A Simple Sensitivity Analysis Method for Unmeasured Confounders via Linear Programming With Estimating Equation Constraints

ABSTRACT In estimating the average treatment effect in observational studies, the influence of confounders should be appropriately addressed. To this end, the propensity score is widely used. If the propensity scores are known for all the subjects, bias due to confounders can be adjusted by using th...

Full description

Saved in:
Bibliographic Details
Published inStatistics in medicine Vol. 44; no. 3-4; pp. e10288 - n/a
Main Authors Tang, Chengyao, Zhou, Yi, Huang, Ao, Hattori, Satoshi
Format Journal Article
LanguageEnglish
Published Hoboken, USA John Wiley & Sons, Inc 10.02.2025
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract ABSTRACT In estimating the average treatment effect in observational studies, the influence of confounders should be appropriately addressed. To this end, the propensity score is widely used. If the propensity scores are known for all the subjects, bias due to confounders can be adjusted by using the inverse probability weighting (IPW) by the propensity score. Since the propensity score is unknown in general, it is usually estimated by the parametric logistic regression model with unknown parameters estimated by solving the score equation under the strongly ignorable treatment assignment (SITA) assumption. Violation of the SITA assumption and/or misspecification of the propensity score model can cause serious bias in estimating the average treatment effect (ATE). To relax the SITA assumption, the IPW estimator based on the outcome‐dependent propensity score has been successfully introduced. However, it still depends on the correctly specified parametric model and its identification. In this paper, we propose a simple sensitivity analysis method for unmeasured confounders. In the standard practice, the estimating equation is used to estimate the unknown parameters in the parametric propensity score model. Our idea is to make inferences on the (ATE) by removing restrictive parametric model assumptions while still utilizing the estimating equation. Using estimating equations as constraints, which the true propensity scores asymptotically satisfy, we construct the worst‐case bounds for the ATE with linear programming. Differently from the existing sensitivity analysis methods, we construct the worst‐case bounds with minimal assumptions. We illustrate our proposal by simulation studies and a real‐world example.
AbstractList In estimating the average treatment effect in observational studies, the influence of confounders should be appropriately addressed. To this end, the propensity score is widely used. If the propensity scores are known for all the subjects, bias due to confounders can be adjusted by using the inverse probability weighting (IPW) by the propensity score. Since the propensity score is unknown in general, it is usually estimated by the parametric logistic regression model with unknown parameters estimated by solving the score equation under the strongly ignorable treatment assignment (SITA) assumption. Violation of the SITA assumption and/or misspecification of the propensity score model can cause serious bias in estimating the average treatment effect (ATE). To relax the SITA assumption, the IPW estimator based on the outcome‐dependent propensity score has been successfully introduced. However, it still depends on the correctly specified parametric model and its identification. In this paper, we propose a simple sensitivity analysis method for unmeasured confounders. In the standard practice, the estimating equation is used to estimate the unknown parameters in the parametric propensity score model. Our idea is to make inferences on the (ATE) by removing restrictive parametric model assumptions while still utilizing the estimating equation. Using estimating equations as constraints, which the true propensity scores asymptotically satisfy, we construct the worst‐case bounds for the ATE with linear programming. Differently from the existing sensitivity analysis methods, we construct the worst‐case bounds with minimal assumptions. We illustrate our proposal by simulation studies and a real‐world example.
In estimating the average treatment effect in observational studies, the influence of confounders should be appropriately addressed. To this end, the propensity score is widely used. If the propensity scores are known for all the subjects, bias due to confounders can be adjusted by using the inverse probability weighting (IPW) by the propensity score. Since the propensity score is unknown in general, it is usually estimated by the parametric logistic regression model with unknown parameters estimated by solving the score equation under the strongly ignorable treatment assignment (SITA) assumption. Violation of the SITA assumption and/or misspecification of the propensity score model can cause serious bias in estimating the average treatment effect (ATE). To relax the SITA assumption, the IPW estimator based on the outcome-dependent propensity score has been successfully introduced. However, it still depends on the correctly specified parametric model and its identification. In this paper, we propose a simple sensitivity analysis method for unmeasured confounders. In the standard practice, the estimating equation is used to estimate the unknown parameters in the parametric propensity score model. Our idea is to make inferences on the (ATE) by removing restrictive parametric model assumptions while still utilizing the estimating equation. Using estimating equations as constraints, which the true propensity scores asymptotically satisfy, we construct the worst-case bounds for the ATE with linear programming. Differently from the existing sensitivity analysis methods, we construct the worst-case bounds with minimal assumptions. We illustrate our proposal by simulation studies and a real-world example.In estimating the average treatment effect in observational studies, the influence of confounders should be appropriately addressed. To this end, the propensity score is widely used. If the propensity scores are known for all the subjects, bias due to confounders can be adjusted by using the inverse probability weighting (IPW) by the propensity score. Since the propensity score is unknown in general, it is usually estimated by the parametric logistic regression model with unknown parameters estimated by solving the score equation under the strongly ignorable treatment assignment (SITA) assumption. Violation of the SITA assumption and/or misspecification of the propensity score model can cause serious bias in estimating the average treatment effect (ATE). To relax the SITA assumption, the IPW estimator based on the outcome-dependent propensity score has been successfully introduced. However, it still depends on the correctly specified parametric model and its identification. In this paper, we propose a simple sensitivity analysis method for unmeasured confounders. In the standard practice, the estimating equation is used to estimate the unknown parameters in the parametric propensity score model. Our idea is to make inferences on the (ATE) by removing restrictive parametric model assumptions while still utilizing the estimating equation. Using estimating equations as constraints, which the true propensity scores asymptotically satisfy, we construct the worst-case bounds for the ATE with linear programming. Differently from the existing sensitivity analysis methods, we construct the worst-case bounds with minimal assumptions. We illustrate our proposal by simulation studies and a real-world example.
ABSTRACT In estimating the average treatment effect in observational studies, the influence of confounders should be appropriately addressed. To this end, the propensity score is widely used. If the propensity scores are known for all the subjects, bias due to confounders can be adjusted by using the inverse probability weighting (IPW) by the propensity score. Since the propensity score is unknown in general, it is usually estimated by the parametric logistic regression model with unknown parameters estimated by solving the score equation under the strongly ignorable treatment assignment (SITA) assumption. Violation of the SITA assumption and/or misspecification of the propensity score model can cause serious bias in estimating the average treatment effect (ATE). To relax the SITA assumption, the IPW estimator based on the outcome‐dependent propensity score has been successfully introduced. However, it still depends on the correctly specified parametric model and its identification. In this paper, we propose a simple sensitivity analysis method for unmeasured confounders. In the standard practice, the estimating equation is used to estimate the unknown parameters in the parametric propensity score model. Our idea is to make inferences on the (ATE) by removing restrictive parametric model assumptions while still utilizing the estimating equation. Using estimating equations as constraints, which the true propensity scores asymptotically satisfy, we construct the worst‐case bounds for the ATE with linear programming. Differently from the existing sensitivity analysis methods, we construct the worst‐case bounds with minimal assumptions. We illustrate our proposal by simulation studies and a real‐world example.
Author Tang, Chengyao
Zhou, Yi
Hattori, Satoshi
Huang, Ao
Author_xml – sequence: 1
  givenname: Chengyao
  orcidid: 0000-0001-6508-3693
  surname: Tang
  fullname: Tang, Chengyao
  organization: Osaka University
– sequence: 2
  givenname: Yi
  orcidid: 0000-0001-9254-3245
  surname: Zhou
  fullname: Zhou, Yi
  organization: Peking University
– sequence: 3
  givenname: Ao
  surname: Huang
  fullname: Huang, Ao
  organization: University Medical Center Göttingen
– sequence: 4
  givenname: Satoshi
  orcidid: 0000-0001-5446-2305
  surname: Hattori
  fullname: Hattori, Satoshi
  email: hattoris@biostat.med.osaka-u.ac.jp
  organization: Osaka University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39854092$$D View this record in MEDLINE/PubMed
BookMark eNp10c9L5DAUB_CwKOuoe_AfkIAX91DNj7ZpjsMw6wojuzDKHkvavmikTcYkVYb9581sXQ-C5JAX-LzAe99DtGedBYROKLmghLDLYIZUsKr6gmaUSJERVlR7aEaYEFkpaHGADkN4JITSgomv6IDLqsiJZDP0d47XZtj0gNdgg4nm2cQtnlvVb4MJ-Abig-uwdh7f2QFUGD10eOGsdqPtwAf8bBReGQvK49_e3Xs1DMbe4z8mPuBliGZQcfdePo2pcHbXG6JXxsZwjPa16gN8e7uP0N2P5e3iZ7b6dXW9mK-ylktWZRQqUeakFWUhtC4aIhgXjcx5I0VHS6YqyDXPQTS5roCpss0V1ZKSplFdOvwInU__brx7GiHEejChhb5XFtwYak4LWUrOWZno2Qf66EaftjEpyWXBRVKnb2psBujqjU9j-m39f60JfJ9A610IHvQ7oaTeRVanyOp_kSV7OdkX08P2c1ivr2-mjlfweph3
Cites_doi 10.1037/h0037350
10.1002/sim.1903
10.1111/j.0006-341X.2001.00103.x
10.1002/gps.2234
10.1097/EDE.0000000000000078
10.1111/rssb.12327
10.1080/01621459.2015.1105808
10.1093/biomet/70.1.41
10.1080/01621459.1994.10476818
10.1093/biomet/asq035
10.1002/sim.6607
10.1198/016214506000000023
10.1097/01.ede.0000135174.63482.43
10.1002/bimj.201100042
10.1111/j.0006-341X.2001.00007.x
10.2307/2533848
10.1023/A:1020371312283
10.1080/01621459.2022.2069572
10.1214/aos/1176344064
10.1080/01621459.1982.10477793
10.1136/bmj.k1675
10.1023/A:1005285815569
10.1007/978-1-4612-1284-3_1
10.1002/sim.1657
10.1016/j.jamda.2020.08.031
10.1097/EDE.0000000000000457
10.1080/01621459.1999.10473862
10.1111/j.2517-6161.1983.tb01242.x
10.7326/M16-2607
10.1093/aje/kwr096
10.1214/21-AOS2070
10.1186/s13195-020-00597-3
10.1214/07-STS227D
ContentType Journal Article
Copyright 2025 The Author(s). Statistics in Medicine published by John Wiley & Sons Ltd.
2025 John Wiley & Sons Ltd.
2025 John Wiley & Sons, Ltd.
Copyright_xml – notice: 2025 The Author(s). Statistics in Medicine published by John Wiley & Sons Ltd.
– notice: 2025 John Wiley & Sons Ltd.
– notice: 2025 John Wiley & Sons, Ltd.
DBID 24P
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
K9.
7X8
DOI 10.1002/sim.10288
DatabaseName Wiley Online Library Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitleList CrossRef
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic

MEDLINE
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Statistics
Public Health
EISSN 1097-0258
EndPage n/a
ExternalDocumentID 39854092
10_1002_sim_10288
SIM10288
Genre researchArticle
Journal Article
GroupedDBID ---
.3N
.GA
05W
0R~
10A
123
1L6
1OB
1OC
1ZS
24P
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5RE
5VS
66C
6PF
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAWTL
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABOCM
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUYR
AFBPY
AFFPM
AFGKR
AFWVQ
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
ROL
RX1
RYL
SUPJJ
TN5
UB1
V2E
W8V
W99
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WXSBR
WYISQ
XBAML
XG1
XV2
ZZTAW
~IA
~WT
AAYXX
AEYWJ
AGHNM
AGYGG
CITATION
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
CGR
CUY
CVF
ECM
EIF
NPM
K9.
7X8
ID FETCH-LOGICAL-c3928-1e87640c7657ff5b07237b943b97d162a8e4f34e7b4f8e2a6c4a1f910bbadada3
IEDL.DBID DR2
ISSN 0277-6715
1097-0258
IngestDate Thu Jul 10 23:54:34 EDT 2025
Fri Jul 25 22:25:58 EDT 2025
Mon Jul 21 06:05:26 EDT 2025
Tue Jul 01 05:10:49 EDT 2025
Wed Mar 19 09:30:23 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3-4
Keywords linear programming
average treatment effect
sensitivity analysis
unmeasured confounders
Language English
License Attribution
2025 John Wiley & Sons Ltd.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3928-1e87640c7657ff5b07237b943b97d162a8e4f34e7b4f8e2a6c4a1f910bbadada3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-5446-2305
0000-0001-9254-3245
0000-0001-6508-3693
OpenAccessLink https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsim.10288
PMID 39854092
PQID 3159939537
PQPubID 48361
PageCount 15
ParticipantIDs proquest_miscellaneous_3159693326
proquest_journals_3159939537
pubmed_primary_39854092
crossref_primary_10_1002_sim_10288
wiley_primary_10_1002_sim_10288_SIM10288
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-02-10
PublicationDateYYYYMMDD 2025-02-10
PublicationDate_xml – month: 02
  year: 2025
  text: 2025-02-10
  day: 10
PublicationDecade 2020
PublicationPlace Hoboken, USA
PublicationPlace_xml – name: Hoboken, USA
– name: England
– name: New York
PublicationTitle Statistics in medicine
PublicationTitleAlternate Stat Med
PublicationYear 2025
Publisher John Wiley & Sons, Inc
Wiley Subscription Services, Inc
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley Subscription Services, Inc
References 2015; 34
2018; 361
2021; 49
2010; 97
2009; 24
2004; 23
1982; 77
2011; 53
1994; 89
1999; 121
2014; 25
2020; 12
1983; 70
2011; 174
1959; 22
1978; 6
2019; 81
1974; 66
2000
2004; 15
2016; 111
2001; 2
1999; 94
2023; 118
2020; 21
2017; 167
1998; 54
2016; 27
2001; 57
2007; 22
2006; 101
1983; 45
e_1_2_11_10_1
e_1_2_11_32_1
e_1_2_11_31_1
e_1_2_11_30_1
e_1_2_11_36_1
e_1_2_11_14_1
e_1_2_11_35_1
e_1_2_11_12_1
e_1_2_11_34_1
e_1_2_11_11_1
e_1_2_11_33_1
e_1_2_11_7_1
e_1_2_11_29_1
e_1_2_11_6_1
e_1_2_11_28_1
e_1_2_11_5_1
e_1_2_11_27_1
e_1_2_11_4_1
e_1_2_11_26_1
e_1_2_11_3_1
e_1_2_11_2_1
Cornfield J. (e_1_2_11_13_1) 1959; 22
e_1_2_11_21_1
e_1_2_11_20_1
e_1_2_11_25_1
e_1_2_11_24_1
e_1_2_11_9_1
e_1_2_11_23_1
e_1_2_11_8_1
e_1_2_11_22_1
e_1_2_11_18_1
e_1_2_11_17_1
e_1_2_11_16_1
e_1_2_11_15_1
e_1_2_11_19_1
References_xml – volume: 81
  start-page: 735
  issue: 4
  year: 2019
  end-page: 761
  article-title: Sensitivity Analysis for Inverse Probability Weighting Estimators via the Percentile Bootstrap
  publication-title: Journal of the Royal Statistical Society, Series B: Statistical Methodology
– volume: 174
  start-page: 345
  issue: 3
  year: 2011
  end-page: 353
  article-title: Propensity Score‐Based Sensitivity Analysis Method for Uncontrolled Confounding
  publication-title: American Journal of Epidemiology
– start-page: 1
  year: 2000
  end-page: 94
– volume: 111
  start-page: 1673
  issue: 516
  year: 2016
  end-page: 1683
  article-title: Identifiability of Normal and Normal Mixture Models With Nonignorable Missing Data
  publication-title: Journal of the American Statistical Association
– volume: 101
  start-page: 1619
  issue: 476
  year: 2006
  end-page: 1637
  article-title: A Distributional Approach for Causal Inference Using Propensity Scores
  publication-title: Journal of the American Statistical Association
– volume: 23
  start-page: 749
  issue: 5
  year: 2004
  end-page: 767
  article-title: Sensitivity Analyses for Unmeasured Confounding Assuming a Marginal Structural Model for Repeated Measures
  publication-title: Statistics in Medicine
– volume: 23
  start-page: 2937
  issue: 19
  year: 2004
  end-page: 2960
  article-title: Stratification and Weighting via the Propensity Score in Estimation of Causal Treatment Effects: A Comparative Study
  publication-title: Statistics in Medicine
– volume: 27
  start-page: 368
  issue: 3
  year: 2016
  end-page: 377
  article-title: Sensitivity Analysis Without Assumptions
  publication-title: Epidemiology
– volume: 57
  start-page: 7
  issue: 1
  year: 2001
  end-page: 14
  article-title: Sensitivity Analysis for Nonrandom Dropout: A Local Influence Approach
  publication-title: Biometrics
– volume: 22
  start-page: 173
  issue: 1
  year: 1959
  end-page: 203
  article-title: Smoking and Lung Cancer: Recent Evidence and a Discussion of Some Questions
  publication-title: Journal of the National Cancer Institute
– volume: 167
  start-page: 268
  issue: 4
  year: 2017
  end-page: 274
  article-title: Sensitivity Analysis in Observational Research: Introducing the E‐Value
  publication-title: Annals of Internal Medicine
– volume: 94
  start-page: 1096
  issue: 448
  year: 1999
  end-page: 1120
  article-title: Adjusting for Nonignorable Drop‐Out Using Semiparametric Nonresponse Models
  publication-title: Journal of the American Statistical Association
– volume: 54
  start-page: 948
  issue: 3
  year: 1998
  end-page: 963
  article-title: Assessing the Sensitivity of Regression Results to Unmeasured Confounders in Observational Studies
  publication-title: Biometrics
– volume: 53
  start-page: 822
  issue: 5
  year: 2011
  end-page: 837
  article-title: Sensitivity Analysis for Causal Inference Using Inverse Probability Weighting
  publication-title: Biometrical Journal
– volume: 22
  start-page: 544
  issue: 4
  year: 2007
  end-page: 559
  article-title: Comment: Performance of Double‐Robust Estimators When" inverse probability "Weights Are Highly Variable
  publication-title: Statistical Science
– volume: 49
  start-page: 2991
  issue: 5
  year: 2021
  end-page: 3014
  article-title: Semiparametric Optimal Estimation With Nonignorable Nonresponse Data
  publication-title: Annals of Statistics
– volume: 15
  start-page: 615
  issue: 5
  year: 2004
  end-page: 625
  article-title: A Structural Approach to Selection Bias
  publication-title: Epidemiology
– volume: 77
  start-page: 251
  issue: 378
  year: 1982
  end-page: 261
  article-title: Imputation of Missing Values When the Probability of Response Depends on the Variable Being Imputed
  publication-title: Journal of the American Statistical Association
– volume: 6
  start-page: 34
  issue: 1
  year: 1978
  end-page: 58
  article-title: Bayesian Inference for Causal Effects: The Role of Randomization
  publication-title: Annals of Statistics
– volume: 25
  start-page: 418
  issue: 3
  year: 2014
  article-title: Causal Models and Learning From Data: Integrating Causal Modeling and Statistical Estimation
  publication-title: Epidemiology
– volume: 118
  start-page: 2645
  issue: 544
  year: 2023
  end-page: 2657
  article-title: Sharp Sensitivity Analysis for Inverse Propensity Weighting via Quantile Balancing
  publication-title: Journal of the American Statistical Association
– volume: 57
  start-page: 103
  issue: 1
  year: 2001
  end-page: 113
  article-title: Methods for Conducting Sensitivity Analysis of Trials With Potentially Nonignorable Competing Causes of Censoring
  publication-title: Biometrics
– volume: 97
  start-page: 661
  issue: 3
  year: 2010
  end-page: 682
  article-title: Bounded, Efficient and Doubly Robust Estimation With Inverse Weighting
  publication-title: Biometrika
– volume: 34
  start-page: 3661
  issue: 28
  year: 2015
  end-page: 3679
  article-title: Moving Towards Best Practice When Using Inverse Probability of Treatment Weighting (IPTW) Using the Propensity Score to Estimate Causal Treatment Effects in Observational Studies
  publication-title: Statistics in Medicine
– volume: 12
  start-page: 28
  issue: 1
  year: 2020
  article-title: Effects of Low‐and High‐Intensity Physical Exercise on Physical and Cognitive Function in Older Persons With Dementia: A Randomized Controlled Trial
  publication-title: Alzheimer's Research & Therapy
– volume: 66
  start-page: 688
  issue: 5
  year: 1974
  end-page: 701
  article-title: Estimating Causal Effects of Treatments in Randomized and Nonrandomized Studies
  publication-title: Journal of Educational Psychology
– volume: 21
  start-page: 1415
  issue: 10
  year: 2020
  end-page: 1422
  article-title: Physical Activity and Exercise in Mild Cognitive Impairment and Dementia: An Umbrella Review of Intervention and Observational Studies
  publication-title: Journal of the American Medical Directors Association
– volume: 89
  start-page: 846
  issue: 427
  year: 1994
  end-page: 866
  article-title: Estimation of Regression Coefficients When Some Regressors Are Not Always Observed
  publication-title: Journal of the American Statistical Association
– volume: 361
  year: 2018
  article-title: Dementia and Physical Activity (DAPA) Trial of Moderate to High Intensity Exercise Training for People With Dementia: Randomised Controlled Trial
  publication-title: BMJ
– volume: 121
  start-page: 151
  issue: 1/2
  year: 1999
  end-page: 179
  article-title: Association, Causation, and Marginal Structural Models
  publication-title: Synthese
– volume: 70
  start-page: 41
  issue: 1
  year: 1983
  end-page: 55
  article-title: The Central Role of the Propensity Score in Observational Studies for Causal Effects
  publication-title: Biometrika
– volume: 24
  start-page: 1119
  issue: 10
  year: 2009
  end-page: 1126
  article-title: Prevalence of Four Subtypes of Mild Cognitive Impairment and APOE in a Japanese Community
  publication-title: International Journal of Geriatric Psychiatry
– volume: 2
  start-page: 259
  year: 2001
  end-page: 278
  article-title: Estimation of Causal Effects Using Propensity Score Weighting: An Application to Data on Right Heart Catheterization
  publication-title: Health Services and Outcomes Research Methodology
– volume: 45
  start-page: 212
  issue: 2
  year: 1983
  end-page: 218
  article-title: Assessing Sensitivity to an Unobserved Binary Covariate in an Observational Study With Binary Outcome
  publication-title: Journal of the Royal Statistical Society, Series B (Statistical Methodology)
– ident: e_1_2_11_22_1
  doi: 10.1037/h0037350
– ident: e_1_2_11_6_1
  doi: 10.1002/sim.1903
– ident: e_1_2_11_25_1
  doi: 10.1111/j.0006-341X.2001.00103.x
– ident: e_1_2_11_33_1
  doi: 10.1002/gps.2234
– ident: e_1_2_11_8_1
  doi: 10.1097/EDE.0000000000000078
– ident: e_1_2_11_19_1
  doi: 10.1111/rssb.12327
– ident: e_1_2_11_10_1
  doi: 10.1080/01621459.2015.1105808
– ident: e_1_2_11_3_1
  doi: 10.1093/biomet/70.1.41
– ident: e_1_2_11_23_1
  doi: 10.1080/01621459.1994.10476818
– ident: e_1_2_11_30_1
  doi: 10.1093/biomet/asq035
– ident: e_1_2_11_5_1
  doi: 10.1002/sim.6607
– ident: e_1_2_11_20_1
  doi: 10.1198/016214506000000023
– ident: e_1_2_11_7_1
  doi: 10.1097/01.ede.0000135174.63482.43
– ident: e_1_2_11_17_1
  doi: 10.1002/bimj.201100042
– ident: e_1_2_11_26_1
  doi: 10.1111/j.0006-341X.2001.00007.x
– ident: e_1_2_11_12_1
  doi: 10.2307/2533848
– ident: e_1_2_11_4_1
  doi: 10.1023/A:1020371312283
– ident: e_1_2_11_21_1
  doi: 10.1080/01621459.2022.2069572
– ident: e_1_2_11_2_1
  doi: 10.1214/aos/1176344064
– ident: e_1_2_11_24_1
  doi: 10.1080/01621459.1982.10477793
– ident: e_1_2_11_35_1
  doi: 10.1136/bmj.k1675
– volume: 22
  start-page: 173
  issue: 1
  year: 1959
  ident: e_1_2_11_13_1
  article-title: Smoking and Lung Cancer: Recent Evidence and a Discussion of Some Questions
  publication-title: Journal of the National Cancer Institute
– ident: e_1_2_11_27_1
  doi: 10.1023/A:1005285815569
– ident: e_1_2_11_28_1
  doi: 10.1007/978-1-4612-1284-3_1
– ident: e_1_2_11_18_1
– ident: e_1_2_11_29_1
  doi: 10.1002/sim.1657
– ident: e_1_2_11_36_1
  doi: 10.1016/j.jamda.2020.08.031
– ident: e_1_2_11_14_1
  doi: 10.1097/EDE.0000000000000457
– ident: e_1_2_11_9_1
  doi: 10.1080/01621459.1999.10473862
– ident: e_1_2_11_11_1
  doi: 10.1111/j.2517-6161.1983.tb01242.x
– ident: e_1_2_11_15_1
  doi: 10.7326/M16-2607
– ident: e_1_2_11_16_1
  doi: 10.1093/aje/kwr096
– ident: e_1_2_11_32_1
  doi: 10.1214/21-AOS2070
– ident: e_1_2_11_34_1
  doi: 10.1186/s13195-020-00597-3
– ident: e_1_2_11_31_1
  doi: 10.1214/07-STS227D
SSID ssj0011527
Score 2.4572923
Snippet ABSTRACT In estimating the average treatment effect in observational studies, the influence of confounders should be appropriately addressed. To this end, the...
In estimating the average treatment effect in observational studies, the influence of confounders should be appropriately addressed. To this end, the...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Publisher
StartPage e10288
SubjectTerms average treatment effect
Bias
Computer Simulation
Confounding Factors, Epidemiologic
Data Interpretation, Statistical
Humans
Linear Models
Linear programming
Logistic Models
Models, Statistical
Observational Studies as Topic - methods
Observational Studies as Topic - statistics & numerical data
Propensity Score
Sensitivity analysis
unmeasured confounders
Title A Simple Sensitivity Analysis Method for Unmeasured Confounders via Linear Programming With Estimating Equation Constraints
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsim.10288
https://www.ncbi.nlm.nih.gov/pubmed/39854092
https://www.proquest.com/docview/3159939537
https://www.proquest.com/docview/3159693326
Volume 44
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fa9UwFD7MPchA_HH9VZ0jig--dGuTtGnwaYw7pnBleL24B6EkbcIucju1vT5s_7znNLcdUwSRvrQkJW2Sk3zJOfk-gNdGWlxJSx0756tYGp3GRS2ruHYqsV7nVW3Iozv7kJ8s5Puz7GwL3g5nYQI_xLjhRpbRj9dk4Ma2B9ekoe1yRbwDBR30pVgtAkQfR-qodJBrJRdlrtJsYBVK-MH45s256A-AeROv9hPO8T34MnxqiDP5ur_u7H51-RuL43_-y324uwGi7DD0nAew5ZoJ3J5tXO0TuBM29Fg4pzSBHYKlgdX5IVwdsvmSeIXZnALggwIFGwhO2KyXpWaIh9miWYVdyJrR4UIScULAyX4uDcNlMJoZOw0RYiucQ9nnZXfOplgI4Wh8nn4PTOT0bturWXTtI1gcTz8dncQbGYe4QvCFa1SHI65MKpVnyvvMJooLZbUUVqs6zbkpnPRCOmWlLxw3eSVN6hHGWGtqvMRj2G4uGvcUmPHeYGqWFj6RlfUInnCg51qmCCvT3EXwamjQ8ltg6ygDLzMvsY7Lvo4j2B2autwYbFsKhHVa6EyoCF6OyWhq5D8xjbtYhzy5Fgh4I3gSushYitAFYl_NI3jTN_Tfiy_n72b9zbN_z_ocdjjpDpMQTbIL292PtXuBYKize3CLy9O9vu__AgyfB5c
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Ra9QwGP-YE-ZAdDuddk7NxAdfurVN2jTgy5Abt7mO4e1wL1KSNmGHXKdez4ftn9-X5FqZIoj0pSUpaZN8ye_7kvx-AG8lU-hJMxFqbaqQSRGHec2qsNY8UkZkVS3tim5xmo0m7PgivViB991ZGM8P0QfcrGW48doauA1I7_9iDZ1PZ5Z4IM_vwX2r6O0cqk89eVTcCbbaRcqMx2nHKxQl-_2rd2ejPyDmXcTqppzDx_Cl-1i_0-Tr3qJVe9X1bzyO__s3G_BoiUXJge88m7CimwGsFcvV9gE89DE94o8qDWDdIlNP7PwEbg7IeGqphcnY7oH3IhSk4zghhVOmJgiJyaSZ-UBkTez5QqvjhJiT_JxKgp4wWho585vEZjiNks_T9pIMsRALpfF5-N2Tkdt3507Qop0_hcnh8PzDKFwqOYQV4i90UzUOuiyqeJZyY1IV8YRyJRhVgtdxlshcM0OZ5oqZXCcyq5iMDSIZpWSNF92C1eaq0c-BSGMkpqZxbiJWKYP4Ccf6RLAYkWWc6QDedC1afvOEHaWnZk5KrOPS1XEAO11bl0ubnZcUkZ2gIqU8gN0-Ga3NLqHIRl8tfJ5MUMS8ATzzfaQvhYoc4a9IAnjnWvrvxZfjo8LdbP971tfwYHRenJQnR6cfX8B6YmWIrS5NtAOr7Y-FfonYqFWvnAncAj05Cts
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fa9QwHP8yJ4zBmO7UrXO6KD740q1t0qTBp-Hu2KY3hufhHoSStAk7xnU_rrcH_ef9prlWpggy-tKShKRJvskn-SafD8A7xTSupJkMjbFFyJSMw6xkRVgaEWkreVEq59EdnvKjMTs5T8-X4EN7F8bzQ3Qbbs4ymvHaGfh1afd_k4bOJlPHO5Blj-Ax41HmuvThl447Km71Wp2Pkos4bWmFomS_S3p_MvoLYd4HrM2MM3gC39uy-oMml3vzWu8VP_6gcXzgzzyF9QUSJQe-62zAkql6sDJc-Np7sOZ39Ii_qNSDVYdLPa3zM_h5QEYTRyxMRu4EvJegIC3DCRk2utQEATEZV1O_DVkSd7vQqTgh4iR3E0VwHYx2Rs78EbEpTqLk26S-IH3MxAFp_O7feCpyl3bWyFnUs-cwHvS_fjwKFzoOYYHoCxepBodcFhWCp8LaVEcioUJLRrUUZcwTlRlmKTNCM5uZRPGCqdgijtFalfjQF7BcXVVmC4iyVmFoGmc2YoW2iJ5wpE8kixFXxtwE8LZt0Pza03Xknpg5ybGO86aOA9hpmzpfWOwsp4jrJJUpFQG86YLR1pwDRVXmau7jcEkR8Qaw6btIlwuVGYJfmQTwvmnof2efj46Hzcv2_0fdhZWzw0H--fj000tYTZwGsROliXZgub6dm1cIjGr9ujGAXzcsCZM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Simple+Sensitivity+Analysis+Method+for+Unmeasured+Confounders+via+Linear+Programming+With+Estimating+Equation+Constraints&rft.jtitle=Statistics+in+medicine&rft.au=Tang%2C+Chengyao&rft.au=Zhou%2C+Yi&rft.au=Huang%2C+Ao&rft.au=Hattori%2C+Satoshi&rft.date=2025-02-10&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=0277-6715&rft.eissn=1097-0258&rft.volume=44&rft.issue=3-4&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fsim.10288&rft.externalDBID=10.1002%252Fsim.10288&rft.externalDocID=SIM10288
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0277-6715&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0277-6715&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0277-6715&client=summon