channels. The local indexes were computed in six clusters of electrodes: left and right in frontal, parietal and temporal regions. GMFP increased, compared to baseline, both during and after active tDCS in the 0-100 msec temporal window. LMFP increased after the end of stimulation in parietal and frontal clusters bilaterally, while no difference was found in the temporal clusters. In sum, a diffuse rise of cortical excitability occurred, both during and after active tDCS. This evidence highlights the spreading of the effects of anodal tDCS over remote cortical regions of stimulated and contralateral hemispheres.Despite transcranial direct current stimulation (tDCS) is increasingly used in experimental and clinical settings, its precise mechanisms of action remain largely unknown. At a neuronal level, tDCS modulates the resting membrane potential in a polarity-dependent fashion: anodal stimulation increases cortical excitability in the stimulated region, while cathodal decreases it. So far, the neurophysiological underpinnings of the immediate and delayed effects of tDCS, and to what extent the stimulation of a given cerebral region may affect the activity of anatomically connected regions, remain unclear. In the present study, we used a combination of Transcranial Magnetic Stimulation (TMS) and Electroencephalography (EEG) in order to explore local and global cortical excitability modulation during and after active and sham tDCS. Single pulse TMS was delivered over the left posterior parietal cortex (PPC), before, during, and after 15 min of tDCS over the right PPC, while EEG was recorded from 60 channels. For each session, indexes of global and local cerebral excitability were obtained, computed as global and local mean field power (Global Mean Field Power, GMFP and Local Mean Field Power, LMFP) on mean TMS-evoked potentials (TEPs) for three temporal windows: 0-50, 50-100, and 100-150 msec. The global index was computed on all 60 channels. The local indexes were computed in six clusters of electrodes: left and right in frontal, parietal and temporal regions. GMFP increased, compared to baseline, both during and after active tDCS in the 0-100 msec temporal window. LMFP increased after the end of stimulation in parietal and frontal clusters bilaterally, while no difference was found in the temporal clusters. In sum, a diffuse rise of cortical excitability occurred, both during and after active tDCS. This evidence highlights the spreading of the effects of anodal tDCS over remote cortical regions of stimulated and contralateral hemispheres. Despite transcranial direct current stimulation (tDCS) is increasingly used in experimental and clinical settings, its precise mechanisms of action remain largely unknown. At a neuronal level, tDCS modulates the resting membrane potential in a polarity-dependent fashion: anodal stimulation increases cortical excitability in the stimulated region, while cathodal decreases it. So far, the neurophysiological underpinnings of the immediate and delayed effects of tDCS, and to what extent the stimulation of a given cerebral region may affect the activity of anatomically connected regions, remain unclear. In the present study, we used a combination of Transcranial Magnetic Stimulation (TMS) and Electroencephalography (EEG) in order to explore local and global cortical excitability modulation during and after active and sham tDCS. Single pulse TMS was delivered over the left posterior parietal cortex (PPC), before, during, and after 15 min of tDCS over the right PPC, while EEG was recorded from 60 channels. For each session, indexes of global and local cerebral excitability were obtained, computed as global and local mean field power (Global Mean Field Power, GMFP and Local Mean Field Power, LMFP) on mean TMS-evoked potentials (TEPs) for three temporal windows: 0-50, 50-100, and 100-150 msec. The global index was computed on all 60 channels. The local indexes were computed in six clusters of electrodes: left and right in frontal, parietal and temporal regions. GMFP increased, compared to baseline, both during and after active tDCS in the 0-100 msec temporal window. LMFP increased after the end of stimulation in parietal and frontal clusters bilaterally, while no difference was found in the temporal clusters. In sum, a diffuse rise of cortical excitability occurred, both during and after active tDCS. This evidence highlights the spreading of the effects of anodal tDCS over remote cortical regions of stimulated and contralateral hemispheres. Despite transcranial direct current stimulation (tDCS) is increasingly used in experimental and clinical settings, its precise mechanisms of action remain largely unknown. At a neuronal level, tDCS modulates the resting membrane potential in a polarity-dependent fashion: anodal stimulation increases cortical excitability in the stimulated region, while cathodal decreases it. So far, the neurophysiological underpinnings of the immediate and delayed effects of tDCS, and to what extent the stimulation of a given cerebral region may affect the activity of anatomically connected regions, remain unclear. In the present study, we used a combination of Transcranial Magnetic Stimulation (TMS) and Electroencephalography (EEG) in order to explore local and global cortical excitability modulation during and after active and sham tDCS. Single pulse TMS was delivered over the left posterior parietal cortex (PPC), before, during, and after 15 min of tDCS over the right PPC, while EEG was recorded from 60 channels. For each session, indexes of global and local cerebral excitability were obtained, computed as global and local mean field power (Global Mean Field Power, GMFP and Local Mean Field Power, LMFP) on mean TMS-evoked potentials (TEPs) for three temporal windows: 0–50, 50–100, and 100–150 msec. The global index was computed on all 60 channels. The local indexes were computed in six clusters of electrodes: left and right in frontal, parietal and temporal regions. GMFP increased, compared to baseline, both during and after active tDCS in the 0–100 msec temporal window. LMFP increased after the end of stimulation in parietal and frontal clusters bilaterally, while no difference was found in the temporal clusters. In sum, a diffuse rise of cortical excitability occurred, both during and after active tDCS. This evidence highlights the spreading of the effects of anodal tDCS over remote cortical regions of stimulated and contralateral hemispheres. |
Author | Mattavelli, Giulia Pisoni, Alberto Opitz, Alexander Romero Lauro, Leonor J. Rosanova, Mario Convento, Silvia Vallar, Giuseppe Bolognini, Nadia |
Author_xml | – sequence: 1 givenname: Leonor J. surname: Romero Lauro fullname: Romero Lauro, Leonor J. email: leonor.romero1@unimib.it, l.romerolauro@gmail.com organization: Department of Psychology, University of Milano-Bicocca, P.za Ateneo Nuovo 1, Milano, Italy – sequence: 2 givenname: Mario surname: Rosanova fullname: Rosanova, Mario organization: Department of Biomedical and Clinical Sciences “L. Sacco”, University of Milano, Via GB Grassi 74, Milano, Italy – sequence: 3 givenname: Giulia surname: Mattavelli fullname: Mattavelli, Giulia organization: Department of Psychology, University of Milano-Bicocca, P.za Ateneo Nuovo 1, Milano, Italy – sequence: 4 givenname: Silvia surname: Convento fullname: Convento, Silvia organization: Department of Psychology, University of Milano-Bicocca, P.za Ateneo Nuovo 1, Milano, Italy – sequence: 5 givenname: Alberto surname: Pisoni fullname: Pisoni, Alberto organization: Department of Psychology, University of Milano-Bicocca, P.za Ateneo Nuovo 1, Milano, Italy – sequence: 6 givenname: Alexander surname: Opitz fullname: Opitz, Alexander organization: Department of Clinical Neurophysiology, Robert-Koch-Straße 40, Göttingen, Germany – sequence: 7 givenname: Nadia surname: Bolognini fullname: Bolognini, Nadia organization: Department of Psychology, University of Milano-Bicocca, P.za Ateneo Nuovo 1, Milano, Italy – sequence: 8 givenname: Giuseppe surname: Vallar fullname: Vallar, Giuseppe organization: Department of Psychology, University of Milano-Bicocca, P.za Ateneo Nuovo 1, Milano, Italy |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28725093$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/24998337$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkcFu1DAURS1URKeFP0AoGyQ2Ce_ZcWx3gYRmhoJUxKLD2nKdZ8mjTFLsTNXu-Af-kC8hYQaQWMDKm3Ov9e45Yyf90BNjzxEqBGxebys_pJHuKw5YVyArAPGILdAoUWoEfsIWAAilqSU_ZWc5bwE4aCmfsFNeG6OFUAu22qyW10XsfSKXKRdzZ_SuK-jex9HdxC6ODxfFKibyY0F3saXeUxHSsCs2H6-_f_22Xl8-ZY-D6zI9O77n7PO79Wb5vrz6dPlh-faq9MLwsUQpPYY6KG2aYCS2tWw9aqFROcnRtFLVQhM0aLxonNJOIw8BWlSBm8aJc_bq0Hubhi97yqPdxeyp61xPwz7b6QOuQQkBE_riiO5vdtTa2xR3Lj3YX5dPwMsj4PJ0b0iu9zH_4bTiEoyYuPrA-TTknCj8RhDsLMJu7UGEnUVYkHYSMcUu_orNc45x6MfkYve_8JtDmKYx7yIlm32cd29_arDtEP9d8AM5b6QT |
CODEN | CRTXAZ |
CitedBy_id | crossref_primary_10_1080_17470919_2014_946621 crossref_primary_10_1002_jnr_24690 crossref_primary_10_1186_s12868_018_0467_3 crossref_primary_10_3389_fnhum_2023_1247104 crossref_primary_10_3389_fnhum_2016_00138 crossref_primary_10_1016_j_concog_2023_103610 crossref_primary_10_3389_fnins_2019_00662 crossref_primary_10_1016_j_neuroimage_2018_05_078 crossref_primary_10_3389_fnins_2016_00140 crossref_primary_10_1016_j_clinph_2019_12_185 crossref_primary_10_1016_j_brs_2014_10_003 crossref_primary_10_1016_j_brs_2020_02_012 crossref_primary_10_1016_j_brs_2021_10_384 crossref_primary_10_1016_j_neurobiolaging_2019_07_009 crossref_primary_10_1016_j_appet_2017_03_006 crossref_primary_10_1016_j_clineuro_2023_107797 crossref_primary_10_3389_fnins_2020_572299 crossref_primary_10_1016_j_clinph_2020_06_015 crossref_primary_10_1016_j_brs_2017_12_010 crossref_primary_10_1016_j_clinph_2017_08_007 crossref_primary_10_1016_j_neuroimage_2021_118272 crossref_primary_10_1016_j_neuroscience_2021_05_001 crossref_primary_10_1016_j_neuroscience_2024_05_001 crossref_primary_10_1016_j_neuroimage_2023_120242 crossref_primary_10_1080_00207454_2017_1403440 crossref_primary_10_3389_fnins_2023_1212640 crossref_primary_10_1027_1016_9040_a000238 crossref_primary_10_1038_s41598_021_82275_4 crossref_primary_10_1586_17434440_2016_1153968 crossref_primary_10_3389_fpsyg_2024_1308971 crossref_primary_10_1016_j_brs_2023_02_010 crossref_primary_10_1016_j_bandc_2016_04_009 crossref_primary_10_3389_fnins_2018_00319 crossref_primary_10_3389_fnsys_2021_806544 crossref_primary_10_1016_j_neuroimage_2018_04_011 crossref_primary_10_1016_j_clinph_2020_10_003 crossref_primary_10_1016_j_neuropsychologia_2015_04_024 crossref_primary_10_1016_j_brs_2020_07_006 crossref_primary_10_1371_journal_pcbi_1011572 crossref_primary_10_1111_ner_12583 crossref_primary_10_1016_j_bandl_2024_105459 crossref_primary_10_1016_j_concog_2015_05_012 crossref_primary_10_3389_fpsyg_2016_00315 crossref_primary_10_1142_S0129065721500568 crossref_primary_10_3390_brainsci13040574 crossref_primary_10_1016_j_cortex_2015_03_023 crossref_primary_10_1016_j_clinph_2023_03_013 crossref_primary_10_1016_j_neuropsychologia_2014_11_025 crossref_primary_10_1080_09540261_2017_1297697 crossref_primary_10_1111_cns_13971 crossref_primary_10_3390_brainsci13040698 crossref_primary_10_3389_fnins_2019_00568 crossref_primary_10_1016_j_clinph_2023_03_010 crossref_primary_10_1002_eat_23046 crossref_primary_10_4103_1673_5374_172329 crossref_primary_10_29252_nirp_bcn_9_2_135 crossref_primary_10_3389_fpsyt_2022_969199 crossref_primary_10_31083_j_jin2301022 crossref_primary_10_1038_s41598_020_76956_9 crossref_primary_10_1038_s41598_020_72909_4 crossref_primary_10_3389_fpsyt_2024_1441533 crossref_primary_10_1016_j_clinph_2019_01_001 crossref_primary_10_1016_j_neulet_2023_137361 crossref_primary_10_3389_fnint_2018_00064 crossref_primary_10_3389_fpsyg_2022_813444 crossref_primary_10_1109_TNSRE_2018_2890001 crossref_primary_10_1113_JP287085 crossref_primary_10_1097_YCT_0000000000000510 crossref_primary_10_1016_j_neuroimage_2019_06_047 crossref_primary_10_1016_j_brs_2015_07_029 crossref_primary_10_3389_fpsyg_2017_00952 crossref_primary_10_1016_j_brs_2021_01_018 crossref_primary_10_3389_fnbeh_2018_00063 crossref_primary_10_3390_brainsci14040322 crossref_primary_10_1038_s41598_024_59927_2 crossref_primary_10_1016_j_brs_2019_03_008 crossref_primary_10_1111_ejn_14349 crossref_primary_10_5114_pq_2020_100282 crossref_primary_10_1155_2022_9419154 crossref_primary_10_1038_s41598_024_59468_8 crossref_primary_10_1016_j_clinph_2017_09_007 crossref_primary_10_1016_j_jneumeth_2022_109486 crossref_primary_10_3390_brainsci11020207 crossref_primary_10_3390_jcm11071845 crossref_primary_10_1186_s40345_024_00352_9 crossref_primary_10_3389_fnins_2017_00282 crossref_primary_10_5812_ipmn_141334 crossref_primary_10_1016_j_neuropsychologia_2019_01_003 crossref_primary_10_3389_fnins_2018_00258 crossref_primary_10_3389_fnbeh_2018_00337 crossref_primary_10_1038_s41598_021_87371_z crossref_primary_10_1371_journal_pone_0201128 crossref_primary_10_3389_fnbeh_2018_00333 crossref_primary_10_1002_aur_2312 crossref_primary_10_3389_fnbeh_2023_1216524 crossref_primary_10_1016_j_neuroimage_2016_06_003 crossref_primary_10_3390_brainsci13040640 crossref_primary_10_1016_j_neuropsychologia_2018_07_037 crossref_primary_10_3389_fnhum_2021_679977 crossref_primary_10_1016_j_neubiorev_2021_02_035 crossref_primary_10_1016_j_jneumeth_2022_109651 crossref_primary_10_1016_j_nicl_2017_01_025 crossref_primary_10_1016_j_brs_2018_12_227 crossref_primary_10_1186_s40101_017_0157_3 crossref_primary_10_1016_j_cortex_2017_05_004 crossref_primary_10_1002_hbm_24525 crossref_primary_10_1016_j_cortex_2014_10_022 crossref_primary_10_1186_s13063_017_2332_6 crossref_primary_10_1523_JNEUROSCI_2376_15_2015 crossref_primary_10_3389_fncir_2016_00073 crossref_primary_10_1002_hbm_25857 crossref_primary_10_1016_j_brainresbull_2020_12_013 crossref_primary_10_3389_fphar_2019_00032 crossref_primary_10_1016_j_neuroimage_2017_03_001 crossref_primary_10_3390_brainsci12050522 crossref_primary_10_1080_17470919_2016_1273133 crossref_primary_10_1016_j_bandc_2019_05_006 crossref_primary_10_1016_j_cortex_2018_11_022 crossref_primary_10_1371_journal_pone_0197192 crossref_primary_10_3389_fresc_2022_978257 crossref_primary_10_3389_fpsyt_2021_646569 crossref_primary_10_1038_s41380_020_00962_6 crossref_primary_10_1016_j_bandl_2017_11_001 crossref_primary_10_3390_brainsci13020285 crossref_primary_10_1371_journal_pone_0124137 crossref_primary_10_1523_ENEURO_0311_19_2019 crossref_primary_10_3389_fnhum_2018_00534 crossref_primary_10_1186_s12984_019_0581_1 crossref_primary_10_3390_brainsci12010071 crossref_primary_10_1097_WNR_0000000000001362 crossref_primary_10_1016_j_bandl_2020_104757 crossref_primary_10_1016_j_neuropsychologia_2017_06_005 crossref_primary_10_1177_10538135241296371 crossref_primary_10_12677_NS_2023_123052 crossref_primary_10_1016_j_cortex_2015_04_023 crossref_primary_10_1177_1059712320930753 crossref_primary_10_1117_1_JBO_20_4_046007 crossref_primary_10_1117_1_NPh_7_2_020901 crossref_primary_10_1093_cercor_bhx021 crossref_primary_10_2139_ssrn_4173661 crossref_primary_10_1007_s00429_022_02456_3 crossref_primary_10_1016_j_isci_2023_107430 crossref_primary_10_1038_s41380_024_02598_2 crossref_primary_10_3390_brainsci14090895 crossref_primary_10_1016_j_brainres_2020_147227 crossref_primary_10_1155_np_7853199 crossref_primary_10_3389_fpsyg_2020_00776 crossref_primary_10_4103_1673_5374_295315 crossref_primary_10_1016_j_brs_2014_10_009 crossref_primary_10_1371_journal_pone_0135371 crossref_primary_10_1016_j_arr_2022_101738 crossref_primary_10_12677_acm_2024_14112845 crossref_primary_10_1007_s10072_020_04527_x crossref_primary_10_1016_j_brainres_2021_147491 crossref_primary_10_1016_j_brs_2018_06_005 crossref_primary_10_1016_j_neubiorev_2016_03_006 crossref_primary_10_3389_fnhum_2016_00270 crossref_primary_10_1016_j_brs_2018_06_004 crossref_primary_10_1016_j_jbmt_2017_12_014 crossref_primary_10_1162_jocn_a_01514 crossref_primary_10_3389_fnhum_2023_1101490 crossref_primary_10_3389_fpsyg_2018_00867 crossref_primary_10_1016_j_brs_2022_01_010 crossref_primary_10_1016_j_jneumeth_2022_109677 crossref_primary_10_1007_s11065_023_09627_x crossref_primary_10_1016_j_brs_2015_01_411 |
Cites_doi | 10.1016/j.neuropsychologia.2011.10.015 10.1586/ern.12.78 10.3233/RNN-2011-0618 10.1016/j.pnpbp.2010.09.010 10.1016/j.neuroimage.2010.09.085 10.3791/50426 10.1113/jphysiol.2005.088310 10.1016/j.brainresbull.2005.11.003 10.1016/0013-4694(80)90419-8 10.1523/JNEUROSCI.4432-08.2009 10.1093/cercor/bhn032 10.1212/WNL.57.10.1899 10.1016/j.neuroimage.2013.06.076 10.1186/1743-0003-6-8 10.1038/sj.npp.1300517 10.1167/iovs.03-0688 10.1016/j.neuroimage.2011.06.069 10.1016/j.neuron.2009.08.028 10.1016/j.neuroimage.2010.12.004 10.1371/journal.pone.0010281 10.1007/s10548-012-0256-8 10.1177/1550059412444976 10.1097/00001756-199807130-00020 10.1111/j.1469-7793.2000.t01-1-00633.x 10.1016/j.neuropsychologia.2010.06.002 10.1016/j.neuroimage.2012.12.034 10.1002/mds.21012 10.1113/jphysiol.2005.092429 10.1097/WNR.0b013e32832e9aa2 10.1523/JNEUROSCI.0542-11.2011 10.1002/hbm.21479 10.1016/j.brainres.2010.06.053 10.1016/S1567-424X(09)70230-2 10.1007/s10548-009-0083-8 10.3389/fnint.2012.00038 10.1007/s00221-006-0733-y 10.1016/j.pain.2013.03.040 10.1017/S1461145707007833 10.1016/j.conb.2005.10.015 10.1080/09602011.2011.574050 10.1136/jnnp-2012-302825 10.1111/j.1460-9568.2010.07211.x 10.1007/s00221-011-2879-5 10.1016/S1388-2457(03)00362-6 10.1097/00001756-199711100-00024 10.1016/j.rehab.2012.09.001 10.1016/j.nurt.2009.01.003 10.1093/cercor/bhs014 10.1093/brain/awf238 10.1016/j.brainresbull.2007.01.004 10.1111/j.1526-4610.2012.02141.x 10.1155/2013/170256 10.1016/j.neuroimage.2011.06.018 10.1113/jphysiol.2003.049916 10.1016/j.brs.2011.08.006 10.1001/archgenpsychiatry.2012.147 10.1016/j.cortex.2008.03.007 10.1016/0014-4886(62)90056-0 10.1016/j.neuron.2010.03.035 10.1016/j.expneurol.2009.03.038 10.1523/JNEUROSCI.3887-12.2013 10.1007/s00221-011-2891-9 10.3233/RNN-2011-0609 10.1152/jn.1965.28.1.166 10.1016/j.neuroimage.2007.12.064 10.1016/j.jneumeth.2003.10.009 10.1016/j.clinph.2005.12.003 10.1016/j.brs.2008.06.004 10.1016/j.clinph.2009.08.016 10.1038/35094500 10.1016/j.neuroimage.2013.03.020 10.1016/j.neuropsychologia.2010.12.020 10.1111/j.1528-1167.2006.00426.x 10.1016/j.neuroimage.2009.09.026 10.1162/jocn_a_00347 10.1007/BF02513307 10.1038/196584a0 10.1016/j.jad.2009.02.015 10.1162/jocn_a_00293 10.1212/01.wnl.0000317060.43722.a3 10.1093/cercor/bhh085 10.1111/j.1460-9568.2005.04233.x 10.1126/science.1117256 10.1093/brain/awp154 10.1016/j.yebeh.2012.06.027 10.1002/hbm.21104 10.1016/j.neulet.2010.05.087 10.1016/j.clinph.2010.09.025 10.1016/j.neuroimage.2012.10.026 |
ContentType | Journal Article |
Copyright | 2014 Elsevier Ltd 2015 INIST-CNRS Copyright © 2014 Elsevier Ltd. All rights reserved. |
Copyright_xml | – notice: 2014 Elsevier Ltd – notice: 2015 INIST-CNRS – notice: Copyright © 2014 Elsevier Ltd. All rights reserved. |
DBID | AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1016/j.cortex.2014.05.003 |
DatabaseName | CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Anatomy & Physiology |
EISSN | 1973-8102 |
EndPage | 111 |
ExternalDocumentID | 24998337 28725093 10_1016_j_cortex_2014_05_003 S0010945214001580 |
Genre | Journal Article |
GroupedDBID | --- --K --M --Z .GJ .~1 0R~ 1B1 1~. 1~5 4.4 41~ 457 4G. 4H- 53G 5GY 5RE 5VS 6PF 7-5 71M 85S 8P~ AABNK AACTN AADFP AADPK AAEDT AAEDW AAGJA AAGUQ AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXLA AAXUO AAYJJ ABCQJ ABFNM ABIVO ABJNI ABMAC ABOYX ABXDB ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEZE ADMUD ADRHT AEBSH AEKER AENEX AETEA AFKWA AFTJW AFXIZ AFYLN AGHFR AGUBO AGWIK AGYEJ AI. AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CS3 DU5 E3Z EBS EFJIC EFLBG EJD EO9 EP2 EP3 F5P FA8 FDB FEDTE FGOYB FIRID FNPLU FYGXN GBLVA HVGLF HZ~ H~9 IHE J1W KOM M41 MO0 MOBAO N9A O-L O9- OAUVE OHT OKEIE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SEL SES SJN SPCBC SSB SSN SSY SSZ T5K TN5 UAP VH1 WH7 XOL XSB ZA5 ZGI ZKB ZXP ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO ADVLN ADXHL AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH IQODW CGR CUY CVF ECM EFKBS EIF NPM 7X8 |
ID | FETCH-LOGICAL-c392t-155c1f4f7896f951d45dc183817a5219d57438e0619c36a78a812ff0d17f296a3 |
IEDL.DBID | .~1 |
ISSN | 0010-9452 1973-8102 |
IngestDate | Fri Jul 11 12:32:21 EDT 2025 Mon Jul 21 05:30:58 EDT 2025 Wed Apr 02 07:21:48 EDT 2025 Tue Jul 01 02:48:38 EDT 2025 Thu Apr 24 23:12:06 EDT 2025 Fri Feb 23 02:22:50 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Cortical excitability TMS-EEG tDCS Posterior parietal cortex Human Cerebral cortex Central nervous system Electrophysiology Electroencephalography Experimental study Transcranial direct current stimulation Transcranial electrical stimulation Encephalon Parietal cortex |
Language | English |
License | CC BY 4.0 Copyright © 2014 Elsevier Ltd. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c392t-155c1f4f7896f951d45dc183817a5219d57438e0619c36a78a812ff0d17f296a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 24998337 |
PQID | 1552807330 |
PQPubID | 23479 |
PageCount | 13 |
ParticipantIDs | proquest_miscellaneous_1552807330 pubmed_primary_24998337 pascalfrancis_primary_28725093 crossref_primary_10_1016_j_cortex_2014_05_003 crossref_citationtrail_10_1016_j_cortex_2014_05_003 elsevier_sciencedirect_doi_10_1016_j_cortex_2014_05_003 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2014-09-01 |
PublicationDateYYYYMMDD | 2014-09-01 |
PublicationDate_xml | – month: 09 year: 2014 text: 2014-09-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Kidlington |
PublicationPlace_xml | – name: Kidlington – name: Italy |
PublicationTitle | Cortex |
PublicationTitleAlternate | Cortex |
PublicationYear | 2014 |
Publisher | Elsevier Ltd Elsevier |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier |
References | Opitz, Windhoff, Heidemann, Turner, Thielscher (bib72) 2011; 58 Keeser, Meindl, Bor, Palm, Pogarell, Mulert (bib45) 2011; 31 Dasilva, Mendonca, Zaghi, Lopes, Dossantos, Spierings (bib23) 2012; 52 Polania, Nitsche, Paulus (bib76) 2011; 32 Bindman, Lippold, Redfearn (bib9) 1962; 196 Fregni, Thome-Souza, Nitsche, Freedman, Valente, Pascual-Leone (bib35) 2006; 47 Bolognini, Olgiati, Rossetti, Maravita (bib13) 2010; 31 Boggio, Rigonatti, Ribeiro, Myczkowski, Nitsche, Pascual-Leone (bib10) 2008; 11 Miniussi, Brignani, Pellicciari (bib55) 2012; 43 Accornero, Voti, La Riccia, Gregori (bib1) 2007; 178 Casarotto, Canali, Rosanova, Pigorini, Fecchio, Mariotti (bib17) 2013; 26 Antal, Paulus, Nitsche (bib6) 2011; 29 Utz, Dimova, Oppenlander, Kerkhoff (bib88) 2010; 48 Casarotto, Romero Lauro, Bellina, Casali, Rosanova, Pigorini (bib18) 2010; 5 Creutzfeldt, Fromm, Kapp (bib21) 1962; 5 Huber, Maki, Rosanova, Casarotto, Canali, Casali (bib39) 2013; 23 Wirth, Rahman, Kuenecke, Koenig, Horn, Sommer (bib93) 2011; 49 Brunoni, Ferrucci, Bortolomasi, Vergari, Tadini, Boggio (bib15) 2011; 35 Critchley (bib22) 1953 Ferrucci, Bortolomasi, Vergari, Tadini, Salvoro, Giacopuzzi (bib31) 2009; 118 Antal, Lang, Boros, Nitsche, Siebner, Paulus (bib5) 2008; 18 Nitsche, Liebetanz, Antal, Lang, Tergau, Paulus (bib64) 2003; 56 Kirimoto, Ogata, Onishi, Oyama, Goto, Tobimatsu (bib47) 2011; 122 Pena-Gomez, Sala-Lonch, Junque, Clemente, Vidal, Bargallo (bib75) 2012; 5 Antal, Bikson, Datta, Lafon, Dechent, Parra (bib3) 2012; 85 Monti, Ferrucci, Fumagalli, Mameli, Cogiamanian, Ardolino, Priori (bib98) 2013; 84 Lehmann, Skrandies (bib49) 1980; 48 Nitsche, Cohen, Wassermann, Priori, Lang, Antal (bib60) 2008; 1 Nitsche, Paulus (bib68) 2011; 29 Massimini, Ferrarelli, Huber, Esser, Singh, Tononi (bib52) 2005; 309 Gomez Palacio Schjetnan, Faraji, Metz, Tatsuno, Luczak (bib97) 2013 Matsunaga, Nitsche, Tsuji, Rothwell (bib53) 2004; 115 Pellicciari, Brignani, Miniussi (bib74) 2013; 83 Rossi, Hallett, Rossini, Pascual-Leone (bib81) 2009; 120 Chen, Feng, Zhao, Yin, Wang (bib19) 2008; 41 Fritsch, Reis, Martinowich, Schambra, Ji, Cohen (bib36) 2010; 66 Gandiga, Hummel, Cohen (bib37) 2006; 117 Nitsche, Fricke, Henschke, Schlitterlau, Liebetanz, Lang (bib61) 2003; 553 Nitsche, Paulus (bib67) 2009; 6 Andersen, Cui (bib2) 2009; 63 Kandel, Beis, Le Chapelain, Guesdon, Paysant (bib44) 2012; 55 Ikkai, Curtis (bib40) 2011; 49 Nitsche, Grundey, Liebetanz, Lang, Tergau, Paulus (bib62) 2004; 14 Zaehle, Beretta, Jancke, Herrmann, Sandmann (bib94) 2011; 215 Zheng, Alsop, Schlaug (bib95) 2011; 58 Bolognini, Olgiati, Maravita, Ferraro, Fregni (bib12) 2013; 154 Faria, Fregni, Sebastião, Dias, Leal (bib29) 2012; 25 Purpura, McMurtry (bib80) 1965; 28 Windhoff, Opitz, Thielscher (bib92) 2013; 34 Nitsche, Paulus (bib65) 2000; 527 Stagg, Lin, Mezue, Segerdahl, Kong, Xie (bib86) 2013; 33 Berryhill, Wencil, Branch Coslett, Olson (bib8) 2010; 479 Ardolino, Bossi, Barbieri, Priori (bib7) 2005; 568 Stagg, Best, Stephenson, O'Shea, Wylezinska, Kincses (bib85) 2009; 29 Nitsche, Boggio, Fregni, Pascual-Leone (bib59) 2009; 219 Fregni, Boggio, Santos, Lima, Vieira, Rigonatti (bib34) 2006; 21 Jacobson, Koslowsky, Lavidor (bib43) 2012; 216 Stone, Tesche (bib87) 2009; 20 Mattavelli, Rosanova, Casali, Papagno, Romero Lauro (bib54) 2013; 76 Ferrucci, Mameli, Guidi, Mrakic-Sposta, Vergari, Marceglia (bib32) 2008; 71 Polania, Paulus, Antal, Nitsche (bib77) 2011; 54 Esser, Huber, Massimini, Peterson, Ferrarelli, Tononi (bib28) 2006; 69 Mylius, Ayache, Zouari, Aoun-Sebaiti, Farhat, Lefaucheur (bib58) 2012; 12 Doron, Gazzaniga (bib27) 2008; 44 Nitsche, Jaussi, Liebetanz, Lang, Tergau, Paulus (bib63) 2004; 29 O'Connell, Wand, Marston, Spencer, Desouza (bib70) 2011; 47 Poreisz, Boros, Antal, Paulus (bib78) 2007; 72 Ilmoniemi, Virtanen, Ruohonen, Karhu, Aronen, Naatanen (bib41) 1997; 8 Lang, Siebner, Ward, Lee, Nitsche, Paulus (bib48) 2005; 22 Keeser, Padberg, Reisinger, Pogarell, Kirsch, Palm (bib46) 2011; 55 Liebetanz, Nitsche, Tergau, Paulus (bib50) 2002; 125 Bolognini, Pascual-Leone, Fregni (bib14) 2009; 6 Schestatsky, Morales-Quezada, Fregni (bib82) 2013 Sparing, Thimm, Hesse, Küst, Karbe, Fink (bib99) 2009; 132 Nitsche, Paulus (bib66) 2001; 57 Shomstein (bib83) 2012; 6 Convento, Vallar, Galantini, Bolognini (bib20) 2013; 25 Antal, Kincses, Nitsche, Bartfai, Paulus (bib4) 2004; 45 Delorme, Makeig (bib24) 2004; 134 Miniussi, Thut (bib56) 2010; 22 Nitsche, Seeber, Frommann, Klein, Rochford, Nitsche (bib69) 2005; 568 Miranda, Mekonnen, Salvador, Ruffini (bib57) 2013; 70 Virtanen, Ruohonen, Naatanen, Ilmoniemi (bib91) 1999; 37 Casali, Casarotto, Rosanova, Mariotti, Massimini (bib16) 2010; 49 Faria, Leal, Miranda (bib30) 2009 Bolognini, Fregni, Casati, Olgiati, Vallar (bib11) 2010; 1349 Mancini, Bolognini, Haggard, Vallar (bib51) 2012; 24 Ferrarelli, Sarasso, Guller, Riedner, Peterson, Bellesi (bib96) 2012; 69 Fogassi, Luppino (bib33) 2005; 15 Priori, Berardelli, Rona, Accornero, Manfredi (bib79) 1998; 9 Gusnard, Raichle (bib38) 2001; 2 Vallar, Bolognini (bib89) 2011; 21 Casarotto (10.1016/j.cortex.2014.05.003_bib17) 2013; 26 Fregni (10.1016/j.cortex.2014.05.003_bib35) 2006; 47 Miniussi (10.1016/j.cortex.2014.05.003_bib56) 2010; 22 Ferrarelli (10.1016/j.cortex.2014.05.003_bib96) 2012; 69 Convento (10.1016/j.cortex.2014.05.003_bib20) 2013; 25 Mattavelli (10.1016/j.cortex.2014.05.003_bib54) 2013; 76 Bolognini (10.1016/j.cortex.2014.05.003_bib13) 2010; 31 Opitz (10.1016/j.cortex.2014.05.003_bib72) 2011; 58 Monti (10.1016/j.cortex.2014.05.003_bib98) 2013; 84 Gusnard (10.1016/j.cortex.2014.05.003_bib38) 2001; 2 Ferrucci (10.1016/j.cortex.2014.05.003_bib32) 2008; 71 Nitsche (10.1016/j.cortex.2014.05.003_bib66) 2001; 57 Nitsche (10.1016/j.cortex.2014.05.003_bib61) 2003; 553 Utz (10.1016/j.cortex.2014.05.003_bib88) 2010; 48 Casali (10.1016/j.cortex.2014.05.003_bib16) 2010; 49 Keeser (10.1016/j.cortex.2014.05.003_bib46) 2011; 55 Delorme (10.1016/j.cortex.2014.05.003_bib24) 2004; 134 Critchley (10.1016/j.cortex.2014.05.003_bib22) 1953 Dasilva (10.1016/j.cortex.2014.05.003_bib23) 2012; 52 Miranda (10.1016/j.cortex.2014.05.003_bib57) 2013; 70 Fogassi (10.1016/j.cortex.2014.05.003_bib33) 2005; 15 Fregni (10.1016/j.cortex.2014.05.003_bib34) 2006; 21 Stagg (10.1016/j.cortex.2014.05.003_bib86) 2013; 33 Windhoff (10.1016/j.cortex.2014.05.003_bib92) 2013; 34 Nitsche (10.1016/j.cortex.2014.05.003_bib62) 2004; 14 Poreisz (10.1016/j.cortex.2014.05.003_bib78) 2007; 72 Brunoni (10.1016/j.cortex.2014.05.003_bib15) 2011; 35 Bolognini (10.1016/j.cortex.2014.05.003_bib12) 2013; 154 Polania (10.1016/j.cortex.2014.05.003_bib76) 2011; 32 Jacobson (10.1016/j.cortex.2014.05.003_bib43) 2012; 216 Ilmoniemi (10.1016/j.cortex.2014.05.003_bib41) 1997; 8 Matsunaga (10.1016/j.cortex.2014.05.003_bib53) 2004; 115 Creutzfeldt (10.1016/j.cortex.2014.05.003_bib21) 1962; 5 Massimini (10.1016/j.cortex.2014.05.003_bib52) 2005; 309 Nitsche (10.1016/j.cortex.2014.05.003_bib69) 2005; 568 Nitsche (10.1016/j.cortex.2014.05.003_bib65) 2000; 527 Sparing (10.1016/j.cortex.2014.05.003_bib99) 2009; 132 Zheng (10.1016/j.cortex.2014.05.003_bib95) 2011; 58 Doron (10.1016/j.cortex.2014.05.003_bib27) 2008; 44 Virtanen (10.1016/j.cortex.2014.05.003_bib91) 1999; 37 Kirimoto (10.1016/j.cortex.2014.05.003_bib47) 2011; 122 Accornero (10.1016/j.cortex.2014.05.003_bib1) 2007; 178 Chen (10.1016/j.cortex.2014.05.003_bib19) 2008; 41 Rossi (10.1016/j.cortex.2014.05.003_bib81) 2009; 120 Mancini (10.1016/j.cortex.2014.05.003_bib51) 2012; 24 Nitsche (10.1016/j.cortex.2014.05.003_bib67) 2009; 6 Wirth (10.1016/j.cortex.2014.05.003_bib93) 2011; 49 Ikkai (10.1016/j.cortex.2014.05.003_bib40) 2011; 49 Bolognini (10.1016/j.cortex.2014.05.003_bib11) 2010; 1349 Nitsche (10.1016/j.cortex.2014.05.003_bib68) 2011; 29 Andersen (10.1016/j.cortex.2014.05.003_bib2) 2009; 63 Antal (10.1016/j.cortex.2014.05.003_bib6) 2011; 29 Lehmann (10.1016/j.cortex.2014.05.003_bib49) 1980; 48 Polania (10.1016/j.cortex.2014.05.003_bib77) 2011; 54 Bindman (10.1016/j.cortex.2014.05.003_bib9) 1962; 196 Ardolino (10.1016/j.cortex.2014.05.003_bib7) 2005; 568 Ferrucci (10.1016/j.cortex.2014.05.003_bib31) 2009; 118 Zaehle (10.1016/j.cortex.2014.05.003_bib94) 2011; 215 Esser (10.1016/j.cortex.2014.05.003_bib28) 2006; 69 Miniussi (10.1016/j.cortex.2014.05.003_bib55) 2012; 43 Bolognini (10.1016/j.cortex.2014.05.003_bib14) 2009; 6 Mylius (10.1016/j.cortex.2014.05.003_bib58) 2012; 12 Nitsche (10.1016/j.cortex.2014.05.003_bib59) 2009; 219 Casarotto (10.1016/j.cortex.2014.05.003_bib18) 2010; 5 Schestatsky (10.1016/j.cortex.2014.05.003_bib82) 2013 O'Connell (10.1016/j.cortex.2014.05.003_bib70) 2011; 47 Liebetanz (10.1016/j.cortex.2014.05.003_bib50) 2002; 125 Berryhill (10.1016/j.cortex.2014.05.003_bib8) 2010; 479 Pena-Gomez (10.1016/j.cortex.2014.05.003_bib75) 2012; 5 Nitsche (10.1016/j.cortex.2014.05.003_bib63) 2004; 29 Priori (10.1016/j.cortex.2014.05.003_bib79) 1998; 9 Kandel (10.1016/j.cortex.2014.05.003_bib44) 2012; 55 Faria (10.1016/j.cortex.2014.05.003_bib29) 2012; 25 Huber (10.1016/j.cortex.2014.05.003_bib39) 2013; 23 Pellicciari (10.1016/j.cortex.2014.05.003_bib74) 2013; 83 Stagg (10.1016/j.cortex.2014.05.003_bib85) 2009; 29 Antal (10.1016/j.cortex.2014.05.003_bib3) 2012; 85 Fritsch (10.1016/j.cortex.2014.05.003_bib36) 2010; 66 Shomstein (10.1016/j.cortex.2014.05.003_bib83) 2012; 6 Vallar (10.1016/j.cortex.2014.05.003_bib89) 2011; 21 Faria (10.1016/j.cortex.2014.05.003_bib30) 2009 Antal (10.1016/j.cortex.2014.05.003_bib4) 2004; 45 Boggio (10.1016/j.cortex.2014.05.003_bib10) 2008; 11 Gomez Palacio Schjetnan (10.1016/j.cortex.2014.05.003_bib97) 2013 Purpura (10.1016/j.cortex.2014.05.003_bib80) 1965; 28 Keeser (10.1016/j.cortex.2014.05.003_bib45) 2011; 31 Stone (10.1016/j.cortex.2014.05.003_bib87) 2009; 20 Antal (10.1016/j.cortex.2014.05.003_bib5) 2008; 18 Gandiga (10.1016/j.cortex.2014.05.003_bib37) 2006; 117 Lang (10.1016/j.cortex.2014.05.003_bib48) 2005; 22 Nitsche (10.1016/j.cortex.2014.05.003_bib60) 2008; 1 Nitsche (10.1016/j.cortex.2014.05.003_bib64) 2003; 56 25479701 - Cortex. 2016 Jan;74:320-2 26073443 - Cortex. 2016 Jan;74:323-8 |
References_xml | – volume: 15 start-page: 626 year: 2005 end-page: 631 ident: bib33 article-title: Motor functions of the parietal lobe publication-title: Current Opinion in Neurobiology – volume: 11 start-page: 249 year: 2008 end-page: 254 ident: bib10 article-title: A randomized, double-blind clinical trial on the efficacy of cortical direct current stimulation for the treatment of major depression publication-title: The International Journal of Neuropsychopharmacology – volume: 58 start-page: 849 year: 2011 end-page: 859 ident: bib72 article-title: How the brain tissue shapes the electric field induced by transcranial magnetic stimulation publication-title: NeuroImage – volume: 66 start-page: 198 year: 2010 end-page: 204 ident: bib36 article-title: Direct current stimulation promotes BDNF-dependent synaptic plasticity: potential implications for motor learning publication-title: Neuron – volume: 55 start-page: 644 year: 2011 end-page: 657 ident: bib46 article-title: Prefrontal direct current stimulation modulates resting EEG and event-related potentials in healthy subjects: a standardized low resolution tomography (sLORETA) study publication-title: NeuroImage – volume: 22 start-page: 249 year: 2010 end-page: 256 ident: bib56 article-title: Combining TMS and EEG offers new prospects in cognitive neuroscience publication-title: Brain Topography – volume: 134 start-page: 9 year: 2004 end-page: 21 ident: bib24 article-title: EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis publication-title: Journal of Neuroscience Methods – volume: 25 start-page: 417 year: 2012 end-page: 425 ident: bib29 article-title: Feasibility of focal transcranial DC polarization with simultaneous EEG recording: Preliminary assessment in healthy subjects and human epilepsy publication-title: Epilepsy & Behavior – volume: 55 start-page: 657 year: 2012 end-page: 680 ident: bib44 article-title: Non-invasive cerebral stimulation for the upper limb rehabilitation after stroke: a review publication-title: Annals of Physical and Rehabilitation Medicine – volume: 31 start-page: 1800 year: 2010 end-page: 1806 ident: bib13 article-title: Enhancing multisensory spatial orienting by brain polarization of the parietal cortex publication-title: European Journal of Neuroscience – volume: 5 start-page: e10281 year: 2010 ident: bib18 article-title: EEG responses to TMS are sensitive to changes in the perturbation parameters and repeatable over time publication-title: PLoS One – volume: 125 start-page: 2238 year: 2002 end-page: 2247 ident: bib50 article-title: Pharmacological approach to the mechanisms of transcranial DC-stimulation-induced after-effects of human motor cortex excitability publication-title: Brain – volume: 83 start-page: 569 year: 2013 end-page: 580 ident: bib74 article-title: Excitability modulation of the motor system induced by transcranial direct current stimulation: a multimodal approach publication-title: NeuroImage – volume: 47 start-page: 335 year: 2006 end-page: 342 ident: bib35 article-title: A controlled clinical trial of cathodal DC polarization in patients with refractory epilepsy publication-title: Epilepsia – volume: 48 start-page: 609 year: 1980 end-page: 621 ident: bib49 article-title: Reference-free identification of components of checkerboard-evoked multichannel potential fields publication-title: Electroencephalography and Clinical Neurophysiology – volume: 6 start-page: 8 year: 2009 ident: bib14 article-title: Using non-invasive brain stimulation to augment motor training-induced plasticity publication-title: Journal of Neuroengineering and Rehabilitation – volume: 21 start-page: 618 year: 2011 end-page: 649 ident: bib89 article-title: Behavioural facilitation following brain stimulation: implications for neurorehabilitation publication-title: Neuropsychological Rehabilitation – volume: 216 start-page: 1 year: 2012 end-page: 10 ident: bib43 article-title: tDCS polarity effects in motor and cognitive domains: a meta-analytical review publication-title: Experimental Brain Research – volume: 14 start-page: 1240 year: 2004 end-page: 1245 ident: bib62 article-title: Catecholaminergic consolidation of motor cortical neuroplasticity in humans publication-title: Cerebral Cortex – volume: 20 start-page: 1115 year: 2009 end-page: 1119 ident: bib87 article-title: Transcranial direct current stimulation modulates shifts in global/local attention publication-title: NeuroReport – volume: 6 start-page: 38 year: 2012 ident: bib83 article-title: Cognitive functions of the posterior parietal cortex: top-down and bottom-up attentional control publication-title: Frontiers in Integrative Neuroscience – volume: 45 start-page: 702 year: 2004 end-page: 707 ident: bib4 article-title: Excitability changes induced in the human primary visual cortex by transcranial direct current stimulation: direct electrophysiological evidence publication-title: Investigative Ophthalmology & Visual Science – volume: 2 start-page: 685 year: 2001 end-page: 694 ident: bib38 article-title: Searching for a baseline: functional imaging and the resting human brain publication-title: Nature Reviews Neuroscience – volume: 76 start-page: 24 year: 2013 end-page: 32 ident: bib54 article-title: Top-down interference and cortical responsiveness in face processing: a TMS-EEG study publication-title: NeuroImage – volume: 84 start-page: 832 year: 2013 end-page: 842 ident: bib98 article-title: Transcranial direct current stimulation (tDCS) and language publication-title: Journal of Neurology, Neurosurgery & Psychiatry – year: 2013 ident: bib82 article-title: Simultaneous EEG monitoring during transcranial direct current stimulation publication-title: Journal of Visualized Experiments – volume: 115 start-page: 456 year: 2004 end-page: 460 ident: bib53 article-title: Effect of transcranial DC sensorimotor cortex stimulation on somatosensory evoked potentials in humans publication-title: Clinical Neurophysiology – volume: 28 start-page: 166 year: 1965 end-page: 185 ident: bib80 article-title: Intracellular activities and evoked potential changes during polarization of motor cortex publication-title: Journal of Neurophysiology – volume: 5 start-page: 436 year: 1962 end-page: 452 ident: bib21 article-title: Influence of transcortical d-c currents on cortical neuronal activity publication-title: Experimental Neurology – volume: 41 start-page: 561 year: 2008 end-page: 574 ident: bib19 article-title: EEG default mode network in the human brain: spectral regional field powers publication-title: NeuroImage – volume: 57 start-page: 1899 year: 2001 end-page: 1901 ident: bib66 article-title: Sustained excitability elevations induced by transcranial DC motor cortex stimulation in humans publication-title: Neurology – volume: 120 start-page: 2008 year: 2009 end-page: 2039 ident: bib81 article-title: Safety, ethical considerations, and application guidelines for the use of transcranial magnetic stimulation in clinical practice and research publication-title: Clinical Neurophysiology – volume: 26 start-page: 326 year: 2013 end-page: 337 ident: bib17 article-title: Assessing the effects of electroconvulsive therapy on cortical excitability by means of transcranial magnetic stimulation and electroencephalography publication-title: Brain Topography – volume: 21 start-page: 1693 year: 2006 end-page: 1702 ident: bib34 article-title: Noninvasive cortical stimulation with transcranial direct current stimulation in Parkinson's disease publication-title: Movement Disorders – volume: 1349 start-page: 76 year: 2010 end-page: 89 ident: bib11 article-title: Brain polarization of parietal cortex augments training-induced improvement of visual exploratory and attentional skills publication-title: Brain Research – volume: 43 start-page: 184 year: 2012 end-page: 191 ident: bib55 article-title: Combining transcranial electrical stimulation with electroencephalography: a multimodal approach publication-title: Clinical EEG and Neuroscience – volume: 12 start-page: 983 year: 2012 end-page: 991 ident: bib58 article-title: Stroke rehabilitation using noninvasive cortical stimulation: hemispatial neglect publication-title: Expert Review of Neurotherapeutics – volume: 22 start-page: 495 year: 2005 end-page: 504 ident: bib48 article-title: How does transcranial DC stimulation of the primary motor cortex alter regional neuronal activity in the human brain? publication-title: The European Journal of Neuroscience – volume: 1 start-page: 206 year: 2008 end-page: 223 ident: bib60 article-title: Transcranial direct current stimulation: state of the art 2008 publication-title: Brain Stimulation – volume: 479 start-page: 312 year: 2010 end-page: 316 ident: bib8 article-title: A selective working memory impairment after transcranial direct current stimulation to the right parietal lobe publication-title: Neuroscience Letter – volume: 71 start-page: 493 year: 2008 end-page: 498 ident: bib32 article-title: Transcranial direct current stimulation improves recognition memory in Alzheimer disease publication-title: Neurology – volume: 47 start-page: 309 year: 2011 end-page: 326 ident: bib70 article-title: Non-invasive brain stimulation techniques for chronic pain. A report of a Cochrane systematic review and meta-analysis publication-title: European Journal of Physical and Rehabilitation Medicine – volume: 132 start-page: 3011 year: 2009 end-page: 3020 ident: bib99 article-title: Bidirectional alterations of interhemispheric parietal balance by non-invasive cortical stimulation publication-title: Brain – volume: 29 start-page: 463 year: 2011 end-page: 492 ident: bib68 article-title: Transcranial direct current stimulation–update 2011 publication-title: Restorative Neurology and Neuroscience – start-page: 1596 year: 2009 end-page: 1599 ident: bib30 article-title: Comparing different electrode configurations using the 10-10 international system in tDCS: a finite element model analysis publication-title: Conf Proc IEEE Eng Med Biol Soc, 2009 – volume: 568 start-page: 291 year: 2005 end-page: 303 ident: bib69 article-title: Modulating parameters of excitability during and after transcranial direct current stimulation of the human motor cortex publication-title: The Journal of Physiology – volume: 49 start-page: 1428 year: 2011 end-page: 1434 ident: bib40 article-title: Common neural mechanisms supporting spatial working memory, attention and motor intention publication-title: Neuropsychologia – volume: 49 start-page: 1459 year: 2010 end-page: 1468 ident: bib16 article-title: General indices to characterize the electrical response of the cerebral cortex to TMS publication-title: NeuroImage – volume: 5 start-page: 252 year: 2012 end-page: 263 ident: bib75 article-title: Modulation of large-scale brain networks by transcranial direct current stimulation evidenced by resting-state functional MRI publication-title: Brain Stimulation – volume: 6 start-page: 244 year: 2009 end-page: 250 ident: bib67 article-title: Noninvasive brain stimulation protocols in the treatment of epilepsy: current state and perspectives publication-title: Neurotherapeutics – volume: 56 start-page: 255 year: 2003 end-page: 276 ident: bib64 article-title: Modulation of cortical excitability by weak direct current stimulation–technical, safety and functional aspects publication-title: Supplements to Clinical Neurophysiology – volume: 118 start-page: 215 year: 2009 end-page: 219 ident: bib31 article-title: Transcranial direct current stimulation in severe, drug-resistant major depression publication-title: Journal of Affective Disorders – volume: 23 start-page: 332 year: 2013 end-page: 338 ident: bib39 article-title: Human cortical excitability increases with time awake publication-title: Cerebral Cortex – volume: 215 start-page: 135 year: 2011 end-page: 140 ident: bib94 article-title: Excitability changes induced in the human auditory cortex by transcranial direct current stimulation: direct electrophysiological evidence publication-title: Experimental Brain Research – volume: 37 start-page: 322 year: 1999 end-page: 326 ident: bib91 article-title: Instrumentation for the measurement of electric brain responses to transcranial magnetic stimulation publication-title: Medical and Biological Engineering and Computing – volume: 69 start-page: 766 year: 2012 end-page: 774 ident: bib96 article-title: Reduced natural oscillatory frequency of frontal thalamocortical circuits in schizophrenia publication-title: Archives of General Psychiatry – volume: 154 start-page: 1274 year: 2013 end-page: 1280 ident: bib12 article-title: Motor and parietal cortex stimulation for phantom limb pain and sensations publication-title: Pain – volume: 25 start-page: 685 year: 2013 end-page: 696 ident: bib20 article-title: Neuromodulation of early multisensory interactions in the visual cortex publication-title: Journal of Cognitive Neuroscience – volume: 58 start-page: 26 year: 2011 end-page: 33 ident: bib95 article-title: Effects of transcranial direct current stimulation (tDCS) on human regional cerebral blood flow publication-title: NeuroImage – volume: 29 start-page: 365 year: 2011 end-page: 374 ident: bib6 article-title: Electrical stimulation and visual network plasticity publication-title: Restorative Neurology and Neuroscience – volume: 52 start-page: 1283 year: 2012 end-page: 1295 ident: bib23 article-title: tDCS-induced analgesia and electrical fields in pain-related neural networks in chronic migraine publication-title: Headache – volume: 69 start-page: 86 year: 2006 end-page: 94 ident: bib28 article-title: A direct demonstration of cortical LTP in humans: a combined TMS/EEG study publication-title: Brain Research Bulletin – volume: 70 start-page: 48 year: 2013 end-page: 58 ident: bib57 article-title: The electric field in the cortex during transcranial current stimulation publication-title: NeuroImage – volume: 29 start-page: 5202 year: 2009 end-page: 5206 ident: bib85 article-title: Polarity-sensitive modulation of cortical neurotransmitters by transcranial stimulation publication-title: The Journal of Neuroscience – volume: 568 start-page: 653 year: 2005 end-page: 663 ident: bib7 article-title: Non-synaptic mechanisms underlie the after-effects of cathodal transcutaneous direct current stimulation of the human brain publication-title: The Journal of Physiology – volume: 48 start-page: 2789 year: 2010 end-page: 2810 ident: bib88 article-title: Electrified minds: transcranial direct current stimulation (tDCS) and galvanic vestibular stimulation (GVS) as methods of non-invasive brain stimulation in neuropsychology – a review of current data and future implications publication-title: Neuropsychologia – volume: 49 start-page: 3989 year: 2011 end-page: 3998 ident: bib93 article-title: Effects of transcranial direct current stimulation (tDCS) on behaviour and electrophysiology of language production publication-title: Neuropsychologia – year: 2013 ident: bib97 article-title: Transcranial direct current stimulation in stroke rehabilitation: a review of recent advancements publication-title: Stroke Research and Treatment – volume: 122 start-page: 777 year: 2011 end-page: 783 ident: bib47 article-title: Transcranial direct current stimulation over the motor association cortex induces plastic changes in ipsilateral primary motor and somatosensory cortices publication-title: Clinical Neurophysiology – volume: 219 start-page: 14 year: 2009 end-page: 19 ident: bib59 article-title: Treatment of depression with transcranial direct current stimulation (tDCS): a review publication-title: Experimental Neurology – volume: 85 start-page: 1040 year: 2012 end-page: 1047 ident: bib3 article-title: Imaging artifacts induced by electrical stimulation during conventional fMRI of the brain publication-title: NeuroImage – volume: 63 start-page: 568 year: 2009 end-page: 583 ident: bib2 article-title: Intention, action planning, and decision making in parietal-frontal circuits publication-title: Neuron – volume: 18 start-page: 2701 year: 2008 end-page: 2705 ident: bib5 article-title: Homeostatic metaplasticity of the motor cortex is altered during headache-free intervals in migraine with aura publication-title: Cerebral Cortex – volume: 196 start-page: 584 year: 1962 end-page: 585 ident: bib9 article-title: Long-lasting changes in the level of the electrical activity of the cerebral cortex produced bypolarizing currents publication-title: Nature – volume: 8 start-page: 3537 year: 1997 end-page: 3540 ident: bib41 article-title: Neuronal responses to magnetic stimulation reveal cortical reactivity and connectivity publication-title: NeuroReport – volume: 527 start-page: 633 year: 2000 end-page: 639 ident: bib65 article-title: Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation publication-title: The Journal of Physiology – volume: 117 start-page: 845 year: 2006 end-page: 850 ident: bib37 article-title: Transcranial DC stimulation (tDCS): a tool for double-blind sham-controlled clinical studies in brain stimulation publication-title: Clinical Neurophysiology – volume: 29 start-page: 1573 year: 2004 end-page: 1578 ident: bib63 article-title: Consolidation of human motor cortical neuroplasticity by D-cycloserine publication-title: Neuropsychopharmacology – year: 1953 ident: bib22 article-title: The parietal lobes – volume: 178 start-page: 261 year: 2007 end-page: 266 ident: bib1 article-title: Visual evoked potentials modulation during direct current cortical polarization publication-title: Experimental Brain Research – volume: 35 start-page: 96 year: 2011 end-page: 101 ident: bib15 article-title: Transcranial direct current stimulation (tDCS) in unipolar vs. bipolar depressive disorder publication-title: Progress in Neuro-psychopharmacology & Biological Psychiatry – volume: 44 start-page: 1023 year: 2008 end-page: 1029 ident: bib27 article-title: Neuroimaging techniques offer new perspectives on callosal transfer and interhemispheric communication publication-title: Cortex – volume: 54 start-page: 2287 year: 2011 end-page: 2296 ident: bib77 article-title: Introducing graph theory to track for neuroplastic alterations in the resting human brain: a transcranial direct current stimulation study publication-title: NeuroImage – volume: 31 start-page: 15284 year: 2011 end-page: 15293 ident: bib45 article-title: Prefrontal transcranial direct current stimulation changes connectivity of resting-state networks during fMRI publication-title: The Journal of Neuroscience – volume: 309 start-page: 2228 year: 2005 end-page: 2232 ident: bib52 article-title: Breakdown of cortical effective connectivity during sleep publication-title: Science – volume: 33 start-page: 11425 year: 2013 end-page: 11431 ident: bib86 article-title: Widespread modulation of cerebral perfusion induced during and after transcranial direct current stimulation applied to the left dorsolateral prefrontal cortex publication-title: The Journal of Neuroscience – volume: 32 start-page: 1236 year: 2011 end-page: 1249 ident: bib76 article-title: Modulating functional connectivity patterns and topological functional organization of the human brain with transcranial direct current stimulation publication-title: Human Brain Mapping – volume: 72 start-page: 208 year: 2007 end-page: 214 ident: bib78 article-title: Safety aspects of transcranial direct current stimulation concerning healthy subjects and patients publication-title: Brain Research Bulletin – volume: 553 start-page: 293 year: 2003 end-page: 301 ident: bib61 article-title: Pharmacological modulation of cortical excitability shifts induced by transcranial direct current stimulation in humans publication-title: The Journal of Physiology – volume: 34 start-page: 923 year: 2013 end-page: 935 ident: bib92 article-title: Electric field calculations in brain stimulation based on finite elements: an optimized processing pipeline for the generation and usage of accurate individual head models publication-title: Human Brain Mapping – volume: 9 start-page: 2257 year: 1998 end-page: 2260 ident: bib79 article-title: Polarization of the human motor cortex through the scalp publication-title: NeuroReport – volume: 24 start-page: 2419 year: 2012 end-page: 2427 ident: bib51 article-title: tDCS modulation of visually induced analgesia publication-title: Journal of Cognitive Neuroscience – volume: 49 start-page: 3989 issue: 14 year: 2011 ident: 10.1016/j.cortex.2014.05.003_bib93 article-title: Effects of transcranial direct current stimulation (tDCS) on behaviour and electrophysiology of language production publication-title: Neuropsychologia doi: 10.1016/j.neuropsychologia.2011.10.015 – volume: 12 start-page: 983 issue: 8 year: 2012 ident: 10.1016/j.cortex.2014.05.003_bib58 article-title: Stroke rehabilitation using noninvasive cortical stimulation: hemispatial neglect publication-title: Expert Review of Neurotherapeutics doi: 10.1586/ern.12.78 – volume: 29 start-page: 463 issue: 6 year: 2011 ident: 10.1016/j.cortex.2014.05.003_bib68 article-title: Transcranial direct current stimulation–update 2011 publication-title: Restorative Neurology and Neuroscience doi: 10.3233/RNN-2011-0618 – volume: 35 start-page: 96 issue: 1 year: 2011 ident: 10.1016/j.cortex.2014.05.003_bib15 article-title: Transcranial direct current stimulation (tDCS) in unipolar vs. bipolar depressive disorder publication-title: Progress in Neuro-psychopharmacology & Biological Psychiatry doi: 10.1016/j.pnpbp.2010.09.010 – volume: 54 start-page: 2287 issue: 3 year: 2011 ident: 10.1016/j.cortex.2014.05.003_bib77 article-title: Introducing graph theory to track for neuroplastic alterations in the resting human brain: a transcranial direct current stimulation study publication-title: NeuroImage doi: 10.1016/j.neuroimage.2010.09.085 – issue: 76 year: 2013 ident: 10.1016/j.cortex.2014.05.003_bib82 article-title: Simultaneous EEG monitoring during transcranial direct current stimulation publication-title: Journal of Visualized Experiments doi: 10.3791/50426 – volume: 568 start-page: 653 issue: Pt 2 year: 2005 ident: 10.1016/j.cortex.2014.05.003_bib7 article-title: Non-synaptic mechanisms underlie the after-effects of cathodal transcutaneous direct current stimulation of the human brain publication-title: The Journal of Physiology doi: 10.1113/jphysiol.2005.088310 – volume: 69 start-page: 86 issue: 1 year: 2006 ident: 10.1016/j.cortex.2014.05.003_bib28 article-title: A direct demonstration of cortical LTP in humans: a combined TMS/EEG study publication-title: Brain Research Bulletin doi: 10.1016/j.brainresbull.2005.11.003 – volume: 48 start-page: 609 year: 1980 ident: 10.1016/j.cortex.2014.05.003_bib49 article-title: Reference-free identification of components of checkerboard-evoked multichannel potential fields publication-title: Electroencephalography and Clinical Neurophysiology doi: 10.1016/0013-4694(80)90419-8 – volume: 29 start-page: 5202 issue: 16 year: 2009 ident: 10.1016/j.cortex.2014.05.003_bib85 article-title: Polarity-sensitive modulation of cortical neurotransmitters by transcranial stimulation publication-title: The Journal of Neuroscience doi: 10.1523/JNEUROSCI.4432-08.2009 – volume: 18 start-page: 2701 issue: 11 year: 2008 ident: 10.1016/j.cortex.2014.05.003_bib5 article-title: Homeostatic metaplasticity of the motor cortex is altered during headache-free intervals in migraine with aura publication-title: Cerebral Cortex doi: 10.1093/cercor/bhn032 – volume: 57 start-page: 1899 issue: 10 year: 2001 ident: 10.1016/j.cortex.2014.05.003_bib66 article-title: Sustained excitability elevations induced by transcranial DC motor cortex stimulation in humans publication-title: Neurology doi: 10.1212/WNL.57.10.1899 – volume: 83 start-page: 569 year: 2013 ident: 10.1016/j.cortex.2014.05.003_bib74 article-title: Excitability modulation of the motor system induced by transcranial direct current stimulation: a multimodal approach publication-title: NeuroImage doi: 10.1016/j.neuroimage.2013.06.076 – volume: 6 start-page: 8 year: 2009 ident: 10.1016/j.cortex.2014.05.003_bib14 article-title: Using non-invasive brain stimulation to augment motor training-induced plasticity publication-title: Journal of Neuroengineering and Rehabilitation doi: 10.1186/1743-0003-6-8 – volume: 29 start-page: 1573 issue: 8 year: 2004 ident: 10.1016/j.cortex.2014.05.003_bib63 article-title: Consolidation of human motor cortical neuroplasticity by D-cycloserine publication-title: Neuropsychopharmacology doi: 10.1038/sj.npp.1300517 – volume: 45 start-page: 702 issue: 2 year: 2004 ident: 10.1016/j.cortex.2014.05.003_bib4 article-title: Excitability changes induced in the human primary visual cortex by transcranial direct current stimulation: direct electrophysiological evidence publication-title: Investigative Ophthalmology & Visual Science doi: 10.1167/iovs.03-0688 – volume: 58 start-page: 849 year: 2011 ident: 10.1016/j.cortex.2014.05.003_bib72 article-title: How the brain tissue shapes the electric field induced by transcranial magnetic stimulation publication-title: NeuroImage doi: 10.1016/j.neuroimage.2011.06.069 – volume: 63 start-page: 568 issue: 5 year: 2009 ident: 10.1016/j.cortex.2014.05.003_bib2 article-title: Intention, action planning, and decision making in parietal-frontal circuits publication-title: Neuron doi: 10.1016/j.neuron.2009.08.028 – volume: 55 start-page: 644 issue: 2 year: 2011 ident: 10.1016/j.cortex.2014.05.003_bib46 article-title: Prefrontal direct current stimulation modulates resting EEG and event-related potentials in healthy subjects: a standardized low resolution tomography (sLORETA) study publication-title: NeuroImage doi: 10.1016/j.neuroimage.2010.12.004 – volume: 5 start-page: e10281 issue: 4 year: 2010 ident: 10.1016/j.cortex.2014.05.003_bib18 article-title: EEG responses to TMS are sensitive to changes in the perturbation parameters and repeatable over time publication-title: PLoS One doi: 10.1371/journal.pone.0010281 – start-page: 1596 year: 2009 ident: 10.1016/j.cortex.2014.05.003_bib30 article-title: Comparing different electrode configurations using the 10-10 international system in tDCS: a finite element model analysis – volume: 26 start-page: 326 issue: 2 year: 2013 ident: 10.1016/j.cortex.2014.05.003_bib17 article-title: Assessing the effects of electroconvulsive therapy on cortical excitability by means of transcranial magnetic stimulation and electroencephalography publication-title: Brain Topography doi: 10.1007/s10548-012-0256-8 – volume: 43 start-page: 184 issue: 3 year: 2012 ident: 10.1016/j.cortex.2014.05.003_bib55 article-title: Combining transcranial electrical stimulation with electroencephalography: a multimodal approach publication-title: Clinical EEG and Neuroscience doi: 10.1177/1550059412444976 – volume: 9 start-page: 2257 issue: 10 year: 1998 ident: 10.1016/j.cortex.2014.05.003_bib79 article-title: Polarization of the human motor cortex through the scalp publication-title: NeuroReport doi: 10.1097/00001756-199807130-00020 – volume: 527 start-page: 633 issue: Pt 3 year: 2000 ident: 10.1016/j.cortex.2014.05.003_bib65 article-title: Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation publication-title: The Journal of Physiology doi: 10.1111/j.1469-7793.2000.t01-1-00633.x – volume: 48 start-page: 2789 issue: 10 year: 2010 ident: 10.1016/j.cortex.2014.05.003_bib88 article-title: Electrified minds: transcranial direct current stimulation (tDCS) and galvanic vestibular stimulation (GVS) as methods of non-invasive brain stimulation in neuropsychology – a review of current data and future implications publication-title: Neuropsychologia doi: 10.1016/j.neuropsychologia.2010.06.002 – volume: 70 start-page: 48 year: 2013 ident: 10.1016/j.cortex.2014.05.003_bib57 article-title: The electric field in the cortex during transcranial current stimulation publication-title: NeuroImage doi: 10.1016/j.neuroimage.2012.12.034 – volume: 21 start-page: 1693 issue: 10 year: 2006 ident: 10.1016/j.cortex.2014.05.003_bib34 article-title: Noninvasive cortical stimulation with transcranial direct current stimulation in Parkinson's disease publication-title: Movement Disorders doi: 10.1002/mds.21012 – volume: 568 start-page: 291 issue: Pt 1 year: 2005 ident: 10.1016/j.cortex.2014.05.003_bib69 article-title: Modulating parameters of excitability during and after transcranial direct current stimulation of the human motor cortex publication-title: The Journal of Physiology doi: 10.1113/jphysiol.2005.092429 – volume: 47 start-page: 309 issue: 2 year: 2011 ident: 10.1016/j.cortex.2014.05.003_bib70 article-title: Non-invasive brain stimulation techniques for chronic pain. A report of a Cochrane systematic review and meta-analysis publication-title: European Journal of Physical and Rehabilitation Medicine – volume: 20 start-page: 1115 issue: 12 year: 2009 ident: 10.1016/j.cortex.2014.05.003_bib87 article-title: Transcranial direct current stimulation modulates shifts in global/local attention publication-title: NeuroReport doi: 10.1097/WNR.0b013e32832e9aa2 – volume: 31 start-page: 15284 issue: 43 year: 2011 ident: 10.1016/j.cortex.2014.05.003_bib45 article-title: Prefrontal transcranial direct current stimulation changes connectivity of resting-state networks during fMRI publication-title: The Journal of Neuroscience doi: 10.1523/JNEUROSCI.0542-11.2011 – volume: 34 start-page: 923 year: 2013 ident: 10.1016/j.cortex.2014.05.003_bib92 article-title: Electric field calculations in brain stimulation based on finite elements: an optimized processing pipeline for the generation and usage of accurate individual head models publication-title: Human Brain Mapping doi: 10.1002/hbm.21479 – volume: 1349 start-page: 76 year: 2010 ident: 10.1016/j.cortex.2014.05.003_bib11 article-title: Brain polarization of parietal cortex augments training-induced improvement of visual exploratory and attentional skills publication-title: Brain Research doi: 10.1016/j.brainres.2010.06.053 – volume: 56 start-page: 255 year: 2003 ident: 10.1016/j.cortex.2014.05.003_bib64 article-title: Modulation of cortical excitability by weak direct current stimulation–technical, safety and functional aspects publication-title: Supplements to Clinical Neurophysiology doi: 10.1016/S1567-424X(09)70230-2 – volume: 22 start-page: 249 issue: 4 year: 2010 ident: 10.1016/j.cortex.2014.05.003_bib56 article-title: Combining TMS and EEG offers new prospects in cognitive neuroscience publication-title: Brain Topography doi: 10.1007/s10548-009-0083-8 – volume: 6 start-page: 38 year: 2012 ident: 10.1016/j.cortex.2014.05.003_bib83 article-title: Cognitive functions of the posterior parietal cortex: top-down and bottom-up attentional control publication-title: Frontiers in Integrative Neuroscience doi: 10.3389/fnint.2012.00038 – volume: 178 start-page: 261 issue: 2 year: 2007 ident: 10.1016/j.cortex.2014.05.003_bib1 article-title: Visual evoked potentials modulation during direct current cortical polarization publication-title: Experimental Brain Research doi: 10.1007/s00221-006-0733-y – volume: 154 start-page: 1274 issue: 8 year: 2013 ident: 10.1016/j.cortex.2014.05.003_bib12 article-title: Motor and parietal cortex stimulation for phantom limb pain and sensations publication-title: Pain doi: 10.1016/j.pain.2013.03.040 – volume: 11 start-page: 249 issue: 2 year: 2008 ident: 10.1016/j.cortex.2014.05.003_bib10 article-title: A randomized, double-blind clinical trial on the efficacy of cortical direct current stimulation for the treatment of major depression publication-title: The International Journal of Neuropsychopharmacology doi: 10.1017/S1461145707007833 – volume: 15 start-page: 626 issue: 6 year: 2005 ident: 10.1016/j.cortex.2014.05.003_bib33 article-title: Motor functions of the parietal lobe publication-title: Current Opinion in Neurobiology doi: 10.1016/j.conb.2005.10.015 – volume: 21 start-page: 618 issue: 5 year: 2011 ident: 10.1016/j.cortex.2014.05.003_bib89 article-title: Behavioural facilitation following brain stimulation: implications for neurorehabilitation publication-title: Neuropsychological Rehabilitation doi: 10.1080/09602011.2011.574050 – volume: 84 start-page: 832 issue: 8 year: 2013 ident: 10.1016/j.cortex.2014.05.003_bib98 article-title: Transcranial direct current stimulation (tDCS) and language publication-title: Journal of Neurology, Neurosurgery & Psychiatry doi: 10.1136/jnnp-2012-302825 – volume: 31 start-page: 1800 issue: 10 year: 2010 ident: 10.1016/j.cortex.2014.05.003_bib13 article-title: Enhancing multisensory spatial orienting by brain polarization of the parietal cortex publication-title: European Journal of Neuroscience doi: 10.1111/j.1460-9568.2010.07211.x – volume: 215 start-page: 135 issue: 2 year: 2011 ident: 10.1016/j.cortex.2014.05.003_bib94 article-title: Excitability changes induced in the human auditory cortex by transcranial direct current stimulation: direct electrophysiological evidence publication-title: Experimental Brain Research doi: 10.1007/s00221-011-2879-5 – volume: 115 start-page: 456 issue: 2 year: 2004 ident: 10.1016/j.cortex.2014.05.003_bib53 article-title: Effect of transcranial DC sensorimotor cortex stimulation on somatosensory evoked potentials in humans publication-title: Clinical Neurophysiology doi: 10.1016/S1388-2457(03)00362-6 – volume: 8 start-page: 3537 issue: 16 year: 1997 ident: 10.1016/j.cortex.2014.05.003_bib41 article-title: Neuronal responses to magnetic stimulation reveal cortical reactivity and connectivity publication-title: NeuroReport doi: 10.1097/00001756-199711100-00024 – volume: 55 start-page: 657 issue: 9–10 year: 2012 ident: 10.1016/j.cortex.2014.05.003_bib44 article-title: Non-invasive cerebral stimulation for the upper limb rehabilitation after stroke: a review publication-title: Annals of Physical and Rehabilitation Medicine doi: 10.1016/j.rehab.2012.09.001 – volume: 6 start-page: 244 issue: 2 year: 2009 ident: 10.1016/j.cortex.2014.05.003_bib67 article-title: Noninvasive brain stimulation protocols in the treatment of epilepsy: current state and perspectives publication-title: Neurotherapeutics doi: 10.1016/j.nurt.2009.01.003 – volume: 23 start-page: 332 issue: 2 year: 2013 ident: 10.1016/j.cortex.2014.05.003_bib39 article-title: Human cortical excitability increases with time awake publication-title: Cerebral Cortex doi: 10.1093/cercor/bhs014 – volume: 125 start-page: 2238 issue: Pt 10 year: 2002 ident: 10.1016/j.cortex.2014.05.003_bib50 article-title: Pharmacological approach to the mechanisms of transcranial DC-stimulation-induced after-effects of human motor cortex excitability publication-title: Brain doi: 10.1093/brain/awf238 – volume: 72 start-page: 208 issue: 4–6 year: 2007 ident: 10.1016/j.cortex.2014.05.003_bib78 article-title: Safety aspects of transcranial direct current stimulation concerning healthy subjects and patients publication-title: Brain Research Bulletin doi: 10.1016/j.brainresbull.2007.01.004 – volume: 52 start-page: 1283 issue: 8 year: 2012 ident: 10.1016/j.cortex.2014.05.003_bib23 article-title: tDCS-induced analgesia and electrical fields in pain-related neural networks in chronic migraine publication-title: Headache doi: 10.1111/j.1526-4610.2012.02141.x – year: 2013 ident: 10.1016/j.cortex.2014.05.003_bib97 article-title: Transcranial direct current stimulation in stroke rehabilitation: a review of recent advancements publication-title: Stroke Research and Treatment doi: 10.1155/2013/170256 – volume: 58 start-page: 26 issue: 1 year: 2011 ident: 10.1016/j.cortex.2014.05.003_bib95 article-title: Effects of transcranial direct current stimulation (tDCS) on human regional cerebral blood flow publication-title: NeuroImage doi: 10.1016/j.neuroimage.2011.06.018 – volume: 553 start-page: 293 issue: Pt 1 year: 2003 ident: 10.1016/j.cortex.2014.05.003_bib61 article-title: Pharmacological modulation of cortical excitability shifts induced by transcranial direct current stimulation in humans publication-title: The Journal of Physiology doi: 10.1113/jphysiol.2003.049916 – volume: 5 start-page: 252 issue: 3 year: 2012 ident: 10.1016/j.cortex.2014.05.003_bib75 article-title: Modulation of large-scale brain networks by transcranial direct current stimulation evidenced by resting-state functional MRI publication-title: Brain Stimulation doi: 10.1016/j.brs.2011.08.006 – year: 1953 ident: 10.1016/j.cortex.2014.05.003_bib22 – volume: 69 start-page: 766 issue: 8 year: 2012 ident: 10.1016/j.cortex.2014.05.003_bib96 article-title: Reduced natural oscillatory frequency of frontal thalamocortical circuits in schizophrenia publication-title: Archives of General Psychiatry doi: 10.1001/archgenpsychiatry.2012.147 – volume: 44 start-page: 1023 issue: 8 year: 2008 ident: 10.1016/j.cortex.2014.05.003_bib27 article-title: Neuroimaging techniques offer new perspectives on callosal transfer and interhemispheric communication publication-title: Cortex doi: 10.1016/j.cortex.2008.03.007 – volume: 5 start-page: 436 year: 1962 ident: 10.1016/j.cortex.2014.05.003_bib21 article-title: Influence of transcortical d-c currents on cortical neuronal activity publication-title: Experimental Neurology doi: 10.1016/0014-4886(62)90056-0 – volume: 66 start-page: 198 issue: 2 year: 2010 ident: 10.1016/j.cortex.2014.05.003_bib36 article-title: Direct current stimulation promotes BDNF-dependent synaptic plasticity: potential implications for motor learning publication-title: Neuron doi: 10.1016/j.neuron.2010.03.035 – volume: 219 start-page: 14 issue: 1 year: 2009 ident: 10.1016/j.cortex.2014.05.003_bib59 article-title: Treatment of depression with transcranial direct current stimulation (tDCS): a review publication-title: Experimental Neurology doi: 10.1016/j.expneurol.2009.03.038 – volume: 33 start-page: 11425 issue: 28 year: 2013 ident: 10.1016/j.cortex.2014.05.003_bib86 article-title: Widespread modulation of cerebral perfusion induced during and after transcranial direct current stimulation applied to the left dorsolateral prefrontal cortex publication-title: The Journal of Neuroscience doi: 10.1523/JNEUROSCI.3887-12.2013 – volume: 216 start-page: 1 issue: 1 year: 2012 ident: 10.1016/j.cortex.2014.05.003_bib43 article-title: tDCS polarity effects in motor and cognitive domains: a meta-analytical review publication-title: Experimental Brain Research doi: 10.1007/s00221-011-2891-9 – volume: 29 start-page: 365 issue: 6 year: 2011 ident: 10.1016/j.cortex.2014.05.003_bib6 article-title: Electrical stimulation and visual network plasticity publication-title: Restorative Neurology and Neuroscience doi: 10.3233/RNN-2011-0609 – volume: 28 start-page: 166 year: 1965 ident: 10.1016/j.cortex.2014.05.003_bib80 article-title: Intracellular activities and evoked potential changes during polarization of motor cortex publication-title: Journal of Neurophysiology doi: 10.1152/jn.1965.28.1.166 – volume: 41 start-page: 561 year: 2008 ident: 10.1016/j.cortex.2014.05.003_bib19 article-title: EEG default mode network in the human brain: spectral regional field powers publication-title: NeuroImage doi: 10.1016/j.neuroimage.2007.12.064 – volume: 134 start-page: 9 year: 2004 ident: 10.1016/j.cortex.2014.05.003_bib24 article-title: EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis publication-title: Journal of Neuroscience Methods doi: 10.1016/j.jneumeth.2003.10.009 – volume: 117 start-page: 845 year: 2006 ident: 10.1016/j.cortex.2014.05.003_bib37 article-title: Transcranial DC stimulation (tDCS): a tool for double-blind sham-controlled clinical studies in brain stimulation publication-title: Clinical Neurophysiology doi: 10.1016/j.clinph.2005.12.003 – volume: 1 start-page: 206 issue: 3 year: 2008 ident: 10.1016/j.cortex.2014.05.003_bib60 article-title: Transcranial direct current stimulation: state of the art 2008 publication-title: Brain Stimulation doi: 10.1016/j.brs.2008.06.004 – volume: 120 start-page: 2008 year: 2009 ident: 10.1016/j.cortex.2014.05.003_bib81 article-title: Safety, ethical considerations, and application guidelines for the use of transcranial magnetic stimulation in clinical practice and research publication-title: Clinical Neurophysiology doi: 10.1016/j.clinph.2009.08.016 – volume: 2 start-page: 685 year: 2001 ident: 10.1016/j.cortex.2014.05.003_bib38 article-title: Searching for a baseline: functional imaging and the resting human brain publication-title: Nature Reviews Neuroscience doi: 10.1038/35094500 – volume: 76 start-page: 24 year: 2013 ident: 10.1016/j.cortex.2014.05.003_bib54 article-title: Top-down interference and cortical responsiveness in face processing: a TMS-EEG study publication-title: NeuroImage doi: 10.1016/j.neuroimage.2013.03.020 – volume: 49 start-page: 1428 issue: 6 year: 2011 ident: 10.1016/j.cortex.2014.05.003_bib40 article-title: Common neural mechanisms supporting spatial working memory, attention and motor intention publication-title: Neuropsychologia doi: 10.1016/j.neuropsychologia.2010.12.020 – volume: 47 start-page: 335 issue: 2 year: 2006 ident: 10.1016/j.cortex.2014.05.003_bib35 article-title: A controlled clinical trial of cathodal DC polarization in patients with refractory epilepsy publication-title: Epilepsia doi: 10.1111/j.1528-1167.2006.00426.x – volume: 49 start-page: 1459 issue: 2 year: 2010 ident: 10.1016/j.cortex.2014.05.003_bib16 article-title: General indices to characterize the electrical response of the cerebral cortex to TMS publication-title: NeuroImage doi: 10.1016/j.neuroimage.2009.09.026 – volume: 25 start-page: 685 issue: 5 year: 2013 ident: 10.1016/j.cortex.2014.05.003_bib20 article-title: Neuromodulation of early multisensory interactions in the visual cortex publication-title: Journal of Cognitive Neuroscience doi: 10.1162/jocn_a_00347 – volume: 37 start-page: 322 issue: 3 year: 1999 ident: 10.1016/j.cortex.2014.05.003_bib91 article-title: Instrumentation for the measurement of electric brain responses to transcranial magnetic stimulation publication-title: Medical and Biological Engineering and Computing doi: 10.1007/BF02513307 – volume: 196 start-page: 584 year: 1962 ident: 10.1016/j.cortex.2014.05.003_bib9 article-title: Long-lasting changes in the level of the electrical activity of the cerebral cortex produced bypolarizing currents publication-title: Nature doi: 10.1038/196584a0 – volume: 118 start-page: 215 issue: 1–3 year: 2009 ident: 10.1016/j.cortex.2014.05.003_bib31 article-title: Transcranial direct current stimulation in severe, drug-resistant major depression publication-title: Journal of Affective Disorders doi: 10.1016/j.jad.2009.02.015 – volume: 24 start-page: 2419 issue: 12 year: 2012 ident: 10.1016/j.cortex.2014.05.003_bib51 article-title: tDCS modulation of visually induced analgesia publication-title: Journal of Cognitive Neuroscience doi: 10.1162/jocn_a_00293 – volume: 71 start-page: 493 issue: 7 year: 2008 ident: 10.1016/j.cortex.2014.05.003_bib32 article-title: Transcranial direct current stimulation improves recognition memory in Alzheimer disease publication-title: Neurology doi: 10.1212/01.wnl.0000317060.43722.a3 – volume: 14 start-page: 1240 issue: 11 year: 2004 ident: 10.1016/j.cortex.2014.05.003_bib62 article-title: Catecholaminergic consolidation of motor cortical neuroplasticity in humans publication-title: Cerebral Cortex doi: 10.1093/cercor/bhh085 – volume: 22 start-page: 495 issue: 2 year: 2005 ident: 10.1016/j.cortex.2014.05.003_bib48 article-title: How does transcranial DC stimulation of the primary motor cortex alter regional neuronal activity in the human brain? publication-title: The European Journal of Neuroscience doi: 10.1111/j.1460-9568.2005.04233.x – volume: 309 start-page: 2228 issue: 5744 year: 2005 ident: 10.1016/j.cortex.2014.05.003_bib52 article-title: Breakdown of cortical effective connectivity during sleep publication-title: Science doi: 10.1126/science.1117256 – volume: 132 start-page: 3011 issue: 11 year: 2009 ident: 10.1016/j.cortex.2014.05.003_bib99 article-title: Bidirectional alterations of interhemispheric parietal balance by non-invasive cortical stimulation publication-title: Brain doi: 10.1093/brain/awp154 – volume: 25 start-page: 417 issue: 3 year: 2012 ident: 10.1016/j.cortex.2014.05.003_bib29 article-title: Feasibility of focal transcranial DC polarization with simultaneous EEG recording: Preliminary assessment in healthy subjects and human epilepsy publication-title: Epilepsy & Behavior doi: 10.1016/j.yebeh.2012.06.027 – volume: 32 start-page: 1236 issue: 8 year: 2011 ident: 10.1016/j.cortex.2014.05.003_bib76 article-title: Modulating functional connectivity patterns and topological functional organization of the human brain with transcranial direct current stimulation publication-title: Human Brain Mapping doi: 10.1002/hbm.21104 – volume: 479 start-page: 312 issue: 3 year: 2010 ident: 10.1016/j.cortex.2014.05.003_bib8 article-title: A selective working memory impairment after transcranial direct current stimulation to the right parietal lobe publication-title: Neuroscience Letter doi: 10.1016/j.neulet.2010.05.087 – volume: 122 start-page: 777 issue: 4 year: 2011 ident: 10.1016/j.cortex.2014.05.003_bib47 article-title: Transcranial direct current stimulation over the motor association cortex induces plastic changes in ipsilateral primary motor and somatosensory cortices publication-title: Clinical Neurophysiology doi: 10.1016/j.clinph.2010.09.025 – volume: 85 start-page: 1040 year: 2012 ident: 10.1016/j.cortex.2014.05.003_bib3 article-title: Imaging artifacts induced by electrical stimulation during conventional fMRI of the brain publication-title: NeuroImage doi: 10.1016/j.neuroimage.2012.10.026 – reference: 25479701 - Cortex. 2016 Jan;74:320-2 – reference: 26073443 - Cortex. 2016 Jan;74:323-8 |
SSID | ssj0020855 |
Score | 2.4926593 |
Snippet | Despite transcranial direct current stimulation (tDCS) is increasingly used in experimental and clinical settings, its precise mechanisms of action remain... |
SourceID | proquest pubmed pascalfrancis crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 99 |
SubjectTerms | Adult Anatomical correlates of behavior Behavioral psychophysiology Biological and medical sciences Cortical excitability Electroencephalography Evoked Potentials, Motor - physiology Female Fundamental and applied biological sciences. Psychology Humans Male Motor Cortex - physiology Parietal Lobe - physiology Posterior parietal cortex Psychology. Psychoanalysis. Psychiatry Psychology. Psychophysiology tDCS TMS-EEG Transcranial Magnetic Stimulation Young Adult |
Title | TDCS increases cortical excitability: Direct evidence from TMS–EEG |
URI | https://dx.doi.org/10.1016/j.cortex.2014.05.003 https://www.ncbi.nlm.nih.gov/pubmed/24998337 https://www.proquest.com/docview/1552807330 |
Volume | 58 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1fa9swED9CB2NQytZ0W_YnaDD65tW2ZEveW0jTZX9SSptC34Qty5CxOaFJIH0Z-w77hvsku7PkjDJGoU_GRsLiTrr7nX13P4C3YckjKywPhCxUIPIIz1xsVWBTVRRFHBvesChMTtPxpfh0lVx1YNjWwlBapbf9zqY31to_OfLSPFrMZlTjG2Fsgu5HkONXFLdT9zrc0-9-bNM8iILSsxiEAY1uy-eaHC9DCa0bSvASTf_OljrrX_e0u8iXKLTKsV38H442bunkMex5PMkGbslPoGPrfegOaoylv9-wQ9ZkeDafzvfh4cT_SO_C8fR4eMFmNWHGpV0yWiKpi9mNma1c7-6b98wZRGY99SijYhQ2nVz8_vlrNPpwAJcno-lwHHhChcAgDFoFiB1MVIlKqiytEFqVIikNnmkVyRzlmJUJ4gll0cVnhqe5VDm6_6oKy0hWcZbm_Cns1PPaPgdWhiWhL4ytORcW9VzEsghtInlpFMZ1PeCtHLXx3caJ9OKbbtPKvmonfU3S12FCXUp7EGxnLVy3jTvGy1ZF-tau0egQ7pjZv6XR7eswgkRUmOGAN62KNZ44-o2S13a-XmpqWqeI6zLswTOn-7-zMYBUnMsX917YS3hEdy6N7RXsrK7X9jXinlXRbzZ2Hx4Mhudfzuj68fP49A_k1gDR |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1fa9swED9KCtugjK7d1qz_NBh7M7Ut2ZL3FtK06Z_kpSn0TdiyDBmbG5YU2rd9h37DfpLdWXJKGaXQV1uHxZ109_tZpzuAb2HJIyssD4QsVCDyCPdcbFVgU1UURRwb3nRRGI3T4aU4vUquVqDf3oWhtErv-51Pb7y1f3LgtXkwm07pjm-E3ATDj6DAr5C3r1J1KtGB1d7J2XC85F2UiuUcchiQQHuDrknzMpTTeks5XqIp4dl2z_o_Qq3N8jnqrXINL55HpE1kOlqH9x5Ssp6b9QdYsfUGbPZqpNO_79h31iR5Nn_PN-DNyJ-lb8Lh5LB_waY1wca5nTOaIlmM2VszXbjy3Xc_mPOJzPruo4zuo7DJ6OLh7_1gcPwRLo8Gk_4w8D0VAoNIaBEgfDBRJSqpsrRCdFWKpDS4rVUkc1RlViYIKZTFKJ8ZnuZS5YgAqiosI1nFWZrzT9Cpr2u7BawMSwJgSK85FxZNXcSyCG0ieWkUUrsu8FaP2viC49T34pduM8t-aqd9TdrXYUKFSrsQLKVmruDGC-NlayL9ZOFojAkvSO49sejyc0giERhmOOBra2KNm45OUvLaXt_MNdWtU9TuMuzCZ2f7R2nkkIpz-eXVE9uHt8PJ6Fyfn4zPtuEdvXFZbTvQWfy5sbsIgxbFnl_m_wClKwHt |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=TDCS+increases+cortical+excitability%3A+direct+evidence+from+TMS-EEG&rft.jtitle=Cortex&rft.au=Romero+Lauro%2C+Leonor+J&rft.au=Rosanova%2C+Mario&rft.au=Mattavelli%2C+Giulia&rft.au=Convento%2C+Silvia&rft.date=2014-09-01&rft.issn=1973-8102&rft.eissn=1973-8102&rft.volume=58&rft.spage=99&rft_id=info:doi/10.1016%2Fj.cortex.2014.05.003&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0010-9452&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0010-9452&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0010-9452&client=summon |