Zn Electrochemistry in 1‐Ethyl‐3‐Methylimidazolium and N‐Butyl‐N‐Methylpyrrolidinium Dicyanamides: Promising New Rechargeable Zn Battery Electrolytes
We have studied both 1‐ethyl‐3‐methylimidazolium (C2mim) and N‐butyl‐N‐methylpyrrolidinium (C4mpyr) dicyanamide (dca) ionic liquids (ILs) containing 3 wt % H2O and 9 mol % Zn(dca)2 salt for their ability to support Zn0/2+ electrochemistry in the context of a rechargeable Zn battery. Despite the simi...
Saved in:
Published in | ChemElectroChem Vol. 1; no. 10; pp. 1688 - 1697 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
WILEY‐VCH Verlag
14.10.2014
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | We have studied both 1‐ethyl‐3‐methylimidazolium (C2mim) and N‐butyl‐N‐methylpyrrolidinium (C4mpyr) dicyanamide (dca) ionic liquids (ILs) containing 3 wt % H2O and 9 mol % Zn(dca)2 salt for their ability to support Zn0/2+ electrochemistry in the context of a rechargeable Zn battery. Despite the similarities of the two IL electrolyte systems [identical H2O and Zn(dca)2 contents], the system based on [C2mim] supported much higher current densities for Zn electrochemistry at greatly reduced overpotentials [−0.23 V vs. Zn pseudo‐reference, 32 mA cm−2 (red) and 61 mA cm−2 (ox)] compared to the [C4mpyr]‐based electrolyte [−0.84 V vs. Zn pseudo‐reference, 8 mA cm−2 (red) and 15 mA cm−2 (ox)]. The overpotential for Zn deposition is reduced by 0.13 V on Zn metal surfaces compared to glassy carbon (GC), regardless of the electrolyte used. The morphologies of the Zn deposits on both GC and Zn surfaces were also studied. The Zn surfaces promote a deposition that displays a smooth morphology, resulting from an instantaneous nucleation mechanism demonstrated by chronoamperometric experiments. Finally, both [C2mim] and [C4mpyr] electrolytes were tested in symmetrical Zn|Zn cells, where it was determined that the [C2mim] system could sustain over 90 cycles at 0.1 mA cm−2, whereas the [C4mpyr] based system could only achieve 15 cycles at the more modest current density of 0.05 mA cm−2.
Rechargable promises: Two ionic liquids based on the dicyanamide anion are studied for their ability to cycle zinc while providing smooth morphologies of deposited zinc. The imidazolium‐based ionic liquid is found to perform better than its pyrrolidinium analogue and shows promise for zinc‐based secondary battery applications. |
---|---|
AbstractList | We have studied both 1‐ethyl‐3‐methylimidazolium (C2mim) and N‐butyl‐N‐methylpyrrolidinium (C4mpyr) dicyanamide (dca) ionic liquids (ILs) containing 3 wt % H2O and 9 mol % Zn(dca)2 salt for their ability to support Zn0/2+ electrochemistry in the context of a rechargeable Zn battery. Despite the similarities of the two IL electrolyte systems [identical H2O and Zn(dca)2 contents], the system based on [C2mim] supported much higher current densities for Zn electrochemistry at greatly reduced overpotentials [−0.23 V vs. Zn pseudo‐reference, 32 mA cm−2 (red) and 61 mA cm−2 (ox)] compared to the [C4mpyr]‐based electrolyte [−0.84 V vs. Zn pseudo‐reference, 8 mA cm−2 (red) and 15 mA cm−2 (ox)]. The overpotential for Zn deposition is reduced by 0.13 V on Zn metal surfaces compared to glassy carbon (GC), regardless of the electrolyte used. The morphologies of the Zn deposits on both GC and Zn surfaces were also studied. The Zn surfaces promote a deposition that displays a smooth morphology, resulting from an instantaneous nucleation mechanism demonstrated by chronoamperometric experiments. Finally, both [C2mim] and [C4mpyr] electrolytes were tested in symmetrical Zn|Zn cells, where it was determined that the [C2mim] system could sustain over 90 cycles at 0.1 mA cm−2, whereas the [C4mpyr] based system could only achieve 15 cycles at the more modest current density of 0.05 mA cm−2.
Rechargable promises: Two ionic liquids based on the dicyanamide anion are studied for their ability to cycle zinc while providing smooth morphologies of deposited zinc. The imidazolium‐based ionic liquid is found to perform better than its pyrrolidinium analogue and shows promise for zinc‐based secondary battery applications. Abstract We have studied both 1‐ethyl‐3‐methylimidazolium (C 2 mim) and N ‐butyl‐ N ‐methylpyrrolidinium (C 4 mpyr) dicyanamide (dca) ionic liquids (ILs) containing 3 wt % H 2 O and 9 mol % Zn(dca) 2 salt for their ability to support Zn 0/2+ electrochemistry in the context of a rechargeable Zn battery. Despite the similarities of the two IL electrolyte systems [identical H 2 O and Zn(dca) 2 contents], the system based on [C 2 mim] supported much higher current densities for Zn electrochemistry at greatly reduced overpotentials [−0.23 V vs. Zn pseudo‐reference, 32 mA cm −2 (red) and 61 mA cm −2 (ox)] compared to the [C 4 mpyr]‐based electrolyte [−0.84 V vs. Zn pseudo‐reference, 8 mA cm −2 (red) and 15 mA cm −2 (ox)]. The overpotential for Zn deposition is reduced by 0.13 V on Zn metal surfaces compared to glassy carbon (GC), regardless of the electrolyte used. The morphologies of the Zn deposits on both GC and Zn surfaces were also studied. The Zn surfaces promote a deposition that displays a smooth morphology, resulting from an instantaneous nucleation mechanism demonstrated by chronoamperometric experiments. Finally, both [C 2 mim] and [C 4 mpyr] electrolytes were tested in symmetrical Zn|Zn cells, where it was determined that the [C 2 mim] system could sustain over 90 cycles at 0.1 mA cm −2 , whereas the [C 4 mpyr] based system could only achieve 15 cycles at the more modest current density of 0.05 mA cm −2 . |
Author | Simons, Tristan J. MacFarlane, Douglas R. Howlett, Patrick C. Forsyth, Maria |
Author_xml | – sequence: 1 givenname: Tristan J. surname: Simons fullname: Simons, Tristan J. – sequence: 2 givenname: Douglas R. surname: MacFarlane fullname: MacFarlane, Douglas R. – sequence: 3 givenname: Maria surname: Forsyth fullname: Forsyth, Maria – sequence: 4 givenname: Patrick C. surname: Howlett fullname: Howlett, Patrick C. |
BookMark | eNqFkE1OwzAQhS1UJErplrUvkGLHiZOwoyH8SKUg1BWbyHHGrVF-KidVFVYcgStwNU6CQ6vCjoU1Hs33Zp7eKRpUdQUInVMyoYS4FxIKOXEJ9YhLg-AIDV0accc2fPDnf4LGTfNKCKGU-CzkQ_T5UuGkANmaWq6g1E1rOqwrTL_eP5J21RW2MvseoG90qXPxVhd6U2JR5XhuJ9NN-0PND9S6M8Yyua567lrLTlTCKqG5xE-mtkd0tcRz2OJnkCthliCyArB1MhVtC9bA3lHRtdCcoWMligbG-zpCi5tkEd85s8fb-_hq5kgWuYEDhHOP5z5heeQLxlQQ-B6j4IJiPueZL7gbehBKV6mIRQEoxUOiQpZlkR2zEZrs1kpTN40Bla6NLoXpUkrSPuK0jzg9RGwF0U6w1QV0_9BpnMziX-03cGyLJg |
CitedBy_id | crossref_primary_10_1016_j_ensm_2024_103451 crossref_primary_10_1016_j_electacta_2018_05_044 crossref_primary_10_1021_acsami_5b10024 crossref_primary_10_1103_PhysRevMaterials_4_045801 crossref_primary_10_1002_batt_202300058 crossref_primary_10_1002_batt_202100361 crossref_primary_10_1038_s41427_019_0167_1 crossref_primary_10_1039_C6TA05260F crossref_primary_10_1002_adfm_202010213 crossref_primary_10_1002_adfm_202011102 crossref_primary_10_1002_batt_202200412 crossref_primary_10_1021_acsami_1c23781 crossref_primary_10_1071_CH19581 crossref_primary_10_1021_acsami_6b11098 crossref_primary_10_1016_j_rser_2024_114675 crossref_primary_10_1021_acsaem_8b00742 crossref_primary_10_1002_smll_202102058 crossref_primary_10_1088_1361_6528_ac40bf crossref_primary_10_1021_jacs_6b05958 crossref_primary_10_1016_j_electacta_2017_01_013 crossref_primary_10_1039_C8EE00378E crossref_primary_10_1016_j_electacta_2020_136073 crossref_primary_10_1039_C7CP03389C crossref_primary_10_1016_j_cogsc_2020_100426 crossref_primary_10_1002_celc_201500278 crossref_primary_10_1103_PhysRevMaterials_3_095801 crossref_primary_10_1002_adma_202207131 crossref_primary_10_1021_acs_jpcc_7b01375 crossref_primary_10_1016_j_electacta_2018_05_107 crossref_primary_10_1016_j_electacta_2015_05_148 crossref_primary_10_1039_C6CP04299F crossref_primary_10_1063_5_0180923 crossref_primary_10_1002_celc_201600875 crossref_primary_10_1021_acsami_0c20241 crossref_primary_10_1016_j_ensm_2021_11_010 crossref_primary_10_1016_j_nanoen_2018_12_086 crossref_primary_10_1038_natrevmats_2015_5 crossref_primary_10_1002_cnl2_133 crossref_primary_10_1038_s41467_019_13436_3 crossref_primary_10_1016_j_jechem_2021_04_016 crossref_primary_10_1039_D2EE02998G crossref_primary_10_1039_C9EE00596J crossref_primary_10_1016_j_ensm_2021_11_008 crossref_primary_10_1149_2_0052007JES crossref_primary_10_1021_acsenergylett_9b01541 crossref_primary_10_1039_D0SE01508C crossref_primary_10_1149_2_0451702jes crossref_primary_10_1142_S1793604719300044 crossref_primary_10_1088_1742_6596_660_1_012009 crossref_primary_10_1002_cssc_201600333 |
Cites_doi | 10.1146/annurev-matsci-071312-121640 10.1016/j.jpowsour.2013.12.014 10.1039/b920393a 10.1038/nmat2448 10.1039/c3cp51102b 10.1149/2.027212jes 10.1039/c3ee23753b 10.1016/S1388-2481(03)00173-5 10.1016/j.electacta.2011.02.095 10.1524/zpch.2012.0152 10.1039/C1FD00050K 10.1016/j.jpowsour.2013.09.082 10.1021/jp501665g 10.1021/je800678e 10.1039/a808777f 10.1021/ar7000952 10.1016/j.jpowsour.2009.08.100 10.1039/b103064g 10.1039/c0cp02846k 10.1021/jp311886h 10.1016/j.electacta.2013.03.027 10.1016/j.elecom.2009.09.026 10.1039/b923527m 10.1021/ic200586u 10.1002/1439-7641(20020215)3:2<144::AID-CPHC144>3.0.CO;2-# 10.1149/2.022310jes 10.1016/0013-4686(83)85163-9 10.1149/1.1837965 10.1016/j.electacta.2011.04.082 10.1039/c2ra20177a 10.1016/j.electacta.2012.11.023 10.1021/jp200544b 10.1016/j.elecom.2012.02.034 10.1149/1.3514694 |
ContentType | Journal Article |
Copyright | Copyright © 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
Copyright_xml | – notice: Copyright © 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
DBID | AAYXX CITATION |
DOI | 10.1002/celc.201402177 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 2196-0216 |
EndPage | 1697 |
ExternalDocumentID | 10_1002_celc_201402177 CELC201402177 |
Genre | article |
GrantInformation_xml | – fundername: Australian Research Council |
GroupedDBID | 0R~ 1OC 24P 33P 8-1 AAESR AAHHS AAXRX AAZKR ABCUV ACAHQ ACCFJ ACCZN ACGFS ACPOU ACXBN ACXQS ADBBV ADKYN ADOZA ADXAS ADZMN ADZOD AEEZP AENEX AEQDE AFBPY AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN AMYDB AVUZU AZVAB BMXJE BRXPI DCZOG DPXWK DRFUL DRSTM G-S GODZA LATKE LEEKS LITHE LOXES LUTES LYRES MEWTI MY~ O9- P2W R.K ROL SUPJJ WBKPD WOHZO WXSBR WYJ ZZTAW AAYXX CITATION |
ID | FETCH-LOGICAL-c3927-e06646d503d95a33f775431e2ef3566b5a6284e8c2ff9397eff680f83bb966b3 |
ISSN | 2196-0216 |
IngestDate | Fri Aug 23 01:52:08 EDT 2024 Sat Aug 24 00:52:24 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c3927-e06646d503d95a33f775431e2ef3566b5a6284e8c2ff9397eff680f83bb966b3 |
PageCount | 10 |
ParticipantIDs | crossref_primary_10_1002_celc_201402177 wiley_primary_10_1002_celc_201402177_CELC201402177 |
PublicationCentury | 2000 |
PublicationDate | October 14, 2014 |
PublicationDateYYYYMMDD | 2014-10-14 |
PublicationDate_xml | – month: 10 year: 2014 text: October 14, 2014 day: 14 |
PublicationDecade | 2010 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | ChemElectroChem |
PublicationYear | 2014 |
Publisher | WILEY‐VCH Verlag |
Publisher_xml | – name: WILEY‐VCH Verlag |
References | 2014; 118 2010; 12 2011; 115 2011; 158 2013; 43 2013; 89 2002; 3 2012; 18 2011; 13 2011; 56 2008; 53 2012; 226 2013; 160 2013; 6 2014; 252 1999 2009; 11 2014; 248 2013; 15 2012; 2 2012; 154 2001 2013; 97 1997; 144 2013; 117 2011; 50 2009; 8 2003; 5 2010; 195 2007; 40 1983; 28 2012; 159 e_1_2_6_31_2 e_1_2_6_30_2 e_1_2_6_18_2 e_1_2_6_19_2 e_1_2_6_12_2 e_1_2_6_35_2 e_1_2_6_13_2 e_1_2_6_34_2 e_1_2_6_10_2 e_1_2_6_33_2 e_1_2_6_11_2 e_1_2_6_32_2 e_1_2_6_16_2 e_1_2_6_39_2 e_1_2_6_17_2 e_1_2_6_38_2 e_1_2_6_14_2 e_1_2_6_37_2 e_1_2_6_15_2 e_1_2_6_36_2 e_1_2_6_42_2 e_1_2_6_20_2 e_1_2_6_41_2 e_1_2_6_40_2 e_1_2_6_8_2 e_1_2_6_7_2 e_1_2_6_9_2 e_1_2_6_29_2 e_1_2_6_4_2 e_1_2_6_3_2 e_1_2_6_6_2 e_1_2_6_5_2 e_1_2_6_24_2 e_1_2_6_23_2 e_1_2_6_2_2 e_1_2_6_22_2 e_1_2_6_1_2 e_1_2_6_21_2 e_1_2_6_28_2 e_1_2_6_43_2 e_1_2_6_27_2 e_1_2_6_44_2 e_1_2_6_26_2 e_1_2_6_25_2 |
References_xml | – volume: 158 start-page: 22 year: 2011 end-page: 25 publication-title: J. Electrochem. Soc. – volume: 118, start-page: 4895 year: 2014 end-page: 4905 publication-title: J. Phys. Chem. B – volume: 117 start-page: 2662 year: 2013 end-page: 2669 publication-title: .J. Phys. Chem. C – volume: 160 start-page: 1629 year: 2013 end-page: 1637 publication-title: J. Electrochem. Soc. – volume: 3 start-page: 144 year: 2002 end-page: 154 publication-title: ChemPhysChem – volume: 159 start-page: 691 year: 2012 end-page: 698 publication-title: J. Electrochem. Soc. – volume: 12 start-page: 1724 year: 2010 end-page: 1732 publication-title: PCCP – start-page: 1430 year: 2001 end-page: 1431 publication-title: Chem. Commun. – volume: 252 start-page: 327 year: 2014 end-page: 332 publication-title: J. Power Sources – volume: 13 start-page: 6849 year: 2011 end-page: 6857 publication-title: PCCP – volume: 56 start-page: 5272 year: 2011 end-page: 5279 publication-title: Electrochim. Acta – volume: 15 start-page: 7191 year: 2013 end-page: 7197 publication-title: PCCP – volume: 53 start-page: 2884 year: 2008 end-page: 2891 publication-title: J. Chem. Eng. Data – volume: 5 start-page: 728 year: 2003 end-page: 731 publication-title: Electrochem. Commun. – start-page: 177 year: 1999 end-page: 178 publication-title: Chem. Commun. – volume: 40 start-page: 1165 year: 2007 end-page: 1173 publication-title: Acc. Chem. Res. – volume: 154 start-page: 221 year: 2012 end-page: 233 publication-title: Faraday Discuss. – volume: 195 start-page: 1271 year: 2010 end-page: 1291 publication-title: J. Power Sources – volume: 248 start-page: 1099 year: 2014 end-page: 1104 publication-title: J. Power Sources – volume: 144 start-page: 3095 year: 1997 end-page: 3103 publication-title: J. Electrochem. Soc. – volume: 2 start-page: 5591 year: 2012 end-page: 5598 publication-title: RSC Adv. – volume: 6 start-page: 979 year: 2013 end-page: 986 publication-title: Energy Environ. Sci. – volume: 97 start-page: 289 year: 2013 end-page: 295 publication-title: Electrochim. Acta – volume: 226 start-page: 151 year: 2012 end-page: 166 publication-title: Z. Phys. Chem. – volume: 11 start-page: 2184 year: 2009 end-page: 2186 publication-title: Electrochem. Commun. – volume: 12 start-page: 1709 year: 2010 end-page: 1723 publication-title: Phys. Chem. Chem. Phys. – volume: 8 start-page: 621 year: 2009 end-page: 629 publication-title: Nat. Mater. – volume: 89 start-page: 756 year: 2013 end-page: 762 publication-title: Electrochim. Acta – volume: 50 start-page: 5258 year: 2011 end-page: 5271 publication-title: Inorg. Chem. – volume: 28 start-page: 879 year: 1983 end-page: 889 publication-title: Electrochim. Acta – volume: 18 start-page: 119 year: 2012 end-page: 122 publication-title: Electrochem. Commun. – volume: 56 start-page: 6071 year: 2011 end-page: 6077 publication-title: Electrochim. Acta – volume: 43 start-page: 335 year: 2013 end-page: 358 publication-title: Annu. Rev. Mater. Res. – volume: 115 start-page: 6855 year: 2011 end-page: 6863 publication-title: J. Phys. Chem. C – ident: e_1_2_6_24_2 – ident: e_1_2_6_18_2 doi: 10.1146/annurev-matsci-071312-121640 – ident: e_1_2_6_32_2 doi: 10.1016/j.jpowsour.2013.12.014 – ident: e_1_2_6_39_2 doi: 10.1039/b920393a – ident: e_1_2_6_15_2 doi: 10.1038/nmat2448 – ident: e_1_2_6_13_2 doi: 10.1039/c3cp51102b – ident: e_1_2_6_30_2 doi: 10.1149/2.027212jes – ident: e_1_2_6_22_2 doi: 10.1039/c3ee23753b – ident: e_1_2_6_23_2 doi: 10.1016/S1388-2481(03)00173-5 – ident: e_1_2_6_12_2 doi: 10.1016/j.electacta.2011.02.095 – ident: e_1_2_6_10_2 doi: 10.1524/zpch.2012.0152 – ident: e_1_2_6_35_2 – ident: e_1_2_6_37_2 doi: 10.1039/C1FD00050K – ident: e_1_2_6_44_2 doi: 10.1016/j.jpowsour.2013.09.082 – ident: e_1_2_6_6_2 doi: 10.1021/jp501665g – ident: e_1_2_6_34_2 doi: 10.1021/je800678e – ident: e_1_2_6_33_2 doi: 10.1039/a808777f – ident: e_1_2_6_16_2 doi: 10.1021/ar7000952 – ident: e_1_2_6_2_2 doi: 10.1016/j.jpowsour.2009.08.100 – ident: e_1_2_6_20_2 – ident: e_1_2_6_31_2 doi: 10.1039/b103064g – ident: e_1_2_6_36_2 doi: 10.1039/c0cp02846k – ident: e_1_2_6_7_2 doi: 10.1021/jp311886h – ident: e_1_2_6_9_2 doi: 10.1016/j.electacta.2013.03.027 – ident: e_1_2_6_29_2 doi: 10.1016/j.elecom.2009.09.026 – ident: e_1_2_6_41_2 doi: 10.1039/b923527m – ident: e_1_2_6_42_2 doi: 10.1021/ic200586u – ident: e_1_2_6_40_2 – ident: e_1_2_6_19_2 doi: 10.1002/1439-7641(20020215)3:2<144::AID-CPHC144>3.0.CO;2-# – ident: e_1_2_6_21_2 doi: 10.1149/2.022310jes – ident: e_1_2_6_28_2 – ident: e_1_2_6_43_2 doi: 10.1016/0013-4686(83)85163-9 – ident: e_1_2_6_11_2 – ident: e_1_2_6_27_2 doi: 10.1149/1.1837965 – ident: e_1_2_6_14_2 – ident: e_1_2_6_5_2 doi: 10.1016/j.electacta.2011.04.082 – ident: e_1_2_6_26_2 doi: 10.1039/c2ra20177a – ident: e_1_2_6_8_2 doi: 10.1016/j.electacta.2012.11.023 – ident: e_1_2_6_4_2 – ident: e_1_2_6_1_2 – ident: e_1_2_6_38_2 doi: 10.1021/jp200544b – ident: e_1_2_6_3_2 doi: 10.1016/j.elecom.2012.02.034 – ident: e_1_2_6_17_2 – ident: e_1_2_6_25_2 doi: 10.1149/1.3514694 |
SSID | ssj0001105386 |
Score | 2.2553606 |
Snippet | We have studied both 1‐ethyl‐3‐methylimidazolium (C2mim) and N‐butyl‐N‐methylpyrrolidinium (C4mpyr) dicyanamide (dca) ionic liquids (ILs) containing 3 wt % H2O... Abstract We have studied both 1‐ethyl‐3‐methylimidazolium (C 2 mim) and N ‐butyl‐ N ‐methylpyrrolidinium (C 4 mpyr) dicyanamide (dca) ionic liquids (ILs)... |
SourceID | crossref wiley |
SourceType | Aggregation Database Publisher |
StartPage | 1688 |
SubjectTerms | batteries electrolytes ionic liquids overpotential zinc |
Title | Zn Electrochemistry in 1‐Ethyl‐3‐Methylimidazolium and N‐Butyl‐N‐Methylpyrrolidinium Dicyanamides: Promising New Rechargeable Zn Battery Electrolytes |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcelc.201402177 |
Volume | 1 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj5swELb2cWgvVZ_q9iUfKvWASAEDgd62NKuoalBVJatVLgiDLaGlZJWSA3vqT-hf6F_rL-nYBsfZXfWxh4DD2IlhPsYzo_EMQq9B8lFQ8x2blT61YT3mNiVlbI85813O_TB3xN7hWRpOF_7Hs-Bsb98yopY2LR0VlzfuK7kNV-Ea8FXskv0PzuofhQvQBv7CETgMx3_i8bKxJqqMTTHUbRP-C1dHMEyADbX-RnRrxgSh-lqV-eWqrjaqTkaq6e83rTEuvTLuoluLWj-w6omRH6qiy0VZ-1KF131er2AqwgMhYidBLRW5mJjcoQXzVfk8u2Heddf2QYxDtgS4kZ4mmtoBBJBSGv9cSCWx52pkONONoN3eIrC-aPrJav2tU-6jWa6iqoeI4XqIUpaFCs6tZGR6QVxfLB_u1gsqE5Drh3GaTC3DHSqlKUhmEW3t9nm3b7g2LAcm6h1DtruhKkDY6wluqAKLr61BKqdtwWqRIRPsVzD6xtvVdogw0D2DP_eVqkYy-ZRo-j469ECqgjg_PD5dLBdblyLoykTWNtU3NqQpdby3u3-yo4aZZpnUq-b30b3eIMLHCt0P0B5rHqI7yYDnR-jnssFXUY6rBru_vv-Q-IYzgc81TGPANE6BItEM51T32kEwNhH8Dmv8YsAvNvGLYSY9frGJ38dofjKZJ1O7LyxiF2AOjG0GerYfloEDUinICeEiDSRxmcc4AfOGBnkIWhuLCo_zGBR2xnkYOTwilMZAJk_QQbNq2FOEaenlER_7UVF4fllEOS_DMoojSonLYyc6Qm-Gx5xdqPQxmUoU7mWCIZlmyBHyJBf-0i3bgcKz2wx6ju5u36AX6KBdb9hL0Kxb-qpH1G-Bo8tO |
link.rule.ids | 315,783,787,27936,27937,50826,50935 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT8IwGG4UDngxfkb87MHE08K2bqN4Q4SgAvEAxnBZ1rVNloxBEA548if4F_xr_hLfd2MgJxMPy9Lu3db0Xfs87drnJeQaej4BNN80lHSEAXisDcFkzahq5VhaO15g4t7hbs9rD5zHVzdfTYh7YTJ9iNWEG7aMtL_GBo4T0pW1amioYtQghBEC0OrqNim6-FOvQIr1l8FwsJ5oAQbB0oiP0Dhxwa3l5eKNpl3ZfMgGOP0mqynatPbI7pIm0nrm132ypZIDUmrk0dkOydcwoc0shE2Y59Ioodb3x2cTKj-GM4OjqzARjSIZvI_jaD6iQSJpD67czWepVW9lNVlMMYYPoBna3UfhIsBw9VK93dLn6RheAjhHoVukQDZRYUnhvisKJclUOhd5ieIFENgj0m81-422sQy3YIRAkqqGAvbheNI1wVduwJhGcTxmKVtpBqRPuIEHWKZ4aGtdAxqjtPa4qTkTAsZMgh2TQjJO1AmhQtoB11WHh6HtyJAHWnqS17gQzNI1k5fJTV7N_iQT1fAz-WTbR4f4K4eUiZ164Q8zv9HsNFap0__cdEVK7X6343ceek9nZAfzEaIs55wUZtO5ugDuMROXy6_rB5cX2g0 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV27TsMwFLWglYAF8RTl6QGJKWoSJ6nLVvpQgTbq0KKqSxTHthQpTavSDmHiE_gFfo0v4Tpp-piQGKLIzo1j-do-x1Z8LkL3MPMxoPm6JrjFNMBjqTHCq1pFCsuQ0nJ8XZ0d7rpOe2C9DO3hxin-TB9iteGmRkY6X6sBPuWyvBYNDUSkJAhhgQCsurKLikA1TOjjxdrbYDRY77MAgSBpwEcYm-p_W8PJtRt1s7xdyBY2bXLVFGxaR-hwyRJxLXPrMdoR8Qnar-fB2U7R9yjGzSyCTZDn4jDGxs_nVxPaPoI7gasrVCIch9z_mEThYoz9mGMXnjwt5qmVu7KaJjMVwgfATNk1wiDxVbR6Lt4fcW82gY8AzGGYFTFwTSWwJNSxKww1yUQ6k7xGUQL89Qz1W81-va0toy1oAXCkiiaAfFgOt3Vwle0TIpU2HjGEKSQBzsds3wEoEzQwpawCixFSOlSXlDAGSyZGzlEhnsTiAmHGTZ_KikWDwLR4QH3JHU6rlDFiyKpOS-ghb2ZvmmlqeJl6sukph3grh5SQmXrhDzOv3uzUV6nL_7x0h_Z6jZbXeXZfr9CBylYAZVjXqDCfLcQNMI85u112rl9k29k2 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Zn+Electrochemistry+in+1%E2%80%90Ethyl%E2%80%903%E2%80%90Methylimidazolium+and+N%E2%80%90Butyl%E2%80%90N%E2%80%90Methylpyrrolidinium+Dicyanamides%3A+Promising+New+Rechargeable+Zn+Battery+Electrolytes&rft.jtitle=ChemElectroChem&rft.au=Simons%2C+Tristan+J.&rft.au=MacFarlane%2C+Douglas+R.&rft.au=Forsyth%2C+Maria&rft.au=Howlett%2C+Patrick+C.&rft.date=2014-10-14&rft.pub=WILEY%E2%80%90VCH+Verlag&rft.issn=2196-0216&rft.eissn=2196-0216&rft.volume=1&rft.issue=10&rft.spage=1688&rft.epage=1697&rft_id=info:doi/10.1002%2Fcelc.201402177&rft.externalDBID=10.1002%252Fcelc.201402177&rft.externalDocID=CELC201402177 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2196-0216&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2196-0216&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2196-0216&client=summon |