Zn Electrochemistry in 1‐Ethyl‐3‐Methylimidazolium and N‐Butyl‐N‐Methylpyrrolidinium Dicyanamides: Promising New Rechargeable Zn Battery Electrolytes

We have studied both 1‐ethyl‐3‐methylimidazolium (C2mim) and N‐butyl‐N‐methylpyrrolidinium (C4mpyr) dicyanamide (dca) ionic liquids (ILs) containing 3 wt % H2O and 9 mol % Zn(dca)2 salt for their ability to support Zn0/2+ electrochemistry in the context of a rechargeable Zn battery. Despite the simi...

Full description

Saved in:
Bibliographic Details
Published inChemElectroChem Vol. 1; no. 10; pp. 1688 - 1697
Main Authors Simons, Tristan J., MacFarlane, Douglas R., Forsyth, Maria, Howlett, Patrick C.
Format Journal Article
LanguageEnglish
Published Weinheim WILEY‐VCH Verlag 14.10.2014
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We have studied both 1‐ethyl‐3‐methylimidazolium (C2mim) and N‐butyl‐N‐methylpyrrolidinium (C4mpyr) dicyanamide (dca) ionic liquids (ILs) containing 3 wt % H2O and 9 mol % Zn(dca)2 salt for their ability to support Zn0/2+ electrochemistry in the context of a rechargeable Zn battery. Despite the similarities of the two IL electrolyte systems [identical H2O and Zn(dca)2 contents], the system based on [C2mim] supported much higher current densities for Zn electrochemistry at greatly reduced overpotentials [−0.23 V vs. Zn pseudo‐reference, 32 mA cm−2 (red) and 61 mA cm−2 (ox)] compared to the [C4mpyr]‐based electrolyte [−0.84 V vs. Zn pseudo‐reference, 8 mA cm−2 (red) and 15 mA cm−2 (ox)]. The overpotential for Zn deposition is reduced by 0.13 V on Zn metal surfaces compared to glassy carbon (GC), regardless of the electrolyte used. The morphologies of the Zn deposits on both GC and Zn surfaces were also studied. The Zn surfaces promote a deposition that displays a smooth morphology, resulting from an instantaneous nucleation mechanism demonstrated by chronoamperometric experiments. Finally, both [C2mim] and [C4mpyr] electrolytes were tested in symmetrical Zn|Zn cells, where it was determined that the [C2mim] system could sustain over 90 cycles at 0.1 mA cm−2, whereas the [C4mpyr] based system could only achieve 15 cycles at the more modest current density of 0.05 mA cm−2. Rechargable promises: Two ionic liquids based on the dicyanamide anion are studied for their ability to cycle zinc while providing smooth morphologies of deposited zinc. The imidazolium‐based ionic liquid is found to perform better than its pyrrolidinium analogue and shows promise for zinc‐based secondary battery applications.
AbstractList We have studied both 1‐ethyl‐3‐methylimidazolium (C2mim) and N‐butyl‐N‐methylpyrrolidinium (C4mpyr) dicyanamide (dca) ionic liquids (ILs) containing 3 wt % H2O and 9 mol % Zn(dca)2 salt for their ability to support Zn0/2+ electrochemistry in the context of a rechargeable Zn battery. Despite the similarities of the two IL electrolyte systems [identical H2O and Zn(dca)2 contents], the system based on [C2mim] supported much higher current densities for Zn electrochemistry at greatly reduced overpotentials [−0.23 V vs. Zn pseudo‐reference, 32 mA cm−2 (red) and 61 mA cm−2 (ox)] compared to the [C4mpyr]‐based electrolyte [−0.84 V vs. Zn pseudo‐reference, 8 mA cm−2 (red) and 15 mA cm−2 (ox)]. The overpotential for Zn deposition is reduced by 0.13 V on Zn metal surfaces compared to glassy carbon (GC), regardless of the electrolyte used. The morphologies of the Zn deposits on both GC and Zn surfaces were also studied. The Zn surfaces promote a deposition that displays a smooth morphology, resulting from an instantaneous nucleation mechanism demonstrated by chronoamperometric experiments. Finally, both [C2mim] and [C4mpyr] electrolytes were tested in symmetrical Zn|Zn cells, where it was determined that the [C2mim] system could sustain over 90 cycles at 0.1 mA cm−2, whereas the [C4mpyr] based system could only achieve 15 cycles at the more modest current density of 0.05 mA cm−2. Rechargable promises: Two ionic liquids based on the dicyanamide anion are studied for their ability to cycle zinc while providing smooth morphologies of deposited zinc. The imidazolium‐based ionic liquid is found to perform better than its pyrrolidinium analogue and shows promise for zinc‐based secondary battery applications.
Abstract We have studied both 1‐ethyl‐3‐methylimidazolium (C 2 mim) and N ‐butyl‐ N ‐methylpyrrolidinium (C 4 mpyr) dicyanamide (dca) ionic liquids (ILs) containing 3 wt % H 2 O and 9 mol % Zn(dca) 2 salt for their ability to support Zn 0/2+ electrochemistry in the context of a rechargeable Zn battery. Despite the similarities of the two IL electrolyte systems [identical H 2 O and Zn(dca) 2 contents], the system based on [C 2 mim] supported much higher current densities for Zn electrochemistry at greatly reduced overpotentials [−0.23 V vs. Zn pseudo‐reference, 32 mA cm −2 (red) and 61 mA cm −2 (ox)] compared to the [C 4 mpyr]‐based electrolyte [−0.84 V vs. Zn pseudo‐reference, 8 mA cm −2 (red) and 15 mA cm −2 (ox)]. The overpotential for Zn deposition is reduced by 0.13 V on Zn metal surfaces compared to glassy carbon (GC), regardless of the electrolyte used. The morphologies of the Zn deposits on both GC and Zn surfaces were also studied. The Zn surfaces promote a deposition that displays a smooth morphology, resulting from an instantaneous nucleation mechanism demonstrated by chronoamperometric experiments. Finally, both [C 2 mim] and [C 4 mpyr] electrolytes were tested in symmetrical Zn|Zn cells, where it was determined that the [C 2 mim] system could sustain over 90 cycles at 0.1 mA cm −2 , whereas the [C 4 mpyr] based system could only achieve 15 cycles at the more modest current density of 0.05 mA cm −2 .
Author Simons, Tristan J.
MacFarlane, Douglas R.
Howlett, Patrick C.
Forsyth, Maria
Author_xml – sequence: 1
  givenname: Tristan J.
  surname: Simons
  fullname: Simons, Tristan J.
– sequence: 2
  givenname: Douglas R.
  surname: MacFarlane
  fullname: MacFarlane, Douglas R.
– sequence: 3
  givenname: Maria
  surname: Forsyth
  fullname: Forsyth, Maria
– sequence: 4
  givenname: Patrick C.
  surname: Howlett
  fullname: Howlett, Patrick C.
BookMark eNqFkE1OwzAQhS1UJErplrUvkGLHiZOwoyH8SKUg1BWbyHHGrVF-KidVFVYcgStwNU6CQ6vCjoU1Hs33Zp7eKRpUdQUInVMyoYS4FxIKOXEJ9YhLg-AIDV0accc2fPDnf4LGTfNKCKGU-CzkQ_T5UuGkANmaWq6g1E1rOqwrTL_eP5J21RW2MvseoG90qXPxVhd6U2JR5XhuJ9NN-0PND9S6M8Yyua567lrLTlTCKqG5xE-mtkd0tcRz2OJnkCthliCyArB1MhVtC9bA3lHRtdCcoWMligbG-zpCi5tkEd85s8fb-_hq5kgWuYEDhHOP5z5heeQLxlQQ-B6j4IJiPueZL7gbehBKV6mIRQEoxUOiQpZlkR2zEZrs1kpTN40Bla6NLoXpUkrSPuK0jzg9RGwF0U6w1QV0_9BpnMziX-03cGyLJg
CitedBy_id crossref_primary_10_1016_j_ensm_2024_103451
crossref_primary_10_1016_j_electacta_2018_05_044
crossref_primary_10_1021_acsami_5b10024
crossref_primary_10_1103_PhysRevMaterials_4_045801
crossref_primary_10_1002_batt_202300058
crossref_primary_10_1002_batt_202100361
crossref_primary_10_1038_s41427_019_0167_1
crossref_primary_10_1039_C6TA05260F
crossref_primary_10_1002_adfm_202010213
crossref_primary_10_1002_adfm_202011102
crossref_primary_10_1002_batt_202200412
crossref_primary_10_1021_acsami_1c23781
crossref_primary_10_1071_CH19581
crossref_primary_10_1021_acsami_6b11098
crossref_primary_10_1016_j_rser_2024_114675
crossref_primary_10_1021_acsaem_8b00742
crossref_primary_10_1002_smll_202102058
crossref_primary_10_1088_1361_6528_ac40bf
crossref_primary_10_1021_jacs_6b05958
crossref_primary_10_1016_j_electacta_2017_01_013
crossref_primary_10_1039_C8EE00378E
crossref_primary_10_1016_j_electacta_2020_136073
crossref_primary_10_1039_C7CP03389C
crossref_primary_10_1016_j_cogsc_2020_100426
crossref_primary_10_1002_celc_201500278
crossref_primary_10_1103_PhysRevMaterials_3_095801
crossref_primary_10_1002_adma_202207131
crossref_primary_10_1021_acs_jpcc_7b01375
crossref_primary_10_1016_j_electacta_2018_05_107
crossref_primary_10_1016_j_electacta_2015_05_148
crossref_primary_10_1039_C6CP04299F
crossref_primary_10_1063_5_0180923
crossref_primary_10_1002_celc_201600875
crossref_primary_10_1021_acsami_0c20241
crossref_primary_10_1016_j_ensm_2021_11_010
crossref_primary_10_1016_j_nanoen_2018_12_086
crossref_primary_10_1038_natrevmats_2015_5
crossref_primary_10_1002_cnl2_133
crossref_primary_10_1038_s41467_019_13436_3
crossref_primary_10_1016_j_jechem_2021_04_016
crossref_primary_10_1039_D2EE02998G
crossref_primary_10_1039_C9EE00596J
crossref_primary_10_1016_j_ensm_2021_11_008
crossref_primary_10_1149_2_0052007JES
crossref_primary_10_1021_acsenergylett_9b01541
crossref_primary_10_1039_D0SE01508C
crossref_primary_10_1149_2_0451702jes
crossref_primary_10_1142_S1793604719300044
crossref_primary_10_1088_1742_6596_660_1_012009
crossref_primary_10_1002_cssc_201600333
Cites_doi 10.1146/annurev-matsci-071312-121640
10.1016/j.jpowsour.2013.12.014
10.1039/b920393a
10.1038/nmat2448
10.1039/c3cp51102b
10.1149/2.027212jes
10.1039/c3ee23753b
10.1016/S1388-2481(03)00173-5
10.1016/j.electacta.2011.02.095
10.1524/zpch.2012.0152
10.1039/C1FD00050K
10.1016/j.jpowsour.2013.09.082
10.1021/jp501665g
10.1021/je800678e
10.1039/a808777f
10.1021/ar7000952
10.1016/j.jpowsour.2009.08.100
10.1039/b103064g
10.1039/c0cp02846k
10.1021/jp311886h
10.1016/j.electacta.2013.03.027
10.1016/j.elecom.2009.09.026
10.1039/b923527m
10.1021/ic200586u
10.1002/1439-7641(20020215)3:2<144::AID-CPHC144>3.0.CO;2-#
10.1149/2.022310jes
10.1016/0013-4686(83)85163-9
10.1149/1.1837965
10.1016/j.electacta.2011.04.082
10.1039/c2ra20177a
10.1016/j.electacta.2012.11.023
10.1021/jp200544b
10.1016/j.elecom.2012.02.034
10.1149/1.3514694
ContentType Journal Article
Copyright Copyright © 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: Copyright © 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
DBID AAYXX
CITATION
DOI 10.1002/celc.201402177
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 2196-0216
EndPage 1697
ExternalDocumentID 10_1002_celc_201402177
CELC201402177
Genre article
GrantInformation_xml – fundername: Australian Research Council
GroupedDBID 0R~
1OC
24P
33P
8-1
AAESR
AAHHS
AAXRX
AAZKR
ABCUV
ACAHQ
ACCFJ
ACCZN
ACGFS
ACPOU
ACXBN
ACXQS
ADBBV
ADKYN
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AENEX
AEQDE
AFBPY
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMYDB
AVUZU
AZVAB
BMXJE
BRXPI
DCZOG
DPXWK
DRFUL
DRSTM
G-S
GODZA
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MY~
O9-
P2W
R.K
ROL
SUPJJ
WBKPD
WOHZO
WXSBR
WYJ
ZZTAW
AAYXX
CITATION
ID FETCH-LOGICAL-c3927-e06646d503d95a33f775431e2ef3566b5a6284e8c2ff9397eff680f83bb966b3
ISSN 2196-0216
IngestDate Fri Aug 23 01:52:08 EDT 2024
Sat Aug 24 00:52:24 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c3927-e06646d503d95a33f775431e2ef3566b5a6284e8c2ff9397eff680f83bb966b3
PageCount 10
ParticipantIDs crossref_primary_10_1002_celc_201402177
wiley_primary_10_1002_celc_201402177_CELC201402177
PublicationCentury 2000
PublicationDate October 14, 2014
PublicationDateYYYYMMDD 2014-10-14
PublicationDate_xml – month: 10
  year: 2014
  text: October 14, 2014
  day: 14
PublicationDecade 2010
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle ChemElectroChem
PublicationYear 2014
Publisher WILEY‐VCH Verlag
Publisher_xml – name: WILEY‐VCH Verlag
References 2014; 118
2010; 12
2011; 115
2011; 158
2013; 43
2013; 89
2002; 3
2012; 18
2011; 13
2011; 56
2008; 53
2012; 226
2013; 160
2013; 6
2014; 252
1999
2009; 11
2014; 248
2013; 15
2012; 2
2012; 154
2001
2013; 97
1997; 144
2013; 117
2011; 50
2009; 8
2003; 5
2010; 195
2007; 40
1983; 28
2012; 159
e_1_2_6_31_2
e_1_2_6_30_2
e_1_2_6_18_2
e_1_2_6_19_2
e_1_2_6_12_2
e_1_2_6_35_2
e_1_2_6_13_2
e_1_2_6_34_2
e_1_2_6_10_2
e_1_2_6_33_2
e_1_2_6_11_2
e_1_2_6_32_2
e_1_2_6_16_2
e_1_2_6_39_2
e_1_2_6_17_2
e_1_2_6_38_2
e_1_2_6_14_2
e_1_2_6_37_2
e_1_2_6_15_2
e_1_2_6_36_2
e_1_2_6_42_2
e_1_2_6_20_2
e_1_2_6_41_2
e_1_2_6_40_2
e_1_2_6_8_2
e_1_2_6_7_2
e_1_2_6_9_2
e_1_2_6_29_2
e_1_2_6_4_2
e_1_2_6_3_2
e_1_2_6_6_2
e_1_2_6_5_2
e_1_2_6_24_2
e_1_2_6_23_2
e_1_2_6_2_2
e_1_2_6_22_2
e_1_2_6_1_2
e_1_2_6_21_2
e_1_2_6_28_2
e_1_2_6_43_2
e_1_2_6_27_2
e_1_2_6_44_2
e_1_2_6_26_2
e_1_2_6_25_2
References_xml – volume: 158
  start-page: 22
  year: 2011
  end-page: 25
  publication-title: J. Electrochem. Soc.
– volume: 118,
  start-page: 4895
  year: 2014
  end-page: 4905
  publication-title: J. Phys. Chem. B
– volume: 117
  start-page: 2662
  year: 2013
  end-page: 2669
  publication-title: .J. Phys. Chem. C
– volume: 160
  start-page: 1629
  year: 2013
  end-page: 1637
  publication-title: J. Electrochem. Soc.
– volume: 3
  start-page: 144
  year: 2002
  end-page: 154
  publication-title: ChemPhysChem
– volume: 159
  start-page: 691
  year: 2012
  end-page: 698
  publication-title: J. Electrochem. Soc.
– volume: 12
  start-page: 1724
  year: 2010
  end-page: 1732
  publication-title: PCCP
– start-page: 1430
  year: 2001
  end-page: 1431
  publication-title: Chem. Commun.
– volume: 252
  start-page: 327
  year: 2014
  end-page: 332
  publication-title: J. Power Sources
– volume: 13
  start-page: 6849
  year: 2011
  end-page: 6857
  publication-title: PCCP
– volume: 56
  start-page: 5272
  year: 2011
  end-page: 5279
  publication-title: Electrochim. Acta
– volume: 15
  start-page: 7191
  year: 2013
  end-page: 7197
  publication-title: PCCP
– volume: 53
  start-page: 2884
  year: 2008
  end-page: 2891
  publication-title: J. Chem. Eng. Data
– volume: 5
  start-page: 728
  year: 2003
  end-page: 731
  publication-title: Electrochem. Commun.
– start-page: 177
  year: 1999
  end-page: 178
  publication-title: Chem. Commun.
– volume: 40
  start-page: 1165
  year: 2007
  end-page: 1173
  publication-title: Acc. Chem. Res.
– volume: 154
  start-page: 221
  year: 2012
  end-page: 233
  publication-title: Faraday Discuss.
– volume: 195
  start-page: 1271
  year: 2010
  end-page: 1291
  publication-title: J. Power Sources
– volume: 248
  start-page: 1099
  year: 2014
  end-page: 1104
  publication-title: J. Power Sources
– volume: 144
  start-page: 3095
  year: 1997
  end-page: 3103
  publication-title: J. Electrochem. Soc.
– volume: 2
  start-page: 5591
  year: 2012
  end-page: 5598
  publication-title: RSC Adv.
– volume: 6
  start-page: 979
  year: 2013
  end-page: 986
  publication-title: Energy Environ. Sci.
– volume: 97
  start-page: 289
  year: 2013
  end-page: 295
  publication-title: Electrochim. Acta
– volume: 226
  start-page: 151
  year: 2012
  end-page: 166
  publication-title: Z. Phys. Chem.
– volume: 11
  start-page: 2184
  year: 2009
  end-page: 2186
  publication-title: Electrochem. Commun.
– volume: 12
  start-page: 1709
  year: 2010
  end-page: 1723
  publication-title: Phys. Chem. Chem. Phys.
– volume: 8
  start-page: 621
  year: 2009
  end-page: 629
  publication-title: Nat. Mater.
– volume: 89
  start-page: 756
  year: 2013
  end-page: 762
  publication-title: Electrochim. Acta
– volume: 50
  start-page: 5258
  year: 2011
  end-page: 5271
  publication-title: Inorg. Chem.
– volume: 28
  start-page: 879
  year: 1983
  end-page: 889
  publication-title: Electrochim. Acta
– volume: 18
  start-page: 119
  year: 2012
  end-page: 122
  publication-title: Electrochem. Commun.
– volume: 56
  start-page: 6071
  year: 2011
  end-page: 6077
  publication-title: Electrochim. Acta
– volume: 43
  start-page: 335
  year: 2013
  end-page: 358
  publication-title: Annu. Rev. Mater. Res.
– volume: 115
  start-page: 6855
  year: 2011
  end-page: 6863
  publication-title: J. Phys. Chem. C
– ident: e_1_2_6_24_2
– ident: e_1_2_6_18_2
  doi: 10.1146/annurev-matsci-071312-121640
– ident: e_1_2_6_32_2
  doi: 10.1016/j.jpowsour.2013.12.014
– ident: e_1_2_6_39_2
  doi: 10.1039/b920393a
– ident: e_1_2_6_15_2
  doi: 10.1038/nmat2448
– ident: e_1_2_6_13_2
  doi: 10.1039/c3cp51102b
– ident: e_1_2_6_30_2
  doi: 10.1149/2.027212jes
– ident: e_1_2_6_22_2
  doi: 10.1039/c3ee23753b
– ident: e_1_2_6_23_2
  doi: 10.1016/S1388-2481(03)00173-5
– ident: e_1_2_6_12_2
  doi: 10.1016/j.electacta.2011.02.095
– ident: e_1_2_6_10_2
  doi: 10.1524/zpch.2012.0152
– ident: e_1_2_6_35_2
– ident: e_1_2_6_37_2
  doi: 10.1039/C1FD00050K
– ident: e_1_2_6_44_2
  doi: 10.1016/j.jpowsour.2013.09.082
– ident: e_1_2_6_6_2
  doi: 10.1021/jp501665g
– ident: e_1_2_6_34_2
  doi: 10.1021/je800678e
– ident: e_1_2_6_33_2
  doi: 10.1039/a808777f
– ident: e_1_2_6_16_2
  doi: 10.1021/ar7000952
– ident: e_1_2_6_2_2
  doi: 10.1016/j.jpowsour.2009.08.100
– ident: e_1_2_6_20_2
– ident: e_1_2_6_31_2
  doi: 10.1039/b103064g
– ident: e_1_2_6_36_2
  doi: 10.1039/c0cp02846k
– ident: e_1_2_6_7_2
  doi: 10.1021/jp311886h
– ident: e_1_2_6_9_2
  doi: 10.1016/j.electacta.2013.03.027
– ident: e_1_2_6_29_2
  doi: 10.1016/j.elecom.2009.09.026
– ident: e_1_2_6_41_2
  doi: 10.1039/b923527m
– ident: e_1_2_6_42_2
  doi: 10.1021/ic200586u
– ident: e_1_2_6_40_2
– ident: e_1_2_6_19_2
  doi: 10.1002/1439-7641(20020215)3:2<144::AID-CPHC144>3.0.CO;2-#
– ident: e_1_2_6_21_2
  doi: 10.1149/2.022310jes
– ident: e_1_2_6_28_2
– ident: e_1_2_6_43_2
  doi: 10.1016/0013-4686(83)85163-9
– ident: e_1_2_6_11_2
– ident: e_1_2_6_27_2
  doi: 10.1149/1.1837965
– ident: e_1_2_6_14_2
– ident: e_1_2_6_5_2
  doi: 10.1016/j.electacta.2011.04.082
– ident: e_1_2_6_26_2
  doi: 10.1039/c2ra20177a
– ident: e_1_2_6_8_2
  doi: 10.1016/j.electacta.2012.11.023
– ident: e_1_2_6_4_2
– ident: e_1_2_6_1_2
– ident: e_1_2_6_38_2
  doi: 10.1021/jp200544b
– ident: e_1_2_6_3_2
  doi: 10.1016/j.elecom.2012.02.034
– ident: e_1_2_6_17_2
– ident: e_1_2_6_25_2
  doi: 10.1149/1.3514694
SSID ssj0001105386
Score 2.2553606
Snippet We have studied both 1‐ethyl‐3‐methylimidazolium (C2mim) and N‐butyl‐N‐methylpyrrolidinium (C4mpyr) dicyanamide (dca) ionic liquids (ILs) containing 3 wt % H2O...
Abstract We have studied both 1‐ethyl‐3‐methylimidazolium (C 2 mim) and N ‐butyl‐ N ‐methylpyrrolidinium (C 4 mpyr) dicyanamide (dca) ionic liquids (ILs)...
SourceID crossref
wiley
SourceType Aggregation Database
Publisher
StartPage 1688
SubjectTerms batteries
electrolytes
ionic liquids
overpotential
zinc
Title Zn Electrochemistry in 1‐Ethyl‐3‐Methylimidazolium and N‐Butyl‐N‐Methylpyrrolidinium Dicyanamides: Promising New Rechargeable Zn Battery Electrolytes
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcelc.201402177
Volume 1
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj5swELb2cWgvVZ_q9iUfKvWASAEDgd62NKuoalBVJatVLgiDLaGlZJWSA3vqT-hf6F_rL-nYBsfZXfWxh4DD2IlhPsYzo_EMQq9B8lFQ8x2blT61YT3mNiVlbI85813O_TB3xN7hWRpOF_7Hs-Bsb98yopY2LR0VlzfuK7kNV-Ea8FXskv0PzuofhQvQBv7CETgMx3_i8bKxJqqMTTHUbRP-C1dHMEyADbX-RnRrxgSh-lqV-eWqrjaqTkaq6e83rTEuvTLuoluLWj-w6omRH6qiy0VZ-1KF131er2AqwgMhYidBLRW5mJjcoQXzVfk8u2Heddf2QYxDtgS4kZ4mmtoBBJBSGv9cSCWx52pkONONoN3eIrC-aPrJav2tU-6jWa6iqoeI4XqIUpaFCs6tZGR6QVxfLB_u1gsqE5Drh3GaTC3DHSqlKUhmEW3t9nm3b7g2LAcm6h1DtruhKkDY6wluqAKLr61BKqdtwWqRIRPsVzD6xtvVdogw0D2DP_eVqkYy-ZRo-j469ECqgjg_PD5dLBdblyLoykTWNtU3NqQpdby3u3-yo4aZZpnUq-b30b3eIMLHCt0P0B5rHqI7yYDnR-jnssFXUY6rBru_vv-Q-IYzgc81TGPANE6BItEM51T32kEwNhH8Dmv8YsAvNvGLYSY9frGJ38dofjKZJ1O7LyxiF2AOjG0GerYfloEDUinICeEiDSRxmcc4AfOGBnkIWhuLCo_zGBR2xnkYOTwilMZAJk_QQbNq2FOEaenlER_7UVF4fllEOS_DMoojSonLYyc6Qm-Gx5xdqPQxmUoU7mWCIZlmyBHyJBf-0i3bgcKz2wx6ju5u36AX6KBdb9hL0Kxb-qpH1G-Bo8tO
link.rule.ids 315,783,787,27936,27937,50826,50935
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT8IwGG4UDngxfkb87MHE08K2bqN4Q4SgAvEAxnBZ1rVNloxBEA548if4F_xr_hLfd2MgJxMPy9Lu3db0Xfs87drnJeQaej4BNN80lHSEAXisDcFkzahq5VhaO15g4t7hbs9rD5zHVzdfTYh7YTJ9iNWEG7aMtL_GBo4T0pW1amioYtQghBEC0OrqNim6-FOvQIr1l8FwsJ5oAQbB0oiP0Dhxwa3l5eKNpl3ZfMgGOP0mqynatPbI7pIm0nrm132ypZIDUmrk0dkOydcwoc0shE2Y59Ioodb3x2cTKj-GM4OjqzARjSIZvI_jaD6iQSJpD67czWepVW9lNVlMMYYPoBna3UfhIsBw9VK93dLn6RheAjhHoVukQDZRYUnhvisKJclUOhd5ieIFENgj0m81-422sQy3YIRAkqqGAvbheNI1wVduwJhGcTxmKVtpBqRPuIEHWKZ4aGtdAxqjtPa4qTkTAsZMgh2TQjJO1AmhQtoB11WHh6HtyJAHWnqS17gQzNI1k5fJTV7N_iQT1fAz-WTbR4f4K4eUiZ164Q8zv9HsNFap0__cdEVK7X6343ceek9nZAfzEaIs55wUZtO5ugDuMROXy6_rB5cX2g0
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV27TsMwFLWglYAF8RTl6QGJKWoSJ6nLVvpQgTbq0KKqSxTHthQpTavSDmHiE_gFfo0v4Tpp-piQGKLIzo1j-do-x1Z8LkL3MPMxoPm6JrjFNMBjqTHCq1pFCsuQ0nJ8XZ0d7rpOe2C9DO3hxin-TB9iteGmRkY6X6sBPuWyvBYNDUSkJAhhgQCsurKLikA1TOjjxdrbYDRY77MAgSBpwEcYm-p_W8PJtRt1s7xdyBY2bXLVFGxaR-hwyRJxLXPrMdoR8Qnar-fB2U7R9yjGzSyCTZDn4jDGxs_nVxPaPoI7gasrVCIch9z_mEThYoz9mGMXnjwt5qmVu7KaJjMVwgfATNk1wiDxVbR6Lt4fcW82gY8AzGGYFTFwTSWwJNSxKww1yUQ6k7xGUQL89Qz1W81-va0toy1oAXCkiiaAfFgOt3Vwle0TIpU2HjGEKSQBzsds3wEoEzQwpawCixFSOlSXlDAGSyZGzlEhnsTiAmHGTZ_KikWDwLR4QH3JHU6rlDFiyKpOS-ghb2ZvmmlqeJl6sukph3grh5SQmXrhDzOv3uzUV6nL_7x0h_Z6jZbXeXZfr9CBylYAZVjXqDCfLcQNMI85u112rl9k29k2
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Zn+Electrochemistry+in+1%E2%80%90Ethyl%E2%80%903%E2%80%90Methylimidazolium+and+N%E2%80%90Butyl%E2%80%90N%E2%80%90Methylpyrrolidinium+Dicyanamides%3A+Promising+New+Rechargeable+Zn+Battery+Electrolytes&rft.jtitle=ChemElectroChem&rft.au=Simons%2C+Tristan+J.&rft.au=MacFarlane%2C+Douglas+R.&rft.au=Forsyth%2C+Maria&rft.au=Howlett%2C+Patrick+C.&rft.date=2014-10-14&rft.pub=WILEY%E2%80%90VCH+Verlag&rft.issn=2196-0216&rft.eissn=2196-0216&rft.volume=1&rft.issue=10&rft.spage=1688&rft.epage=1697&rft_id=info:doi/10.1002%2Fcelc.201402177&rft.externalDBID=10.1002%252Fcelc.201402177&rft.externalDocID=CELC201402177
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2196-0216&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2196-0216&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2196-0216&client=summon