High-Reynolds-number wall-modelled large eddy simulations of turbulent pipe flows using explicit and implicit subgrid stress treatments within a spectral element solver
•Explicit and implicit large eddy simulations for turbulent pipe flows.•Both models implemented in a high order continuous-Galerkin spectral element solver.•Favourable results for pipe flows at Retau=2×103 and Retau=1.8×105.•The wall model in the implicit scheme enables lower levels of artificial di...
Saved in:
Published in | Computers & fluids Vol. 191; p. 104239 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Amsterdam
Elsevier Ltd
15.09.2019
Elsevier BV |
Subjects | |
Online Access | Get full text |
ISSN | 0045-7930 1879-0747 |
DOI | 10.1016/j.compfluid.2019.104239 |
Cover
Abstract | •Explicit and implicit large eddy simulations for turbulent pipe flows.•Both models implemented in a high order continuous-Galerkin spectral element solver.•Favourable results for pipe flows at Retau=2×103 and Retau=1.8×105.•The wall model in the implicit scheme enables lower levels of artificial dissipation.
We present explicit and implicit large eddy simulations for fully developed turbulent pipe flows using a continuous-Galerkin spectral element solver. On the one hand, the explicit stretched-vortex model (by Misra and Pullin [45] and Chung and Pullin [14]), accounts for an explicit treatment of unresolved stresses and is adapted to the high-order solver. On the other hand, an implicit approach based on a spectral vanishing viscosity technique is implemented. The latter implicit technique is modified to incorporate Chung & Pullin virtual-wall model instead of relying on implicit dissipative mechanisms near walls. This near-wall model is derived by averaging in the wall-normal direction and relying in local inner scaling to treat the time-dependence of the filtered wall-parallel velocity. The model requires space-time varying Dirichlet and Neumann boundary conditions for velocity and pressure respectively. We provide results and comparisons for the explicit and implicit subgrid treatments and show that both provide favourable results for pipe flows at Reτ=2×103 and Reτ=1.8×105 in terms of turbulence statistics. Additionally, we conclude that implicit simulations are enhanced when including the wall model and provide the correct statistics near walls. |
---|---|
AbstractList | •Explicit and implicit large eddy simulations for turbulent pipe flows.•Both models implemented in a high order continuous-Galerkin spectral element solver.•Favourable results for pipe flows at Retau=2×103 and Retau=1.8×105.•The wall model in the implicit scheme enables lower levels of artificial dissipation.
We present explicit and implicit large eddy simulations for fully developed turbulent pipe flows using a continuous-Galerkin spectral element solver. On the one hand, the explicit stretched-vortex model (by Misra and Pullin [45] and Chung and Pullin [14]), accounts for an explicit treatment of unresolved stresses and is adapted to the high-order solver. On the other hand, an implicit approach based on a spectral vanishing viscosity technique is implemented. The latter implicit technique is modified to incorporate Chung & Pullin virtual-wall model instead of relying on implicit dissipative mechanisms near walls. This near-wall model is derived by averaging in the wall-normal direction and relying in local inner scaling to treat the time-dependence of the filtered wall-parallel velocity. The model requires space-time varying Dirichlet and Neumann boundary conditions for velocity and pressure respectively. We provide results and comparisons for the explicit and implicit subgrid treatments and show that both provide favourable results for pipe flows at Reτ=2×103 and Reτ=1.8×105 in terms of turbulence statistics. Additionally, we conclude that implicit simulations are enhanced when including the wall model and provide the correct statistics near walls. We present explicit and implicit large eddy simulations for fully developed turbulent pipe flows using a continuous-Galerkin spectral element solver. On the one hand, the explicit stretched-vortex model (by Misra and Pullin [45] and Chung and Pullin [14]), accounts for an explicit treatment of unresolved stresses and is adapted to the high-order solver. On the other hand, an implicit approach based on a spectral vanishing viscosity technique is implemented. The latter implicit technique is modified to incorporate Chung & Pullin virtual-wall model instead of relying on implicit dissipative mechanisms near walls. This near-wall model is derived by averaging in the wall-normal direction and relying in local inner scaling to treat the time-dependence of the filtered wall-parallel velocity. The model requires space-time varying Dirichlet and Neumann boundary conditions for velocity and pressure respectively. We provide results and comparisons for the explicit and implicit subgrid treatments and show that both provide favourable results for pipe flows at Reτ = 2 x 103 Reτ = 1.8 x 105 in terms of turbulence statistics. Additionally, we conclude that implicit simulations are enhanced when including the wall model and provide the correct statistics near walls. |
ArticleNumber | 104239 |
Author | Saito, N. Pullin, D.I. Blackburn, H.M. Ferrer, E. |
Author_xml | – sequence: 1 givenname: E. orcidid: 0000-0003-1519-0444 surname: Ferrer fullname: Ferrer, E. email: esteban.ferrer@upm.es organization: ETSIAE-UPM - School of Aeronautics, Universidad Politécnica de Madrid, Plaza Cardenal Cisneros 3, Madrid E-28040 Spain – sequence: 2 givenname: N. surname: Saito fullname: Saito, N. organization: Graduate Aerospace Laboratories, California Institute of Technology, CA 91125 USA – sequence: 3 givenname: H.M. surname: Blackburn fullname: Blackburn, H.M. organization: Department of Mechanical and Aerospace Engineering, Monash University, Vic 3800, Australia – sequence: 4 givenname: D.I. surname: Pullin fullname: Pullin, D.I. organization: Graduate Aerospace Laboratories, California Institute of Technology, CA 91125 USA |
BookMark | eNqNkctuFDEQRS0UJCaBb8AS6x786OeCRRQBQYoUCcHactvVE4_cduNyZ5g_4jPxMBELNmRjq8p1qsr3XpKLEAMQ8pazLWe8fb_fmjgvk1-d3QrGh5KthRxekA3vu6FiXd1dkA1jdVN1g2SvyCXinpVYinpDft263UP1FY4heotVWOcREj1o76s5WvAeLPU67YCCtUeKbl69zi4GpHGieU3j6iFkurgF6OTjAemKLuwo_Fy8My5THSx181OA67hLzlLMCRBpOXWeC4_04PKDC1RTXMDkpD0FD6cnitE_QnpNXk7aI7x5uq_I908fv93cVnf3n7_cXN9VRg4iV1yKoYGRi7bhWta6bqQGZpjoOzsKNvZ9bXtpWz3poRfMjsxybrqubntj62aSV-Tdue-S4o8VMKt9XFMoI5UoivWd4K0oVR_OVSZFxASTKr_7o0tZ3XnFmTqZo_bqrznqZI46m1P47h9-SW7W6fgM8vpMQhHh0UFSaBwEA9alIpyy0f23x280urXc |
CitedBy_id | crossref_primary_10_1016_j_rineng_2021_100254 crossref_primary_10_1016_j_cpc_2023_108700 crossref_primary_10_1063_5_0201967 crossref_primary_10_1063_5_0232434 crossref_primary_10_1016_j_rineng_2025_104425 |
Cites_doi | 10.1103/PhysRevLett.108.094501 10.1017/jfm.2015.604 10.1017/S0022112003007304 10.1137/0726003 10.1007/s10915-012-9600-0 10.1016/j.ijheatfluidflow.2013.06.011 10.1006/jcph.2000.6552 10.1016/0169-5983(92)90023-P 10.1016/j.ijheatfluidflow.2013.11.007 10.1007/s10915-014-9882-5 10.1088/0957-0233/12/10/707 10.1063/1.4802048 10.1016/j.jcp.2017.09.004 10.1017/jfm.2017.172 10.1017/S002211200700777X 10.1146/annurev-fluid-122316-045241 10.1017/S0022112006004526 10.1016/j.jcp.2003.11.009 10.1017/S0022112098002419 10.1063/1.863957 10.1016/j.paerosci.2008.06.001 10.1063/1.869889 10.1017/S0022112008002085 10.1063/1.869451 10.1146/annurev-fluid-122109-160753 10.1016/j.ijheatmasstransfer.2014.06.088 10.1063/1.4731301 10.1063/1.4922612 10.1017/S0022112006008871 10.1017/jfm.2011.342 10.1016/0021-9991(91)90007-8 10.1146/annurev.fluid.010908.165130 10.1080/14685240500125476 10.1115/1.1511321 10.1146/annurev.fluid.30.1.31 10.1002/fld.3943 10.1063/1.868137 10.1007/s00162-005-0006-6 10.1080/14685240701615952 10.1146/annurev.fluid.34.082901.144919 10.1016/j.jcp.2017.07.049 10.1063/1.3489528 10.1017/S0022112004009796 10.1007/s00348-011-1143-x 10.1016/0168-9274(91)90102-6 10.1063/1.869361 10.1016/j.compfluid.2015.08.025 10.1016/j.jcp.2015.06.020 10.1146/annurev-fluid-122316-045020 10.1016/S0168-9274(99)00112-9 10.1016/j.cma.2004.09.019 10.1016/S0045-7930(01)00008-1 10.1063/1.3702897 10.1016/j.jcp.2012.01.014 10.1299/mer.15-00418 10.1137/0730016 10.1017/S0022112009006867 10.1016/j.jcp.2004.02.013 10.1063/1.4731299 10.1098/rstl.1883.0029 |
ContentType | Journal Article |
Copyright | 2019 Copyright Elsevier BV Sep 15, 2019 |
Copyright_xml | – notice: 2019 – notice: Copyright Elsevier BV Sep 15, 2019 |
DBID | AAYXX CITATION 7SC 7TB 7U5 8FD FR3 H8D JQ2 KR7 L7M L~C L~D |
DOI | 10.1016/j.compfluid.2019.104239 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts Technology Research Database Engineering Research Database Aerospace Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Aerospace Database Civil Engineering Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Aerospace Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1879-0747 |
ExternalDocumentID | 10_1016_j_compfluid_2019_104239 S0045793018305875 |
GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABAOU ABJNI ABMAC ABYKQ ACAZW ACDAQ ACGFS ACIWK ACRLP ADBBV ADEZE ADGUI ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIGVJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ARUGR AXJTR BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W JJJVA KOM LG9 LY7 M41 MHUIS MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 ROL RPZ SDF SDG SDP SES SPC SPCBC SPD SST SSW SSZ T5K TN5 XPP ZMT ~G- 29F 6TJ AAQXK AATTM AAXKI AAYWO AAYXX ABDPE ABEFU ABFNM ABWVN ABXDB ACKIV ACNNM ACRPL ACVFH ADCNI ADIYS ADMUD ADNMO AEIPS AEUPX AFFNX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION FEDTE FGOYB G-2 HLZ HVGLF HZ~ R2- RIG SBC SET SEW SSH T9H VH1 WUQ 7SC 7TB 7U5 8FD EFKBS FR3 H8D JQ2 KR7 L7M L~C L~D |
ID | FETCH-LOGICAL-c392t-13295eb12651a34a453ae0c0287db20b884d83d6afa9820db0d11c77468cd45f3 |
IEDL.DBID | AIKHN |
ISSN | 0045-7930 |
IngestDate | Wed Aug 13 08:30:16 EDT 2025 Tue Jul 01 02:21:30 EDT 2025 Thu Apr 24 23:07:44 EDT 2025 Fri Feb 23 02:19:43 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Stretched-vortex model Spectral vanishing viscosity (SVV) Wall model Virtual-wall model Turbulent pipe flow Large eddy simulation Chung & Pullin model |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c392t-13295eb12651a34a453ae0c0287db20b884d83d6afa9820db0d11c77468cd45f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-1519-0444 |
OpenAccessLink | http://oa.upm.es/67031/ |
PQID | 2324872162 |
PQPubID | 2045265 |
ParticipantIDs | proquest_journals_2324872162 crossref_citationtrail_10_1016_j_compfluid_2019_104239 crossref_primary_10_1016_j_compfluid_2019_104239 elsevier_sciencedirect_doi_10_1016_j_compfluid_2019_104239 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-09-15 |
PublicationDateYYYYMMDD | 2019-09-15 |
PublicationDate_xml | – month: 09 year: 2019 text: 2019-09-15 day: 15 |
PublicationDecade | 2010 |
PublicationPlace | Amsterdam |
PublicationPlace_xml | – name: Amsterdam |
PublicationTitle | Computers & fluids |
PublicationYear | 2019 |
Publisher | Elsevier Ltd Elsevier BV |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
References | Nieuwstadt, den Toonder (bib0015) 1997; 9 Kirby, Sherwin (bib0034) 2006; 195 Blackburn, Sherwin (bib0005) 2004; 197 Chin, Ooi, Marusic, Blackburn (bib0013) 2010; 22 Saito, Pullin (bib0056) 2014; 78 Lundgren (bib0040) 1982; 25 Asthana, Jameson (bib0002) 2015; 62 Sherwin (bib0058) 1999 Chin, Monty, Ooi (bib0011) 2014; 45 Grinstein, Margolin, Rider (bib0020) 2007 Moura, Sherwin, Peiro (bib0047) 2015; 298 Piomelli, Balaras (bib0051) 2002; 34 Flad, Gassner (bib0018) 2017; 350 Cheng, Pullin, Samtaney, Zhang, Gao (bib0010) 2017; 820 Gassner (bib0019) 2013; 54 Karamanos (bib0029) 1999 Bose, Park (bib0007) 2018; 50 Boris, Grinstein, Oran, Kolbe (bib0006) 1992; 10 Tadmor (bib0061) 1989; 26 Wu, Moin (bib0063) 2008; 608 Cheng, Pullin, Samtaney (bib0009) 2015; 785 Pullin, Saffman (bib0052) 1998; 30 McKeon, Li, Jiang, Morrison, Smits (bib0043) 2004; 501 Kim, Adrian (bib0033) 1999; 11 Karamanos, Karniadakis (bib0030) 2000; 163 Maday, Ould Kaber, Tadmor (bib0041) 1993; 30 Manzanero, Ferrer, Rubio, Valero (bib0042) 2018 Spalart (bib0060) 2009; 41 Inoue, Pullin (bib0027) 2011; 686 Piomelli (bib0050) 2008; 44 Karamanos, Sherwin (bib0031) 2000; 33 Monty, Stewart, Williams, Chong (bib0046) 2007; 589 Härtel, Kleiser, Unger, Friedrich (bib0023) 1994; 6 Zhao, Smits (bib0066) 2007; 576 Larsson, Kawai, Bodart, Bermejo-Moreno (bib0038) 2016; 3 McKeon, Swanson, Zagarola, Donnelly, Smits (bib0044) 2004; 511 Hultmark, Vallikivi, Bailey, Smits (bib0025) 2012 Saito, Pullin, Inoue (bib0057) 2012; 24 Sagaut (bib0054) 2001 Beck, Bolemann, Flad, Frank, Gassner, Hindenlang, Munz (bib0003) 2014; 76 Misra, Pullin (bib0045) 1997; 9 Smits, McKeon, Marusic (bib0059) 2011; 43 Klewicki, Chin, Blackburn, Ooi, Marusic (bib0036) 2012; 24 Kirby, Karniadakis (bib0035) 2002; 124 Hesthaven, Warburton (bib0024) 2008 Inoue, Pullin, Harun, Marusic (bib0028) 2013; 44 Durbin (bib0016) 2018; 50 Inoue, Mathis, Marusic, Pullin (bib0026) 2012; 24 Berrouk, Laurence, Riley, Stock (bib0004) 2007; 8 Brun, Friedrich, Silva (bib0008) 2006; 20 Guala, Hommema, Adrian (bib0021) 2006; 554 Karniadakis, Israeli, Orszag (bib0032) 1991; 97 Ng, Monty, Hutchins, Chong, Marusic (bib0048) 2011; 51 Pasquetti (bib0049) 2005; 6 Hüttl (bib0022) 2001; 30 Chin, Ng, Blackburn, Monty, Ooi (bib0012) 2015; 122 Koal, Stiller, Blackburn (bib0037) 2012; 231 Lee, Sung (bib0039) 2013; 25 Xu, Pasquetti (bib0064) 2004; 196 Ahn, Lee, Lee, Kang, Sung (bib0001) 2015; 27 Reynolds (bib0053) 1883; 174 Thomas (bib0062) 1991; 7 Chung, Pullin (bib0014) 2009; 631 Ferrer (bib0017) 2017; 348 Saito (bib0055) 2014 Zagarola, Smits (bib0065) 1998; 373 Hüttl (10.1016/j.compfluid.2019.104239_bib0022) 2001; 30 Kirby (10.1016/j.compfluid.2019.104239_bib0035) 2002; 124 Klewicki (10.1016/j.compfluid.2019.104239_bib0036) 2012; 24 Beck (10.1016/j.compfluid.2019.104239_bib0003) 2014; 76 Boris (10.1016/j.compfluid.2019.104239_bib0006) 1992; 10 Chin (10.1016/j.compfluid.2019.104239_bib0012) 2015; 122 Saito (10.1016/j.compfluid.2019.104239_bib0057) 2012; 24 Cheng (10.1016/j.compfluid.2019.104239_bib0010) 2017; 820 Zhao (10.1016/j.compfluid.2019.104239_sbref0066) 2007; 576 Smits (10.1016/j.compfluid.2019.104239_sbref0059) 2011; 43 Karamanos (10.1016/j.compfluid.2019.104239_bib0029) 1999 Nieuwstadt (10.1016/j.compfluid.2019.104239_bib0015) 1997; 9 Pullin (10.1016/j.compfluid.2019.104239_bib0052) 1998; 30 Saito (10.1016/j.compfluid.2019.104239_bib0055) 2014 Reynolds (10.1016/j.compfluid.2019.104239_bib0053) 1883; 174 Inoue (10.1016/j.compfluid.2019.104239_bib0028) 2013; 44 Koal (10.1016/j.compfluid.2019.104239_bib0037) 2012; 231 Sagaut (10.1016/j.compfluid.2019.104239_bib0054) 2001 Lundgren (10.1016/j.compfluid.2019.104239_bib0040) 1982; 25 Monty (10.1016/j.compfluid.2019.104239_bib0046) 2007; 589 Sherwin (10.1016/j.compfluid.2019.104239_bib0058) 1999 Inoue (10.1016/j.compfluid.2019.104239_bib0026) 2012; 24 Blackburn (10.1016/j.compfluid.2019.104239_bib0005) 2004; 197 Durbin (10.1016/j.compfluid.2019.104239_bib0016) 2018; 50 Ferrer (10.1016/j.compfluid.2019.104239_bib0017) 2017; 348 Bose (10.1016/j.compfluid.2019.104239_bib0007) 2018; 50 McKeon (10.1016/j.compfluid.2019.104239_bib0044) 2004; 511 Gassner (10.1016/j.compfluid.2019.104239_bib0019) 2013; 54 Berrouk (10.1016/j.compfluid.2019.104239_bib0004) 2007; 8 Ahn (10.1016/j.compfluid.2019.104239_bib0001) 2015; 27 Moura (10.1016/j.compfluid.2019.104239_bib0047) 2015; 298 Brun (10.1016/j.compfluid.2019.104239_bib0008) 2006; 20 Xu (10.1016/j.compfluid.2019.104239_bib0064) 2004; 196 Ng (10.1016/j.compfluid.2019.104239_bib0048) 2011; 51 Guala (10.1016/j.compfluid.2019.104239_bib0021) 2006; 554 Chin (10.1016/j.compfluid.2019.104239_bib0011) 2014; 45 Piomelli (10.1016/j.compfluid.2019.104239_bib0051) 2002; 34 Inoue (10.1016/j.compfluid.2019.104239_bib0027) 2011; 686 Cheng (10.1016/j.compfluid.2019.104239_bib0009) 2015; 785 Hultmark (10.1016/j.compfluid.2019.104239_bib0025) 2012 Spalart (10.1016/j.compfluid.2019.104239_bib0060) 2009; 41 Pasquetti (10.1016/j.compfluid.2019.104239_bib0049) 2005; 6 Tadmor (10.1016/j.compfluid.2019.104239_bib0061) 1989; 26 Grinstein (10.1016/j.compfluid.2019.104239_bib0020) 2007 Hesthaven (10.1016/j.compfluid.2019.104239_bib0024) 2008 Härtel (10.1016/j.compfluid.2019.104239_bib0023) 1994; 6 Karniadakis (10.1016/j.compfluid.2019.104239_bib0032) 1991; 97 Larsson (10.1016/j.compfluid.2019.104239_bib0038) 2016; 3 McKeon (10.1016/j.compfluid.2019.104239_bib0043) 2004; 501 Misra (10.1016/j.compfluid.2019.104239_bib0045) 1997; 9 Lee (10.1016/j.compfluid.2019.104239_bib0039) 2013; 25 Asthana (10.1016/j.compfluid.2019.104239_bib0002) 2015; 62 Thomas (10.1016/j.compfluid.2019.104239_bib0062) 1991; 7 Saito (10.1016/j.compfluid.2019.104239_bib0056) 2014; 78 Kim (10.1016/j.compfluid.2019.104239_bib0033) 1999; 11 Chin (10.1016/j.compfluid.2019.104239_bib0013) 2010; 22 Karamanos (10.1016/j.compfluid.2019.104239_bib0030) 2000; 163 Piomelli (10.1016/j.compfluid.2019.104239_sbref0050) 2008; 44 Karamanos (10.1016/j.compfluid.2019.104239_bib0031) 2000; 33 Chung (10.1016/j.compfluid.2019.104239_bib0014) 2009; 631 Maday (10.1016/j.compfluid.2019.104239_bib0041) 1993; 30 Manzanero (10.1016/j.compfluid.2019.104239_bib0042) 2018 Wu (10.1016/j.compfluid.2019.104239_bib0063) 2008; 608 Flad (10.1016/j.compfluid.2019.104239_bib0018) 2017; 350 Kirby (10.1016/j.compfluid.2019.104239_bib0034) 2006; 195 Zagarola (10.1016/j.compfluid.2019.104239_bib0065) 1998; 373 |
References_xml | – volume: 554 start-page: 521 year: 2006 end-page: 542 ident: bib0021 article-title: Large-scale and very-large-scale motions in turbulent pipe flow publication-title: J Fluid Mech – volume: 44 start-page: 437 year: 2008 end-page: 446 ident: bib0050 article-title: Wall-layer models for large-eddy simulations publication-title: Prog Aerospace Sci – volume: 11 start-page: 417 year: 1999 end-page: 422 ident: bib0033 article-title: Very large-scale motion in the outer layer publication-title: Phys Fluids – volume: 373 start-page: 33 year: 1998 end-page: 79 ident: bib0065 article-title: Mean-flow scaling of turbulent pipe flow publication-title: J Fluid Mech – volume: 174 start-page: 935 year: 1883 end-page: 982 ident: bib0053 article-title: An experimental investigation of the circumstances which determine whether the motion of water shall be direct or sinuous, and of the law of resistance in parallel channels publication-title: Philos Trans R Soc – volume: 298 start-page: 695 year: 2015 end-page: 710 ident: bib0047 article-title: Linear dispersion-diffusion analysis and its application to under-resolved turbulence simulations using discontinuous Galerkin spectral/hp methods publication-title: J Comput Phys – volume: 686 start-page: 507 year: 2011 end-page: C533 ident: bib0027 article-title: Large-eddy simulation of the zero-pressure-gradient turbulent boundary layer up to Re = O(1012) publication-title: J Fluid Mech – volume: 6 year: 2005 ident: bib0049 article-title: Spectral vanishing viscosity method for LES: sensitivity to the SVV control parameters publication-title: J Turbulence – volume: 54 start-page: 21 year: 2013 end-page: 44 ident: bib0019 article-title: An analysis of the dissipation and dispersion errors of the Pn-Pm schemes publication-title: J Scientif Comput – volume: 10 start-page: 199 year: 1992 ident: bib0006 article-title: New insights into large eddy simulation publication-title: Fluid Dyn Res – volume: 76 start-page: 522 year: 2014 end-page: 548 ident: bib0003 article-title: High-order discontinuous Galerkin spectral element methods for transitional and turbulent flow simulations publication-title: Int J Numer MethodsFluids – volume: 9 start-page: 3398 year: 1997 end-page: 3409 ident: bib0015 article-title: Reynolds number effects in a turbulent pipe flow for low to moderate Re publication-title: Phys Fluids – volume: 785 start-page: 78 year: 2015 end-page: 108 ident: bib0009 article-title: Large-eddy simulation of separation and reattachment of a flat plate turbulent boundary layer publication-title: J Fluid Mech – year: 2008 ident: bib0024 article-title: Nodal discontinuous Galerkin methods – algorithms, analysis, and applications – volume: 30 start-page: 321 year: 1993 end-page: 342 ident: bib0041 article-title: Legendre pseudospectral viscosity method for nonlinear conservation laws publication-title: SIAM J Numer Anal – volume: 608 start-page: 81 year: 2008 end-page: 112 ident: bib0063 article-title: A direct numerical simulation study on the mean velocity characteristics in turbulent pipe flow publication-title: J Fluid Mech – volume: 3 year: 2016 ident: bib0038 article-title: Large eddy simulation with modeled wall-stress: recent progress and future directions publication-title: Mech Eng Rev – volume: 7 start-page: 27 year: 1991 end-page: 40 ident: bib0062 article-title: On the rotation and skew-symmetric forms for incompressible flow simulations publication-title: Appl Numer Math – volume: 820 start-page: 121 year: 2017 end-page: 158 ident: bib0010 article-title: Large-eddy simulation of flow over a cylinder with publication-title: J Fluid Mech – volume: 196 start-page: 680 year: 2004 end-page: 704 ident: bib0064 article-title: Stabilized spectral element computations of high Reynolds number incompressible flows publication-title: J Comput Phys – volume: 26 start-page: 30 year: 1989 end-page: 44 ident: bib0061 article-title: Convergence of spectral methods for nonlinear conservation laws publication-title: SIAM J Numer Anal – volume: 33 start-page: 455 year: 2000 end-page: 462 ident: bib0031 article-title: A high order splitting scheme for the Navier–Stokes equations with variable viscosity publication-title: Appl Numer Math – volume: 62 start-page: 913 year: 2015 end-page: 944 ident: bib0002 article-title: High-order flux reconstruction schemes with minimal dispersion and dissipation publication-title: J Scientif Comput – volume: 24 start-page: 075102 year: 2012 ident: bib0026 article-title: Inner-layer intensities for the flat-plate turbulent boundary layer combining a predictive wall-model with large-eddy simulations publication-title: Phys Fluids – volume: 576 year: 2007 ident: bib0066 article-title: Scaling of the wall-normal turbulence component in high-Reynolds-number pipe flow publication-title: J Fluid Mech – volume: 27 start-page: 065110 year: 2015 ident: bib0001 article-title: Direct numerical simulation of a 30r long turbulent pipe flow at publication-title: Phys Fluids – volume: 348 start-page: 754 year: 2017 end-page: 775 ident: bib0017 article-title: An interior penalty stabilised incompressible discontinuous Galerkin–Fourier solver for implicit large eddy simulations publication-title: J Comput Phys – year: 2014 ident: bib0055 publication-title: Large-eddy simulations of fully developed turbulent channel and pipe flows with smooth and rough walls – volume: 44 start-page: 293 year: 2013 end-page: 300 ident: bib0028 article-title: LES of the adverse-pressure gradient turbulent boundary layer publication-title: Int J Heat Fluid Flow – year: 2012 ident: bib0025 article-title: Turbulent pipe flow at extreme Reynolds numbers publication-title: Phys Rev Lett – volume: 231 start-page: 3389 year: 2012 end-page: 3405 ident: bib0037 article-title: Adapting the spectral vanishing viscosity method for large-eddy simulations in cylindrical configurations publication-title: J Comput Phys – volume: 124 start-page: 886 year: 2002 end-page: 891 ident: bib0035 article-title: Coarse resolution turbulence simulations with spectral vanishing viscosity–large eddy simulations (SVV-LES) publication-title: J Fluids Eng – volume: 24 start-page: 045107 year: 2012 ident: bib0036 article-title: Emergence of the four layer dynamical regime in turbulent pipe flow publication-title: Phys Fluids – volume: 350 start-page: 782 year: 2017 end-page: 795 ident: bib0018 article-title: On the use of kinetic energy preserving DG-schemes for large eddy simulation publication-title: J Comput Phys – start-page: 425 year: 1999 end-page: 431 ident: bib0058 article-title: Dispersion analysis of the continuous and discontinuous Galerkin formulations publication-title: in International Symposium on Discontinuous Galerkin Methods – volume: 41 start-page: 181 year: 2009 end-page: 202 ident: bib0060 article-title: Detached-eddy simulation publication-title: Annu. Rev. Fluid Mech – volume: 9 start-page: 2443 year: 1997 end-page: 2454 ident: bib0045 article-title: A vortex-based subgrid stress model for large-eddy simulation publication-title: Phys Fluids – volume: 197 start-page: 759 year: 2004 end-page: 778 ident: bib0005 article-title: Formulation of a Galerkin spectral element-Fourier method for three-dimensional incompressible flows in cylindrical geometries publication-title: J Comput Phys – volume: 78 start-page: 707 year: 2014 end-page: 720 ident: bib0056 article-title: Large eddy simulation of smooth-rough-smooth transitions in turbulent channel flows publication-title: Int J Heat Mass Transf – year: 2018 ident: bib0042 article-title: On the role of numerical dissipation in stabilising under-resolved turbulent simulations using discontinuous Galerkin methods publication-title: arXiv:180510519 – volume: 195 start-page: 3128 year: 2006 end-page: 3144 ident: bib0034 article-title: Stabilisation of spectral h/p element methods through spectral vanishing viscosity: application to fluid mechanics modelling publication-title: Comput Methods Appl MechEng – volume: 589 start-page: 147 year: 2007 end-page: 156 ident: bib0046 article-title: Large-scale features in turbulent pipe and channel flows publication-title: J Fluid Mech – year: 2001 ident: bib0054 article-title: Large eddy simulation for incompressible flows: an introduction publication-title: Scientific computation – volume: 45 start-page: 33 year: 2014 end-page: 40 ident: bib0011 article-title: Reynolds number effects in DNS of pipe flow and comparison with channels and boundary layers publication-title: Int J Heat Fluid Flow – volume: 34 start-page: 349 year: 2002 end-page: 374 ident: bib0051 article-title: Wall-layer models for large-eddy simulations publication-title: Annu Rev Fluid Mech – volume: 122 start-page: 26 year: 2015 end-page: 33 ident: bib0012 article-title: Turbulent pipe flow at publication-title: Comput Fluids – year: 2007 ident: bib0020 article-title: Implicit large eddy simulation: computing turbulent fluid dynamics – year: 1999 ident: bib0029 publication-title: Large eddy simulation using unstructured spectral h/p elements – volume: 25 start-page: 2193 year: 1982 end-page: 2203 ident: bib0040 article-title: Strained spiral vortex model for turbulent fine structure publication-title: Phys Fluids – volume: 20 start-page: 1 year: 2006 end-page: 21 ident: bib0008 article-title: A non-linear SGS model based on the spatial velocity increment publication-title: Theoret Comput Fluid Dyn – volume: 30 start-page: 591 year: 2001 end-page: 605 ident: bib0022 article-title: Direct numerical simulation of turbulent flows in curved and helically coiled pipes publication-title: Comput Fluids – volume: 6 start-page: 3130 year: 1994 end-page: 3143 ident: bib0023 article-title: Subgrid scale energy transfer in the near wall region of turbulent flows publication-title: Phys Fluids – volume: 24 start-page: 075103 year: 2012 ident: bib0057 article-title: Large eddy simulation of smooth-wall, transitional and fully rough-wall channel flow publication-title: Phys Fluids – volume: 43 year: 2011 ident: bib0059 article-title: High-Reynolds number wall turbulence publication-title: Annu Rev Fluid Mech – volume: 51 start-page: 1261 year: 2011 end-page: 1281 ident: bib0048 article-title: Comparison of turbulent channel and pipe flows with varying Reynolds number publication-title: Exp Fluids – volume: 8 start-page: 1 year: 2007 end-page: 20 ident: bib0004 article-title: Stochastic modelling of inertial particle dispersion by subgrid motion for les of high Reynolds number pipe flow publication-title: J Turbulence – volume: 501 start-page: 135 year: 2004 end-page: 147 ident: bib0043 article-title: Further observations on the mean velocity distribution in fully developed pipe flow publication-title: J Fluid Mech – volume: 25 start-page: 045103 year: 2013 ident: bib0039 article-title: Comparison of very-large-scale motions of turbulent pipe and boundary layer simulations publication-title: Phys Fluids – volume: 30 start-page: 31 year: 1998 end-page: 51 ident: bib0052 article-title: Vortex dynamics in turbulence publication-title: Annu Rev Fluid Mech – volume: 97 start-page: 414 year: 1991 end-page: 443 ident: bib0032 article-title: High-order splitting methods for incompressible Navier–Stokes equations publication-title: J Comput Phys – volume: 163 start-page: 22 year: 2000 end-page: 50 ident: bib0030 article-title: A spectral vanishing viscosity method for large eddy simulations publication-title: J Comput Phys – volume: 22 start-page: 115107 year: 2010 ident: bib0013 article-title: The influence of pipe length on turbulence statistics computed from direct numerical simulation data publication-title: Phys Fluids – volume: 511 start-page: 41 year: 2004 end-page: 44 ident: bib0044 article-title: Friction factors for smooth pipe flow publication-title: J Fluid Mech – volume: 631 start-page: 281 year: 2009 end-page: 309 ident: bib0014 article-title: Large-eddy simulation and wall modelling of turbulent channel flow publication-title: J Fluid Mech – volume: 50 start-page: 535 year: 2018 end-page: 561 ident: bib0007 article-title: Wall-modeled large-eddy simulation for complex turbulent flows publication-title: Annu Rev Fluid Mech – volume: 50 start-page: 77 year: 2018 end-page: 103 ident: bib0016 article-title: Some recent developments in turbulence closure modeling publication-title: Annu Rev Fluid Mech – year: 2012 ident: 10.1016/j.compfluid.2019.104239_bib0025 article-title: Turbulent pipe flow at extreme Reynolds numbers publication-title: Phys Rev Lett doi: 10.1103/PhysRevLett.108.094501 – volume: 785 start-page: 78 year: 2015 ident: 10.1016/j.compfluid.2019.104239_bib0009 article-title: Large-eddy simulation of separation and reattachment of a flat plate turbulent boundary layer publication-title: J Fluid Mech doi: 10.1017/jfm.2015.604 – volume: 501 start-page: 135 year: 2004 ident: 10.1016/j.compfluid.2019.104239_bib0043 article-title: Further observations on the mean velocity distribution in fully developed pipe flow publication-title: J Fluid Mech doi: 10.1017/S0022112003007304 – volume: 26 start-page: 30 year: 1989 ident: 10.1016/j.compfluid.2019.104239_bib0061 article-title: Convergence of spectral methods for nonlinear conservation laws publication-title: SIAM J Numer Anal doi: 10.1137/0726003 – volume: 54 start-page: 21 issue: 1 year: 2013 ident: 10.1016/j.compfluid.2019.104239_bib0019 article-title: An analysis of the dissipation and dispersion errors of the Pn-Pm schemes publication-title: J Scientif Comput doi: 10.1007/s10915-012-9600-0 – volume: 44 start-page: 293 issue: Supplement C year: 2013 ident: 10.1016/j.compfluid.2019.104239_bib0028 article-title: LES of the adverse-pressure gradient turbulent boundary layer publication-title: Int J Heat Fluid Flow doi: 10.1016/j.ijheatfluidflow.2013.06.011 – volume: 163 start-page: 22 issue: 1 year: 2000 ident: 10.1016/j.compfluid.2019.104239_bib0030 article-title: A spectral vanishing viscosity method for large eddy simulations publication-title: J Comput Phys doi: 10.1006/jcph.2000.6552 – volume: 10 start-page: 199 issue: 4–6 year: 1992 ident: 10.1016/j.compfluid.2019.104239_bib0006 article-title: New insights into large eddy simulation publication-title: Fluid Dyn Res doi: 10.1016/0169-5983(92)90023-P – volume: 45 start-page: 33 year: 2014 ident: 10.1016/j.compfluid.2019.104239_bib0011 article-title: Reynolds number effects in DNS of pipe flow and comparison with channels and boundary layers publication-title: Int J Heat Fluid Flow doi: 10.1016/j.ijheatfluidflow.2013.11.007 – volume: 62 start-page: 913 issue: 3 year: 2015 ident: 10.1016/j.compfluid.2019.104239_bib0002 article-title: High-order flux reconstruction schemes with minimal dispersion and dissipation publication-title: J Scientif Comput doi: 10.1007/s10915-014-9882-5 – year: 2018 ident: 10.1016/j.compfluid.2019.104239_bib0042 article-title: On the role of numerical dissipation in stabilising under-resolved turbulent simulations using discontinuous Galerkin methods publication-title: arXiv:180510519 – year: 2001 ident: 10.1016/j.compfluid.2019.104239_bib0054 article-title: Large eddy simulation for incompressible flows: an introduction doi: 10.1088/0957-0233/12/10/707 – volume: 25 start-page: 045103 issue: 4 year: 2013 ident: 10.1016/j.compfluid.2019.104239_bib0039 article-title: Comparison of very-large-scale motions of turbulent pipe and boundary layer simulations publication-title: Phys Fluids doi: 10.1063/1.4802048 – volume: 350 start-page: 782 year: 2017 ident: 10.1016/j.compfluid.2019.104239_bib0018 article-title: On the use of kinetic energy preserving DG-schemes for large eddy simulation publication-title: J Comput Phys doi: 10.1016/j.jcp.2017.09.004 – volume: 820 start-page: 121 year: 2017 ident: 10.1016/j.compfluid.2019.104239_bib0010 article-title: Large-eddy simulation of flow over a cylinder with reD from 3.9 × 103 to 8.5 × 105 : a skin-friction perspective publication-title: J Fluid Mech doi: 10.1017/jfm.2017.172 – volume: 589 start-page: 147 year: 2007 ident: 10.1016/j.compfluid.2019.104239_bib0046 article-title: Large-scale features in turbulent pipe and channel flows publication-title: J Fluid Mech doi: 10.1017/S002211200700777X – volume: 50 start-page: 535 issue: 1 year: 2018 ident: 10.1016/j.compfluid.2019.104239_bib0007 article-title: Wall-modeled large-eddy simulation for complex turbulent flows publication-title: Annu Rev Fluid Mech doi: 10.1146/annurev-fluid-122316-045241 – volume: 576 year: 2007 ident: 10.1016/j.compfluid.2019.104239_sbref0066 article-title: Scaling of the wall-normal turbulence component in high-Reynolds-number pipe flow publication-title: J Fluid Mech doi: 10.1017/S0022112006004526 – volume: 196 start-page: 680 issue: 2 year: 2004 ident: 10.1016/j.compfluid.2019.104239_bib0064 article-title: Stabilized spectral element computations of high Reynolds number incompressible flows publication-title: J Comput Phys doi: 10.1016/j.jcp.2003.11.009 – volume: 373 start-page: 33 year: 1998 ident: 10.1016/j.compfluid.2019.104239_bib0065 article-title: Mean-flow scaling of turbulent pipe flow publication-title: J Fluid Mech doi: 10.1017/S0022112098002419 – volume: 25 start-page: 2193 issue: 12 year: 1982 ident: 10.1016/j.compfluid.2019.104239_bib0040 article-title: Strained spiral vortex model for turbulent fine structure publication-title: Phys Fluids doi: 10.1063/1.863957 – volume: 44 start-page: 437 issue: 6 year: 2008 ident: 10.1016/j.compfluid.2019.104239_sbref0050 article-title: Wall-layer models for large-eddy simulations publication-title: Prog Aerospace Sci doi: 10.1016/j.paerosci.2008.06.001 – volume: 11 start-page: 417 year: 1999 ident: 10.1016/j.compfluid.2019.104239_bib0033 article-title: Very large-scale motion in the outer layer publication-title: Phys Fluids doi: 10.1063/1.869889 – year: 2014 ident: 10.1016/j.compfluid.2019.104239_bib0055 – volume: 608 start-page: 81 year: 2008 ident: 10.1016/j.compfluid.2019.104239_bib0063 article-title: A direct numerical simulation study on the mean velocity characteristics in turbulent pipe flow publication-title: J Fluid Mech doi: 10.1017/S0022112008002085 – volume: 9 start-page: 3398 issue: 11 year: 1997 ident: 10.1016/j.compfluid.2019.104239_bib0015 article-title: Reynolds number effects in a turbulent pipe flow for low to moderate Re publication-title: Phys Fluids doi: 10.1063/1.869451 – year: 1999 ident: 10.1016/j.compfluid.2019.104239_bib0029 – volume: 43 year: 2011 ident: 10.1016/j.compfluid.2019.104239_sbref0059 article-title: High-Reynolds number wall turbulence publication-title: Annu Rev Fluid Mech doi: 10.1146/annurev-fluid-122109-160753 – volume: 78 start-page: 707 year: 2014 ident: 10.1016/j.compfluid.2019.104239_bib0056 article-title: Large eddy simulation of smooth-rough-smooth transitions in turbulent channel flows publication-title: Int J Heat Mass Transf doi: 10.1016/j.ijheatmasstransfer.2014.06.088 – volume: 24 start-page: 075103 issue: 7 year: 2012 ident: 10.1016/j.compfluid.2019.104239_bib0057 article-title: Large eddy simulation of smooth-wall, transitional and fully rough-wall channel flow publication-title: Phys Fluids doi: 10.1063/1.4731301 – volume: 27 start-page: 065110 issue: 6 year: 2015 ident: 10.1016/j.compfluid.2019.104239_bib0001 article-title: Direct numerical simulation of a 30r long turbulent pipe flow at Reτ=3008 publication-title: Phys Fluids doi: 10.1063/1.4922612 – volume: 554 start-page: 521 year: 2006 ident: 10.1016/j.compfluid.2019.104239_bib0021 article-title: Large-scale and very-large-scale motions in turbulent pipe flow publication-title: J Fluid Mech doi: 10.1017/S0022112006008871 – volume: 686 start-page: 507 year: 2011 ident: 10.1016/j.compfluid.2019.104239_bib0027 article-title: Large-eddy simulation of the zero-pressure-gradient turbulent boundary layer up to Re = O(1012) publication-title: J Fluid Mech doi: 10.1017/jfm.2011.342 – volume: 97 start-page: 414 year: 1991 ident: 10.1016/j.compfluid.2019.104239_bib0032 article-title: High-order splitting methods for incompressible Navier–Stokes equations publication-title: J Comput Phys doi: 10.1016/0021-9991(91)90007-8 – volume: 41 start-page: 181 issue: 1 year: 2009 ident: 10.1016/j.compfluid.2019.104239_bib0060 article-title: Detached-eddy simulation publication-title: Annu. Rev. Fluid Mech doi: 10.1146/annurev.fluid.010908.165130 – volume: 6 year: 2005 ident: 10.1016/j.compfluid.2019.104239_bib0049 article-title: Spectral vanishing viscosity method for LES: sensitivity to the SVV control parameters publication-title: J Turbulence doi: 10.1080/14685240500125476 – volume: 124 start-page: 886 issue: 4 year: 2002 ident: 10.1016/j.compfluid.2019.104239_bib0035 article-title: Coarse resolution turbulence simulations with spectral vanishing viscosity–large eddy simulations (SVV-LES) publication-title: J Fluids Eng doi: 10.1115/1.1511321 – volume: 30 start-page: 31 year: 1998 ident: 10.1016/j.compfluid.2019.104239_bib0052 article-title: Vortex dynamics in turbulence publication-title: Annu Rev Fluid Mech doi: 10.1146/annurev.fluid.30.1.31 – volume: 76 start-page: 522 issue: 8 year: 2014 ident: 10.1016/j.compfluid.2019.104239_bib0003 article-title: High-order discontinuous Galerkin spectral element methods for transitional and turbulent flow simulations publication-title: Int J Numer MethodsFluids doi: 10.1002/fld.3943 – volume: 6 start-page: 3130 issue: 9 year: 1994 ident: 10.1016/j.compfluid.2019.104239_bib0023 article-title: Subgrid scale energy transfer in the near wall region of turbulent flows publication-title: Phys Fluids doi: 10.1063/1.868137 – volume: 20 start-page: 1 issue: 1 year: 2006 ident: 10.1016/j.compfluid.2019.104239_bib0008 article-title: A non-linear SGS model based on the spatial velocity increment publication-title: Theoret Comput Fluid Dyn doi: 10.1007/s00162-005-0006-6 – volume: 8 start-page: 1 year: 2007 ident: 10.1016/j.compfluid.2019.104239_bib0004 article-title: Stochastic modelling of inertial particle dispersion by subgrid motion for les of high Reynolds number pipe flow publication-title: J Turbulence doi: 10.1080/14685240701615952 – volume: 34 start-page: 349 year: 2002 ident: 10.1016/j.compfluid.2019.104239_bib0051 article-title: Wall-layer models for large-eddy simulations publication-title: Annu Rev Fluid Mech doi: 10.1146/annurev.fluid.34.082901.144919 – volume: 348 start-page: 754 year: 2017 ident: 10.1016/j.compfluid.2019.104239_bib0017 article-title: An interior penalty stabilised incompressible discontinuous Galerkin–Fourier solver for implicit large eddy simulations publication-title: J Comput Phys doi: 10.1016/j.jcp.2017.07.049 – volume: 22 start-page: 115107 issue: 11 year: 2010 ident: 10.1016/j.compfluid.2019.104239_bib0013 article-title: The influence of pipe length on turbulence statistics computed from direct numerical simulation data publication-title: Phys Fluids doi: 10.1063/1.3489528 – volume: 511 start-page: 41 year: 2004 ident: 10.1016/j.compfluid.2019.104239_bib0044 article-title: Friction factors for smooth pipe flow publication-title: J Fluid Mech doi: 10.1017/S0022112004009796 – volume: 51 start-page: 1261 issue: 5 year: 2011 ident: 10.1016/j.compfluid.2019.104239_bib0048 article-title: Comparison of turbulent channel and pipe flows with varying Reynolds number publication-title: Exp Fluids doi: 10.1007/s00348-011-1143-x – volume: 7 start-page: 27 issue: 1 year: 1991 ident: 10.1016/j.compfluid.2019.104239_bib0062 article-title: On the rotation and skew-symmetric forms for incompressible flow simulations publication-title: Appl Numer Math doi: 10.1016/0168-9274(91)90102-6 – volume: 9 start-page: 2443 issue: 8 year: 1997 ident: 10.1016/j.compfluid.2019.104239_bib0045 article-title: A vortex-based subgrid stress model for large-eddy simulation publication-title: Phys Fluids doi: 10.1063/1.869361 – volume: 122 start-page: 26 year: 2015 ident: 10.1016/j.compfluid.2019.104239_bib0012 article-title: Turbulent pipe flow at Reτ=1000 : a comparison of wall-resolved large-eddy simulation, direct numerical simulation and hot-wire experiment publication-title: Comput Fluids doi: 10.1016/j.compfluid.2015.08.025 – volume: 298 start-page: 695 year: 2015 ident: 10.1016/j.compfluid.2019.104239_bib0047 article-title: Linear dispersion-diffusion analysis and its application to under-resolved turbulence simulations using discontinuous Galerkin spectral/hp methods publication-title: J Comput Phys doi: 10.1016/j.jcp.2015.06.020 – volume: 50 start-page: 77 issue: 1 year: 2018 ident: 10.1016/j.compfluid.2019.104239_bib0016 article-title: Some recent developments in turbulence closure modeling publication-title: Annu Rev Fluid Mech doi: 10.1146/annurev-fluid-122316-045020 – volume: 33 start-page: 455 issue: 1–4 year: 2000 ident: 10.1016/j.compfluid.2019.104239_bib0031 article-title: A high order splitting scheme for the Navier–Stokes equations with variable viscosity publication-title: Appl Numer Math doi: 10.1016/S0168-9274(99)00112-9 – volume: 195 start-page: 3128 issue: 23–24 year: 2006 ident: 10.1016/j.compfluid.2019.104239_bib0034 article-title: Stabilisation of spectral h/p element methods through spectral vanishing viscosity: application to fluid mechanics modelling publication-title: Comput Methods Appl MechEng doi: 10.1016/j.cma.2004.09.019 – volume: 30 start-page: 591 issue: 5 year: 2001 ident: 10.1016/j.compfluid.2019.104239_bib0022 article-title: Direct numerical simulation of turbulent flows in curved and helically coiled pipes publication-title: Comput Fluids doi: 10.1016/S0045-7930(01)00008-1 – volume: 24 start-page: 045107 issue: 4 year: 2012 ident: 10.1016/j.compfluid.2019.104239_bib0036 article-title: Emergence of the four layer dynamical regime in turbulent pipe flow publication-title: Phys Fluids doi: 10.1063/1.3702897 – year: 2007 ident: 10.1016/j.compfluid.2019.104239_bib0020 – year: 2008 ident: 10.1016/j.compfluid.2019.104239_bib0024 – volume: 231 start-page: 3389 issue: 8 year: 2012 ident: 10.1016/j.compfluid.2019.104239_bib0037 article-title: Adapting the spectral vanishing viscosity method for large-eddy simulations in cylindrical configurations publication-title: J Comput Phys doi: 10.1016/j.jcp.2012.01.014 – volume: 3 issue: 1 year: 2016 ident: 10.1016/j.compfluid.2019.104239_bib0038 article-title: Large eddy simulation with modeled wall-stress: recent progress and future directions publication-title: Mech Eng Rev doi: 10.1299/mer.15-00418 – volume: 30 start-page: 321 issue: 2 year: 1993 ident: 10.1016/j.compfluid.2019.104239_bib0041 article-title: Legendre pseudospectral viscosity method for nonlinear conservation laws publication-title: SIAM J Numer Anal doi: 10.1137/0730016 – start-page: 425 year: 1999 ident: 10.1016/j.compfluid.2019.104239_bib0058 article-title: Dispersion analysis of the continuous and discontinuous Galerkin formulations – volume: 631 start-page: 281 year: 2009 ident: 10.1016/j.compfluid.2019.104239_bib0014 article-title: Large-eddy simulation and wall modelling of turbulent channel flow publication-title: J Fluid Mech doi: 10.1017/S0022112009006867 – volume: 197 start-page: 759 issue: 2 year: 2004 ident: 10.1016/j.compfluid.2019.104239_bib0005 article-title: Formulation of a Galerkin spectral element-Fourier method for three-dimensional incompressible flows in cylindrical geometries publication-title: J Comput Phys doi: 10.1016/j.jcp.2004.02.013 – volume: 24 start-page: 075102 issue: 7 year: 2012 ident: 10.1016/j.compfluid.2019.104239_bib0026 article-title: Inner-layer intensities for the flat-plate turbulent boundary layer combining a predictive wall-model with large-eddy simulations publication-title: Phys Fluids doi: 10.1063/1.4731299 – volume: 174 start-page: 935 year: 1883 ident: 10.1016/j.compfluid.2019.104239_bib0053 article-title: An experimental investigation of the circumstances which determine whether the motion of water shall be direct or sinuous, and of the law of resistance in parallel channels publication-title: Philos Trans R Soc doi: 10.1098/rstl.1883.0029 |
SSID | ssj0004324 |
Score | 2.293354 |
Snippet | •Explicit and implicit large eddy simulations for turbulent pipe flows.•Both models implemented in a high order continuous-Galerkin spectral element... We present explicit and implicit large eddy simulations for fully developed turbulent pipe flows using a continuous-Galerkin spectral element solver. On the... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 104239 |
SubjectTerms | Boundary conditions Chung & Pullin model Computational fluid dynamics Computer simulation Dirichlet problem Galerkin method High Reynolds number Large eddy simulation Pipe flow Simulation Spectra Spectral vanishing viscosity (SVV) Stretched-vortex model Time dependence Turbulence Turbulent pipe flow Virtual-wall model Vortices Wall model |
Title | High-Reynolds-number wall-modelled large eddy simulations of turbulent pipe flows using explicit and implicit subgrid stress treatments within a spectral element solver |
URI | https://dx.doi.org/10.1016/j.compfluid.2019.104239 https://www.proquest.com/docview/2324872162 |
Volume | 191 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwEB212wscEJ-ipVRz4GqaxHY24VZVVAuIHhCVerPs2K6M0uxqs6vSC7-Hn4ln4ywUIfXA0ZEcWZ7xzEv85g3AG2eMKKuqYaU2nomp8KwSxjFPycXyxuSc6p0_n5ezC_HxUl7uwOlYC0O0yhT7h5i-idbpyXHazeNFCFTjK2T0riw6ZSYj7N6FvYLXpZzA3smHT7Pz3-WRvBjEmAWpM_LsDs2LmNu-XQdSDc1ruvIsqHH4v5PUX-F6k4POHsOjBB7xZFjfE9hx3VN4-Iek4DP4ScQN9sXddvPW9mxo-IE3um3ZpulN6yy2xP5GZ-0t9uE69e_qce4x5h-zpjyEi7Bw6Nv5TY9Ejb9C951uusMKdWcxXKdBvzZXy2BxKDnBLW29R_rBGzrUuKnlXMZlu4GpjtHb4_l5Dhdn77-ezljqxsCaiKGoZ31RyxjZi1LmmgstJNcuayI-mVpTZKaqhK24LbXXdYQV1mQ2z5uILkvqjyQ9fwGTbt65l4CNtfHDmwtbkFqe9drnuuZyanREYG7q9qEct181SaqcOma0auSkfVNbuymymxrstg_ZduJiUOu4f8q70b7qjuOpmFPun3w4eoRKZ79XhFEr0kQqDv7n3a_gAY2Im5LLQ5islmv3OgKglTmC3bc_8qPk5r8A0-ALhA |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NT9wwELUoPbQcKiitoKUwh14NSWwn2d4qVLR8HiqQuFl2bCOjkF1tdkW59Pf0Z9aTOFuoKnHoMYkcWZ7xzEv8Zh4hn63WPC_LiuZKO8oL7mjJtaUOk4thlU4Z1jufX-TjK35yLa5XyOFQC4O0yhj7-5jeRet45yCu5sHUe6zx5SJ4VxKcMhEBdr8gL7lgBfL69n_-4Xlgy7n-mBl7M7LkCckLeduuXnjsGZqO8MAzQ9nwf6eov4J1l4GO1smbCB3haz-7DbJim7dk7VFDwU3yC2kb9Lt9aCa1aWkv9wH3qq5pJ3lTWwM1cr_BGvMArb-L6l0tTByE7KMXmIVg6qcWXD25bwGJ8Tdgf-A5t5-Dagz4u3jRLvTNzBvoC05gSVpvAX_v-gYUdJWcszBt2_PUIfh62D3vyNXRt8vDMY1aDLQKCAoV67ORCHE9y0WqGFdhpZVNqoBOCqOzRJclNyUzuXJqFECF0YlJ0ypgyxzVkYRj78lqM2nsFoHKmPDZzbjJsFeeccqlasREoVXAX7aw2yQfll9WsVE56mXUcmCk3cql3STaTfZ22ybJcuC079Xx_JAvg33lE7eTIaM8P3hn8AgZd34rEaGW2BEp-_A_794jr8aX52fy7Pji9CN5jU-QpZKKHbI6ny3spwCF5nq3c_XfI2UMTw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High-Reynolds-number+wall-modelled+large+eddy+simulations+of+turbulent+pipe+flows+using+explicit+and+implicit+subgrid+stress+treatments+within+a+spectral+element+solver&rft.jtitle=Computers+%26+fluids&rft.au=Ferrer%2C+E.&rft.au=Saito%2C+N.&rft.au=Blackburn%2C+H.M.&rft.au=Pullin%2C+D.I.&rft.date=2019-09-15&rft.issn=0045-7930&rft.volume=191&rft.spage=104239&rft_id=info:doi/10.1016%2Fj.compfluid.2019.104239&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_compfluid_2019_104239 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0045-7930&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0045-7930&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0045-7930&client=summon |