High-Reynolds-number wall-modelled large eddy simulations of turbulent pipe flows using explicit and implicit subgrid stress treatments within a spectral element solver

•Explicit and implicit large eddy simulations for turbulent pipe flows.•Both models implemented in a high order continuous-Galerkin spectral element solver.•Favourable results for pipe flows at Retau=2×103 and Retau=1.8×105.•The wall model in the implicit scheme enables lower levels of artificial di...

Full description

Saved in:
Bibliographic Details
Published inComputers & fluids Vol. 191; p. 104239
Main Authors Ferrer, E., Saito, N., Blackburn, H.M., Pullin, D.I.
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier Ltd 15.09.2019
Elsevier BV
Subjects
Online AccessGet full text
ISSN0045-7930
1879-0747
DOI10.1016/j.compfluid.2019.104239

Cover

Abstract •Explicit and implicit large eddy simulations for turbulent pipe flows.•Both models implemented in a high order continuous-Galerkin spectral element solver.•Favourable results for pipe flows at Retau=2×103 and Retau=1.8×105.•The wall model in the implicit scheme enables lower levels of artificial dissipation. We present explicit and implicit large eddy simulations for fully developed turbulent pipe flows using a continuous-Galerkin spectral element solver. On the one hand, the explicit stretched-vortex model (by Misra and Pullin [45] and Chung and Pullin [14]), accounts for an explicit treatment of unresolved stresses and is adapted to the high-order solver. On the other hand, an implicit approach based on a spectral vanishing viscosity technique is implemented. The latter implicit technique is modified to incorporate Chung & Pullin virtual-wall model instead of relying on implicit dissipative mechanisms near walls. This near-wall model is derived by averaging in the wall-normal direction and relying in local inner scaling to treat the time-dependence of the filtered wall-parallel velocity. The model requires space-time varying Dirichlet and Neumann boundary conditions for velocity and pressure respectively. We provide results and comparisons for the explicit and implicit subgrid treatments and show that both provide favourable results for pipe flows at Reτ=2×103 and Reτ=1.8×105 in terms of turbulence statistics. Additionally, we conclude that implicit simulations are enhanced when including the wall model and provide the correct statistics near walls.
AbstractList •Explicit and implicit large eddy simulations for turbulent pipe flows.•Both models implemented in a high order continuous-Galerkin spectral element solver.•Favourable results for pipe flows at Retau=2×103 and Retau=1.8×105.•The wall model in the implicit scheme enables lower levels of artificial dissipation. We present explicit and implicit large eddy simulations for fully developed turbulent pipe flows using a continuous-Galerkin spectral element solver. On the one hand, the explicit stretched-vortex model (by Misra and Pullin [45] and Chung and Pullin [14]), accounts for an explicit treatment of unresolved stresses and is adapted to the high-order solver. On the other hand, an implicit approach based on a spectral vanishing viscosity technique is implemented. The latter implicit technique is modified to incorporate Chung & Pullin virtual-wall model instead of relying on implicit dissipative mechanisms near walls. This near-wall model is derived by averaging in the wall-normal direction and relying in local inner scaling to treat the time-dependence of the filtered wall-parallel velocity. The model requires space-time varying Dirichlet and Neumann boundary conditions for velocity and pressure respectively. We provide results and comparisons for the explicit and implicit subgrid treatments and show that both provide favourable results for pipe flows at Reτ=2×103 and Reτ=1.8×105 in terms of turbulence statistics. Additionally, we conclude that implicit simulations are enhanced when including the wall model and provide the correct statistics near walls.
We present explicit and implicit large eddy simulations for fully developed turbulent pipe flows using a continuous-Galerkin spectral element solver. On the one hand, the explicit stretched-vortex model (by Misra and Pullin [45] and Chung and Pullin [14]), accounts for an explicit treatment of unresolved stresses and is adapted to the high-order solver. On the other hand, an implicit approach based on a spectral vanishing viscosity technique is implemented. The latter implicit technique is modified to incorporate Chung & Pullin virtual-wall model instead of relying on implicit dissipative mechanisms near walls. This near-wall model is derived by averaging in the wall-normal direction and relying in local inner scaling to treat the time-dependence of the filtered wall-parallel velocity. The model requires space-time varying Dirichlet and Neumann boundary conditions for velocity and pressure respectively. We provide results and comparisons for the explicit and implicit subgrid treatments and show that both provide favourable results for pipe flows at Reτ = 2 x 103 Reτ = 1.8 x 105 in terms of turbulence statistics. Additionally, we conclude that implicit simulations are enhanced when including the wall model and provide the correct statistics near walls.
ArticleNumber 104239
Author Saito, N.
Pullin, D.I.
Blackburn, H.M.
Ferrer, E.
Author_xml – sequence: 1
  givenname: E.
  orcidid: 0000-0003-1519-0444
  surname: Ferrer
  fullname: Ferrer, E.
  email: esteban.ferrer@upm.es
  organization: ETSIAE-UPM - School of Aeronautics, Universidad Politécnica de Madrid, Plaza Cardenal Cisneros 3, Madrid E-28040 Spain
– sequence: 2
  givenname: N.
  surname: Saito
  fullname: Saito, N.
  organization: Graduate Aerospace Laboratories, California Institute of Technology, CA 91125 USA
– sequence: 3
  givenname: H.M.
  surname: Blackburn
  fullname: Blackburn, H.M.
  organization: Department of Mechanical and Aerospace Engineering, Monash University, Vic 3800, Australia
– sequence: 4
  givenname: D.I.
  surname: Pullin
  fullname: Pullin, D.I.
  organization: Graduate Aerospace Laboratories, California Institute of Technology, CA 91125 USA
BookMark eNqNkctuFDEQRS0UJCaBb8AS6x786OeCRRQBQYoUCcHactvVE4_cduNyZ5g_4jPxMBELNmRjq8p1qsr3XpKLEAMQ8pazLWe8fb_fmjgvk1-d3QrGh5KthRxekA3vu6FiXd1dkA1jdVN1g2SvyCXinpVYinpDft263UP1FY4heotVWOcREj1o76s5WvAeLPU67YCCtUeKbl69zi4GpHGieU3j6iFkurgF6OTjAemKLuwo_Fy8My5THSx181OA67hLzlLMCRBpOXWeC4_04PKDC1RTXMDkpD0FD6cnitE_QnpNXk7aI7x5uq_I908fv93cVnf3n7_cXN9VRg4iV1yKoYGRi7bhWta6bqQGZpjoOzsKNvZ9bXtpWz3poRfMjsxybrqubntj62aSV-Tdue-S4o8VMKt9XFMoI5UoivWd4K0oVR_OVSZFxASTKr_7o0tZ3XnFmTqZo_bqrznqZI46m1P47h9-SW7W6fgM8vpMQhHh0UFSaBwEA9alIpyy0f23x280urXc
CitedBy_id crossref_primary_10_1016_j_rineng_2021_100254
crossref_primary_10_1016_j_cpc_2023_108700
crossref_primary_10_1063_5_0201967
crossref_primary_10_1063_5_0232434
crossref_primary_10_1016_j_rineng_2025_104425
Cites_doi 10.1103/PhysRevLett.108.094501
10.1017/jfm.2015.604
10.1017/S0022112003007304
10.1137/0726003
10.1007/s10915-012-9600-0
10.1016/j.ijheatfluidflow.2013.06.011
10.1006/jcph.2000.6552
10.1016/0169-5983(92)90023-P
10.1016/j.ijheatfluidflow.2013.11.007
10.1007/s10915-014-9882-5
10.1088/0957-0233/12/10/707
10.1063/1.4802048
10.1016/j.jcp.2017.09.004
10.1017/jfm.2017.172
10.1017/S002211200700777X
10.1146/annurev-fluid-122316-045241
10.1017/S0022112006004526
10.1016/j.jcp.2003.11.009
10.1017/S0022112098002419
10.1063/1.863957
10.1016/j.paerosci.2008.06.001
10.1063/1.869889
10.1017/S0022112008002085
10.1063/1.869451
10.1146/annurev-fluid-122109-160753
10.1016/j.ijheatmasstransfer.2014.06.088
10.1063/1.4731301
10.1063/1.4922612
10.1017/S0022112006008871
10.1017/jfm.2011.342
10.1016/0021-9991(91)90007-8
10.1146/annurev.fluid.010908.165130
10.1080/14685240500125476
10.1115/1.1511321
10.1146/annurev.fluid.30.1.31
10.1002/fld.3943
10.1063/1.868137
10.1007/s00162-005-0006-6
10.1080/14685240701615952
10.1146/annurev.fluid.34.082901.144919
10.1016/j.jcp.2017.07.049
10.1063/1.3489528
10.1017/S0022112004009796
10.1007/s00348-011-1143-x
10.1016/0168-9274(91)90102-6
10.1063/1.869361
10.1016/j.compfluid.2015.08.025
10.1016/j.jcp.2015.06.020
10.1146/annurev-fluid-122316-045020
10.1016/S0168-9274(99)00112-9
10.1016/j.cma.2004.09.019
10.1016/S0045-7930(01)00008-1
10.1063/1.3702897
10.1016/j.jcp.2012.01.014
10.1299/mer.15-00418
10.1137/0730016
10.1017/S0022112009006867
10.1016/j.jcp.2004.02.013
10.1063/1.4731299
10.1098/rstl.1883.0029
ContentType Journal Article
Copyright 2019
Copyright Elsevier BV Sep 15, 2019
Copyright_xml – notice: 2019
– notice: Copyright Elsevier BV Sep 15, 2019
DBID AAYXX
CITATION
7SC
7TB
7U5
8FD
FR3
H8D
JQ2
KR7
L7M
L~C
L~D
DOI 10.1016/j.compfluid.2019.104239
DatabaseName CrossRef
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Engineering Research Database
Aerospace Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Aerospace Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1879-0747
ExternalDocumentID 10_1016_j_compfluid_2019_104239
S0045793018305875
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABAOU
ABJNI
ABMAC
ABYKQ
ACAZW
ACDAQ
ACGFS
ACIWK
ACRLP
ADBBV
ADEZE
ADGUI
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIGVJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ARUGR
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JJJVA
KOM
LG9
LY7
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SPD
SST
SSW
SSZ
T5K
TN5
XPP
ZMT
~G-
29F
6TJ
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABEFU
ABFNM
ABWVN
ABXDB
ACKIV
ACNNM
ACRPL
ACVFH
ADCNI
ADIYS
ADMUD
ADNMO
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
R2-
RIG
SBC
SET
SEW
SSH
T9H
VH1
WUQ
7SC
7TB
7U5
8FD
EFKBS
FR3
H8D
JQ2
KR7
L7M
L~C
L~D
ID FETCH-LOGICAL-c392t-13295eb12651a34a453ae0c0287db20b884d83d6afa9820db0d11c77468cd45f3
IEDL.DBID AIKHN
ISSN 0045-7930
IngestDate Wed Aug 13 08:30:16 EDT 2025
Tue Jul 01 02:21:30 EDT 2025
Thu Apr 24 23:07:44 EDT 2025
Fri Feb 23 02:19:43 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Stretched-vortex model
Spectral vanishing viscosity (SVV)
Wall model
Virtual-wall model
Turbulent pipe flow
Large eddy simulation
Chung & Pullin model
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c392t-13295eb12651a34a453ae0c0287db20b884d83d6afa9820db0d11c77468cd45f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-1519-0444
OpenAccessLink http://oa.upm.es/67031/
PQID 2324872162
PQPubID 2045265
ParticipantIDs proquest_journals_2324872162
crossref_citationtrail_10_1016_j_compfluid_2019_104239
crossref_primary_10_1016_j_compfluid_2019_104239
elsevier_sciencedirect_doi_10_1016_j_compfluid_2019_104239
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-09-15
PublicationDateYYYYMMDD 2019-09-15
PublicationDate_xml – month: 09
  year: 2019
  text: 2019-09-15
  day: 15
PublicationDecade 2010
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Computers & fluids
PublicationYear 2019
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Nieuwstadt, den Toonder (bib0015) 1997; 9
Kirby, Sherwin (bib0034) 2006; 195
Blackburn, Sherwin (bib0005) 2004; 197
Chin, Ooi, Marusic, Blackburn (bib0013) 2010; 22
Saito, Pullin (bib0056) 2014; 78
Lundgren (bib0040) 1982; 25
Asthana, Jameson (bib0002) 2015; 62
Sherwin (bib0058) 1999
Chin, Monty, Ooi (bib0011) 2014; 45
Grinstein, Margolin, Rider (bib0020) 2007
Moura, Sherwin, Peiro (bib0047) 2015; 298
Piomelli, Balaras (bib0051) 2002; 34
Flad, Gassner (bib0018) 2017; 350
Cheng, Pullin, Samtaney, Zhang, Gao (bib0010) 2017; 820
Gassner (bib0019) 2013; 54
Karamanos (bib0029) 1999
Bose, Park (bib0007) 2018; 50
Boris, Grinstein, Oran, Kolbe (bib0006) 1992; 10
Tadmor (bib0061) 1989; 26
Wu, Moin (bib0063) 2008; 608
Cheng, Pullin, Samtaney (bib0009) 2015; 785
Pullin, Saffman (bib0052) 1998; 30
McKeon, Li, Jiang, Morrison, Smits (bib0043) 2004; 501
Kim, Adrian (bib0033) 1999; 11
Karamanos, Karniadakis (bib0030) 2000; 163
Maday, Ould Kaber, Tadmor (bib0041) 1993; 30
Manzanero, Ferrer, Rubio, Valero (bib0042) 2018
Spalart (bib0060) 2009; 41
Inoue, Pullin (bib0027) 2011; 686
Piomelli (bib0050) 2008; 44
Karamanos, Sherwin (bib0031) 2000; 33
Monty, Stewart, Williams, Chong (bib0046) 2007; 589
Härtel, Kleiser, Unger, Friedrich (bib0023) 1994; 6
Zhao, Smits (bib0066) 2007; 576
Larsson, Kawai, Bodart, Bermejo-Moreno (bib0038) 2016; 3
McKeon, Swanson, Zagarola, Donnelly, Smits (bib0044) 2004; 511
Hultmark, Vallikivi, Bailey, Smits (bib0025) 2012
Saito, Pullin, Inoue (bib0057) 2012; 24
Sagaut (bib0054) 2001
Beck, Bolemann, Flad, Frank, Gassner, Hindenlang, Munz (bib0003) 2014; 76
Misra, Pullin (bib0045) 1997; 9
Smits, McKeon, Marusic (bib0059) 2011; 43
Klewicki, Chin, Blackburn, Ooi, Marusic (bib0036) 2012; 24
Kirby, Karniadakis (bib0035) 2002; 124
Hesthaven, Warburton (bib0024) 2008
Inoue, Pullin, Harun, Marusic (bib0028) 2013; 44
Durbin (bib0016) 2018; 50
Inoue, Mathis, Marusic, Pullin (bib0026) 2012; 24
Berrouk, Laurence, Riley, Stock (bib0004) 2007; 8
Brun, Friedrich, Silva (bib0008) 2006; 20
Guala, Hommema, Adrian (bib0021) 2006; 554
Karniadakis, Israeli, Orszag (bib0032) 1991; 97
Ng, Monty, Hutchins, Chong, Marusic (bib0048) 2011; 51
Pasquetti (bib0049) 2005; 6
Hüttl (bib0022) 2001; 30
Chin, Ng, Blackburn, Monty, Ooi (bib0012) 2015; 122
Koal, Stiller, Blackburn (bib0037) 2012; 231
Lee, Sung (bib0039) 2013; 25
Xu, Pasquetti (bib0064) 2004; 196
Ahn, Lee, Lee, Kang, Sung (bib0001) 2015; 27
Reynolds (bib0053) 1883; 174
Thomas (bib0062) 1991; 7
Chung, Pullin (bib0014) 2009; 631
Ferrer (bib0017) 2017; 348
Saito (bib0055) 2014
Zagarola, Smits (bib0065) 1998; 373
Hüttl (10.1016/j.compfluid.2019.104239_bib0022) 2001; 30
Kirby (10.1016/j.compfluid.2019.104239_bib0035) 2002; 124
Klewicki (10.1016/j.compfluid.2019.104239_bib0036) 2012; 24
Beck (10.1016/j.compfluid.2019.104239_bib0003) 2014; 76
Boris (10.1016/j.compfluid.2019.104239_bib0006) 1992; 10
Chin (10.1016/j.compfluid.2019.104239_bib0012) 2015; 122
Saito (10.1016/j.compfluid.2019.104239_bib0057) 2012; 24
Cheng (10.1016/j.compfluid.2019.104239_bib0010) 2017; 820
Zhao (10.1016/j.compfluid.2019.104239_sbref0066) 2007; 576
Smits (10.1016/j.compfluid.2019.104239_sbref0059) 2011; 43
Karamanos (10.1016/j.compfluid.2019.104239_bib0029) 1999
Nieuwstadt (10.1016/j.compfluid.2019.104239_bib0015) 1997; 9
Pullin (10.1016/j.compfluid.2019.104239_bib0052) 1998; 30
Saito (10.1016/j.compfluid.2019.104239_bib0055) 2014
Reynolds (10.1016/j.compfluid.2019.104239_bib0053) 1883; 174
Inoue (10.1016/j.compfluid.2019.104239_bib0028) 2013; 44
Koal (10.1016/j.compfluid.2019.104239_bib0037) 2012; 231
Sagaut (10.1016/j.compfluid.2019.104239_bib0054) 2001
Lundgren (10.1016/j.compfluid.2019.104239_bib0040) 1982; 25
Monty (10.1016/j.compfluid.2019.104239_bib0046) 2007; 589
Sherwin (10.1016/j.compfluid.2019.104239_bib0058) 1999
Inoue (10.1016/j.compfluid.2019.104239_bib0026) 2012; 24
Blackburn (10.1016/j.compfluid.2019.104239_bib0005) 2004; 197
Durbin (10.1016/j.compfluid.2019.104239_bib0016) 2018; 50
Ferrer (10.1016/j.compfluid.2019.104239_bib0017) 2017; 348
Bose (10.1016/j.compfluid.2019.104239_bib0007) 2018; 50
McKeon (10.1016/j.compfluid.2019.104239_bib0044) 2004; 511
Gassner (10.1016/j.compfluid.2019.104239_bib0019) 2013; 54
Berrouk (10.1016/j.compfluid.2019.104239_bib0004) 2007; 8
Ahn (10.1016/j.compfluid.2019.104239_bib0001) 2015; 27
Moura (10.1016/j.compfluid.2019.104239_bib0047) 2015; 298
Brun (10.1016/j.compfluid.2019.104239_bib0008) 2006; 20
Xu (10.1016/j.compfluid.2019.104239_bib0064) 2004; 196
Ng (10.1016/j.compfluid.2019.104239_bib0048) 2011; 51
Guala (10.1016/j.compfluid.2019.104239_bib0021) 2006; 554
Chin (10.1016/j.compfluid.2019.104239_bib0011) 2014; 45
Piomelli (10.1016/j.compfluid.2019.104239_bib0051) 2002; 34
Inoue (10.1016/j.compfluid.2019.104239_bib0027) 2011; 686
Cheng (10.1016/j.compfluid.2019.104239_bib0009) 2015; 785
Hultmark (10.1016/j.compfluid.2019.104239_bib0025) 2012
Spalart (10.1016/j.compfluid.2019.104239_bib0060) 2009; 41
Pasquetti (10.1016/j.compfluid.2019.104239_bib0049) 2005; 6
Tadmor (10.1016/j.compfluid.2019.104239_bib0061) 1989; 26
Grinstein (10.1016/j.compfluid.2019.104239_bib0020) 2007
Hesthaven (10.1016/j.compfluid.2019.104239_bib0024) 2008
Härtel (10.1016/j.compfluid.2019.104239_bib0023) 1994; 6
Karniadakis (10.1016/j.compfluid.2019.104239_bib0032) 1991; 97
Larsson (10.1016/j.compfluid.2019.104239_bib0038) 2016; 3
McKeon (10.1016/j.compfluid.2019.104239_bib0043) 2004; 501
Misra (10.1016/j.compfluid.2019.104239_bib0045) 1997; 9
Lee (10.1016/j.compfluid.2019.104239_bib0039) 2013; 25
Asthana (10.1016/j.compfluid.2019.104239_bib0002) 2015; 62
Thomas (10.1016/j.compfluid.2019.104239_bib0062) 1991; 7
Saito (10.1016/j.compfluid.2019.104239_bib0056) 2014; 78
Kim (10.1016/j.compfluid.2019.104239_bib0033) 1999; 11
Chin (10.1016/j.compfluid.2019.104239_bib0013) 2010; 22
Karamanos (10.1016/j.compfluid.2019.104239_bib0030) 2000; 163
Piomelli (10.1016/j.compfluid.2019.104239_sbref0050) 2008; 44
Karamanos (10.1016/j.compfluid.2019.104239_bib0031) 2000; 33
Chung (10.1016/j.compfluid.2019.104239_bib0014) 2009; 631
Maday (10.1016/j.compfluid.2019.104239_bib0041) 1993; 30
Manzanero (10.1016/j.compfluid.2019.104239_bib0042) 2018
Wu (10.1016/j.compfluid.2019.104239_bib0063) 2008; 608
Flad (10.1016/j.compfluid.2019.104239_bib0018) 2017; 350
Kirby (10.1016/j.compfluid.2019.104239_bib0034) 2006; 195
Zagarola (10.1016/j.compfluid.2019.104239_bib0065) 1998; 373
References_xml – volume: 554
  start-page: 521
  year: 2006
  end-page: 542
  ident: bib0021
  article-title: Large-scale and very-large-scale motions in turbulent pipe flow
  publication-title: J Fluid Mech
– volume: 44
  start-page: 437
  year: 2008
  end-page: 446
  ident: bib0050
  article-title: Wall-layer models for large-eddy simulations
  publication-title: Prog Aerospace Sci
– volume: 11
  start-page: 417
  year: 1999
  end-page: 422
  ident: bib0033
  article-title: Very large-scale motion in the outer layer
  publication-title: Phys Fluids
– volume: 373
  start-page: 33
  year: 1998
  end-page: 79
  ident: bib0065
  article-title: Mean-flow scaling of turbulent pipe flow
  publication-title: J Fluid Mech
– volume: 174
  start-page: 935
  year: 1883
  end-page: 982
  ident: bib0053
  article-title: An experimental investigation of the circumstances which determine whether the motion of water shall be direct or sinuous, and of the law of resistance in parallel channels
  publication-title: Philos Trans R Soc
– volume: 298
  start-page: 695
  year: 2015
  end-page: 710
  ident: bib0047
  article-title: Linear dispersion-diffusion analysis and its application to under-resolved turbulence simulations using discontinuous Galerkin spectral/hp methods
  publication-title: J Comput Phys
– volume: 686
  start-page: 507
  year: 2011
  end-page: C533
  ident: bib0027
  article-title: Large-eddy simulation of the zero-pressure-gradient turbulent boundary layer up to Re = O(1012)
  publication-title: J Fluid Mech
– volume: 6
  year: 2005
  ident: bib0049
  article-title: Spectral vanishing viscosity method for LES: sensitivity to the SVV control parameters
  publication-title: J Turbulence
– volume: 54
  start-page: 21
  year: 2013
  end-page: 44
  ident: bib0019
  article-title: An analysis of the dissipation and dispersion errors of the Pn-Pm schemes
  publication-title: J Scientif Comput
– volume: 10
  start-page: 199
  year: 1992
  ident: bib0006
  article-title: New insights into large eddy simulation
  publication-title: Fluid Dyn Res
– volume: 76
  start-page: 522
  year: 2014
  end-page: 548
  ident: bib0003
  article-title: High-order discontinuous Galerkin spectral element methods for transitional and turbulent flow simulations
  publication-title: Int J Numer MethodsFluids
– volume: 9
  start-page: 3398
  year: 1997
  end-page: 3409
  ident: bib0015
  article-title: Reynolds number effects in a turbulent pipe flow for low to moderate Re
  publication-title: Phys Fluids
– volume: 785
  start-page: 78
  year: 2015
  end-page: 108
  ident: bib0009
  article-title: Large-eddy simulation of separation and reattachment of a flat plate turbulent boundary layer
  publication-title: J Fluid Mech
– year: 2008
  ident: bib0024
  article-title: Nodal discontinuous Galerkin methods – algorithms, analysis, and applications
– volume: 30
  start-page: 321
  year: 1993
  end-page: 342
  ident: bib0041
  article-title: Legendre pseudospectral viscosity method for nonlinear conservation laws
  publication-title: SIAM J Numer Anal
– volume: 608
  start-page: 81
  year: 2008
  end-page: 112
  ident: bib0063
  article-title: A direct numerical simulation study on the mean velocity characteristics in turbulent pipe flow
  publication-title: J Fluid Mech
– volume: 3
  year: 2016
  ident: bib0038
  article-title: Large eddy simulation with modeled wall-stress: recent progress and future directions
  publication-title: Mech Eng Rev
– volume: 7
  start-page: 27
  year: 1991
  end-page: 40
  ident: bib0062
  article-title: On the rotation and skew-symmetric forms for incompressible flow simulations
  publication-title: Appl Numer Math
– volume: 820
  start-page: 121
  year: 2017
  end-page: 158
  ident: bib0010
  article-title: Large-eddy simulation of flow over a cylinder with
  publication-title: J Fluid Mech
– volume: 196
  start-page: 680
  year: 2004
  end-page: 704
  ident: bib0064
  article-title: Stabilized spectral element computations of high Reynolds number incompressible flows
  publication-title: J Comput Phys
– volume: 26
  start-page: 30
  year: 1989
  end-page: 44
  ident: bib0061
  article-title: Convergence of spectral methods for nonlinear conservation laws
  publication-title: SIAM J Numer Anal
– volume: 33
  start-page: 455
  year: 2000
  end-page: 462
  ident: bib0031
  article-title: A high order splitting scheme for the Navier–Stokes equations with variable viscosity
  publication-title: Appl Numer Math
– volume: 62
  start-page: 913
  year: 2015
  end-page: 944
  ident: bib0002
  article-title: High-order flux reconstruction schemes with minimal dispersion and dissipation
  publication-title: J Scientif Comput
– volume: 24
  start-page: 075102
  year: 2012
  ident: bib0026
  article-title: Inner-layer intensities for the flat-plate turbulent boundary layer combining a predictive wall-model with large-eddy simulations
  publication-title: Phys Fluids
– volume: 576
  year: 2007
  ident: bib0066
  article-title: Scaling of the wall-normal turbulence component in high-Reynolds-number pipe flow
  publication-title: J Fluid Mech
– volume: 27
  start-page: 065110
  year: 2015
  ident: bib0001
  article-title: Direct numerical simulation of a 30r long turbulent pipe flow at
  publication-title: Phys Fluids
– volume: 348
  start-page: 754
  year: 2017
  end-page: 775
  ident: bib0017
  article-title: An interior penalty stabilised incompressible discontinuous Galerkin–Fourier solver for implicit large eddy simulations
  publication-title: J Comput Phys
– year: 2014
  ident: bib0055
  publication-title: Large-eddy simulations of fully developed turbulent channel and pipe flows with smooth and rough walls
– volume: 44
  start-page: 293
  year: 2013
  end-page: 300
  ident: bib0028
  article-title: LES of the adverse-pressure gradient turbulent boundary layer
  publication-title: Int J Heat Fluid Flow
– year: 2012
  ident: bib0025
  article-title: Turbulent pipe flow at extreme Reynolds numbers
  publication-title: Phys Rev Lett
– volume: 231
  start-page: 3389
  year: 2012
  end-page: 3405
  ident: bib0037
  article-title: Adapting the spectral vanishing viscosity method for large-eddy simulations in cylindrical configurations
  publication-title: J Comput Phys
– volume: 124
  start-page: 886
  year: 2002
  end-page: 891
  ident: bib0035
  article-title: Coarse resolution turbulence simulations with spectral vanishing viscosity–large eddy simulations (SVV-LES)
  publication-title: J Fluids Eng
– volume: 24
  start-page: 045107
  year: 2012
  ident: bib0036
  article-title: Emergence of the four layer dynamical regime in turbulent pipe flow
  publication-title: Phys Fluids
– volume: 350
  start-page: 782
  year: 2017
  end-page: 795
  ident: bib0018
  article-title: On the use of kinetic energy preserving DG-schemes for large eddy simulation
  publication-title: J Comput Phys
– start-page: 425
  year: 1999
  end-page: 431
  ident: bib0058
  article-title: Dispersion analysis of the continuous and discontinuous Galerkin formulations
  publication-title: in International Symposium on Discontinuous Galerkin Methods
– volume: 41
  start-page: 181
  year: 2009
  end-page: 202
  ident: bib0060
  article-title: Detached-eddy simulation
  publication-title: Annu. Rev. Fluid Mech
– volume: 9
  start-page: 2443
  year: 1997
  end-page: 2454
  ident: bib0045
  article-title: A vortex-based subgrid stress model for large-eddy simulation
  publication-title: Phys Fluids
– volume: 197
  start-page: 759
  year: 2004
  end-page: 778
  ident: bib0005
  article-title: Formulation of a Galerkin spectral element-Fourier method for three-dimensional incompressible flows in cylindrical geometries
  publication-title: J Comput Phys
– volume: 78
  start-page: 707
  year: 2014
  end-page: 720
  ident: bib0056
  article-title: Large eddy simulation of smooth-rough-smooth transitions in turbulent channel flows
  publication-title: Int J Heat Mass Transf
– year: 2018
  ident: bib0042
  article-title: On the role of numerical dissipation in stabilising under-resolved turbulent simulations using discontinuous Galerkin methods
  publication-title: arXiv:180510519
– volume: 195
  start-page: 3128
  year: 2006
  end-page: 3144
  ident: bib0034
  article-title: Stabilisation of spectral h/p element methods through spectral vanishing viscosity: application to fluid mechanics modelling
  publication-title: Comput Methods Appl MechEng
– volume: 589
  start-page: 147
  year: 2007
  end-page: 156
  ident: bib0046
  article-title: Large-scale features in turbulent pipe and channel flows
  publication-title: J Fluid Mech
– year: 2001
  ident: bib0054
  article-title: Large eddy simulation for incompressible flows: an introduction
  publication-title: Scientific computation
– volume: 45
  start-page: 33
  year: 2014
  end-page: 40
  ident: bib0011
  article-title: Reynolds number effects in DNS of pipe flow and comparison with channels and boundary layers
  publication-title: Int J Heat Fluid Flow
– volume: 34
  start-page: 349
  year: 2002
  end-page: 374
  ident: bib0051
  article-title: Wall-layer models for large-eddy simulations
  publication-title: Annu Rev Fluid Mech
– volume: 122
  start-page: 26
  year: 2015
  end-page: 33
  ident: bib0012
  article-title: Turbulent pipe flow at
  publication-title: Comput Fluids
– year: 2007
  ident: bib0020
  article-title: Implicit large eddy simulation: computing turbulent fluid dynamics
– year: 1999
  ident: bib0029
  publication-title: Large eddy simulation using unstructured spectral h/p elements
– volume: 25
  start-page: 2193
  year: 1982
  end-page: 2203
  ident: bib0040
  article-title: Strained spiral vortex model for turbulent fine structure
  publication-title: Phys Fluids
– volume: 20
  start-page: 1
  year: 2006
  end-page: 21
  ident: bib0008
  article-title: A non-linear SGS model based on the spatial velocity increment
  publication-title: Theoret Comput Fluid Dyn
– volume: 30
  start-page: 591
  year: 2001
  end-page: 605
  ident: bib0022
  article-title: Direct numerical simulation of turbulent flows in curved and helically coiled pipes
  publication-title: Comput Fluids
– volume: 6
  start-page: 3130
  year: 1994
  end-page: 3143
  ident: bib0023
  article-title: Subgrid scale energy transfer in the near wall region of turbulent flows
  publication-title: Phys Fluids
– volume: 24
  start-page: 075103
  year: 2012
  ident: bib0057
  article-title: Large eddy simulation of smooth-wall, transitional and fully rough-wall channel flow
  publication-title: Phys Fluids
– volume: 43
  year: 2011
  ident: bib0059
  article-title: High-Reynolds number wall turbulence
  publication-title: Annu Rev Fluid Mech
– volume: 51
  start-page: 1261
  year: 2011
  end-page: 1281
  ident: bib0048
  article-title: Comparison of turbulent channel and pipe flows with varying Reynolds number
  publication-title: Exp Fluids
– volume: 8
  start-page: 1
  year: 2007
  end-page: 20
  ident: bib0004
  article-title: Stochastic modelling of inertial particle dispersion by subgrid motion for les of high Reynolds number pipe flow
  publication-title: J Turbulence
– volume: 501
  start-page: 135
  year: 2004
  end-page: 147
  ident: bib0043
  article-title: Further observations on the mean velocity distribution in fully developed pipe flow
  publication-title: J Fluid Mech
– volume: 25
  start-page: 045103
  year: 2013
  ident: bib0039
  article-title: Comparison of very-large-scale motions of turbulent pipe and boundary layer simulations
  publication-title: Phys Fluids
– volume: 30
  start-page: 31
  year: 1998
  end-page: 51
  ident: bib0052
  article-title: Vortex dynamics in turbulence
  publication-title: Annu Rev Fluid Mech
– volume: 97
  start-page: 414
  year: 1991
  end-page: 443
  ident: bib0032
  article-title: High-order splitting methods for incompressible Navier–Stokes equations
  publication-title: J Comput Phys
– volume: 163
  start-page: 22
  year: 2000
  end-page: 50
  ident: bib0030
  article-title: A spectral vanishing viscosity method for large eddy simulations
  publication-title: J Comput Phys
– volume: 22
  start-page: 115107
  year: 2010
  ident: bib0013
  article-title: The influence of pipe length on turbulence statistics computed from direct numerical simulation data
  publication-title: Phys Fluids
– volume: 511
  start-page: 41
  year: 2004
  end-page: 44
  ident: bib0044
  article-title: Friction factors for smooth pipe flow
  publication-title: J Fluid Mech
– volume: 631
  start-page: 281
  year: 2009
  end-page: 309
  ident: bib0014
  article-title: Large-eddy simulation and wall modelling of turbulent channel flow
  publication-title: J Fluid Mech
– volume: 50
  start-page: 535
  year: 2018
  end-page: 561
  ident: bib0007
  article-title: Wall-modeled large-eddy simulation for complex turbulent flows
  publication-title: Annu Rev Fluid Mech
– volume: 50
  start-page: 77
  year: 2018
  end-page: 103
  ident: bib0016
  article-title: Some recent developments in turbulence closure modeling
  publication-title: Annu Rev Fluid Mech
– year: 2012
  ident: 10.1016/j.compfluid.2019.104239_bib0025
  article-title: Turbulent pipe flow at extreme Reynolds numbers
  publication-title: Phys Rev Lett
  doi: 10.1103/PhysRevLett.108.094501
– volume: 785
  start-page: 78
  year: 2015
  ident: 10.1016/j.compfluid.2019.104239_bib0009
  article-title: Large-eddy simulation of separation and reattachment of a flat plate turbulent boundary layer
  publication-title: J Fluid Mech
  doi: 10.1017/jfm.2015.604
– volume: 501
  start-page: 135
  year: 2004
  ident: 10.1016/j.compfluid.2019.104239_bib0043
  article-title: Further observations on the mean velocity distribution in fully developed pipe flow
  publication-title: J Fluid Mech
  doi: 10.1017/S0022112003007304
– volume: 26
  start-page: 30
  year: 1989
  ident: 10.1016/j.compfluid.2019.104239_bib0061
  article-title: Convergence of spectral methods for nonlinear conservation laws
  publication-title: SIAM J Numer Anal
  doi: 10.1137/0726003
– volume: 54
  start-page: 21
  issue: 1
  year: 2013
  ident: 10.1016/j.compfluid.2019.104239_bib0019
  article-title: An analysis of the dissipation and dispersion errors of the Pn-Pm schemes
  publication-title: J Scientif Comput
  doi: 10.1007/s10915-012-9600-0
– volume: 44
  start-page: 293
  issue: Supplement C
  year: 2013
  ident: 10.1016/j.compfluid.2019.104239_bib0028
  article-title: LES of the adverse-pressure gradient turbulent boundary layer
  publication-title: Int J Heat Fluid Flow
  doi: 10.1016/j.ijheatfluidflow.2013.06.011
– volume: 163
  start-page: 22
  issue: 1
  year: 2000
  ident: 10.1016/j.compfluid.2019.104239_bib0030
  article-title: A spectral vanishing viscosity method for large eddy simulations
  publication-title: J Comput Phys
  doi: 10.1006/jcph.2000.6552
– volume: 10
  start-page: 199
  issue: 4–6
  year: 1992
  ident: 10.1016/j.compfluid.2019.104239_bib0006
  article-title: New insights into large eddy simulation
  publication-title: Fluid Dyn Res
  doi: 10.1016/0169-5983(92)90023-P
– volume: 45
  start-page: 33
  year: 2014
  ident: 10.1016/j.compfluid.2019.104239_bib0011
  article-title: Reynolds number effects in DNS of pipe flow and comparison with channels and boundary layers
  publication-title: Int J Heat Fluid Flow
  doi: 10.1016/j.ijheatfluidflow.2013.11.007
– volume: 62
  start-page: 913
  issue: 3
  year: 2015
  ident: 10.1016/j.compfluid.2019.104239_bib0002
  article-title: High-order flux reconstruction schemes with minimal dispersion and dissipation
  publication-title: J Scientif Comput
  doi: 10.1007/s10915-014-9882-5
– year: 2018
  ident: 10.1016/j.compfluid.2019.104239_bib0042
  article-title: On the role of numerical dissipation in stabilising under-resolved turbulent simulations using discontinuous Galerkin methods
  publication-title: arXiv:180510519
– year: 2001
  ident: 10.1016/j.compfluid.2019.104239_bib0054
  article-title: Large eddy simulation for incompressible flows: an introduction
  doi: 10.1088/0957-0233/12/10/707
– volume: 25
  start-page: 045103
  issue: 4
  year: 2013
  ident: 10.1016/j.compfluid.2019.104239_bib0039
  article-title: Comparison of very-large-scale motions of turbulent pipe and boundary layer simulations
  publication-title: Phys Fluids
  doi: 10.1063/1.4802048
– volume: 350
  start-page: 782
  year: 2017
  ident: 10.1016/j.compfluid.2019.104239_bib0018
  article-title: On the use of kinetic energy preserving DG-schemes for large eddy simulation
  publication-title: J Comput Phys
  doi: 10.1016/j.jcp.2017.09.004
– volume: 820
  start-page: 121
  year: 2017
  ident: 10.1016/j.compfluid.2019.104239_bib0010
  article-title: Large-eddy simulation of flow over a cylinder with reD from 3.9 × 103 to 8.5 × 105 : a skin-friction perspective
  publication-title: J Fluid Mech
  doi: 10.1017/jfm.2017.172
– volume: 589
  start-page: 147
  year: 2007
  ident: 10.1016/j.compfluid.2019.104239_bib0046
  article-title: Large-scale features in turbulent pipe and channel flows
  publication-title: J Fluid Mech
  doi: 10.1017/S002211200700777X
– volume: 50
  start-page: 535
  issue: 1
  year: 2018
  ident: 10.1016/j.compfluid.2019.104239_bib0007
  article-title: Wall-modeled large-eddy simulation for complex turbulent flows
  publication-title: Annu Rev Fluid Mech
  doi: 10.1146/annurev-fluid-122316-045241
– volume: 576
  year: 2007
  ident: 10.1016/j.compfluid.2019.104239_sbref0066
  article-title: Scaling of the wall-normal turbulence component in high-Reynolds-number pipe flow
  publication-title: J Fluid Mech
  doi: 10.1017/S0022112006004526
– volume: 196
  start-page: 680
  issue: 2
  year: 2004
  ident: 10.1016/j.compfluid.2019.104239_bib0064
  article-title: Stabilized spectral element computations of high Reynolds number incompressible flows
  publication-title: J Comput Phys
  doi: 10.1016/j.jcp.2003.11.009
– volume: 373
  start-page: 33
  year: 1998
  ident: 10.1016/j.compfluid.2019.104239_bib0065
  article-title: Mean-flow scaling of turbulent pipe flow
  publication-title: J Fluid Mech
  doi: 10.1017/S0022112098002419
– volume: 25
  start-page: 2193
  issue: 12
  year: 1982
  ident: 10.1016/j.compfluid.2019.104239_bib0040
  article-title: Strained spiral vortex model for turbulent fine structure
  publication-title: Phys Fluids
  doi: 10.1063/1.863957
– volume: 44
  start-page: 437
  issue: 6
  year: 2008
  ident: 10.1016/j.compfluid.2019.104239_sbref0050
  article-title: Wall-layer models for large-eddy simulations
  publication-title: Prog Aerospace Sci
  doi: 10.1016/j.paerosci.2008.06.001
– volume: 11
  start-page: 417
  year: 1999
  ident: 10.1016/j.compfluid.2019.104239_bib0033
  article-title: Very large-scale motion in the outer layer
  publication-title: Phys Fluids
  doi: 10.1063/1.869889
– year: 2014
  ident: 10.1016/j.compfluid.2019.104239_bib0055
– volume: 608
  start-page: 81
  year: 2008
  ident: 10.1016/j.compfluid.2019.104239_bib0063
  article-title: A direct numerical simulation study on the mean velocity characteristics in turbulent pipe flow
  publication-title: J Fluid Mech
  doi: 10.1017/S0022112008002085
– volume: 9
  start-page: 3398
  issue: 11
  year: 1997
  ident: 10.1016/j.compfluid.2019.104239_bib0015
  article-title: Reynolds number effects in a turbulent pipe flow for low to moderate Re
  publication-title: Phys Fluids
  doi: 10.1063/1.869451
– year: 1999
  ident: 10.1016/j.compfluid.2019.104239_bib0029
– volume: 43
  year: 2011
  ident: 10.1016/j.compfluid.2019.104239_sbref0059
  article-title: High-Reynolds number wall turbulence
  publication-title: Annu Rev Fluid Mech
  doi: 10.1146/annurev-fluid-122109-160753
– volume: 78
  start-page: 707
  year: 2014
  ident: 10.1016/j.compfluid.2019.104239_bib0056
  article-title: Large eddy simulation of smooth-rough-smooth transitions in turbulent channel flows
  publication-title: Int J Heat Mass Transf
  doi: 10.1016/j.ijheatmasstransfer.2014.06.088
– volume: 24
  start-page: 075103
  issue: 7
  year: 2012
  ident: 10.1016/j.compfluid.2019.104239_bib0057
  article-title: Large eddy simulation of smooth-wall, transitional and fully rough-wall channel flow
  publication-title: Phys Fluids
  doi: 10.1063/1.4731301
– volume: 27
  start-page: 065110
  issue: 6
  year: 2015
  ident: 10.1016/j.compfluid.2019.104239_bib0001
  article-title: Direct numerical simulation of a 30r long turbulent pipe flow at Reτ=3008
  publication-title: Phys Fluids
  doi: 10.1063/1.4922612
– volume: 554
  start-page: 521
  year: 2006
  ident: 10.1016/j.compfluid.2019.104239_bib0021
  article-title: Large-scale and very-large-scale motions in turbulent pipe flow
  publication-title: J Fluid Mech
  doi: 10.1017/S0022112006008871
– volume: 686
  start-page: 507
  year: 2011
  ident: 10.1016/j.compfluid.2019.104239_bib0027
  article-title: Large-eddy simulation of the zero-pressure-gradient turbulent boundary layer up to Re = O(1012)
  publication-title: J Fluid Mech
  doi: 10.1017/jfm.2011.342
– volume: 97
  start-page: 414
  year: 1991
  ident: 10.1016/j.compfluid.2019.104239_bib0032
  article-title: High-order splitting methods for incompressible Navier–Stokes equations
  publication-title: J Comput Phys
  doi: 10.1016/0021-9991(91)90007-8
– volume: 41
  start-page: 181
  issue: 1
  year: 2009
  ident: 10.1016/j.compfluid.2019.104239_bib0060
  article-title: Detached-eddy simulation
  publication-title: Annu. Rev. Fluid Mech
  doi: 10.1146/annurev.fluid.010908.165130
– volume: 6
  year: 2005
  ident: 10.1016/j.compfluid.2019.104239_bib0049
  article-title: Spectral vanishing viscosity method for LES: sensitivity to the SVV control parameters
  publication-title: J Turbulence
  doi: 10.1080/14685240500125476
– volume: 124
  start-page: 886
  issue: 4
  year: 2002
  ident: 10.1016/j.compfluid.2019.104239_bib0035
  article-title: Coarse resolution turbulence simulations with spectral vanishing viscosity–large eddy simulations (SVV-LES)
  publication-title: J Fluids Eng
  doi: 10.1115/1.1511321
– volume: 30
  start-page: 31
  year: 1998
  ident: 10.1016/j.compfluid.2019.104239_bib0052
  article-title: Vortex dynamics in turbulence
  publication-title: Annu Rev Fluid Mech
  doi: 10.1146/annurev.fluid.30.1.31
– volume: 76
  start-page: 522
  issue: 8
  year: 2014
  ident: 10.1016/j.compfluid.2019.104239_bib0003
  article-title: High-order discontinuous Galerkin spectral element methods for transitional and turbulent flow simulations
  publication-title: Int J Numer MethodsFluids
  doi: 10.1002/fld.3943
– volume: 6
  start-page: 3130
  issue: 9
  year: 1994
  ident: 10.1016/j.compfluid.2019.104239_bib0023
  article-title: Subgrid scale energy transfer in the near wall region of turbulent flows
  publication-title: Phys Fluids
  doi: 10.1063/1.868137
– volume: 20
  start-page: 1
  issue: 1
  year: 2006
  ident: 10.1016/j.compfluid.2019.104239_bib0008
  article-title: A non-linear SGS model based on the spatial velocity increment
  publication-title: Theoret Comput Fluid Dyn
  doi: 10.1007/s00162-005-0006-6
– volume: 8
  start-page: 1
  year: 2007
  ident: 10.1016/j.compfluid.2019.104239_bib0004
  article-title: Stochastic modelling of inertial particle dispersion by subgrid motion for les of high Reynolds number pipe flow
  publication-title: J Turbulence
  doi: 10.1080/14685240701615952
– volume: 34
  start-page: 349
  year: 2002
  ident: 10.1016/j.compfluid.2019.104239_bib0051
  article-title: Wall-layer models for large-eddy simulations
  publication-title: Annu Rev Fluid Mech
  doi: 10.1146/annurev.fluid.34.082901.144919
– volume: 348
  start-page: 754
  year: 2017
  ident: 10.1016/j.compfluid.2019.104239_bib0017
  article-title: An interior penalty stabilised incompressible discontinuous Galerkin–Fourier solver for implicit large eddy simulations
  publication-title: J Comput Phys
  doi: 10.1016/j.jcp.2017.07.049
– volume: 22
  start-page: 115107
  issue: 11
  year: 2010
  ident: 10.1016/j.compfluid.2019.104239_bib0013
  article-title: The influence of pipe length on turbulence statistics computed from direct numerical simulation data
  publication-title: Phys Fluids
  doi: 10.1063/1.3489528
– volume: 511
  start-page: 41
  year: 2004
  ident: 10.1016/j.compfluid.2019.104239_bib0044
  article-title: Friction factors for smooth pipe flow
  publication-title: J Fluid Mech
  doi: 10.1017/S0022112004009796
– volume: 51
  start-page: 1261
  issue: 5
  year: 2011
  ident: 10.1016/j.compfluid.2019.104239_bib0048
  article-title: Comparison of turbulent channel and pipe flows with varying Reynolds number
  publication-title: Exp Fluids
  doi: 10.1007/s00348-011-1143-x
– volume: 7
  start-page: 27
  issue: 1
  year: 1991
  ident: 10.1016/j.compfluid.2019.104239_bib0062
  article-title: On the rotation and skew-symmetric forms for incompressible flow simulations
  publication-title: Appl Numer Math
  doi: 10.1016/0168-9274(91)90102-6
– volume: 9
  start-page: 2443
  issue: 8
  year: 1997
  ident: 10.1016/j.compfluid.2019.104239_bib0045
  article-title: A vortex-based subgrid stress model for large-eddy simulation
  publication-title: Phys Fluids
  doi: 10.1063/1.869361
– volume: 122
  start-page: 26
  year: 2015
  ident: 10.1016/j.compfluid.2019.104239_bib0012
  article-title: Turbulent pipe flow at Reτ=1000 : a comparison of wall-resolved large-eddy simulation, direct numerical simulation and hot-wire experiment
  publication-title: Comput Fluids
  doi: 10.1016/j.compfluid.2015.08.025
– volume: 298
  start-page: 695
  year: 2015
  ident: 10.1016/j.compfluid.2019.104239_bib0047
  article-title: Linear dispersion-diffusion analysis and its application to under-resolved turbulence simulations using discontinuous Galerkin spectral/hp methods
  publication-title: J Comput Phys
  doi: 10.1016/j.jcp.2015.06.020
– volume: 50
  start-page: 77
  issue: 1
  year: 2018
  ident: 10.1016/j.compfluid.2019.104239_bib0016
  article-title: Some recent developments in turbulence closure modeling
  publication-title: Annu Rev Fluid Mech
  doi: 10.1146/annurev-fluid-122316-045020
– volume: 33
  start-page: 455
  issue: 1–4
  year: 2000
  ident: 10.1016/j.compfluid.2019.104239_bib0031
  article-title: A high order splitting scheme for the Navier–Stokes equations with variable viscosity
  publication-title: Appl Numer Math
  doi: 10.1016/S0168-9274(99)00112-9
– volume: 195
  start-page: 3128
  issue: 23–24
  year: 2006
  ident: 10.1016/j.compfluid.2019.104239_bib0034
  article-title: Stabilisation of spectral h/p element methods through spectral vanishing viscosity: application to fluid mechanics modelling
  publication-title: Comput Methods Appl MechEng
  doi: 10.1016/j.cma.2004.09.019
– volume: 30
  start-page: 591
  issue: 5
  year: 2001
  ident: 10.1016/j.compfluid.2019.104239_bib0022
  article-title: Direct numerical simulation of turbulent flows in curved and helically coiled pipes
  publication-title: Comput Fluids
  doi: 10.1016/S0045-7930(01)00008-1
– volume: 24
  start-page: 045107
  issue: 4
  year: 2012
  ident: 10.1016/j.compfluid.2019.104239_bib0036
  article-title: Emergence of the four layer dynamical regime in turbulent pipe flow
  publication-title: Phys Fluids
  doi: 10.1063/1.3702897
– year: 2007
  ident: 10.1016/j.compfluid.2019.104239_bib0020
– year: 2008
  ident: 10.1016/j.compfluid.2019.104239_bib0024
– volume: 231
  start-page: 3389
  issue: 8
  year: 2012
  ident: 10.1016/j.compfluid.2019.104239_bib0037
  article-title: Adapting the spectral vanishing viscosity method for large-eddy simulations in cylindrical configurations
  publication-title: J Comput Phys
  doi: 10.1016/j.jcp.2012.01.014
– volume: 3
  issue: 1
  year: 2016
  ident: 10.1016/j.compfluid.2019.104239_bib0038
  article-title: Large eddy simulation with modeled wall-stress: recent progress and future directions
  publication-title: Mech Eng Rev
  doi: 10.1299/mer.15-00418
– volume: 30
  start-page: 321
  issue: 2
  year: 1993
  ident: 10.1016/j.compfluid.2019.104239_bib0041
  article-title: Legendre pseudospectral viscosity method for nonlinear conservation laws
  publication-title: SIAM J Numer Anal
  doi: 10.1137/0730016
– start-page: 425
  year: 1999
  ident: 10.1016/j.compfluid.2019.104239_bib0058
  article-title: Dispersion analysis of the continuous and discontinuous Galerkin formulations
– volume: 631
  start-page: 281
  year: 2009
  ident: 10.1016/j.compfluid.2019.104239_bib0014
  article-title: Large-eddy simulation and wall modelling of turbulent channel flow
  publication-title: J Fluid Mech
  doi: 10.1017/S0022112009006867
– volume: 197
  start-page: 759
  issue: 2
  year: 2004
  ident: 10.1016/j.compfluid.2019.104239_bib0005
  article-title: Formulation of a Galerkin spectral element-Fourier method for three-dimensional incompressible flows in cylindrical geometries
  publication-title: J Comput Phys
  doi: 10.1016/j.jcp.2004.02.013
– volume: 24
  start-page: 075102
  issue: 7
  year: 2012
  ident: 10.1016/j.compfluid.2019.104239_bib0026
  article-title: Inner-layer intensities for the flat-plate turbulent boundary layer combining a predictive wall-model with large-eddy simulations
  publication-title: Phys Fluids
  doi: 10.1063/1.4731299
– volume: 174
  start-page: 935
  year: 1883
  ident: 10.1016/j.compfluid.2019.104239_bib0053
  article-title: An experimental investigation of the circumstances which determine whether the motion of water shall be direct or sinuous, and of the law of resistance in parallel channels
  publication-title: Philos Trans R Soc
  doi: 10.1098/rstl.1883.0029
SSID ssj0004324
Score 2.293354
Snippet •Explicit and implicit large eddy simulations for turbulent pipe flows.•Both models implemented in a high order continuous-Galerkin spectral element...
We present explicit and implicit large eddy simulations for fully developed turbulent pipe flows using a continuous-Galerkin spectral element solver. On the...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 104239
SubjectTerms Boundary conditions
Chung & Pullin model
Computational fluid dynamics
Computer simulation
Dirichlet problem
Galerkin method
High Reynolds number
Large eddy simulation
Pipe flow
Simulation
Spectra
Spectral vanishing viscosity (SVV)
Stretched-vortex model
Time dependence
Turbulence
Turbulent pipe flow
Virtual-wall model
Vortices
Wall model
Title High-Reynolds-number wall-modelled large eddy simulations of turbulent pipe flows using explicit and implicit subgrid stress treatments within a spectral element solver
URI https://dx.doi.org/10.1016/j.compfluid.2019.104239
https://www.proquest.com/docview/2324872162
Volume 191
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwEB212wscEJ-ipVRz4GqaxHY24VZVVAuIHhCVerPs2K6M0uxqs6vSC7-Hn4ln4ywUIfXA0ZEcWZ7xzEv85g3AG2eMKKuqYaU2nomp8KwSxjFPycXyxuSc6p0_n5ezC_HxUl7uwOlYC0O0yhT7h5i-idbpyXHazeNFCFTjK2T0riw6ZSYj7N6FvYLXpZzA3smHT7Pz3-WRvBjEmAWpM_LsDs2LmNu-XQdSDc1ruvIsqHH4v5PUX-F6k4POHsOjBB7xZFjfE9hx3VN4-Iek4DP4ScQN9sXddvPW9mxo-IE3um3ZpulN6yy2xP5GZ-0t9uE69e_qce4x5h-zpjyEi7Bw6Nv5TY9Ejb9C951uusMKdWcxXKdBvzZXy2BxKDnBLW29R_rBGzrUuKnlXMZlu4GpjtHb4_l5Dhdn77-ezljqxsCaiKGoZ31RyxjZi1LmmgstJNcuayI-mVpTZKaqhK24LbXXdYQV1mQ2z5uILkvqjyQ9fwGTbt65l4CNtfHDmwtbkFqe9drnuuZyanREYG7q9qEct181SaqcOma0auSkfVNbuymymxrstg_ZduJiUOu4f8q70b7qjuOpmFPun3w4eoRKZ79XhFEr0kQqDv7n3a_gAY2Im5LLQ5islmv3OgKglTmC3bc_8qPk5r8A0-ALhA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NT9wwELUoPbQcKiitoKUwh14NSWwn2d4qVLR8HiqQuFl2bCOjkF1tdkW59Pf0Z9aTOFuoKnHoMYkcWZ7xzEv8Zh4hn63WPC_LiuZKO8oL7mjJtaUOk4thlU4Z1jufX-TjK35yLa5XyOFQC4O0yhj7-5jeRet45yCu5sHUe6zx5SJ4VxKcMhEBdr8gL7lgBfL69n_-4Xlgy7n-mBl7M7LkCckLeduuXnjsGZqO8MAzQ9nwf6eov4J1l4GO1smbCB3haz-7DbJim7dk7VFDwU3yC2kb9Lt9aCa1aWkv9wH3qq5pJ3lTWwM1cr_BGvMArb-L6l0tTByE7KMXmIVg6qcWXD25bwGJ8Tdgf-A5t5-Dagz4u3jRLvTNzBvoC05gSVpvAX_v-gYUdJWcszBt2_PUIfh62D3vyNXRt8vDMY1aDLQKCAoV67ORCHE9y0WqGFdhpZVNqoBOCqOzRJclNyUzuXJqFECF0YlJ0ypgyxzVkYRj78lqM2nsFoHKmPDZzbjJsFeeccqlasREoVXAX7aw2yQfll9WsVE56mXUcmCk3cql3STaTfZ22ybJcuC079Xx_JAvg33lE7eTIaM8P3hn8AgZd34rEaGW2BEp-_A_794jr8aX52fy7Pji9CN5jU-QpZKKHbI6ny3spwCF5nq3c_XfI2UMTw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High-Reynolds-number+wall-modelled+large+eddy+simulations+of+turbulent+pipe+flows+using+explicit+and+implicit+subgrid+stress+treatments+within+a+spectral+element+solver&rft.jtitle=Computers+%26+fluids&rft.au=Ferrer%2C+E.&rft.au=Saito%2C+N.&rft.au=Blackburn%2C+H.M.&rft.au=Pullin%2C+D.I.&rft.date=2019-09-15&rft.issn=0045-7930&rft.volume=191&rft.spage=104239&rft_id=info:doi/10.1016%2Fj.compfluid.2019.104239&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_compfluid_2019_104239
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0045-7930&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0045-7930&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0045-7930&client=summon