TDCS increases cortical excitability: Direct evidence from TMS–EEG

Despite transcranial direct current stimulation (tDCS) is increasingly used in experimental and clinical settings, its precise mechanisms of action remain largely unknown. At a neuronal level, tDCS modulates the resting membrane potential in a polarity-dependent fashion: anodal stimulation increases...

Full description

Saved in:
Bibliographic Details
Published inCortex Vol. 58; pp. 99 - 111
Main Authors Romero Lauro, Leonor J., Rosanova, Mario, Mattavelli, Giulia, Convento, Silvia, Pisoni, Alberto, Opitz, Alexander, Bolognini, Nadia, Vallar, Giuseppe
Format Journal Article
LanguageEnglish
Published Kidlington Elsevier Ltd 01.09.2014
Elsevier
Subjects
Online AccessGet full text
ISSN0010-9452
1973-8102
1973-8102
DOI10.1016/j.cortex.2014.05.003

Cover

Loading…
Abstract Despite transcranial direct current stimulation (tDCS) is increasingly used in experimental and clinical settings, its precise mechanisms of action remain largely unknown. At a neuronal level, tDCS modulates the resting membrane potential in a polarity-dependent fashion: anodal stimulation increases cortical excitability in the stimulated region, while cathodal decreases it. So far, the neurophysiological underpinnings of the immediate and delayed effects of tDCS, and to what extent the stimulation of a given cerebral region may affect the activity of anatomically connected regions, remain unclear. In the present study, we used a combination of Transcranial Magnetic Stimulation (TMS) and Electroencephalography (EEG) in order to explore local and global cortical excitability modulation during and after active and sham tDCS. Single pulse TMS was delivered over the left posterior parietal cortex (PPC), before, during, and after 15 min of tDCS over the right PPC, while EEG was recorded from 60 channels. For each session, indexes of global and local cerebral excitability were obtained, computed as global and local mean field power (Global Mean Field Power, GMFP and Local Mean Field Power, LMFP) on mean TMS-evoked potentials (TEPs) for three temporal windows: 0–50, 50–100, and 100–150 msec. The global index was computed on all 60 channels. The local indexes were computed in six clusters of electrodes: left and right in frontal, parietal and temporal regions. GMFP increased, compared to baseline, both during and after active tDCS in the 0–100 msec temporal window. LMFP increased after the end of stimulation in parietal and frontal clusters bilaterally, while no difference was found in the temporal clusters. In sum, a diffuse rise of cortical excitability occurred, both during and after active tDCS. This evidence highlights the spreading of the effects of anodal tDCS over remote cortical regions of stimulated and contralateral hemispheres.
AbstractList Despite transcranial direct current stimulation (tDCS) is increasingly used in experimental and clinical settings, its precise mechanisms of action remain largely unknown. At a neuronal level, tDCS modulates the resting membrane potential in a polarity-dependent fashion: anodal stimulation increases cortical excitability in the stimulated region, while cathodal decreases it. So far, the neurophysiological underpinnings of the immediate and delayed effects of tDCS, and to what extent the stimulation of a given cerebral region may affect the activity of anatomically connected regions, remain unclear. In the present study, we used a combination of Transcranial Magnetic Stimulation (TMS) and Electroencephalography (EEG) in order to explore local and global cortical excitability modulation during and after active and sham tDCS. Single pulse TMS was delivered over the left posterior parietal cortex (PPC), before, during, and after 15 min of tDCS over the right PPC, while EEG was recorded from 60 channels. For each session, indexes of global and local cerebral excitability were obtained, computed as global and local mean field power (Global Mean Field Power, GMFP and Local Mean Field Power, LMFP) on mean TMS-evoked potentials (TEPs) for three temporal windows: 0-50, 50-100, and 100-150 msec. The global index was computed on all 60 channels. The local indexes were computed in six clusters of electrodes: left and right in frontal, parietal and temporal regions. GMFP increased, compared to baseline, both during and after active tDCS in the 0-100 msec temporal window. LMFP increased after the end of stimulation in parietal and frontal clusters bilaterally, while no difference was found in the temporal clusters. In sum, a diffuse rise of cortical excitability occurred, both during and after active tDCS. This evidence highlights the spreading of the effects of anodal tDCS over remote cortical regions of stimulated and contralateral hemispheres.Despite transcranial direct current stimulation (tDCS) is increasingly used in experimental and clinical settings, its precise mechanisms of action remain largely unknown. At a neuronal level, tDCS modulates the resting membrane potential in a polarity-dependent fashion: anodal stimulation increases cortical excitability in the stimulated region, while cathodal decreases it. So far, the neurophysiological underpinnings of the immediate and delayed effects of tDCS, and to what extent the stimulation of a given cerebral region may affect the activity of anatomically connected regions, remain unclear. In the present study, we used a combination of Transcranial Magnetic Stimulation (TMS) and Electroencephalography (EEG) in order to explore local and global cortical excitability modulation during and after active and sham tDCS. Single pulse TMS was delivered over the left posterior parietal cortex (PPC), before, during, and after 15 min of tDCS over the right PPC, while EEG was recorded from 60 channels. For each session, indexes of global and local cerebral excitability were obtained, computed as global and local mean field power (Global Mean Field Power, GMFP and Local Mean Field Power, LMFP) on mean TMS-evoked potentials (TEPs) for three temporal windows: 0-50, 50-100, and 100-150 msec. The global index was computed on all 60 channels. The local indexes were computed in six clusters of electrodes: left and right in frontal, parietal and temporal regions. GMFP increased, compared to baseline, both during and after active tDCS in the 0-100 msec temporal window. LMFP increased after the end of stimulation in parietal and frontal clusters bilaterally, while no difference was found in the temporal clusters. In sum, a diffuse rise of cortical excitability occurred, both during and after active tDCS. This evidence highlights the spreading of the effects of anodal tDCS over remote cortical regions of stimulated and contralateral hemispheres.
Despite transcranial direct current stimulation (tDCS) is increasingly used in experimental and clinical settings, its precise mechanisms of action remain largely unknown. At a neuronal level, tDCS modulates the resting membrane potential in a polarity-dependent fashion: anodal stimulation increases cortical excitability in the stimulated region, while cathodal decreases it. So far, the neurophysiological underpinnings of the immediate and delayed effects of tDCS, and to what extent the stimulation of a given cerebral region may affect the activity of anatomically connected regions, remain unclear. In the present study, we used a combination of Transcranial Magnetic Stimulation (TMS) and Electroencephalography (EEG) in order to explore local and global cortical excitability modulation during and after active and sham tDCS. Single pulse TMS was delivered over the left posterior parietal cortex (PPC), before, during, and after 15 min of tDCS over the right PPC, while EEG was recorded from 60 channels. For each session, indexes of global and local cerebral excitability were obtained, computed as global and local mean field power (Global Mean Field Power, GMFP and Local Mean Field Power, LMFP) on mean TMS-evoked potentials (TEPs) for three temporal windows: 0-50, 50-100, and 100-150 msec. The global index was computed on all 60 channels. The local indexes were computed in six clusters of electrodes: left and right in frontal, parietal and temporal regions. GMFP increased, compared to baseline, both during and after active tDCS in the 0-100 msec temporal window. LMFP increased after the end of stimulation in parietal and frontal clusters bilaterally, while no difference was found in the temporal clusters. In sum, a diffuse rise of cortical excitability occurred, both during and after active tDCS. This evidence highlights the spreading of the effects of anodal tDCS over remote cortical regions of stimulated and contralateral hemispheres.
Despite transcranial direct current stimulation (tDCS) is increasingly used in experimental and clinical settings, its precise mechanisms of action remain largely unknown. At a neuronal level, tDCS modulates the resting membrane potential in a polarity-dependent fashion: anodal stimulation increases cortical excitability in the stimulated region, while cathodal decreases it. So far, the neurophysiological underpinnings of the immediate and delayed effects of tDCS, and to what extent the stimulation of a given cerebral region may affect the activity of anatomically connected regions, remain unclear. In the present study, we used a combination of Transcranial Magnetic Stimulation (TMS) and Electroencephalography (EEG) in order to explore local and global cortical excitability modulation during and after active and sham tDCS. Single pulse TMS was delivered over the left posterior parietal cortex (PPC), before, during, and after 15 min of tDCS over the right PPC, while EEG was recorded from 60 channels. For each session, indexes of global and local cerebral excitability were obtained, computed as global and local mean field power (Global Mean Field Power, GMFP and Local Mean Field Power, LMFP) on mean TMS-evoked potentials (TEPs) for three temporal windows: 0–50, 50–100, and 100–150 msec. The global index was computed on all 60 channels. The local indexes were computed in six clusters of electrodes: left and right in frontal, parietal and temporal regions. GMFP increased, compared to baseline, both during and after active tDCS in the 0–100 msec temporal window. LMFP increased after the end of stimulation in parietal and frontal clusters bilaterally, while no difference was found in the temporal clusters. In sum, a diffuse rise of cortical excitability occurred, both during and after active tDCS. This evidence highlights the spreading of the effects of anodal tDCS over remote cortical regions of stimulated and contralateral hemispheres.
Author Mattavelli, Giulia
Pisoni, Alberto
Opitz, Alexander
Romero Lauro, Leonor J.
Rosanova, Mario
Convento, Silvia
Vallar, Giuseppe
Bolognini, Nadia
Author_xml – sequence: 1
  givenname: Leonor J.
  surname: Romero Lauro
  fullname: Romero Lauro, Leonor J.
  email: leonor.romero1@unimib.it, l.romerolauro@gmail.com
  organization: Department of Psychology, University of Milano-Bicocca, P.za Ateneo Nuovo 1, Milano, Italy
– sequence: 2
  givenname: Mario
  surname: Rosanova
  fullname: Rosanova, Mario
  organization: Department of Biomedical and Clinical Sciences “L. Sacco”, University of Milano, Via GB Grassi 74, Milano, Italy
– sequence: 3
  givenname: Giulia
  surname: Mattavelli
  fullname: Mattavelli, Giulia
  organization: Department of Psychology, University of Milano-Bicocca, P.za Ateneo Nuovo 1, Milano, Italy
– sequence: 4
  givenname: Silvia
  surname: Convento
  fullname: Convento, Silvia
  organization: Department of Psychology, University of Milano-Bicocca, P.za Ateneo Nuovo 1, Milano, Italy
– sequence: 5
  givenname: Alberto
  surname: Pisoni
  fullname: Pisoni, Alberto
  organization: Department of Psychology, University of Milano-Bicocca, P.za Ateneo Nuovo 1, Milano, Italy
– sequence: 6
  givenname: Alexander
  surname: Opitz
  fullname: Opitz, Alexander
  organization: Department of Clinical Neurophysiology, Robert-Koch-Straße 40, Göttingen, Germany
– sequence: 7
  givenname: Nadia
  surname: Bolognini
  fullname: Bolognini, Nadia
  organization: Department of Psychology, University of Milano-Bicocca, P.za Ateneo Nuovo 1, Milano, Italy
– sequence: 8
  givenname: Giuseppe
  surname: Vallar
  fullname: Vallar, Giuseppe
  organization: Department of Psychology, University of Milano-Bicocca, P.za Ateneo Nuovo 1, Milano, Italy
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28725093$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/24998337$$D View this record in MEDLINE/PubMed
BookMark eNqFkcFu1DAURS1URKeFP0AoGyQ2Ce_ZcWx3gYRmhoJUxKLD2nKdZ8mjTFLsTNXu-Af-kC8hYQaQWMDKm3Ov9e45Yyf90BNjzxEqBGxebys_pJHuKw5YVyArAPGILdAoUWoEfsIWAAilqSU_ZWc5bwE4aCmfsFNeG6OFUAu22qyW10XsfSKXKRdzZ_SuK-jex9HdxC6ODxfFKibyY0F3saXeUxHSsCs2H6-_f_22Xl8-ZY-D6zI9O77n7PO79Wb5vrz6dPlh-faq9MLwsUQpPYY6KG2aYCS2tWw9aqFROcnRtFLVQhM0aLxonNJOIw8BWlSBm8aJc_bq0Hubhi97yqPdxeyp61xPwz7b6QOuQQkBE_riiO5vdtTa2xR3Lj3YX5dPwMsj4PJ0b0iu9zH_4bTiEoyYuPrA-TTknCj8RhDsLMJu7UGEnUVYkHYSMcUu_orNc45x6MfkYve_8JtDmKYx7yIlm32cd29_arDtEP9d8AM5b6QT
CODEN CRTXAZ
CitedBy_id crossref_primary_10_1080_17470919_2014_946621
crossref_primary_10_1002_jnr_24690
crossref_primary_10_1186_s12868_018_0467_3
crossref_primary_10_3389_fnhum_2023_1247104
crossref_primary_10_3389_fnhum_2016_00138
crossref_primary_10_1016_j_concog_2023_103610
crossref_primary_10_3389_fnins_2019_00662
crossref_primary_10_1016_j_neuroimage_2018_05_078
crossref_primary_10_3389_fnins_2016_00140
crossref_primary_10_1016_j_clinph_2019_12_185
crossref_primary_10_1016_j_brs_2014_10_003
crossref_primary_10_1016_j_brs_2020_02_012
crossref_primary_10_1016_j_brs_2021_10_384
crossref_primary_10_1016_j_neurobiolaging_2019_07_009
crossref_primary_10_1016_j_appet_2017_03_006
crossref_primary_10_1016_j_clineuro_2023_107797
crossref_primary_10_3389_fnins_2020_572299
crossref_primary_10_1016_j_clinph_2020_06_015
crossref_primary_10_1016_j_brs_2017_12_010
crossref_primary_10_1016_j_clinph_2017_08_007
crossref_primary_10_1016_j_neuroimage_2021_118272
crossref_primary_10_1016_j_neuroscience_2021_05_001
crossref_primary_10_1016_j_neuroscience_2024_05_001
crossref_primary_10_1016_j_neuroimage_2023_120242
crossref_primary_10_1080_00207454_2017_1403440
crossref_primary_10_3389_fnins_2023_1212640
crossref_primary_10_1027_1016_9040_a000238
crossref_primary_10_1038_s41598_021_82275_4
crossref_primary_10_1586_17434440_2016_1153968
crossref_primary_10_3389_fpsyg_2024_1308971
crossref_primary_10_1016_j_brs_2023_02_010
crossref_primary_10_1016_j_bandc_2016_04_009
crossref_primary_10_3389_fnins_2018_00319
crossref_primary_10_3389_fnsys_2021_806544
crossref_primary_10_1016_j_neuroimage_2018_04_011
crossref_primary_10_1016_j_clinph_2020_10_003
crossref_primary_10_1016_j_neuropsychologia_2015_04_024
crossref_primary_10_1016_j_brs_2020_07_006
crossref_primary_10_1371_journal_pcbi_1011572
crossref_primary_10_1111_ner_12583
crossref_primary_10_1016_j_bandl_2024_105459
crossref_primary_10_1016_j_concog_2015_05_012
crossref_primary_10_3389_fpsyg_2016_00315
crossref_primary_10_1142_S0129065721500568
crossref_primary_10_3390_brainsci13040574
crossref_primary_10_1016_j_cortex_2015_03_023
crossref_primary_10_1016_j_clinph_2023_03_013
crossref_primary_10_1016_j_neuropsychologia_2014_11_025
crossref_primary_10_1080_09540261_2017_1297697
crossref_primary_10_1111_cns_13971
crossref_primary_10_3390_brainsci13040698
crossref_primary_10_3389_fnins_2019_00568
crossref_primary_10_1016_j_clinph_2023_03_010
crossref_primary_10_1002_eat_23046
crossref_primary_10_4103_1673_5374_172329
crossref_primary_10_29252_nirp_bcn_9_2_135
crossref_primary_10_3389_fpsyt_2022_969199
crossref_primary_10_31083_j_jin2301022
crossref_primary_10_1038_s41598_020_76956_9
crossref_primary_10_1038_s41598_020_72909_4
crossref_primary_10_3389_fpsyt_2024_1441533
crossref_primary_10_1016_j_clinph_2019_01_001
crossref_primary_10_1016_j_neulet_2023_137361
crossref_primary_10_3389_fnint_2018_00064
crossref_primary_10_3389_fpsyg_2022_813444
crossref_primary_10_1109_TNSRE_2018_2890001
crossref_primary_10_1113_JP287085
crossref_primary_10_1097_YCT_0000000000000510
crossref_primary_10_1016_j_neuroimage_2019_06_047
crossref_primary_10_1016_j_brs_2015_07_029
crossref_primary_10_3389_fpsyg_2017_00952
crossref_primary_10_1016_j_brs_2021_01_018
crossref_primary_10_3389_fnbeh_2018_00063
crossref_primary_10_3390_brainsci14040322
crossref_primary_10_1038_s41598_024_59927_2
crossref_primary_10_1016_j_brs_2019_03_008
crossref_primary_10_1111_ejn_14349
crossref_primary_10_5114_pq_2020_100282
crossref_primary_10_1155_2022_9419154
crossref_primary_10_1038_s41598_024_59468_8
crossref_primary_10_1016_j_clinph_2017_09_007
crossref_primary_10_1016_j_jneumeth_2022_109486
crossref_primary_10_3390_brainsci11020207
crossref_primary_10_3390_jcm11071845
crossref_primary_10_1186_s40345_024_00352_9
crossref_primary_10_3389_fnins_2017_00282
crossref_primary_10_5812_ipmn_141334
crossref_primary_10_1016_j_neuropsychologia_2019_01_003
crossref_primary_10_3389_fnins_2018_00258
crossref_primary_10_3389_fnbeh_2018_00337
crossref_primary_10_1038_s41598_021_87371_z
crossref_primary_10_1371_journal_pone_0201128
crossref_primary_10_3389_fnbeh_2018_00333
crossref_primary_10_1002_aur_2312
crossref_primary_10_3389_fnbeh_2023_1216524
crossref_primary_10_1016_j_neuroimage_2016_06_003
crossref_primary_10_3390_brainsci13040640
crossref_primary_10_1016_j_neuropsychologia_2018_07_037
crossref_primary_10_3389_fnhum_2021_679977
crossref_primary_10_1016_j_neubiorev_2021_02_035
crossref_primary_10_1016_j_jneumeth_2022_109651
crossref_primary_10_1016_j_nicl_2017_01_025
crossref_primary_10_1016_j_brs_2018_12_227
crossref_primary_10_1186_s40101_017_0157_3
crossref_primary_10_1016_j_cortex_2017_05_004
crossref_primary_10_1002_hbm_24525
crossref_primary_10_1016_j_cortex_2014_10_022
crossref_primary_10_1186_s13063_017_2332_6
crossref_primary_10_1523_JNEUROSCI_2376_15_2015
crossref_primary_10_3389_fncir_2016_00073
crossref_primary_10_1002_hbm_25857
crossref_primary_10_1016_j_brainresbull_2020_12_013
crossref_primary_10_3389_fphar_2019_00032
crossref_primary_10_1016_j_neuroimage_2017_03_001
crossref_primary_10_3390_brainsci12050522
crossref_primary_10_1080_17470919_2016_1273133
crossref_primary_10_1016_j_bandc_2019_05_006
crossref_primary_10_1016_j_cortex_2018_11_022
crossref_primary_10_1371_journal_pone_0197192
crossref_primary_10_3389_fresc_2022_978257
crossref_primary_10_3389_fpsyt_2021_646569
crossref_primary_10_1038_s41380_020_00962_6
crossref_primary_10_1016_j_bandl_2017_11_001
crossref_primary_10_3390_brainsci13020285
crossref_primary_10_1371_journal_pone_0124137
crossref_primary_10_1523_ENEURO_0311_19_2019
crossref_primary_10_3389_fnhum_2018_00534
crossref_primary_10_1186_s12984_019_0581_1
crossref_primary_10_3390_brainsci12010071
crossref_primary_10_1097_WNR_0000000000001362
crossref_primary_10_1016_j_bandl_2020_104757
crossref_primary_10_1016_j_neuropsychologia_2017_06_005
crossref_primary_10_1177_10538135241296371
crossref_primary_10_12677_NS_2023_123052
crossref_primary_10_1016_j_cortex_2015_04_023
crossref_primary_10_1177_1059712320930753
crossref_primary_10_1117_1_JBO_20_4_046007
crossref_primary_10_1117_1_NPh_7_2_020901
crossref_primary_10_1093_cercor_bhx021
crossref_primary_10_2139_ssrn_4173661
crossref_primary_10_1007_s00429_022_02456_3
crossref_primary_10_1016_j_isci_2023_107430
crossref_primary_10_1038_s41380_024_02598_2
crossref_primary_10_3390_brainsci14090895
crossref_primary_10_1016_j_brainres_2020_147227
crossref_primary_10_1155_np_7853199
crossref_primary_10_3389_fpsyg_2020_00776
crossref_primary_10_4103_1673_5374_295315
crossref_primary_10_1016_j_brs_2014_10_009
crossref_primary_10_1371_journal_pone_0135371
crossref_primary_10_1016_j_arr_2022_101738
crossref_primary_10_12677_acm_2024_14112845
crossref_primary_10_1007_s10072_020_04527_x
crossref_primary_10_1016_j_brainres_2021_147491
crossref_primary_10_1016_j_brs_2018_06_005
crossref_primary_10_1016_j_neubiorev_2016_03_006
crossref_primary_10_3389_fnhum_2016_00270
crossref_primary_10_1016_j_brs_2018_06_004
crossref_primary_10_1016_j_jbmt_2017_12_014
crossref_primary_10_1162_jocn_a_01514
crossref_primary_10_3389_fnhum_2023_1101490
crossref_primary_10_3389_fpsyg_2018_00867
crossref_primary_10_1016_j_brs_2022_01_010
crossref_primary_10_1016_j_jneumeth_2022_109677
crossref_primary_10_1007_s11065_023_09627_x
crossref_primary_10_1016_j_brs_2015_01_411
Cites_doi 10.1016/j.neuropsychologia.2011.10.015
10.1586/ern.12.78
10.3233/RNN-2011-0618
10.1016/j.pnpbp.2010.09.010
10.1016/j.neuroimage.2010.09.085
10.3791/50426
10.1113/jphysiol.2005.088310
10.1016/j.brainresbull.2005.11.003
10.1016/0013-4694(80)90419-8
10.1523/JNEUROSCI.4432-08.2009
10.1093/cercor/bhn032
10.1212/WNL.57.10.1899
10.1016/j.neuroimage.2013.06.076
10.1186/1743-0003-6-8
10.1038/sj.npp.1300517
10.1167/iovs.03-0688
10.1016/j.neuroimage.2011.06.069
10.1016/j.neuron.2009.08.028
10.1016/j.neuroimage.2010.12.004
10.1371/journal.pone.0010281
10.1007/s10548-012-0256-8
10.1177/1550059412444976
10.1097/00001756-199807130-00020
10.1111/j.1469-7793.2000.t01-1-00633.x
10.1016/j.neuropsychologia.2010.06.002
10.1016/j.neuroimage.2012.12.034
10.1002/mds.21012
10.1113/jphysiol.2005.092429
10.1097/WNR.0b013e32832e9aa2
10.1523/JNEUROSCI.0542-11.2011
10.1002/hbm.21479
10.1016/j.brainres.2010.06.053
10.1016/S1567-424X(09)70230-2
10.1007/s10548-009-0083-8
10.3389/fnint.2012.00038
10.1007/s00221-006-0733-y
10.1016/j.pain.2013.03.040
10.1017/S1461145707007833
10.1016/j.conb.2005.10.015
10.1080/09602011.2011.574050
10.1136/jnnp-2012-302825
10.1111/j.1460-9568.2010.07211.x
10.1007/s00221-011-2879-5
10.1016/S1388-2457(03)00362-6
10.1097/00001756-199711100-00024
10.1016/j.rehab.2012.09.001
10.1016/j.nurt.2009.01.003
10.1093/cercor/bhs014
10.1093/brain/awf238
10.1016/j.brainresbull.2007.01.004
10.1111/j.1526-4610.2012.02141.x
10.1155/2013/170256
10.1016/j.neuroimage.2011.06.018
10.1113/jphysiol.2003.049916
10.1016/j.brs.2011.08.006
10.1001/archgenpsychiatry.2012.147
10.1016/j.cortex.2008.03.007
10.1016/0014-4886(62)90056-0
10.1016/j.neuron.2010.03.035
10.1016/j.expneurol.2009.03.038
10.1523/JNEUROSCI.3887-12.2013
10.1007/s00221-011-2891-9
10.3233/RNN-2011-0609
10.1152/jn.1965.28.1.166
10.1016/j.neuroimage.2007.12.064
10.1016/j.jneumeth.2003.10.009
10.1016/j.clinph.2005.12.003
10.1016/j.brs.2008.06.004
10.1016/j.clinph.2009.08.016
10.1038/35094500
10.1016/j.neuroimage.2013.03.020
10.1016/j.neuropsychologia.2010.12.020
10.1111/j.1528-1167.2006.00426.x
10.1016/j.neuroimage.2009.09.026
10.1162/jocn_a_00347
10.1007/BF02513307
10.1038/196584a0
10.1016/j.jad.2009.02.015
10.1162/jocn_a_00293
10.1212/01.wnl.0000317060.43722.a3
10.1093/cercor/bhh085
10.1111/j.1460-9568.2005.04233.x
10.1126/science.1117256
10.1093/brain/awp154
10.1016/j.yebeh.2012.06.027
10.1002/hbm.21104
10.1016/j.neulet.2010.05.087
10.1016/j.clinph.2010.09.025
10.1016/j.neuroimage.2012.10.026
ContentType Journal Article
Copyright 2014 Elsevier Ltd
2015 INIST-CNRS
Copyright © 2014 Elsevier Ltd. All rights reserved.
Copyright_xml – notice: 2014 Elsevier Ltd
– notice: 2015 INIST-CNRS
– notice: Copyright © 2014 Elsevier Ltd. All rights reserved.
DBID AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1016/j.cortex.2014.05.003
DatabaseName CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Anatomy & Physiology
EISSN 1973-8102
EndPage 111
ExternalDocumentID 24998337
28725093
10_1016_j_cortex_2014_05_003
S0010945214001580
Genre Journal Article
GroupedDBID ---
--K
--M
--Z
.GJ
.~1
0R~
1B1
1~.
1~5
4.4
41~
457
4G.
4H-
53G
5GY
5RE
5VS
6PF
7-5
71M
85S
8P~
AABNK
AACTN
AADFP
AADPK
AAEDT
AAEDW
AAGJA
AAGUQ
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXLA
AAXUO
AAYJJ
ABCQJ
ABFNM
ABIVO
ABJNI
ABMAC
ABOYX
ABXDB
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
ADMUD
ADRHT
AEBSH
AEKER
AENEX
AETEA
AFKWA
AFTJW
AFXIZ
AFYLN
AGHFR
AGUBO
AGWIK
AGYEJ
AI.
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
DU5
E3Z
EBS
EFJIC
EFLBG
EJD
EO9
EP2
EP3
F5P
FA8
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
GBLVA
HVGLF
HZ~
H~9
IHE
J1W
KOM
M41
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OHT
OKEIE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SEL
SES
SJN
SPCBC
SSB
SSN
SSY
SSZ
T5K
TN5
UAP
VH1
WH7
XOL
XSB
ZA5
ZGI
ZKB
ZXP
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
ADXHL
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
IQODW
CGR
CUY
CVF
ECM
EFKBS
EIF
NPM
7X8
ID FETCH-LOGICAL-c392t-155c1f4f7896f951d45dc183817a5219d57438e0619c36a78a812ff0d17f296a3
IEDL.DBID .~1
ISSN 0010-9452
1973-8102
IngestDate Fri Jul 11 12:32:21 EDT 2025
Mon Jul 21 05:30:58 EDT 2025
Wed Apr 02 07:21:48 EDT 2025
Tue Jul 01 02:48:38 EDT 2025
Thu Apr 24 23:12:06 EDT 2025
Fri Feb 23 02:22:50 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Cortical excitability
TMS-EEG
tDCS
Posterior parietal cortex
Human
Cerebral cortex
Central nervous system
Electrophysiology
Electroencephalography
Experimental study
Transcranial direct current stimulation
Transcranial electrical stimulation
Encephalon
Parietal cortex
Language English
License CC BY 4.0
Copyright © 2014 Elsevier Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c392t-155c1f4f7896f951d45dc183817a5219d57438e0619c36a78a812ff0d17f296a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 24998337
PQID 1552807330
PQPubID 23479
PageCount 13
ParticipantIDs proquest_miscellaneous_1552807330
pubmed_primary_24998337
pascalfrancis_primary_28725093
crossref_primary_10_1016_j_cortex_2014_05_003
crossref_citationtrail_10_1016_j_cortex_2014_05_003
elsevier_sciencedirect_doi_10_1016_j_cortex_2014_05_003
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-09-01
PublicationDateYYYYMMDD 2014-09-01
PublicationDate_xml – month: 09
  year: 2014
  text: 2014-09-01
  day: 01
PublicationDecade 2010
PublicationPlace Kidlington
PublicationPlace_xml – name: Kidlington
– name: Italy
PublicationTitle Cortex
PublicationTitleAlternate Cortex
PublicationYear 2014
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Opitz, Windhoff, Heidemann, Turner, Thielscher (bib72) 2011; 58
Keeser, Meindl, Bor, Palm, Pogarell, Mulert (bib45) 2011; 31
Dasilva, Mendonca, Zaghi, Lopes, Dossantos, Spierings (bib23) 2012; 52
Polania, Nitsche, Paulus (bib76) 2011; 32
Bindman, Lippold, Redfearn (bib9) 1962; 196
Fregni, Thome-Souza, Nitsche, Freedman, Valente, Pascual-Leone (bib35) 2006; 47
Bolognini, Olgiati, Rossetti, Maravita (bib13) 2010; 31
Boggio, Rigonatti, Ribeiro, Myczkowski, Nitsche, Pascual-Leone (bib10) 2008; 11
Miniussi, Brignani, Pellicciari (bib55) 2012; 43
Accornero, Voti, La Riccia, Gregori (bib1) 2007; 178
Casarotto, Canali, Rosanova, Pigorini, Fecchio, Mariotti (bib17) 2013; 26
Antal, Paulus, Nitsche (bib6) 2011; 29
Utz, Dimova, Oppenlander, Kerkhoff (bib88) 2010; 48
Casarotto, Romero Lauro, Bellina, Casali, Rosanova, Pigorini (bib18) 2010; 5
Creutzfeldt, Fromm, Kapp (bib21) 1962; 5
Huber, Maki, Rosanova, Casarotto, Canali, Casali (bib39) 2013; 23
Wirth, Rahman, Kuenecke, Koenig, Horn, Sommer (bib93) 2011; 49
Brunoni, Ferrucci, Bortolomasi, Vergari, Tadini, Boggio (bib15) 2011; 35
Critchley (bib22) 1953
Ferrucci, Bortolomasi, Vergari, Tadini, Salvoro, Giacopuzzi (bib31) 2009; 118
Antal, Lang, Boros, Nitsche, Siebner, Paulus (bib5) 2008; 18
Nitsche, Liebetanz, Antal, Lang, Tergau, Paulus (bib64) 2003; 56
Kirimoto, Ogata, Onishi, Oyama, Goto, Tobimatsu (bib47) 2011; 122
Pena-Gomez, Sala-Lonch, Junque, Clemente, Vidal, Bargallo (bib75) 2012; 5
Antal, Bikson, Datta, Lafon, Dechent, Parra (bib3) 2012; 85
Monti, Ferrucci, Fumagalli, Mameli, Cogiamanian, Ardolino, Priori (bib98) 2013; 84
Lehmann, Skrandies (bib49) 1980; 48
Nitsche, Cohen, Wassermann, Priori, Lang, Antal (bib60) 2008; 1
Nitsche, Paulus (bib68) 2011; 29
Massimini, Ferrarelli, Huber, Esser, Singh, Tononi (bib52) 2005; 309
Gomez Palacio Schjetnan, Faraji, Metz, Tatsuno, Luczak (bib97) 2013
Matsunaga, Nitsche, Tsuji, Rothwell (bib53) 2004; 115
Pellicciari, Brignani, Miniussi (bib74) 2013; 83
Rossi, Hallett, Rossini, Pascual-Leone (bib81) 2009; 120
Chen, Feng, Zhao, Yin, Wang (bib19) 2008; 41
Fritsch, Reis, Martinowich, Schambra, Ji, Cohen (bib36) 2010; 66
Gandiga, Hummel, Cohen (bib37) 2006; 117
Nitsche, Fricke, Henschke, Schlitterlau, Liebetanz, Lang (bib61) 2003; 553
Nitsche, Paulus (bib67) 2009; 6
Andersen, Cui (bib2) 2009; 63
Kandel, Beis, Le Chapelain, Guesdon, Paysant (bib44) 2012; 55
Ikkai, Curtis (bib40) 2011; 49
Nitsche, Grundey, Liebetanz, Lang, Tergau, Paulus (bib62) 2004; 14
Zaehle, Beretta, Jancke, Herrmann, Sandmann (bib94) 2011; 215
Zheng, Alsop, Schlaug (bib95) 2011; 58
Bolognini, Olgiati, Maravita, Ferraro, Fregni (bib12) 2013; 154
Faria, Fregni, Sebastião, Dias, Leal (bib29) 2012; 25
Purpura, McMurtry (bib80) 1965; 28
Windhoff, Opitz, Thielscher (bib92) 2013; 34
Nitsche, Paulus (bib65) 2000; 527
Stagg, Lin, Mezue, Segerdahl, Kong, Xie (bib86) 2013; 33
Berryhill, Wencil, Branch Coslett, Olson (bib8) 2010; 479
Ardolino, Bossi, Barbieri, Priori (bib7) 2005; 568
Stagg, Best, Stephenson, O'Shea, Wylezinska, Kincses (bib85) 2009; 29
Nitsche, Boggio, Fregni, Pascual-Leone (bib59) 2009; 219
Fregni, Boggio, Santos, Lima, Vieira, Rigonatti (bib34) 2006; 21
Jacobson, Koslowsky, Lavidor (bib43) 2012; 216
Stone, Tesche (bib87) 2009; 20
Mattavelli, Rosanova, Casali, Papagno, Romero Lauro (bib54) 2013; 76
Ferrucci, Mameli, Guidi, Mrakic-Sposta, Vergari, Marceglia (bib32) 2008; 71
Polania, Paulus, Antal, Nitsche (bib77) 2011; 54
Esser, Huber, Massimini, Peterson, Ferrarelli, Tononi (bib28) 2006; 69
Mylius, Ayache, Zouari, Aoun-Sebaiti, Farhat, Lefaucheur (bib58) 2012; 12
Doron, Gazzaniga (bib27) 2008; 44
Nitsche, Jaussi, Liebetanz, Lang, Tergau, Paulus (bib63) 2004; 29
O'Connell, Wand, Marston, Spencer, Desouza (bib70) 2011; 47
Poreisz, Boros, Antal, Paulus (bib78) 2007; 72
Ilmoniemi, Virtanen, Ruohonen, Karhu, Aronen, Naatanen (bib41) 1997; 8
Lang, Siebner, Ward, Lee, Nitsche, Paulus (bib48) 2005; 22
Keeser, Padberg, Reisinger, Pogarell, Kirsch, Palm (bib46) 2011; 55
Liebetanz, Nitsche, Tergau, Paulus (bib50) 2002; 125
Bolognini, Pascual-Leone, Fregni (bib14) 2009; 6
Schestatsky, Morales-Quezada, Fregni (bib82) 2013
Sparing, Thimm, Hesse, Küst, Karbe, Fink (bib99) 2009; 132
Nitsche, Paulus (bib66) 2001; 57
Shomstein (bib83) 2012; 6
Convento, Vallar, Galantini, Bolognini (bib20) 2013; 25
Antal, Kincses, Nitsche, Bartfai, Paulus (bib4) 2004; 45
Delorme, Makeig (bib24) 2004; 134
Miniussi, Thut (bib56) 2010; 22
Nitsche, Seeber, Frommann, Klein, Rochford, Nitsche (bib69) 2005; 568
Miranda, Mekonnen, Salvador, Ruffini (bib57) 2013; 70
Virtanen, Ruohonen, Naatanen, Ilmoniemi (bib91) 1999; 37
Casali, Casarotto, Rosanova, Mariotti, Massimini (bib16) 2010; 49
Faria, Leal, Miranda (bib30) 2009
Bolognini, Fregni, Casati, Olgiati, Vallar (bib11) 2010; 1349
Mancini, Bolognini, Haggard, Vallar (bib51) 2012; 24
Ferrarelli, Sarasso, Guller, Riedner, Peterson, Bellesi (bib96) 2012; 69
Fogassi, Luppino (bib33) 2005; 15
Priori, Berardelli, Rona, Accornero, Manfredi (bib79) 1998; 9
Gusnard, Raichle (bib38) 2001; 2
Vallar, Bolognini (bib89) 2011; 21
Casarotto (10.1016/j.cortex.2014.05.003_bib17) 2013; 26
Fregni (10.1016/j.cortex.2014.05.003_bib35) 2006; 47
Miniussi (10.1016/j.cortex.2014.05.003_bib56) 2010; 22
Ferrarelli (10.1016/j.cortex.2014.05.003_bib96) 2012; 69
Convento (10.1016/j.cortex.2014.05.003_bib20) 2013; 25
Mattavelli (10.1016/j.cortex.2014.05.003_bib54) 2013; 76
Bolognini (10.1016/j.cortex.2014.05.003_bib13) 2010; 31
Opitz (10.1016/j.cortex.2014.05.003_bib72) 2011; 58
Monti (10.1016/j.cortex.2014.05.003_bib98) 2013; 84
Gusnard (10.1016/j.cortex.2014.05.003_bib38) 2001; 2
Ferrucci (10.1016/j.cortex.2014.05.003_bib32) 2008; 71
Nitsche (10.1016/j.cortex.2014.05.003_bib66) 2001; 57
Nitsche (10.1016/j.cortex.2014.05.003_bib61) 2003; 553
Utz (10.1016/j.cortex.2014.05.003_bib88) 2010; 48
Casali (10.1016/j.cortex.2014.05.003_bib16) 2010; 49
Keeser (10.1016/j.cortex.2014.05.003_bib46) 2011; 55
Delorme (10.1016/j.cortex.2014.05.003_bib24) 2004; 134
Critchley (10.1016/j.cortex.2014.05.003_bib22) 1953
Dasilva (10.1016/j.cortex.2014.05.003_bib23) 2012; 52
Miranda (10.1016/j.cortex.2014.05.003_bib57) 2013; 70
Fogassi (10.1016/j.cortex.2014.05.003_bib33) 2005; 15
Fregni (10.1016/j.cortex.2014.05.003_bib34) 2006; 21
Stagg (10.1016/j.cortex.2014.05.003_bib86) 2013; 33
Windhoff (10.1016/j.cortex.2014.05.003_bib92) 2013; 34
Nitsche (10.1016/j.cortex.2014.05.003_bib62) 2004; 14
Poreisz (10.1016/j.cortex.2014.05.003_bib78) 2007; 72
Brunoni (10.1016/j.cortex.2014.05.003_bib15) 2011; 35
Bolognini (10.1016/j.cortex.2014.05.003_bib12) 2013; 154
Polania (10.1016/j.cortex.2014.05.003_bib76) 2011; 32
Jacobson (10.1016/j.cortex.2014.05.003_bib43) 2012; 216
Ilmoniemi (10.1016/j.cortex.2014.05.003_bib41) 1997; 8
Matsunaga (10.1016/j.cortex.2014.05.003_bib53) 2004; 115
Creutzfeldt (10.1016/j.cortex.2014.05.003_bib21) 1962; 5
Massimini (10.1016/j.cortex.2014.05.003_bib52) 2005; 309
Nitsche (10.1016/j.cortex.2014.05.003_bib69) 2005; 568
Nitsche (10.1016/j.cortex.2014.05.003_bib65) 2000; 527
Sparing (10.1016/j.cortex.2014.05.003_bib99) 2009; 132
Zheng (10.1016/j.cortex.2014.05.003_bib95) 2011; 58
Doron (10.1016/j.cortex.2014.05.003_bib27) 2008; 44
Virtanen (10.1016/j.cortex.2014.05.003_bib91) 1999; 37
Kirimoto (10.1016/j.cortex.2014.05.003_bib47) 2011; 122
Accornero (10.1016/j.cortex.2014.05.003_bib1) 2007; 178
Chen (10.1016/j.cortex.2014.05.003_bib19) 2008; 41
Rossi (10.1016/j.cortex.2014.05.003_bib81) 2009; 120
Mancini (10.1016/j.cortex.2014.05.003_bib51) 2012; 24
Nitsche (10.1016/j.cortex.2014.05.003_bib67) 2009; 6
Wirth (10.1016/j.cortex.2014.05.003_bib93) 2011; 49
Ikkai (10.1016/j.cortex.2014.05.003_bib40) 2011; 49
Bolognini (10.1016/j.cortex.2014.05.003_bib11) 2010; 1349
Nitsche (10.1016/j.cortex.2014.05.003_bib68) 2011; 29
Andersen (10.1016/j.cortex.2014.05.003_bib2) 2009; 63
Antal (10.1016/j.cortex.2014.05.003_bib6) 2011; 29
Lehmann (10.1016/j.cortex.2014.05.003_bib49) 1980; 48
Polania (10.1016/j.cortex.2014.05.003_bib77) 2011; 54
Bindman (10.1016/j.cortex.2014.05.003_bib9) 1962; 196
Ardolino (10.1016/j.cortex.2014.05.003_bib7) 2005; 568
Ferrucci (10.1016/j.cortex.2014.05.003_bib31) 2009; 118
Zaehle (10.1016/j.cortex.2014.05.003_bib94) 2011; 215
Esser (10.1016/j.cortex.2014.05.003_bib28) 2006; 69
Miniussi (10.1016/j.cortex.2014.05.003_bib55) 2012; 43
Bolognini (10.1016/j.cortex.2014.05.003_bib14) 2009; 6
Mylius (10.1016/j.cortex.2014.05.003_bib58) 2012; 12
Nitsche (10.1016/j.cortex.2014.05.003_bib59) 2009; 219
Casarotto (10.1016/j.cortex.2014.05.003_bib18) 2010; 5
Schestatsky (10.1016/j.cortex.2014.05.003_bib82) 2013
O'Connell (10.1016/j.cortex.2014.05.003_bib70) 2011; 47
Liebetanz (10.1016/j.cortex.2014.05.003_bib50) 2002; 125
Berryhill (10.1016/j.cortex.2014.05.003_bib8) 2010; 479
Pena-Gomez (10.1016/j.cortex.2014.05.003_bib75) 2012; 5
Nitsche (10.1016/j.cortex.2014.05.003_bib63) 2004; 29
Priori (10.1016/j.cortex.2014.05.003_bib79) 1998; 9
Kandel (10.1016/j.cortex.2014.05.003_bib44) 2012; 55
Faria (10.1016/j.cortex.2014.05.003_bib29) 2012; 25
Huber (10.1016/j.cortex.2014.05.003_bib39) 2013; 23
Pellicciari (10.1016/j.cortex.2014.05.003_bib74) 2013; 83
Stagg (10.1016/j.cortex.2014.05.003_bib85) 2009; 29
Antal (10.1016/j.cortex.2014.05.003_bib3) 2012; 85
Fritsch (10.1016/j.cortex.2014.05.003_bib36) 2010; 66
Shomstein (10.1016/j.cortex.2014.05.003_bib83) 2012; 6
Vallar (10.1016/j.cortex.2014.05.003_bib89) 2011; 21
Faria (10.1016/j.cortex.2014.05.003_bib30) 2009
Antal (10.1016/j.cortex.2014.05.003_bib4) 2004; 45
Boggio (10.1016/j.cortex.2014.05.003_bib10) 2008; 11
Gomez Palacio Schjetnan (10.1016/j.cortex.2014.05.003_bib97) 2013
Purpura (10.1016/j.cortex.2014.05.003_bib80) 1965; 28
Keeser (10.1016/j.cortex.2014.05.003_bib45) 2011; 31
Stone (10.1016/j.cortex.2014.05.003_bib87) 2009; 20
Antal (10.1016/j.cortex.2014.05.003_bib5) 2008; 18
Gandiga (10.1016/j.cortex.2014.05.003_bib37) 2006; 117
Lang (10.1016/j.cortex.2014.05.003_bib48) 2005; 22
Nitsche (10.1016/j.cortex.2014.05.003_bib60) 2008; 1
Nitsche (10.1016/j.cortex.2014.05.003_bib64) 2003; 56
25479701 - Cortex. 2016 Jan;74:320-2
26073443 - Cortex. 2016 Jan;74:323-8
References_xml – volume: 15
  start-page: 626
  year: 2005
  end-page: 631
  ident: bib33
  article-title: Motor functions of the parietal lobe
  publication-title: Current Opinion in Neurobiology
– volume: 11
  start-page: 249
  year: 2008
  end-page: 254
  ident: bib10
  article-title: A randomized, double-blind clinical trial on the efficacy of cortical direct current stimulation for the treatment of major depression
  publication-title: The International Journal of Neuropsychopharmacology
– volume: 58
  start-page: 849
  year: 2011
  end-page: 859
  ident: bib72
  article-title: How the brain tissue shapes the electric field induced by transcranial magnetic stimulation
  publication-title: NeuroImage
– volume: 66
  start-page: 198
  year: 2010
  end-page: 204
  ident: bib36
  article-title: Direct current stimulation promotes BDNF-dependent synaptic plasticity: potential implications for motor learning
  publication-title: Neuron
– volume: 55
  start-page: 644
  year: 2011
  end-page: 657
  ident: bib46
  article-title: Prefrontal direct current stimulation modulates resting EEG and event-related potentials in healthy subjects: a standardized low resolution tomography (sLORETA) study
  publication-title: NeuroImage
– volume: 22
  start-page: 249
  year: 2010
  end-page: 256
  ident: bib56
  article-title: Combining TMS and EEG offers new prospects in cognitive neuroscience
  publication-title: Brain Topography
– volume: 134
  start-page: 9
  year: 2004
  end-page: 21
  ident: bib24
  article-title: EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis
  publication-title: Journal of Neuroscience Methods
– volume: 25
  start-page: 417
  year: 2012
  end-page: 425
  ident: bib29
  article-title: Feasibility of focal transcranial DC polarization with simultaneous EEG recording: Preliminary assessment in healthy subjects and human epilepsy
  publication-title: Epilepsy & Behavior
– volume: 55
  start-page: 657
  year: 2012
  end-page: 680
  ident: bib44
  article-title: Non-invasive cerebral stimulation for the upper limb rehabilitation after stroke: a review
  publication-title: Annals of Physical and Rehabilitation Medicine
– volume: 31
  start-page: 1800
  year: 2010
  end-page: 1806
  ident: bib13
  article-title: Enhancing multisensory spatial orienting by brain polarization of the parietal cortex
  publication-title: European Journal of Neuroscience
– volume: 5
  start-page: e10281
  year: 2010
  ident: bib18
  article-title: EEG responses to TMS are sensitive to changes in the perturbation parameters and repeatable over time
  publication-title: PLoS One
– volume: 125
  start-page: 2238
  year: 2002
  end-page: 2247
  ident: bib50
  article-title: Pharmacological approach to the mechanisms of transcranial DC-stimulation-induced after-effects of human motor cortex excitability
  publication-title: Brain
– volume: 83
  start-page: 569
  year: 2013
  end-page: 580
  ident: bib74
  article-title: Excitability modulation of the motor system induced by transcranial direct current stimulation: a multimodal approach
  publication-title: NeuroImage
– volume: 47
  start-page: 335
  year: 2006
  end-page: 342
  ident: bib35
  article-title: A controlled clinical trial of cathodal DC polarization in patients with refractory epilepsy
  publication-title: Epilepsia
– volume: 48
  start-page: 609
  year: 1980
  end-page: 621
  ident: bib49
  article-title: Reference-free identification of components of checkerboard-evoked multichannel potential fields
  publication-title: Electroencephalography and Clinical Neurophysiology
– volume: 6
  start-page: 8
  year: 2009
  ident: bib14
  article-title: Using non-invasive brain stimulation to augment motor training-induced plasticity
  publication-title: Journal of Neuroengineering and Rehabilitation
– volume: 21
  start-page: 618
  year: 2011
  end-page: 649
  ident: bib89
  article-title: Behavioural facilitation following brain stimulation: implications for neurorehabilitation
  publication-title: Neuropsychological Rehabilitation
– volume: 216
  start-page: 1
  year: 2012
  end-page: 10
  ident: bib43
  article-title: tDCS polarity effects in motor and cognitive domains: a meta-analytical review
  publication-title: Experimental Brain Research
– volume: 14
  start-page: 1240
  year: 2004
  end-page: 1245
  ident: bib62
  article-title: Catecholaminergic consolidation of motor cortical neuroplasticity in humans
  publication-title: Cerebral Cortex
– volume: 20
  start-page: 1115
  year: 2009
  end-page: 1119
  ident: bib87
  article-title: Transcranial direct current stimulation modulates shifts in global/local attention
  publication-title: NeuroReport
– volume: 6
  start-page: 38
  year: 2012
  ident: bib83
  article-title: Cognitive functions of the posterior parietal cortex: top-down and bottom-up attentional control
  publication-title: Frontiers in Integrative Neuroscience
– volume: 45
  start-page: 702
  year: 2004
  end-page: 707
  ident: bib4
  article-title: Excitability changes induced in the human primary visual cortex by transcranial direct current stimulation: direct electrophysiological evidence
  publication-title: Investigative Ophthalmology & Visual Science
– volume: 2
  start-page: 685
  year: 2001
  end-page: 694
  ident: bib38
  article-title: Searching for a baseline: functional imaging and the resting human brain
  publication-title: Nature Reviews Neuroscience
– volume: 76
  start-page: 24
  year: 2013
  end-page: 32
  ident: bib54
  article-title: Top-down interference and cortical responsiveness in face processing: a TMS-EEG study
  publication-title: NeuroImage
– volume: 84
  start-page: 832
  year: 2013
  end-page: 842
  ident: bib98
  article-title: Transcranial direct current stimulation (tDCS) and language
  publication-title: Journal of Neurology, Neurosurgery & Psychiatry
– year: 2013
  ident: bib82
  article-title: Simultaneous EEG monitoring during transcranial direct current stimulation
  publication-title: Journal of Visualized Experiments
– volume: 115
  start-page: 456
  year: 2004
  end-page: 460
  ident: bib53
  article-title: Effect of transcranial DC sensorimotor cortex stimulation on somatosensory evoked potentials in humans
  publication-title: Clinical Neurophysiology
– volume: 28
  start-page: 166
  year: 1965
  end-page: 185
  ident: bib80
  article-title: Intracellular activities and evoked potential changes during polarization of motor cortex
  publication-title: Journal of Neurophysiology
– volume: 5
  start-page: 436
  year: 1962
  end-page: 452
  ident: bib21
  article-title: Influence of transcortical d-c currents on cortical neuronal activity
  publication-title: Experimental Neurology
– volume: 41
  start-page: 561
  year: 2008
  end-page: 574
  ident: bib19
  article-title: EEG default mode network in the human brain: spectral regional field powers
  publication-title: NeuroImage
– volume: 57
  start-page: 1899
  year: 2001
  end-page: 1901
  ident: bib66
  article-title: Sustained excitability elevations induced by transcranial DC motor cortex stimulation in humans
  publication-title: Neurology
– volume: 120
  start-page: 2008
  year: 2009
  end-page: 2039
  ident: bib81
  article-title: Safety, ethical considerations, and application guidelines for the use of transcranial magnetic stimulation in clinical practice and research
  publication-title: Clinical Neurophysiology
– volume: 26
  start-page: 326
  year: 2013
  end-page: 337
  ident: bib17
  article-title: Assessing the effects of electroconvulsive therapy on cortical excitability by means of transcranial magnetic stimulation and electroencephalography
  publication-title: Brain Topography
– volume: 21
  start-page: 1693
  year: 2006
  end-page: 1702
  ident: bib34
  article-title: Noninvasive cortical stimulation with transcranial direct current stimulation in Parkinson's disease
  publication-title: Movement Disorders
– volume: 1349
  start-page: 76
  year: 2010
  end-page: 89
  ident: bib11
  article-title: Brain polarization of parietal cortex augments training-induced improvement of visual exploratory and attentional skills
  publication-title: Brain Research
– volume: 43
  start-page: 184
  year: 2012
  end-page: 191
  ident: bib55
  article-title: Combining transcranial electrical stimulation with electroencephalography: a multimodal approach
  publication-title: Clinical EEG and Neuroscience
– volume: 12
  start-page: 983
  year: 2012
  end-page: 991
  ident: bib58
  article-title: Stroke rehabilitation using noninvasive cortical stimulation: hemispatial neglect
  publication-title: Expert Review of Neurotherapeutics
– volume: 22
  start-page: 495
  year: 2005
  end-page: 504
  ident: bib48
  article-title: How does transcranial DC stimulation of the primary motor cortex alter regional neuronal activity in the human brain?
  publication-title: The European Journal of Neuroscience
– volume: 1
  start-page: 206
  year: 2008
  end-page: 223
  ident: bib60
  article-title: Transcranial direct current stimulation: state of the art 2008
  publication-title: Brain Stimulation
– volume: 479
  start-page: 312
  year: 2010
  end-page: 316
  ident: bib8
  article-title: A selective working memory impairment after transcranial direct current stimulation to the right parietal lobe
  publication-title: Neuroscience Letter
– volume: 71
  start-page: 493
  year: 2008
  end-page: 498
  ident: bib32
  article-title: Transcranial direct current stimulation improves recognition memory in Alzheimer disease
  publication-title: Neurology
– volume: 47
  start-page: 309
  year: 2011
  end-page: 326
  ident: bib70
  article-title: Non-invasive brain stimulation techniques for chronic pain. A report of a Cochrane systematic review and meta-analysis
  publication-title: European Journal of Physical and Rehabilitation Medicine
– volume: 132
  start-page: 3011
  year: 2009
  end-page: 3020
  ident: bib99
  article-title: Bidirectional alterations of interhemispheric parietal balance by non-invasive cortical stimulation
  publication-title: Brain
– volume: 29
  start-page: 463
  year: 2011
  end-page: 492
  ident: bib68
  article-title: Transcranial direct current stimulation–update 2011
  publication-title: Restorative Neurology and Neuroscience
– start-page: 1596
  year: 2009
  end-page: 1599
  ident: bib30
  article-title: Comparing different electrode configurations using the 10-10 international system in tDCS: a finite element model analysis
  publication-title: Conf Proc IEEE Eng Med Biol Soc, 2009
– volume: 568
  start-page: 291
  year: 2005
  end-page: 303
  ident: bib69
  article-title: Modulating parameters of excitability during and after transcranial direct current stimulation of the human motor cortex
  publication-title: The Journal of Physiology
– volume: 49
  start-page: 1428
  year: 2011
  end-page: 1434
  ident: bib40
  article-title: Common neural mechanisms supporting spatial working memory, attention and motor intention
  publication-title: Neuropsychologia
– volume: 49
  start-page: 1459
  year: 2010
  end-page: 1468
  ident: bib16
  article-title: General indices to characterize the electrical response of the cerebral cortex to TMS
  publication-title: NeuroImage
– volume: 5
  start-page: 252
  year: 2012
  end-page: 263
  ident: bib75
  article-title: Modulation of large-scale brain networks by transcranial direct current stimulation evidenced by resting-state functional MRI
  publication-title: Brain Stimulation
– volume: 6
  start-page: 244
  year: 2009
  end-page: 250
  ident: bib67
  article-title: Noninvasive brain stimulation protocols in the treatment of epilepsy: current state and perspectives
  publication-title: Neurotherapeutics
– volume: 56
  start-page: 255
  year: 2003
  end-page: 276
  ident: bib64
  article-title: Modulation of cortical excitability by weak direct current stimulation–technical, safety and functional aspects
  publication-title: Supplements to Clinical Neurophysiology
– volume: 118
  start-page: 215
  year: 2009
  end-page: 219
  ident: bib31
  article-title: Transcranial direct current stimulation in severe, drug-resistant major depression
  publication-title: Journal of Affective Disorders
– volume: 23
  start-page: 332
  year: 2013
  end-page: 338
  ident: bib39
  article-title: Human cortical excitability increases with time awake
  publication-title: Cerebral Cortex
– volume: 215
  start-page: 135
  year: 2011
  end-page: 140
  ident: bib94
  article-title: Excitability changes induced in the human auditory cortex by transcranial direct current stimulation: direct electrophysiological evidence
  publication-title: Experimental Brain Research
– volume: 37
  start-page: 322
  year: 1999
  end-page: 326
  ident: bib91
  article-title: Instrumentation for the measurement of electric brain responses to transcranial magnetic stimulation
  publication-title: Medical and Biological Engineering and Computing
– volume: 69
  start-page: 766
  year: 2012
  end-page: 774
  ident: bib96
  article-title: Reduced natural oscillatory frequency of frontal thalamocortical circuits in schizophrenia
  publication-title: Archives of General Psychiatry
– volume: 154
  start-page: 1274
  year: 2013
  end-page: 1280
  ident: bib12
  article-title: Motor and parietal cortex stimulation for phantom limb pain and sensations
  publication-title: Pain
– volume: 25
  start-page: 685
  year: 2013
  end-page: 696
  ident: bib20
  article-title: Neuromodulation of early multisensory interactions in the visual cortex
  publication-title: Journal of Cognitive Neuroscience
– volume: 58
  start-page: 26
  year: 2011
  end-page: 33
  ident: bib95
  article-title: Effects of transcranial direct current stimulation (tDCS) on human regional cerebral blood flow
  publication-title: NeuroImage
– volume: 29
  start-page: 365
  year: 2011
  end-page: 374
  ident: bib6
  article-title: Electrical stimulation and visual network plasticity
  publication-title: Restorative Neurology and Neuroscience
– volume: 52
  start-page: 1283
  year: 2012
  end-page: 1295
  ident: bib23
  article-title: tDCS-induced analgesia and electrical fields in pain-related neural networks in chronic migraine
  publication-title: Headache
– volume: 69
  start-page: 86
  year: 2006
  end-page: 94
  ident: bib28
  article-title: A direct demonstration of cortical LTP in humans: a combined TMS/EEG study
  publication-title: Brain Research Bulletin
– volume: 70
  start-page: 48
  year: 2013
  end-page: 58
  ident: bib57
  article-title: The electric field in the cortex during transcranial current stimulation
  publication-title: NeuroImage
– volume: 29
  start-page: 5202
  year: 2009
  end-page: 5206
  ident: bib85
  article-title: Polarity-sensitive modulation of cortical neurotransmitters by transcranial stimulation
  publication-title: The Journal of Neuroscience
– volume: 568
  start-page: 653
  year: 2005
  end-page: 663
  ident: bib7
  article-title: Non-synaptic mechanisms underlie the after-effects of cathodal transcutaneous direct current stimulation of the human brain
  publication-title: The Journal of Physiology
– volume: 48
  start-page: 2789
  year: 2010
  end-page: 2810
  ident: bib88
  article-title: Electrified minds: transcranial direct current stimulation (tDCS) and galvanic vestibular stimulation (GVS) as methods of non-invasive brain stimulation in neuropsychology – a review of current data and future implications
  publication-title: Neuropsychologia
– volume: 49
  start-page: 3989
  year: 2011
  end-page: 3998
  ident: bib93
  article-title: Effects of transcranial direct current stimulation (tDCS) on behaviour and electrophysiology of language production
  publication-title: Neuropsychologia
– year: 2013
  ident: bib97
  article-title: Transcranial direct current stimulation in stroke rehabilitation: a review of recent advancements
  publication-title: Stroke Research and Treatment
– volume: 122
  start-page: 777
  year: 2011
  end-page: 783
  ident: bib47
  article-title: Transcranial direct current stimulation over the motor association cortex induces plastic changes in ipsilateral primary motor and somatosensory cortices
  publication-title: Clinical Neurophysiology
– volume: 219
  start-page: 14
  year: 2009
  end-page: 19
  ident: bib59
  article-title: Treatment of depression with transcranial direct current stimulation (tDCS): a review
  publication-title: Experimental Neurology
– volume: 85
  start-page: 1040
  year: 2012
  end-page: 1047
  ident: bib3
  article-title: Imaging artifacts induced by electrical stimulation during conventional fMRI of the brain
  publication-title: NeuroImage
– volume: 63
  start-page: 568
  year: 2009
  end-page: 583
  ident: bib2
  article-title: Intention, action planning, and decision making in parietal-frontal circuits
  publication-title: Neuron
– volume: 18
  start-page: 2701
  year: 2008
  end-page: 2705
  ident: bib5
  article-title: Homeostatic metaplasticity of the motor cortex is altered during headache-free intervals in migraine with aura
  publication-title: Cerebral Cortex
– volume: 196
  start-page: 584
  year: 1962
  end-page: 585
  ident: bib9
  article-title: Long-lasting changes in the level of the electrical activity of the cerebral cortex produced bypolarizing currents
  publication-title: Nature
– volume: 8
  start-page: 3537
  year: 1997
  end-page: 3540
  ident: bib41
  article-title: Neuronal responses to magnetic stimulation reveal cortical reactivity and connectivity
  publication-title: NeuroReport
– volume: 527
  start-page: 633
  year: 2000
  end-page: 639
  ident: bib65
  article-title: Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation
  publication-title: The Journal of Physiology
– volume: 117
  start-page: 845
  year: 2006
  end-page: 850
  ident: bib37
  article-title: Transcranial DC stimulation (tDCS): a tool for double-blind sham-controlled clinical studies in brain stimulation
  publication-title: Clinical Neurophysiology
– volume: 29
  start-page: 1573
  year: 2004
  end-page: 1578
  ident: bib63
  article-title: Consolidation of human motor cortical neuroplasticity by D-cycloserine
  publication-title: Neuropsychopharmacology
– year: 1953
  ident: bib22
  article-title: The parietal lobes
– volume: 178
  start-page: 261
  year: 2007
  end-page: 266
  ident: bib1
  article-title: Visual evoked potentials modulation during direct current cortical polarization
  publication-title: Experimental Brain Research
– volume: 35
  start-page: 96
  year: 2011
  end-page: 101
  ident: bib15
  article-title: Transcranial direct current stimulation (tDCS) in unipolar vs. bipolar depressive disorder
  publication-title: Progress in Neuro-psychopharmacology & Biological Psychiatry
– volume: 44
  start-page: 1023
  year: 2008
  end-page: 1029
  ident: bib27
  article-title: Neuroimaging techniques offer new perspectives on callosal transfer and interhemispheric communication
  publication-title: Cortex
– volume: 54
  start-page: 2287
  year: 2011
  end-page: 2296
  ident: bib77
  article-title: Introducing graph theory to track for neuroplastic alterations in the resting human brain: a transcranial direct current stimulation study
  publication-title: NeuroImage
– volume: 31
  start-page: 15284
  year: 2011
  end-page: 15293
  ident: bib45
  article-title: Prefrontal transcranial direct current stimulation changes connectivity of resting-state networks during fMRI
  publication-title: The Journal of Neuroscience
– volume: 309
  start-page: 2228
  year: 2005
  end-page: 2232
  ident: bib52
  article-title: Breakdown of cortical effective connectivity during sleep
  publication-title: Science
– volume: 33
  start-page: 11425
  year: 2013
  end-page: 11431
  ident: bib86
  article-title: Widespread modulation of cerebral perfusion induced during and after transcranial direct current stimulation applied to the left dorsolateral prefrontal cortex
  publication-title: The Journal of Neuroscience
– volume: 32
  start-page: 1236
  year: 2011
  end-page: 1249
  ident: bib76
  article-title: Modulating functional connectivity patterns and topological functional organization of the human brain with transcranial direct current stimulation
  publication-title: Human Brain Mapping
– volume: 72
  start-page: 208
  year: 2007
  end-page: 214
  ident: bib78
  article-title: Safety aspects of transcranial direct current stimulation concerning healthy subjects and patients
  publication-title: Brain Research Bulletin
– volume: 553
  start-page: 293
  year: 2003
  end-page: 301
  ident: bib61
  article-title: Pharmacological modulation of cortical excitability shifts induced by transcranial direct current stimulation in humans
  publication-title: The Journal of Physiology
– volume: 34
  start-page: 923
  year: 2013
  end-page: 935
  ident: bib92
  article-title: Electric field calculations in brain stimulation based on finite elements: an optimized processing pipeline for the generation and usage of accurate individual head models
  publication-title: Human Brain Mapping
– volume: 9
  start-page: 2257
  year: 1998
  end-page: 2260
  ident: bib79
  article-title: Polarization of the human motor cortex through the scalp
  publication-title: NeuroReport
– volume: 24
  start-page: 2419
  year: 2012
  end-page: 2427
  ident: bib51
  article-title: tDCS modulation of visually induced analgesia
  publication-title: Journal of Cognitive Neuroscience
– volume: 49
  start-page: 3989
  issue: 14
  year: 2011
  ident: 10.1016/j.cortex.2014.05.003_bib93
  article-title: Effects of transcranial direct current stimulation (tDCS) on behaviour and electrophysiology of language production
  publication-title: Neuropsychologia
  doi: 10.1016/j.neuropsychologia.2011.10.015
– volume: 12
  start-page: 983
  issue: 8
  year: 2012
  ident: 10.1016/j.cortex.2014.05.003_bib58
  article-title: Stroke rehabilitation using noninvasive cortical stimulation: hemispatial neglect
  publication-title: Expert Review of Neurotherapeutics
  doi: 10.1586/ern.12.78
– volume: 29
  start-page: 463
  issue: 6
  year: 2011
  ident: 10.1016/j.cortex.2014.05.003_bib68
  article-title: Transcranial direct current stimulation–update 2011
  publication-title: Restorative Neurology and Neuroscience
  doi: 10.3233/RNN-2011-0618
– volume: 35
  start-page: 96
  issue: 1
  year: 2011
  ident: 10.1016/j.cortex.2014.05.003_bib15
  article-title: Transcranial direct current stimulation (tDCS) in unipolar vs. bipolar depressive disorder
  publication-title: Progress in Neuro-psychopharmacology & Biological Psychiatry
  doi: 10.1016/j.pnpbp.2010.09.010
– volume: 54
  start-page: 2287
  issue: 3
  year: 2011
  ident: 10.1016/j.cortex.2014.05.003_bib77
  article-title: Introducing graph theory to track for neuroplastic alterations in the resting human brain: a transcranial direct current stimulation study
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2010.09.085
– issue: 76
  year: 2013
  ident: 10.1016/j.cortex.2014.05.003_bib82
  article-title: Simultaneous EEG monitoring during transcranial direct current stimulation
  publication-title: Journal of Visualized Experiments
  doi: 10.3791/50426
– volume: 568
  start-page: 653
  issue: Pt 2
  year: 2005
  ident: 10.1016/j.cortex.2014.05.003_bib7
  article-title: Non-synaptic mechanisms underlie the after-effects of cathodal transcutaneous direct current stimulation of the human brain
  publication-title: The Journal of Physiology
  doi: 10.1113/jphysiol.2005.088310
– volume: 69
  start-page: 86
  issue: 1
  year: 2006
  ident: 10.1016/j.cortex.2014.05.003_bib28
  article-title: A direct demonstration of cortical LTP in humans: a combined TMS/EEG study
  publication-title: Brain Research Bulletin
  doi: 10.1016/j.brainresbull.2005.11.003
– volume: 48
  start-page: 609
  year: 1980
  ident: 10.1016/j.cortex.2014.05.003_bib49
  article-title: Reference-free identification of components of checkerboard-evoked multichannel potential fields
  publication-title: Electroencephalography and Clinical Neurophysiology
  doi: 10.1016/0013-4694(80)90419-8
– volume: 29
  start-page: 5202
  issue: 16
  year: 2009
  ident: 10.1016/j.cortex.2014.05.003_bib85
  article-title: Polarity-sensitive modulation of cortical neurotransmitters by transcranial stimulation
  publication-title: The Journal of Neuroscience
  doi: 10.1523/JNEUROSCI.4432-08.2009
– volume: 18
  start-page: 2701
  issue: 11
  year: 2008
  ident: 10.1016/j.cortex.2014.05.003_bib5
  article-title: Homeostatic metaplasticity of the motor cortex is altered during headache-free intervals in migraine with aura
  publication-title: Cerebral Cortex
  doi: 10.1093/cercor/bhn032
– volume: 57
  start-page: 1899
  issue: 10
  year: 2001
  ident: 10.1016/j.cortex.2014.05.003_bib66
  article-title: Sustained excitability elevations induced by transcranial DC motor cortex stimulation in humans
  publication-title: Neurology
  doi: 10.1212/WNL.57.10.1899
– volume: 83
  start-page: 569
  year: 2013
  ident: 10.1016/j.cortex.2014.05.003_bib74
  article-title: Excitability modulation of the motor system induced by transcranial direct current stimulation: a multimodal approach
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2013.06.076
– volume: 6
  start-page: 8
  year: 2009
  ident: 10.1016/j.cortex.2014.05.003_bib14
  article-title: Using non-invasive brain stimulation to augment motor training-induced plasticity
  publication-title: Journal of Neuroengineering and Rehabilitation
  doi: 10.1186/1743-0003-6-8
– volume: 29
  start-page: 1573
  issue: 8
  year: 2004
  ident: 10.1016/j.cortex.2014.05.003_bib63
  article-title: Consolidation of human motor cortical neuroplasticity by D-cycloserine
  publication-title: Neuropsychopharmacology
  doi: 10.1038/sj.npp.1300517
– volume: 45
  start-page: 702
  issue: 2
  year: 2004
  ident: 10.1016/j.cortex.2014.05.003_bib4
  article-title: Excitability changes induced in the human primary visual cortex by transcranial direct current stimulation: direct electrophysiological evidence
  publication-title: Investigative Ophthalmology & Visual Science
  doi: 10.1167/iovs.03-0688
– volume: 58
  start-page: 849
  year: 2011
  ident: 10.1016/j.cortex.2014.05.003_bib72
  article-title: How the brain tissue shapes the electric field induced by transcranial magnetic stimulation
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2011.06.069
– volume: 63
  start-page: 568
  issue: 5
  year: 2009
  ident: 10.1016/j.cortex.2014.05.003_bib2
  article-title: Intention, action planning, and decision making in parietal-frontal circuits
  publication-title: Neuron
  doi: 10.1016/j.neuron.2009.08.028
– volume: 55
  start-page: 644
  issue: 2
  year: 2011
  ident: 10.1016/j.cortex.2014.05.003_bib46
  article-title: Prefrontal direct current stimulation modulates resting EEG and event-related potentials in healthy subjects: a standardized low resolution tomography (sLORETA) study
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2010.12.004
– volume: 5
  start-page: e10281
  issue: 4
  year: 2010
  ident: 10.1016/j.cortex.2014.05.003_bib18
  article-title: EEG responses to TMS are sensitive to changes in the perturbation parameters and repeatable over time
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0010281
– start-page: 1596
  year: 2009
  ident: 10.1016/j.cortex.2014.05.003_bib30
  article-title: Comparing different electrode configurations using the 10-10 international system in tDCS: a finite element model analysis
– volume: 26
  start-page: 326
  issue: 2
  year: 2013
  ident: 10.1016/j.cortex.2014.05.003_bib17
  article-title: Assessing the effects of electroconvulsive therapy on cortical excitability by means of transcranial magnetic stimulation and electroencephalography
  publication-title: Brain Topography
  doi: 10.1007/s10548-012-0256-8
– volume: 43
  start-page: 184
  issue: 3
  year: 2012
  ident: 10.1016/j.cortex.2014.05.003_bib55
  article-title: Combining transcranial electrical stimulation with electroencephalography: a multimodal approach
  publication-title: Clinical EEG and Neuroscience
  doi: 10.1177/1550059412444976
– volume: 9
  start-page: 2257
  issue: 10
  year: 1998
  ident: 10.1016/j.cortex.2014.05.003_bib79
  article-title: Polarization of the human motor cortex through the scalp
  publication-title: NeuroReport
  doi: 10.1097/00001756-199807130-00020
– volume: 527
  start-page: 633
  issue: Pt 3
  year: 2000
  ident: 10.1016/j.cortex.2014.05.003_bib65
  article-title: Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation
  publication-title: The Journal of Physiology
  doi: 10.1111/j.1469-7793.2000.t01-1-00633.x
– volume: 48
  start-page: 2789
  issue: 10
  year: 2010
  ident: 10.1016/j.cortex.2014.05.003_bib88
  article-title: Electrified minds: transcranial direct current stimulation (tDCS) and galvanic vestibular stimulation (GVS) as methods of non-invasive brain stimulation in neuropsychology – a review of current data and future implications
  publication-title: Neuropsychologia
  doi: 10.1016/j.neuropsychologia.2010.06.002
– volume: 70
  start-page: 48
  year: 2013
  ident: 10.1016/j.cortex.2014.05.003_bib57
  article-title: The electric field in the cortex during transcranial current stimulation
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2012.12.034
– volume: 21
  start-page: 1693
  issue: 10
  year: 2006
  ident: 10.1016/j.cortex.2014.05.003_bib34
  article-title: Noninvasive cortical stimulation with transcranial direct current stimulation in Parkinson's disease
  publication-title: Movement Disorders
  doi: 10.1002/mds.21012
– volume: 568
  start-page: 291
  issue: Pt 1
  year: 2005
  ident: 10.1016/j.cortex.2014.05.003_bib69
  article-title: Modulating parameters of excitability during and after transcranial direct current stimulation of the human motor cortex
  publication-title: The Journal of Physiology
  doi: 10.1113/jphysiol.2005.092429
– volume: 47
  start-page: 309
  issue: 2
  year: 2011
  ident: 10.1016/j.cortex.2014.05.003_bib70
  article-title: Non-invasive brain stimulation techniques for chronic pain. A report of a Cochrane systematic review and meta-analysis
  publication-title: European Journal of Physical and Rehabilitation Medicine
– volume: 20
  start-page: 1115
  issue: 12
  year: 2009
  ident: 10.1016/j.cortex.2014.05.003_bib87
  article-title: Transcranial direct current stimulation modulates shifts in global/local attention
  publication-title: NeuroReport
  doi: 10.1097/WNR.0b013e32832e9aa2
– volume: 31
  start-page: 15284
  issue: 43
  year: 2011
  ident: 10.1016/j.cortex.2014.05.003_bib45
  article-title: Prefrontal transcranial direct current stimulation changes connectivity of resting-state networks during fMRI
  publication-title: The Journal of Neuroscience
  doi: 10.1523/JNEUROSCI.0542-11.2011
– volume: 34
  start-page: 923
  year: 2013
  ident: 10.1016/j.cortex.2014.05.003_bib92
  article-title: Electric field calculations in brain stimulation based on finite elements: an optimized processing pipeline for the generation and usage of accurate individual head models
  publication-title: Human Brain Mapping
  doi: 10.1002/hbm.21479
– volume: 1349
  start-page: 76
  year: 2010
  ident: 10.1016/j.cortex.2014.05.003_bib11
  article-title: Brain polarization of parietal cortex augments training-induced improvement of visual exploratory and attentional skills
  publication-title: Brain Research
  doi: 10.1016/j.brainres.2010.06.053
– volume: 56
  start-page: 255
  year: 2003
  ident: 10.1016/j.cortex.2014.05.003_bib64
  article-title: Modulation of cortical excitability by weak direct current stimulation–technical, safety and functional aspects
  publication-title: Supplements to Clinical Neurophysiology
  doi: 10.1016/S1567-424X(09)70230-2
– volume: 22
  start-page: 249
  issue: 4
  year: 2010
  ident: 10.1016/j.cortex.2014.05.003_bib56
  article-title: Combining TMS and EEG offers new prospects in cognitive neuroscience
  publication-title: Brain Topography
  doi: 10.1007/s10548-009-0083-8
– volume: 6
  start-page: 38
  year: 2012
  ident: 10.1016/j.cortex.2014.05.003_bib83
  article-title: Cognitive functions of the posterior parietal cortex: top-down and bottom-up attentional control
  publication-title: Frontiers in Integrative Neuroscience
  doi: 10.3389/fnint.2012.00038
– volume: 178
  start-page: 261
  issue: 2
  year: 2007
  ident: 10.1016/j.cortex.2014.05.003_bib1
  article-title: Visual evoked potentials modulation during direct current cortical polarization
  publication-title: Experimental Brain Research
  doi: 10.1007/s00221-006-0733-y
– volume: 154
  start-page: 1274
  issue: 8
  year: 2013
  ident: 10.1016/j.cortex.2014.05.003_bib12
  article-title: Motor and parietal cortex stimulation for phantom limb pain and sensations
  publication-title: Pain
  doi: 10.1016/j.pain.2013.03.040
– volume: 11
  start-page: 249
  issue: 2
  year: 2008
  ident: 10.1016/j.cortex.2014.05.003_bib10
  article-title: A randomized, double-blind clinical trial on the efficacy of cortical direct current stimulation for the treatment of major depression
  publication-title: The International Journal of Neuropsychopharmacology
  doi: 10.1017/S1461145707007833
– volume: 15
  start-page: 626
  issue: 6
  year: 2005
  ident: 10.1016/j.cortex.2014.05.003_bib33
  article-title: Motor functions of the parietal lobe
  publication-title: Current Opinion in Neurobiology
  doi: 10.1016/j.conb.2005.10.015
– volume: 21
  start-page: 618
  issue: 5
  year: 2011
  ident: 10.1016/j.cortex.2014.05.003_bib89
  article-title: Behavioural facilitation following brain stimulation: implications for neurorehabilitation
  publication-title: Neuropsychological Rehabilitation
  doi: 10.1080/09602011.2011.574050
– volume: 84
  start-page: 832
  issue: 8
  year: 2013
  ident: 10.1016/j.cortex.2014.05.003_bib98
  article-title: Transcranial direct current stimulation (tDCS) and language
  publication-title: Journal of Neurology, Neurosurgery & Psychiatry
  doi: 10.1136/jnnp-2012-302825
– volume: 31
  start-page: 1800
  issue: 10
  year: 2010
  ident: 10.1016/j.cortex.2014.05.003_bib13
  article-title: Enhancing multisensory spatial orienting by brain polarization of the parietal cortex
  publication-title: European Journal of Neuroscience
  doi: 10.1111/j.1460-9568.2010.07211.x
– volume: 215
  start-page: 135
  issue: 2
  year: 2011
  ident: 10.1016/j.cortex.2014.05.003_bib94
  article-title: Excitability changes induced in the human auditory cortex by transcranial direct current stimulation: direct electrophysiological evidence
  publication-title: Experimental Brain Research
  doi: 10.1007/s00221-011-2879-5
– volume: 115
  start-page: 456
  issue: 2
  year: 2004
  ident: 10.1016/j.cortex.2014.05.003_bib53
  article-title: Effect of transcranial DC sensorimotor cortex stimulation on somatosensory evoked potentials in humans
  publication-title: Clinical Neurophysiology
  doi: 10.1016/S1388-2457(03)00362-6
– volume: 8
  start-page: 3537
  issue: 16
  year: 1997
  ident: 10.1016/j.cortex.2014.05.003_bib41
  article-title: Neuronal responses to magnetic stimulation reveal cortical reactivity and connectivity
  publication-title: NeuroReport
  doi: 10.1097/00001756-199711100-00024
– volume: 55
  start-page: 657
  issue: 9–10
  year: 2012
  ident: 10.1016/j.cortex.2014.05.003_bib44
  article-title: Non-invasive cerebral stimulation for the upper limb rehabilitation after stroke: a review
  publication-title: Annals of Physical and Rehabilitation Medicine
  doi: 10.1016/j.rehab.2012.09.001
– volume: 6
  start-page: 244
  issue: 2
  year: 2009
  ident: 10.1016/j.cortex.2014.05.003_bib67
  article-title: Noninvasive brain stimulation protocols in the treatment of epilepsy: current state and perspectives
  publication-title: Neurotherapeutics
  doi: 10.1016/j.nurt.2009.01.003
– volume: 23
  start-page: 332
  issue: 2
  year: 2013
  ident: 10.1016/j.cortex.2014.05.003_bib39
  article-title: Human cortical excitability increases with time awake
  publication-title: Cerebral Cortex
  doi: 10.1093/cercor/bhs014
– volume: 125
  start-page: 2238
  issue: Pt 10
  year: 2002
  ident: 10.1016/j.cortex.2014.05.003_bib50
  article-title: Pharmacological approach to the mechanisms of transcranial DC-stimulation-induced after-effects of human motor cortex excitability
  publication-title: Brain
  doi: 10.1093/brain/awf238
– volume: 72
  start-page: 208
  issue: 4–6
  year: 2007
  ident: 10.1016/j.cortex.2014.05.003_bib78
  article-title: Safety aspects of transcranial direct current stimulation concerning healthy subjects and patients
  publication-title: Brain Research Bulletin
  doi: 10.1016/j.brainresbull.2007.01.004
– volume: 52
  start-page: 1283
  issue: 8
  year: 2012
  ident: 10.1016/j.cortex.2014.05.003_bib23
  article-title: tDCS-induced analgesia and electrical fields in pain-related neural networks in chronic migraine
  publication-title: Headache
  doi: 10.1111/j.1526-4610.2012.02141.x
– year: 2013
  ident: 10.1016/j.cortex.2014.05.003_bib97
  article-title: Transcranial direct current stimulation in stroke rehabilitation: a review of recent advancements
  publication-title: Stroke Research and Treatment
  doi: 10.1155/2013/170256
– volume: 58
  start-page: 26
  issue: 1
  year: 2011
  ident: 10.1016/j.cortex.2014.05.003_bib95
  article-title: Effects of transcranial direct current stimulation (tDCS) on human regional cerebral blood flow
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2011.06.018
– volume: 553
  start-page: 293
  issue: Pt 1
  year: 2003
  ident: 10.1016/j.cortex.2014.05.003_bib61
  article-title: Pharmacological modulation of cortical excitability shifts induced by transcranial direct current stimulation in humans
  publication-title: The Journal of Physiology
  doi: 10.1113/jphysiol.2003.049916
– volume: 5
  start-page: 252
  issue: 3
  year: 2012
  ident: 10.1016/j.cortex.2014.05.003_bib75
  article-title: Modulation of large-scale brain networks by transcranial direct current stimulation evidenced by resting-state functional MRI
  publication-title: Brain Stimulation
  doi: 10.1016/j.brs.2011.08.006
– year: 1953
  ident: 10.1016/j.cortex.2014.05.003_bib22
– volume: 69
  start-page: 766
  issue: 8
  year: 2012
  ident: 10.1016/j.cortex.2014.05.003_bib96
  article-title: Reduced natural oscillatory frequency of frontal thalamocortical circuits in schizophrenia
  publication-title: Archives of General Psychiatry
  doi: 10.1001/archgenpsychiatry.2012.147
– volume: 44
  start-page: 1023
  issue: 8
  year: 2008
  ident: 10.1016/j.cortex.2014.05.003_bib27
  article-title: Neuroimaging techniques offer new perspectives on callosal transfer and interhemispheric communication
  publication-title: Cortex
  doi: 10.1016/j.cortex.2008.03.007
– volume: 5
  start-page: 436
  year: 1962
  ident: 10.1016/j.cortex.2014.05.003_bib21
  article-title: Influence of transcortical d-c currents on cortical neuronal activity
  publication-title: Experimental Neurology
  doi: 10.1016/0014-4886(62)90056-0
– volume: 66
  start-page: 198
  issue: 2
  year: 2010
  ident: 10.1016/j.cortex.2014.05.003_bib36
  article-title: Direct current stimulation promotes BDNF-dependent synaptic plasticity: potential implications for motor learning
  publication-title: Neuron
  doi: 10.1016/j.neuron.2010.03.035
– volume: 219
  start-page: 14
  issue: 1
  year: 2009
  ident: 10.1016/j.cortex.2014.05.003_bib59
  article-title: Treatment of depression with transcranial direct current stimulation (tDCS): a review
  publication-title: Experimental Neurology
  doi: 10.1016/j.expneurol.2009.03.038
– volume: 33
  start-page: 11425
  issue: 28
  year: 2013
  ident: 10.1016/j.cortex.2014.05.003_bib86
  article-title: Widespread modulation of cerebral perfusion induced during and after transcranial direct current stimulation applied to the left dorsolateral prefrontal cortex
  publication-title: The Journal of Neuroscience
  doi: 10.1523/JNEUROSCI.3887-12.2013
– volume: 216
  start-page: 1
  issue: 1
  year: 2012
  ident: 10.1016/j.cortex.2014.05.003_bib43
  article-title: tDCS polarity effects in motor and cognitive domains: a meta-analytical review
  publication-title: Experimental Brain Research
  doi: 10.1007/s00221-011-2891-9
– volume: 29
  start-page: 365
  issue: 6
  year: 2011
  ident: 10.1016/j.cortex.2014.05.003_bib6
  article-title: Electrical stimulation and visual network plasticity
  publication-title: Restorative Neurology and Neuroscience
  doi: 10.3233/RNN-2011-0609
– volume: 28
  start-page: 166
  year: 1965
  ident: 10.1016/j.cortex.2014.05.003_bib80
  article-title: Intracellular activities and evoked potential changes during polarization of motor cortex
  publication-title: Journal of Neurophysiology
  doi: 10.1152/jn.1965.28.1.166
– volume: 41
  start-page: 561
  year: 2008
  ident: 10.1016/j.cortex.2014.05.003_bib19
  article-title: EEG default mode network in the human brain: spectral regional field powers
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2007.12.064
– volume: 134
  start-page: 9
  year: 2004
  ident: 10.1016/j.cortex.2014.05.003_bib24
  article-title: EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis
  publication-title: Journal of Neuroscience Methods
  doi: 10.1016/j.jneumeth.2003.10.009
– volume: 117
  start-page: 845
  year: 2006
  ident: 10.1016/j.cortex.2014.05.003_bib37
  article-title: Transcranial DC stimulation (tDCS): a tool for double-blind sham-controlled clinical studies in brain stimulation
  publication-title: Clinical Neurophysiology
  doi: 10.1016/j.clinph.2005.12.003
– volume: 1
  start-page: 206
  issue: 3
  year: 2008
  ident: 10.1016/j.cortex.2014.05.003_bib60
  article-title: Transcranial direct current stimulation: state of the art 2008
  publication-title: Brain Stimulation
  doi: 10.1016/j.brs.2008.06.004
– volume: 120
  start-page: 2008
  year: 2009
  ident: 10.1016/j.cortex.2014.05.003_bib81
  article-title: Safety, ethical considerations, and application guidelines for the use of transcranial magnetic stimulation in clinical practice and research
  publication-title: Clinical Neurophysiology
  doi: 10.1016/j.clinph.2009.08.016
– volume: 2
  start-page: 685
  year: 2001
  ident: 10.1016/j.cortex.2014.05.003_bib38
  article-title: Searching for a baseline: functional imaging and the resting human brain
  publication-title: Nature Reviews Neuroscience
  doi: 10.1038/35094500
– volume: 76
  start-page: 24
  year: 2013
  ident: 10.1016/j.cortex.2014.05.003_bib54
  article-title: Top-down interference and cortical responsiveness in face processing: a TMS-EEG study
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2013.03.020
– volume: 49
  start-page: 1428
  issue: 6
  year: 2011
  ident: 10.1016/j.cortex.2014.05.003_bib40
  article-title: Common neural mechanisms supporting spatial working memory, attention and motor intention
  publication-title: Neuropsychologia
  doi: 10.1016/j.neuropsychologia.2010.12.020
– volume: 47
  start-page: 335
  issue: 2
  year: 2006
  ident: 10.1016/j.cortex.2014.05.003_bib35
  article-title: A controlled clinical trial of cathodal DC polarization in patients with refractory epilepsy
  publication-title: Epilepsia
  doi: 10.1111/j.1528-1167.2006.00426.x
– volume: 49
  start-page: 1459
  issue: 2
  year: 2010
  ident: 10.1016/j.cortex.2014.05.003_bib16
  article-title: General indices to characterize the electrical response of the cerebral cortex to TMS
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2009.09.026
– volume: 25
  start-page: 685
  issue: 5
  year: 2013
  ident: 10.1016/j.cortex.2014.05.003_bib20
  article-title: Neuromodulation of early multisensory interactions in the visual cortex
  publication-title: Journal of Cognitive Neuroscience
  doi: 10.1162/jocn_a_00347
– volume: 37
  start-page: 322
  issue: 3
  year: 1999
  ident: 10.1016/j.cortex.2014.05.003_bib91
  article-title: Instrumentation for the measurement of electric brain responses to transcranial magnetic stimulation
  publication-title: Medical and Biological Engineering and Computing
  doi: 10.1007/BF02513307
– volume: 196
  start-page: 584
  year: 1962
  ident: 10.1016/j.cortex.2014.05.003_bib9
  article-title: Long-lasting changes in the level of the electrical activity of the cerebral cortex produced bypolarizing currents
  publication-title: Nature
  doi: 10.1038/196584a0
– volume: 118
  start-page: 215
  issue: 1–3
  year: 2009
  ident: 10.1016/j.cortex.2014.05.003_bib31
  article-title: Transcranial direct current stimulation in severe, drug-resistant major depression
  publication-title: Journal of Affective Disorders
  doi: 10.1016/j.jad.2009.02.015
– volume: 24
  start-page: 2419
  issue: 12
  year: 2012
  ident: 10.1016/j.cortex.2014.05.003_bib51
  article-title: tDCS modulation of visually induced analgesia
  publication-title: Journal of Cognitive Neuroscience
  doi: 10.1162/jocn_a_00293
– volume: 71
  start-page: 493
  issue: 7
  year: 2008
  ident: 10.1016/j.cortex.2014.05.003_bib32
  article-title: Transcranial direct current stimulation improves recognition memory in Alzheimer disease
  publication-title: Neurology
  doi: 10.1212/01.wnl.0000317060.43722.a3
– volume: 14
  start-page: 1240
  issue: 11
  year: 2004
  ident: 10.1016/j.cortex.2014.05.003_bib62
  article-title: Catecholaminergic consolidation of motor cortical neuroplasticity in humans
  publication-title: Cerebral Cortex
  doi: 10.1093/cercor/bhh085
– volume: 22
  start-page: 495
  issue: 2
  year: 2005
  ident: 10.1016/j.cortex.2014.05.003_bib48
  article-title: How does transcranial DC stimulation of the primary motor cortex alter regional neuronal activity in the human brain?
  publication-title: The European Journal of Neuroscience
  doi: 10.1111/j.1460-9568.2005.04233.x
– volume: 309
  start-page: 2228
  issue: 5744
  year: 2005
  ident: 10.1016/j.cortex.2014.05.003_bib52
  article-title: Breakdown of cortical effective connectivity during sleep
  publication-title: Science
  doi: 10.1126/science.1117256
– volume: 132
  start-page: 3011
  issue: 11
  year: 2009
  ident: 10.1016/j.cortex.2014.05.003_bib99
  article-title: Bidirectional alterations of interhemispheric parietal balance by non-invasive cortical stimulation
  publication-title: Brain
  doi: 10.1093/brain/awp154
– volume: 25
  start-page: 417
  issue: 3
  year: 2012
  ident: 10.1016/j.cortex.2014.05.003_bib29
  article-title: Feasibility of focal transcranial DC polarization with simultaneous EEG recording: Preliminary assessment in healthy subjects and human epilepsy
  publication-title: Epilepsy & Behavior
  doi: 10.1016/j.yebeh.2012.06.027
– volume: 32
  start-page: 1236
  issue: 8
  year: 2011
  ident: 10.1016/j.cortex.2014.05.003_bib76
  article-title: Modulating functional connectivity patterns and topological functional organization of the human brain with transcranial direct current stimulation
  publication-title: Human Brain Mapping
  doi: 10.1002/hbm.21104
– volume: 479
  start-page: 312
  issue: 3
  year: 2010
  ident: 10.1016/j.cortex.2014.05.003_bib8
  article-title: A selective working memory impairment after transcranial direct current stimulation to the right parietal lobe
  publication-title: Neuroscience Letter
  doi: 10.1016/j.neulet.2010.05.087
– volume: 122
  start-page: 777
  issue: 4
  year: 2011
  ident: 10.1016/j.cortex.2014.05.003_bib47
  article-title: Transcranial direct current stimulation over the motor association cortex induces plastic changes in ipsilateral primary motor and somatosensory cortices
  publication-title: Clinical Neurophysiology
  doi: 10.1016/j.clinph.2010.09.025
– volume: 85
  start-page: 1040
  year: 2012
  ident: 10.1016/j.cortex.2014.05.003_bib3
  article-title: Imaging artifacts induced by electrical stimulation during conventional fMRI of the brain
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2012.10.026
– reference: 25479701 - Cortex. 2016 Jan;74:320-2
– reference: 26073443 - Cortex. 2016 Jan;74:323-8
SSID ssj0020855
Score 2.4926593
Snippet Despite transcranial direct current stimulation (tDCS) is increasingly used in experimental and clinical settings, its precise mechanisms of action remain...
SourceID proquest
pubmed
pascalfrancis
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 99
SubjectTerms Adult
Anatomical correlates of behavior
Behavioral psychophysiology
Biological and medical sciences
Cortical excitability
Electroencephalography
Evoked Potentials, Motor - physiology
Female
Fundamental and applied biological sciences. Psychology
Humans
Male
Motor Cortex - physiology
Parietal Lobe - physiology
Posterior parietal cortex
Psychology. Psychoanalysis. Psychiatry
Psychology. Psychophysiology
tDCS
TMS-EEG
Transcranial Magnetic Stimulation
Young Adult
Title TDCS increases cortical excitability: Direct evidence from TMS–EEG
URI https://dx.doi.org/10.1016/j.cortex.2014.05.003
https://www.ncbi.nlm.nih.gov/pubmed/24998337
https://www.proquest.com/docview/1552807330
Volume 58
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1fa9swED9CB2NQytZ0W_YnaDD65tW2ZEveW0jTZX9SSptC34Qty5CxOaFJIH0Z-w77hvsku7PkjDJGoU_GRsLiTrr7nX13P4C3YckjKywPhCxUIPIIz1xsVWBTVRRFHBvesChMTtPxpfh0lVx1YNjWwlBapbf9zqY31to_OfLSPFrMZlTjG2Fsgu5HkONXFLdT9zrc0-9-bNM8iILSsxiEAY1uy-eaHC9DCa0bSvASTf_OljrrX_e0u8iXKLTKsV38H442bunkMex5PMkGbslPoGPrfegOaoylv9-wQ9ZkeDafzvfh4cT_SO_C8fR4eMFmNWHGpV0yWiKpi9mNma1c7-6b98wZRGY99SijYhQ2nVz8_vlrNPpwAJcno-lwHHhChcAgDFoFiB1MVIlKqiytEFqVIikNnmkVyRzlmJUJ4gll0cVnhqe5VDm6_6oKy0hWcZbm_Cns1PPaPgdWhiWhL4ytORcW9VzEsghtInlpFMZ1PeCtHLXx3caJ9OKbbtPKvmonfU3S12FCXUp7EGxnLVy3jTvGy1ZF-tau0egQ7pjZv6XR7eswgkRUmOGAN62KNZ44-o2S13a-XmpqWqeI6zLswTOn-7-zMYBUnMsX917YS3hEdy6N7RXsrK7X9jXinlXRbzZ2Hx4Mhudfzuj68fP49A_k1gDR
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1fa9swED9KCtugjK7d1qz_NBh7M7Ut2ZL3FtK06Z_kpSn0TdiyDBmbG5YU2rd9h37DfpLdWXJKGaXQV1uHxZ109_tZpzuAb2HJIyssD4QsVCDyCPdcbFVgU1UURRwb3nRRGI3T4aU4vUquVqDf3oWhtErv-51Pb7y1f3LgtXkwm07pjm-E3ATDj6DAr5C3r1J1KtGB1d7J2XC85F2UiuUcchiQQHuDrknzMpTTeks5XqIp4dl2z_o_Qq3N8jnqrXINL55HpE1kOlqH9x5Ssp6b9QdYsfUGbPZqpNO_79h31iR5Nn_PN-DNyJ-lb8Lh5LB_waY1wca5nTOaIlmM2VszXbjy3Xc_mPOJzPruo4zuo7DJ6OLh7_1gcPwRLo8Gk_4w8D0VAoNIaBEgfDBRJSqpsrRCdFWKpDS4rVUkc1RlViYIKZTFKJ8ZnuZS5YgAqiosI1nFWZrzT9Cpr2u7BawMSwJgSK85FxZNXcSyCG0ieWkUUrsu8FaP2viC49T34pduM8t-aqd9TdrXYUKFSrsQLKVmruDGC-NlayL9ZOFojAkvSO49sejyc0giERhmOOBra2KNm45OUvLaXt_MNdWtU9TuMuzCZ2f7R2nkkIpz-eXVE9uHt8PJ6Fyfn4zPtuEdvXFZbTvQWfy5sbsIgxbFnl_m_wClKwHt
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=TDCS+increases+cortical+excitability%3A+direct+evidence+from+TMS-EEG&rft.jtitle=Cortex&rft.au=Romero+Lauro%2C+Leonor+J&rft.au=Rosanova%2C+Mario&rft.au=Mattavelli%2C+Giulia&rft.au=Convento%2C+Silvia&rft.date=2014-09-01&rft.issn=1973-8102&rft.eissn=1973-8102&rft.volume=58&rft.spage=99&rft_id=info:doi/10.1016%2Fj.cortex.2014.05.003&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0010-9452&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0010-9452&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0010-9452&client=summon