Tunable Metasurfaces: The Path to Fully Active Nanophotonics
In the field of nanophotonics, metasurfaces have come to the forefront in real‐world applications, owing to their accessible exotic optical properties that can be readily designed and fabricated using currently available techniques. The subwavelength dimensions and lightweight characteristics of met...
Saved in:
Published in | Advanced photonics research Vol. 2; no. 9 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken
John Wiley & Sons, Inc
01.09.2021
Wiley-VCH |
Subjects | |
Online Access | Get full text |
ISSN | 2699-9293 2699-9293 |
DOI | 10.1002/adpr.202000205 |
Cover
Loading…
Abstract | In the field of nanophotonics, metasurfaces have come to the forefront in real‐world applications, owing to their accessible exotic optical properties that can be readily designed and fabricated using currently available techniques. The subwavelength dimensions and lightweight characteristics of metasurfaces are attractive qualities for the miniaturization of optical devices and are already exploited in devices that can rival, and sometimes even outperform, conventional bulky optics. Over the past decade, ample research has been undertaken to produce high‐performance metasurfaces with exciting optical properties that cannot be found in nature or achieved with conventional optics. To open the path to widely used devices in our everyday lives, the next obvious step for metasurfaces is the development of tunability. Herein, the techniques and development of applications of tunable metasurfaces are presented through the incorporation of active materials and controllable external stimuli, and the uncovered tunable characteristics are critically analyzed. The review rounds up by proposing the future directions and prospects for actively tunable metasurfaces and their potential practical applications.
The recent progress of metasurfaces from static to fully tunable at the meta‐atom level is reviewed, focusing on experimentally realized applications in the visible and IR regime. The different methods of tuning metasurfaces are discussed in terms of switchable, continuously tunable, and fully reprogrammable devices. The review rounds up with comments on the future directions of the field. |
---|---|
AbstractList | In the field of nanophotonics, metasurfaces have come to the forefront in real‐world applications, owing to their accessible exotic optical properties that can be readily designed and fabricated using currently available techniques. The subwavelength dimensions and lightweight characteristics of metasurfaces are attractive qualities for the miniaturization of optical devices and are already exploited in devices that can rival, and sometimes even outperform, conventional bulky optics. Over the past decade, ample research has been undertaken to produce high‐performance metasurfaces with exciting optical properties that cannot be found in nature or achieved with conventional optics. To open the path to widely used devices in our everyday lives, the next obvious step for metasurfaces is the development of tunability. Herein, the techniques and development of applications of tunable metasurfaces are presented through the incorporation of active materials and controllable external stimuli, and the uncovered tunable characteristics are critically analyzed. The review rounds up by proposing the future directions and prospects for actively tunable metasurfaces and their potential practical applications. In the field of nanophotonics, metasurfaces have come to the forefront in real‐world applications, owing to their accessible exotic optical properties that can be readily designed and fabricated using currently available techniques. The subwavelength dimensions and lightweight characteristics of metasurfaces are attractive qualities for the miniaturization of optical devices and are already exploited in devices that can rival, and sometimes even outperform, conventional bulky optics. Over the past decade, ample research has been undertaken to produce high‐performance metasurfaces with exciting optical properties that cannot be found in nature or achieved with conventional optics. To open the path to widely used devices in our everyday lives, the next obvious step for metasurfaces is the development of tunability. Herein, the techniques and development of applications of tunable metasurfaces are presented through the incorporation of active materials and controllable external stimuli, and the uncovered tunable characteristics are critically analyzed. The review rounds up by proposing the future directions and prospects for actively tunable metasurfaces and their potential practical applications. The recent progress of metasurfaces from static to fully tunable at the meta‐atom level is reviewed, focusing on experimentally realized applications in the visible and IR regime. The different methods of tuning metasurfaces are discussed in terms of switchable, continuously tunable, and fully reprogrammable devices. The review rounds up with comments on the future directions of the field. |
Author | Lee, Jihae Seong, Junhwa Rho, Junsuk Badloe, Trevon |
Author_xml | – sequence: 1 givenname: Trevon surname: Badloe fullname: Badloe, Trevon organization: Pohang University of Science and Technology (POSTECH) – sequence: 2 givenname: Jihae surname: Lee fullname: Lee, Jihae organization: Pohang University of Science and Technology (POSTECH) – sequence: 3 givenname: Junhwa surname: Seong fullname: Seong, Junhwa organization: Pohang University of Science and Technology (POSTECH) – sequence: 4 givenname: Junsuk orcidid: 0000-0002-2179-2890 surname: Rho fullname: Rho, Junsuk email: jsrho@postech.ac.kr organization: Pohang University of Science and Technology (POSTECH) |
BookMark | eNqFkEtLAzEUhYMo-Ny6HnDdmslMMom4Kb6hapG6DjeZxKaMk5pklP57p1ZUBHF1H9zvnMvZRZutbw1Chzke5hiTY6gXYUgwwf2A6QbaIUyIgSCi2PzRb6ODGOerG5oXORU76HTataAak92aBLELFrSJJ9l0ZrIJpFmWfHbZNc0yG-nkXk12B61fzHzyrdNxH21ZaKI5-Kx76PHyYnp2PRjfX92cjcYDXQhCB6pmmAlWAQCvS6FLVpMSVGVKMLjilrKKC8EVxpYaxRXgXNdaWU4MpQqqYg_drHVrD3O5CO4ZwlJ6cPJj4cOThJCcbozsEaKJKpmltATOgGNrBdWcEQDGea91tNZaBP_SmZjk3Heh7d-XBeaCM1yVK8fh-koHH2Mw9ss1x3IVuFwFLr8C74HyF6BdguR8mwK45m9MrLE315jlPyZydD55-GbfAeyPlg8 |
CitedBy_id | crossref_primary_10_1021_acsnano_2c04628 crossref_primary_10_1016_j_optlastec_2022_109037 crossref_primary_10_1364_OE_483452 crossref_primary_10_1364_OME_525069 crossref_primary_10_1109_JPHOT_2023_3295595 crossref_primary_10_1021_acsphotonics_1c01833 crossref_primary_10_1021_acs_nanolett_4c01703 crossref_primary_10_1063_5_0199771 crossref_primary_10_1103_PhysRevApplied_22_054022 crossref_primary_10_1038_s41467_022_32987_6 crossref_primary_10_1039_D2NH00555G crossref_primary_10_29026_oea_2024_230216 crossref_primary_10_1002_lpor_202200098 crossref_primary_10_1364_OME_460059 crossref_primary_10_1021_acs_nanolett_1c02838 crossref_primary_10_29026_oes_2022_220011 crossref_primary_10_1002_adom_202202278 crossref_primary_10_1021_acsphotonics_3c01401 crossref_primary_10_1021_acsphotonics_3c00598 crossref_primary_10_1038_s41467_023_37594_7 crossref_primary_10_1364_OE_485902 crossref_primary_10_1364_OE_535152 crossref_primary_10_1515_nanoph_2022_0801 crossref_primary_10_1515_nanoph_2024_0540 crossref_primary_10_1088_2040_8986_ad4722 crossref_primary_10_34133_ultrafastscience_0074 crossref_primary_10_1002_adma_202205367 crossref_primary_10_1002_lpor_202300355 crossref_primary_10_1021_acs_nanolett_4c04904 crossref_primary_10_1021_acsnano_3c04071 crossref_primary_10_1038_s41565_022_01203_3 crossref_primary_10_1063_5_0078804 crossref_primary_10_1021_acsphotonics_4c00776 crossref_primary_10_3390_photonics11050442 crossref_primary_10_1038_s41377_023_01169_4 crossref_primary_10_1515_nanoph_2023_0446 crossref_primary_10_1002_adom_202202187 crossref_primary_10_1063_5_0217386 crossref_primary_10_3788_AOS240682 crossref_primary_10_1016_j_surfin_2024_104239 crossref_primary_10_3390_nano12010153 crossref_primary_10_1021_acsphotonics_2c00976 crossref_primary_10_1016_j_optlastec_2024_111730 crossref_primary_10_1063_5_0156782 crossref_primary_10_1016_j_physrep_2023_07_005 crossref_primary_10_1038_s44310_024_00010_z crossref_primary_10_1117_1_AP_4_6_064002 crossref_primary_10_1002_advs_202203962 crossref_primary_10_1364_OME_499704 crossref_primary_10_1364_AO_495205 crossref_primary_10_1515_nanoph_2022_0075 crossref_primary_10_1002_adom_202300137 crossref_primary_10_1007_s42242_024_00295_1 crossref_primary_10_1016_j_mtphys_2023_101273 crossref_primary_10_1021_acs_nanolett_3c01588 crossref_primary_10_1038_s41377_022_00806_8 crossref_primary_10_1002_adom_202303085 crossref_primary_10_1002_adom_202200196 crossref_primary_10_1038_s41378_023_00609_w crossref_primary_10_3390_mi12101142 crossref_primary_10_1002_rpm_20230017 crossref_primary_10_1021_acs_nanolett_5c00391 crossref_primary_10_1039_D3NR06686J crossref_primary_10_1021_acsami_1c19223 crossref_primary_10_1016_j_mattod_2023_06_003 crossref_primary_10_1002_advs_202406690 crossref_primary_10_1002_advs_202203747 crossref_primary_10_1515_nanoph_2022_0188 crossref_primary_10_1515_nanoph_2022_0063 crossref_primary_10_1364_OE_540676 crossref_primary_10_1039_D1NR07909C crossref_primary_10_1117_1_AP_5_4_046005 crossref_primary_10_1515_nanoph_2021_0684 crossref_primary_10_1002_advs_202102646 crossref_primary_10_1002_lpor_202300618 crossref_primary_10_1515_nanoph_2023_0352 crossref_primary_10_3390_photonics10101089 |
Cites_doi | 10.1002/adma.201904069 10.1038/s41467-020-18793-y 10.1126/science.1150124 10.1126/sciadv.abd7097 10.1002/adom.201801813 10.1103/PhysRevLett.126.033901 10.1021/acsnano.8b04889 10.1103/PhysRevApplied.10.054066 10.1364/PRJ.415789 10.1002/adom.202000652 10.1126/science.1210713 10.1038/nphoton.2015.247 10.1002/lpor.201900065 10.1021/acsnano.0c01469 10.1038/nnano.2015.2 10.1021/nl403751p 10.1088/1361-6463/ab25ff 10.1039/D0NR05624C 10.1002/adom.202000783 10.1038/nature13487 10.1021/acsnano.0c05656 10.1002/adpr.202000034 10.1021/acsnano.9b02425 10.1126/sciadv.aar6768 10.1038/srep13384 10.1073/pnas.2001435117 10.1021/acsami.0c12203 10.1021/acsnano.8b05467 10.1038/s41467-020-19312-9 10.1039/D0NR07479A 10.1038/s41578-019-0133-0 10.1002/advs.202000192 10.1038/nature11727 10.1021/acsnano.9b08228 10.1021/acs.nanolett.9b03143 10.1146/annurev-matsci-082908-145405 10.1039/D0TC02427A 10.1007/978-3-030-44992-6_3 10.1002/adfm.201806181 10.1063/5.0028093 10.1021/acsphotonics.0c00787 10.1038/s41377-019-0159-5 10.1209/0295-5075/128/67001 10.1002/lpor.202000373 10.1038/s41467-020-16136-5 10.1038/s41377-020-0329-5 10.1126/sciadv.abd4623 10.1515/nanoph-2020-0440 10.1021/nl071664a 10.1364/AO.386811 10.1038/nmat2226 10.1002/adpr.202000012 10.1038/s41566-020-0691-0 10.1039/C9CP05621A 10.1021/ph500121d 10.1021/acs.nanolett.9b01246 10.1016/j.nanoen.2020.105426 10.1002/adma.201907077 10.1002/adom.202001256 10.1109/ACCESS.2020.3026313 10.1080/00150193.2014.932653 10.1021/acsphotonics.9b00950 10.1126/science.aae0330 10.1021/acsphotonics.0c01168 10.1126/science.aam9189 10.1002/adom.201801786 10.1146/annurev.ms.01.080171.000533 10.1038/s41563-019-0404-6 10.1021/acs.nanolett.7b00359 10.1364/OE.27.005874 10.1021/acsnano.7b07121 10.1021/acsphotonics.7b01373 10.1038/lsa.2017.16 10.1038/s41598-018-28744-9 10.1021/acs.nanolett.7b02336 10.1021/acs.jpcc.7b12609 10.1364/OPTICA.2.000255 10.1021/acsphotonics.8b01243 10.1016/j.mattod.2014.06.001 10.1002/adfm.201704993 10.3390/nano8110871 10.1021/nn101475c 10.1002/adom.202000570 10.1038/nmat2009 10.1103/PhysRevB.99.205404 10.1103/PhysRevLett.118.113901 10.1038/s41565-018-0346-1 10.1088/1361-6528/abc3e5 10.1364/PRJ.7.000734 10.1021/acs.nanolett.7b03665 10.1038/ncomms8337 10.1038/s41467-019-09103-2 10.1021/acsnano.5b05279 10.1002/adom.201801709 10.1002/adom.201900653 10.1088/2040-8986/abc6fa 10.1038/nature14588 10.3390/s16081246 10.1038/s41377-019-0205-3 10.1038/nmat3433 10.1016/j.mee.2019.111146 10.1088/1367-2630/15/12/123029 10.1103/PhysRevLett.116.233901 10.1002/lpor.201600144 10.1126/science.abb0971 10.1063/5.0007351 10.1002/adom.201801782 10.1038/s41598-020-59729-2 10.1038/s41566-018-0246-9 10.1126/sciadv.aat4436 10.1021/acsnano.5b00723 10.1364/PRJ.393333 10.1002/adfm.201806692 10.1021/acsphotonics.0c00983 10.1038/ncomms3807 10.1002/adom.201700261 10.1021/nl1006307 10.1002/adma.202005893 10.1515/nanoph-2019-0474 10.1103/PhysRevB.92.161406 10.1021/acsnano.0c01269 10.1021/acs.nanolett.7b02350 10.1021/la701844s 10.1557/mrs2000.151 10.1126/sciadv.aaw2205 10.1109/JETCAS.2020.2976165 10.1126/science.1125907 10.1038/nphoton.2017.126 10.1364/JOSAB.394671 10.1088/1361-665X/aba6fb 10.1002/adfm.202007210 10.1021/acsphotonics.0c00947 10.1021/nn4054446 10.1002/lpor.202000085 10.1021/acs.nanolett.8b04311 10.1038/s41565-017-0052-4 10.1088/1361-6463/ab7560 10.1002/adom.201700939 10.1021/acsnano.9b09277 10.1515/nanoph-2020-0039 10.1002/adom.201901182 10.3390/mi9110560 10.1364/OE.27.021153 10.1038/ncomms10479 10.1038/s41586-018-0034-1 10.1038/s41467-019-13131-3 10.1103/PhysRevApplied.9.034021 10.1021/acsphotonics.0c01030 10.1364/OL.38.004116 10.1126/sciadv.1701377 10.1038/nphoton.2010.179 10.1126/sciadv.abe9943 10.1002/lpor.202000253 10.1021/acs.nanolett.6b00555 10.3390/en12010089 10.1080/09500340600855106 10.1038/s41378-020-00226-x 10.3390/ma9070556 10.1038/s41598-017-02847-1 10.1021/nl501955e 10.1038/nmat2330 10.1038/s41427-018-0082-x 10.1002/adma.201703878 10.1021/acsphotonics.7b01551 10.1364/OE.412991 10.3390/app8060982 10.1038/s41378-020-00237-8 10.1364/OME.7.000008 10.1038/s41598-018-21479-7 10.1002/adom.201900175 10.1038/s41467-021-21175-7 10.1103/PhysRevApplied.13.021003 10.1038/ncomms10429 10.1021/acs.nanolett.0c02097 10.1038/s41427-018-0061-2 10.1021/acsphotonics.7b01044 10.1038/ncomms15209 10.1002/pssa.201700794 10.1002/adom.201801070 10.1126/science.aat3100 10.1021/acsphotonics.8b00972 10.1126/sciadv.abb7171 10.1063/1.4955272 10.1364/PRJ.395749 10.1126/sciadv.aav6815 10.1016/j.mtphys.2020.100205 10.1021/nl403643v 10.1364/OE.21.026387 10.1515/nanoph-2020-0373 10.1038/s41586-021-03353-1 10.1038/ncomms8032 10.1126/science.1221561 10.1088/2040-8986/abcc52 10.1021/acsami.0c02467 10.1088/2040-8986/abbc55 10.1515/nanoph-2018-0176 10.1364/OL.43.002636 10.1038/s41566-020-0604-2 10.1038/nmat4480 10.1002/adfm.201906711 10.29026/oea.2018.180009 10.1364/OE.26.020258 10.1126/science.1232009 10.1364/OE.18.016492 10.1016/S0370-1573(99)00049-6 10.1002/adma.202001863 10.1016/j.mattod.2020.06.002 10.1002/adfm.202006711 10.1021/acsphotonics.7b01343 10.1038/s41467-019-11598-8 10.1038/nmat3839 10.1002/aelm.201800185 10.1038/s41467-017-00164-9 10.1109/JETCAS.2020.2972764 10.1038/natrevmats.2017.10 10.1021/acsphotonics.9b01807 10.1021/acsami.9b05857 10.1088/1361-6463/abaced 10.1002/adma.201606422 10.1038/nnano.2015.302 10.1186/s40580-019-0213-2 10.1515/nanoph-2019-0117 10.1021/acsphotonics.9b00301 10.1021/acsphotonics.8b01383 10.1016/j.isci.2020.101877 10.1186/s40580-020-00226-7 10.1103/PhysRevLett.95.137404 10.1103/PhysRevApplied.9.034009 10.1038/s41598-018-30835-6 10.1021/acsphotonics.7b01182 10.1021/acsnano.0c05026 10.1038/s41377-020-0309-9 10.1038/s41566-020-0685-y 10.1002/adom.201901932 10.1103/PhysRevB.101.024104 10.1002/adom.202002002 10.1002/lpor.201000014 10.1021/acsami.0c07320 10.1021/acsnano.0c06968 10.1021/acs.nanolett.6b00618 10.1039/C9NA00751B 10.1021/acs.nanolett.6b04378 10.1016/j.mattod.2017.06.007 10.1186/s40580-020-00232-9 10.1021/acsphotonics.0c00554 10.1126/sciadv.abc2709 10.1016/j.optcom.2018.05.085 10.1002/adma.202004664 10.1038/s41377-018-0038-5 10.1039/D0TC00689K 10.1002/adma.201700412 10.1002/adma.202004919 10.1515/nanoph-2020-0311 10.1002/adom.201800169 10.1002/adom.201801639 10.1515/nanoph-2018-0183 10.1038/s41565-020-00787-y 10.3390/s20154108 10.1021/acsphotonics.0c01241 10.1021/acsnano.8b06623 10.1038/s41565-020-0768-4 10.1002/adma.201701044 10.1038/s41467-021-21440-9 10.1088/2040-8978/16/3/032001 10.3390/ma10091046 10.1039/D0NH00139B 10.1021/acsphotonics.7b01517 10.1364/OME.390052 10.1038/s41565-017-0034-6 10.1007/s12206-021-0243-7 10.1038/ncomms14606 10.1002/admt.201900930 10.1021/acs.nanolett.7b00807 |
ContentType | Journal Article |
Copyright | 2021 The Authors. Advanced Photonics Research published by Wiley‐VCH GmbH Copyright John Wiley & Sons, Inc. 2021 |
Copyright_xml | – notice: 2021 The Authors. Advanced Photonics Research published by Wiley‐VCH GmbH – notice: Copyright John Wiley & Sons, Inc. 2021 |
DBID | 24P AAYXX CITATION ABUWG AFKRA AZQEC BENPR CCPQU DWQXO PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS DOA |
DOI | 10.1002/adpr.202000205 |
DatabaseName | Wiley Online Library Open Access CrossRef ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central ProQuest Central Premium ProQuest One Academic Publicly Available Content Database (Proquest) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2699-9293 |
EndPage | n/a |
ExternalDocumentID | oai_doaj_org_article_2e52c2b46f554a86a80ff95c862aa688 10_1002_adpr_202000205 ADPR202000205 |
Genre | article |
GrantInformation_xml | – fundername: National Research Foundation (NRF) funderid: NRF-2019R1A2C3003129 |
GroupedDBID | 0R~ 1OC 24P AAFWJ AAHHS ACCFJ ACCMX ADZOD AEEZP AEQDE AFKRA AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN BENPR CCPQU EBS GROUPED_DOAJ IAO ITC M~E OK1 PIMPY AAYXX ADMLS AFPKN CITATION PHGZM PHGZT AAMMB ABUWG AEFGJ AGXDD AIDQK AIDYY AZQEC DWQXO PKEHL PQEST PQQKQ PQUKI PRINS PUEGO WIN |
ID | FETCH-LOGICAL-c3925-bd606967aaa8d49c46d24ab7e4ae078f5678998b00f5eb8ba01cdcbf82e55ba73 |
IEDL.DBID | DOA |
ISSN | 2699-9293 |
IngestDate | Wed Aug 27 01:27:12 EDT 2025 Sun Jul 13 03:47:59 EDT 2025 Thu Apr 24 23:12:24 EDT 2025 Tue Jul 01 01:24:03 EDT 2025 Wed Jan 22 16:27:44 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Language | English |
License | Attribution http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3925-bd606967aaa8d49c46d24ab7e4ae078f5678998b00f5eb8ba01cdcbf82e55ba73 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-2179-2890 |
OpenAccessLink | https://doaj.org/article/2e52c2b46f554a86a80ff95c862aa688 |
PQID | 3089860747 |
PQPubID | 6860423 |
PageCount | 24 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_2e52c2b46f554a86a80ff95c862aa688 proquest_journals_3089860747 crossref_primary_10_1002_adpr_202000205 crossref_citationtrail_10_1002_adpr_202000205 wiley_primary_10_1002_adpr_202000205_ADPR202000205 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | September 2021 |
PublicationDateYYYYMMDD | 2021-09-01 |
PublicationDate_xml | – month: 09 year: 2021 text: September 2021 |
PublicationDecade | 2020 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken |
PublicationTitle | Advanced photonics research |
PublicationYear | 2021 |
Publisher | John Wiley & Sons, Inc Wiley-VCH |
Publisher_xml | – name: John Wiley & Sons, Inc – name: Wiley-VCH |
References | 2010; 10 2019; 2019 2013; 4 2020; 20 2010; 18 2019; 99 2019; 11 2019; 10 2019; 13 2019; 14 2020; 15 2019; 19 2020; 14 2019; 18 2020; 13 2020; 12 2020; 11 2020; 10 2018; 43 2012; 11 2018; 7 2018; 6 2021; 79 2018; 9 2018; 8 2009; 95 2018; 5 2018; 4 2018; 1 2014; 16 2019; 27 2007; 6 2014; 14 2014; 13 2019; 29 2007; 7 2008; 24 2018; 30 2014; 17 1971; 1 2010; 4 2019; 8 2019; 7 2018; 28 2019; 4 2019; 6 2019; 5 2019; 31 2020; 39 2016; 10 2020; 37 2020; 32 2015; 524 2016; 16 2018; 21 2016; 15 2011; 5 2018; 26 2016; 11 2018; 18 2016; 7 2013; 339 2020; 30 2005; 95 2020; 28 2020; 23 2020; 22 2019; 216 2018; 12 2018; 10 2007; 318 2016; 9 2018; 13 2020; 29 2017; 5 2018; 362 2017; 6 2017; 7 2018; 122 2017; 8 2017; 2 2017; 3 2021; 23 2013; 21 2019; 52 2016; 109 2021; 126 2008; 7 2020; 128 2020; 59 2019; 364 2017; 118 2014; 1 2020; 8 2020; 7 2021; 35 2020; 6 2020; 5 2021; 32 2013; 15 2021; 31 2020; 2 2021; 33 2020; 1 2020; 53 2000; 324 2020; 370 2020; 9 2019; 1090 2016; 352 2021; 592 2016; 116 2014; 8 2012; 336 2015; 2 2021; 9 2021; 8 2011; 334 2021; 7 2015; 6 2015; 5 2021; 2 2000; 25 2011 2015; 92 2020; 220 2018; 426 2015; 10 2017; 23 2017; 29 2020; 101 2007; 54 2015; 9 2014; 511 2006; 312 2021; 13 2014; 468 2021; 16 2021; 15 2021; 12 2013; 38 2018; 556 2021 2017; 17 2020 2017; 11 2017; 10 2020; 116 2020; 117 2013; 493 2013 2009; 39 e_1_2_8_241_1 e_1_2_8_287_1 e_1_2_8_264_1 e_1_2_8_26_1 e_1_2_8_49_1 e_1_2_8_203_1 e_1_2_8_226_1 e_1_2_8_132_1 e_1_2_8_155_1 e_1_2_8_178_1 Frese D. (e_1_2_8_249_1) 2021 e_1_2_8_9_1 e_1_2_8_117_1 e_1_2_8_170_1 e_1_2_8_193_1 e_1_2_8_64_1 e_1_2_8_87_1 e_1_2_8_41_1 e_1_2_8_230_1 e_1_2_8_253_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_238_1 Enoch J. M. (e_1_2_8_2_1) 2007; 54 e_1_2_8_215_1 e_1_2_8_120_1 e_1_2_8_143_1 e_1_2_8_166_1 e_1_2_8_189_1 e_1_2_8_91_1 e_1_2_8_105_1 e_1_2_8_128_1 e_1_2_8_181_1 e_1_2_8_53_1 e_1_2_8_76_1 e_1_2_8_30_1 e_1_2_8_242_1 e_1_2_8_265_1 e_1_2_8_25_1 e_1_2_8_280_1 e_1_2_8_48_1 e_1_2_8_227_1 e_1_2_8_288_1 e_1_2_8_204_1 e_1_2_8_133_1 e_1_2_8_179_1 e_1_2_8_110_1 e_1_2_8_171_1 e_1_2_8_86_1 e_1_2_8_118_1 e_1_2_8_194_1 e_1_2_8_63_1 e_1_2_8_40_1 e_1_2_8_156_1 e_1_2_8_231_1 e_1_2_8_14_1 e_1_2_8_37_1 e_1_2_8_239_1 e_1_2_8_216_1 e_1_2_8_144_1 e_1_2_8_90_1 e_1_2_8_121_1 e_1_2_8_98_1 e_1_2_8_106_1 e_1_2_8_182_1 e_1_2_8_75_1 e_1_2_8_129_1 e_1_2_8_52_1 e_1_2_8_167_1 Li Y. (e_1_2_8_58_1) 2020; 12 e_1_2_8_243_1 e_1_2_8_281_1 Liu S. (e_1_2_8_220_1) 2017; 23 e_1_2_8_228_1 e_1_2_8_266_1 e_1_2_8_205_1 e_1_2_8_289_1 e_1_2_8_81_1 e_1_2_8_111_1 e_1_2_8_7_1 Mao L. (e_1_2_8_50_1) 2020; 2 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_66_1 e_1_2_8_89_1 e_1_2_8_119_1 e_1_2_8_172_1 e_1_2_8_195_1 e_1_2_8_134_1 e_1_2_8_157_1 e_1_2_8_17_1 e_1_2_8_232_1 He Q. (e_1_2_8_28_1) 2019; 2019 e_1_2_8_270_1 e_1_2_8_217_1 e_1_2_8_255_1 e_1_2_8_278_1 e_1_2_8_70_1 e_1_2_8_122_1 e_1_2_8_160_1 e_1_2_8_32_1 e_1_2_8_55_1 e_1_2_8_78_1 e_1_2_8_107_1 e_1_2_8_183_1 e_1_2_8_145_1 e_1_2_8_168_1 e_1_2_8_93_1 e_1_2_8_221_1 e_1_2_8_282_1 e_1_2_8_27_1 e_1_2_8_229_1 e_1_2_8_244_1 e_1_2_8_267_1 e_1_2_8_206_1 e_1_2_8_80_1 e_1_2_8_150_1 e_1_2_8_8_1 e_1_2_8_42_1 e_1_2_8_88_1 e_1_2_8_173_1 e_1_2_8_112_1 e_1_2_8_158_1 e_1_2_8_196_1 e_1_2_8_135_1 e_1_2_8_39_1 e_1_2_8_210_1 e_1_2_8_271_1 e_1_2_8_16_1 e_1_2_8_218_1 e_1_2_8_256_1 e_1_2_8_279_1 e_1_2_8_92_1 e_1_2_8_100_1 e_1_2_8_161_1 e_1_2_8_31_1 e_1_2_8_77_1 e_1_2_8_54_1 e_1_2_8_108_1 e_1_2_8_184_1 e_1_2_8_123_1 e_1_2_8_169_1 e_1_2_8_146_1 e_1_2_8_283_1 e_1_2_8_68_1 e_1_2_8_260_1 e_1_2_8_222_1 e_1_2_8_207_1 e_1_2_8_245_1 e_1_2_8_268_1 e_1_2_8_5_1 e_1_2_8_151_1 Saha S. (e_1_2_8_233_1) 2020 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_113_1 e_1_2_8_136_1 e_1_2_8_159_1 e_1_2_8_174_1 e_1_2_8_197_1 Ko B. (e_1_2_8_65_1) 2021 e_1_2_8_60_1 e_1_2_8_83_1 e_1_2_8_19_1 e_1_2_8_109_1 e_1_2_8_272_1 e_1_2_8_57_1 e_1_2_8_211_1 e_1_2_8_234_1 e_1_2_8_257_1 e_1_2_8_95_1 e_1_2_8_219_1 e_1_2_8_162_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_101_1 e_1_2_8_124_1 e_1_2_8_147_1 e_1_2_8_185_1 e_1_2_8_72_1 e_1_2_8_29_1 e_1_2_8_284_1 e_1_2_8_261_1 e_1_2_8_200_1 e_1_2_8_223_1 Ren Q. (e_1_2_8_254_1) 2020; 8 e_1_2_8_269_1 e_1_2_8_152_1 e_1_2_8_208_1 e_1_2_8_6_1 Li S. Q. (e_1_2_8_99_1) 2019; 1090 e_1_2_8_21_1 e_1_2_8_67_1 e_1_2_8_44_1 e_1_2_8_137_1 e_1_2_8_175_1 e_1_2_8_82_1 e_1_2_8_114_1 e_1_2_8_198_1 e_1_2_8_18_1 e_1_2_8_273_1 e_1_2_8_250_1 e_1_2_8_79_1 e_1_2_8_212_1 e_1_2_8_235_1 e_1_2_8_258_1 e_1_2_8_94_1 e_1_2_8_163_1 e_1_2_8_140_1 e_1_2_8_10_1 e_1_2_8_56_1 e_1_2_8_33_1 e_1_2_8_102_1 e_1_2_8_148_1 e_1_2_8_186_1 e_1_2_8_71_1 e_1_2_8_125_1 Popov A. K. (e_1_2_8_246_1) 2011 e_1_2_8_262_1 e_1_2_8_285_1 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_224_1 e_1_2_8_201_1 e_1_2_8_247_1 e_1_2_8_3_1 e_1_2_8_130_1 e_1_2_8_153_1 e_1_2_8_209_1 e_1_2_8_138_1 e_1_2_8_62_1 e_1_2_8_85_1 e_1_2_8_115_1 e_1_2_8_176_1 e_1_2_8_199_1 e_1_2_8_251_1 e_1_2_8_274_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_59_1 e_1_2_8_190_1 e_1_2_8_213_1 e_1_2_8_259_1 Kim I. (e_1_2_8_141_1) 2021 e_1_2_8_236_1 e_1_2_8_164_1 e_1_2_8_97_1 e_1_2_8_149_1 e_1_2_8_51_1 e_1_2_8_74_1 e_1_2_8_126_1 e_1_2_8_187_1 e_1_2_8_240_1 e_1_2_8_263_1 Jiang J. (e_1_2_8_277_1) 2020 e_1_2_8_286_1 e_1_2_8_46_1 e_1_2_8_69_1 e_1_2_8_180_1 e_1_2_8_202_1 e_1_2_8_225_1 e_1_2_8_248_1 e_1_2_8_154_1 Wiecha P. (e_1_2_8_276_1) 2021 e_1_2_8_4_1 e_1_2_8_131_1 e_1_2_8_192_1 e_1_2_8_116_1 e_1_2_8_23_1 e_1_2_8_139_1 e_1_2_8_84_1 e_1_2_8_61_1 e_1_2_8_177_1 e_1_2_8_252_1 e_1_2_8_275_1 e_1_2_8_35_1 e_1_2_8_191_1 e_1_2_8_214_1 e_1_2_8_237_1 e_1_2_8_165_1 e_1_2_8_96_1 e_1_2_8_142_1 Nam V. B. (e_1_2_8_127_1) 2020; 7 e_1_2_8_12_1 e_1_2_8_73_1 Xiao S. (e_1_2_8_103_1) 2009; 95 e_1_2_8_104_1 e_1_2_8_188_1 |
References_xml | – volume: 5 start-page: eaaw2205 year: 2019 publication-title: Sci. Adv. – volume: 9 start-page: 034009 year: 2018 publication-title: Phys. Rev. Appl. – volume: 9 start-page: 10647 year: 2015 publication-title: ACS Nano – volume: 324 start-page: 107 year: 2000 publication-title: Phys. Rep. – volume: 92 start-page: 161406 year: 2015 publication-title: Phys. Rev. B – volume: 18 start-page: 16492 year: 2010 publication-title: Opt. Express – volume: 18 start-page: 8054 year: 2018 publication-title: Nano Lett. – volume: 5 start-page: 1800 year: 2018 publication-title: ACS Photonics – volume: 43 start-page: 2636 year: 2018 publication-title: Opt. Lett. – volume: 5 start-page: 4677 year: 2018 publication-title: ACS Photonics – volume: 10 start-page: 054066 year: 2018 publication-title: Phys. Rev. Appl. – volume: 5 start-page: 1700261 year: 2017 publication-title: Adv. Opt. Mater. – volume: 16 start-page: 032001 year: 2014 publication-title: J. Opt. – volume: 7 start-page: 1801639 year: 2019 publication-title: Adv. Opt. Mater. – volume: 4 start-page: 742 year: 2019 publication-title: Nat. Rev. Mater. – volume: 9 start-page: 034021 year: 2018 publication-title: Phys. Rev. Appl. – volume: 15 start-page: 123029 year: 2013 publication-title: New J. Phys. – volume: 29 start-page: 115018 year: 2020 publication-title: Smart Mater. Struct. – volume: 6 start-page: 1800169 year: 2018 publication-title: Adv. Opt. Mater. – volume: 8 start-page: 175753 year: 2020 publication-title: IEEE Access – volume: 8 start-page: 10639 year: 2018 publication-title: Sci. Rep. – volume: 21 start-page: 26387 year: 2013 publication-title: Opt. Express – volume: 10 start-page: 3654 year: 2019 publication-title: Nat. Commun. – volume: 28 start-page: 37590 year: 2020 publication-title: Opt. Express – volume: 7 start-page: 18 year: 2020 publication-title: Nano Converg. – volume: 22 start-page: 2337 year: 2020 publication-title: Phys. Chem. Chem. Phys. – volume: 8 start-page: 98 year: 2019 publication-title: Light Sci. Appl. – volume: 7 start-page: 26 year: 2018 publication-title: Light Sci. Appl. – volume: 10 start-page: 60 year: 2016 publication-title: Nat. Photonics – volume: 32 start-page: 065202 year: 2021 publication-title: Nanotechnology – volume: 7 start-page: 3122 year: 2007 publication-title: Nano Lett. – volume: 7 start-page: 1813 year: 2020 publication-title: ACS Photonics – volume: 116 start-page: 163504 year: 2020 publication-title: Appl. Phys. Lett. – volume: 12 start-page: 924 year: 2021 publication-title: Nat. Commun. – volume: 7 start-page: eabe9943 year: 2021 publication-title: Sci. Adv. – volume: 8 start-page: 415 year: 2019 publication-title: Nanophotonics – volume: 17 start-page: 7033 year: 2017 publication-title: Nano Lett. – volume: 99 start-page: 205404 year: 2019 publication-title: Phys. Rev. B – volume: 29 start-page: 1606422 year: 2017 publication-title: Adv. Mater. – volume: 14 start-page: 658 year: 2020 publication-title: Nat. Photonics – volume: 29 start-page: 1806692 year: 2019 publication-title: Adv. Funct. Mater. – volume: 556 start-page: 360 year: 2018 publication-title: Nature – volume: 14 start-page: 5555 year: 2014 publication-title: Nano Lett. – volume: 468 start-page: 1 year: 2014 publication-title: Ferroelectrics – volume: 27 start-page: 21153 year: 2019 publication-title: Opt. Express – volume: 23 start-page: 1 year: 2017 publication-title: IEEE J. Sel. Top. Quantum Electron. – volume: 10 start-page: 6 year: 2020 publication-title: IEEE J. Emerg. Sel. Top. Circuits Syst. – volume: 14 start-page: 2000085 year: 2020 publication-title: Laser Photonics Rev. – volume: 27 start-page: 5874 year: 2019 publication-title: Opt. Express – volume: 7 start-page: 2618 year: 2020 publication-title: ACS Photonics – volume: 12 start-page: 2151 year: 2018 publication-title: ACS Nano – volume: 19 start-page: 7988 year: 2019 publication-title: Nano Lett. – volume: 12 start-page: 42393 year: 2020 publication-title: ACS Appl. Mater. Interfaces – volume: 22 start-page: 114002 year: 2020 publication-title: J. Opt. – volume: 35 start-page: 837 year: 2021 publication-title: J. Mech. Sci. Technol. – volume: 6 start-page: e17016 year: 2017 publication-title: Light Sci. Appl. – volume: 5 start-page: 1742 year: 2018 publication-title: ACS Photonics – volume: 1 start-page: 2000012 year: 2020 publication-title: Adv. Photonics Res. – volume: 7 start-page: 1900175 year: 2019 publication-title: Adv. Opt. Mater. – volume: 8 start-page: 7189 year: 2020 publication-title: J. Mater. Chem. C – volume: 339 start-page: 1232009 year: 2013 publication-title: Science – volume: 13 start-page: 227 year: 2018 publication-title: Nat. Nanotechnol. – volume: 95 start-page: 2007 year: 2009 publication-title: Appl. Phys. Lett. – volume: 8 start-page: 1177 year: 2020 publication-title: Photonics Res. – volume: 33 start-page: 2005893 year: 2021 publication-title: Adv. Mater. – volume: 10 start-page: 308 year: 2015 publication-title: Nat. Nanotechnol. – volume: 7 start-page: 972 year: 2008 publication-title: Nat. Mater. – volume: 24 start-page: 541 year: 2008 publication-title: Langmuir – volume: 10 start-page: 1046 year: 2017 publication-title: Materials – volume: 7 start-page: 3096 year: 2020 publication-title: ACS Photonics – volume: 20 start-page: 6084 year: 2020 publication-title: Nano Lett. – volume: 16 start-page: 1246 year: 2016 publication-title: Sensors – volume: 43 start-page: 94 year: 2018 – volume: 39 start-page: 89 year: 2020 publication-title: Mater. Today – volume: 8 start-page: 871 year: 2018 publication-title: Nanomaterials – volume: 17 start-page: 407 year: 2017 publication-title: Nano Lett. – volume: 33 start-page: 2004919 year: 2021 publication-title: Adv. Mater. – volume: 1090 start-page: 1087 year: 2019 publication-title: Science – volume: 511 start-page: 206 year: 2014 publication-title: Nature – volume: 12 start-page: 30815 year: 2020 publication-title: ACS Appl. Mater. Interfaces – volume: 32 start-page: 1907077 year: 2020 publication-title: Adv. Mater. – volume: 334 start-page: 333 year: 2011 publication-title: Science – volume: 8 start-page: 2001256 year: 2020 publication-title: Adv. Opt. Mater. – volume: 8 start-page: 1900653 year: 2020 publication-title: Adv. Opt. Mater. – volume: 9 start-page: 556 year: 2016 publication-title: Materials – volume: 31 start-page: 2006711 year: 2021 publication-title: Adv. Funct. Mater. – volume: 1 start-page: 18000901 year: 2018 publication-title: Opto-Electron. Adv. – volume: 122 start-page: 4600 year: 2018 publication-title: J. Phys. Chem. C – volume: 8 start-page: 982 year: 2018 publication-title: Appl. Sci. – volume: 17 start-page: 3027 year: 2017 publication-title: Nano Lett. – volume: 6 start-page: eabc2709 year: 2020 publication-title: Sci. Adv. – volume: 312 start-page: 1780 year: 2006 publication-title: Science – volume: 10 start-page: 259 year: 2020 publication-title: Nanophotonics – volume: 14 start-page: 7892 year: 2020 publication-title: ACS Nano – volume: 12 start-page: 10683 year: 2018 publication-title: ACS Nano – volume: 12 start-page: 1225 year: 2021 publication-title: Nat. Commun. – volume: 8 start-page: 797 year: 2014 publication-title: ACS Nano – volume: 11 start-page: 24264 year: 2019 publication-title: ACS Appl. Mater. Interfaces – volume: 8 start-page: 1901932 year: 2020 publication-title: Adv. Opt. Mater. – volume: 4 start-page: 518 year: 2010 publication-title: Nat. Photonics – volume: 8 start-page: 2000570 year: 2020 publication-title: Adv. Opt. Mater. – volume: 318 start-page: 1750 year: 2007 publication-title: Science – volume: 7 start-page: 23 year: 2020 publication-title: Nano Converg. – volume: 493 start-page: 195 year: 2013 publication-title: Nature – volume: 524 start-page: 204 year: 2015 publication-title: Nature – volume: 39 start-page: 25 year: 2009 publication-title: Annu. Rev. Mater. Res. – volume: 8 start-page: 14606 year: 2017 publication-title: Nat. Commun. – volume: 8 start-page: 2000652 year: 2020 publication-title: Adv. Opt. Mater. – volume: 5 start-page: 308 year: 2011 publication-title: Laser Photonics Rev. – start-page: 117 year: 2011 end-page: 158 – volume: 4 start-page: 5233 year: 2010 publication-title: ACS Nano – volume: 6 start-page: 2860 year: 2019 publication-title: ACS Photonics – volume: 13 start-page: 021003 year: 2020 publication-title: Phys. Rev. Appl. – volume: 8 start-page: 3378 year: 2018 publication-title: Sci. Rep. – volume: 38 start-page: 4116 year: 2013 publication-title: Opt. Lett. – volume: 14 start-page: 15317 year: 2020 publication-title: ACS Nano – volume: 9 start-page: 4407 year: 2020 publication-title: Nanophotonics – volume: 37 start-page: 2534 year: 2020 publication-title: J. Opt. Soc. Am. B – volume: 9 start-page: 1189 year: 2020 publication-title: Nanophotonics – volume: 10 start-page: 5030 year: 2019 publication-title: Nat. Commun. – volume: 6 start-page: 7032 year: 2015 publication-title: Nat. Commun. – volume: 220 start-page: 111146 year: 2020 publication-title: Microelectron. Eng. – volume: 7 start-page: 734 year: 2019 publication-title: Photonics Res. – volume: 7 start-page: eabd7097 year: 2021 publication-title: Sci. Adv. – year: 2020 publication-title: Nat. Rev. Mater. – volume: 16 start-page: 5319 year: 2016 publication-title: Nano Lett. – volume: 216 start-page: 1700794 year: 2019 publication-title: Phys. Status Solidi – volume: 2 start-page: 17010 year: 2017 publication-title: Nat. Rev. Mater. – volume: 10 start-page: 4522 year: 2020 publication-title: Sci. Rep. – volume: 10 start-page: 581 year: 2018 publication-title: NPG Asia Mater. – volume: 19 start-page: 3961 year: 2019 publication-title: Nano Lett. – volume: 30 start-page: 1703878 year: 2018 publication-title: Adv. Mater. – volume: 10 start-page: 1082 year: 2019 publication-title: Nat. Commun. – volume: 17 start-page: 5555 year: 2017 publication-title: Nano Lett. – volume: 14 start-page: 15042 year: 2020 publication-title: ACS Nano – volume: 14 start-page: 237 year: 2019 publication-title: Nat. Nanotechnol. – start-page: QTh1B.3 year: 2013 – volume: 29 start-page: 1700412 year: 2017 publication-title: Adv. Mater. – volume: 336 start-page: 1566 year: 2012 publication-title: Science – volume: 13 start-page: 220 year: 2018 publication-title: Nat. Nanotechnol. – volume: 9 start-page: 560 year: 2018 publication-title: Micromachines – volume: 7 start-page: 1801070 year: 2018 publication-title: Adv. Opt. Mater. – volume: 10 start-page: 888 year: 2018 publication-title: NPG Asia Mater. – volume: 7 start-page: 1801786 year: 2019 publication-title: Adv. Opt. Mater. – volume: 1 start-page: 833 year: 2014 publication-title: ACS Photonics – volume: 6 start-page: eabb7171 year: 2020 publication-title: Sci. Adv. – volume: 117 start-page: 13350 year: 2020 publication-title: Proc. Natl. Acad. Sci. – volume: 32 start-page: 2001863 year: 2020 publication-title: Adv. Mater. – volume: 8 start-page: 2000783 year: 2020 publication-title: Adv. Opt. Mater. – volume: 5 start-page: 4513 year: 2018 publication-title: ACS Photonics – volume: 17 start-page: 426 year: 2014 publication-title: Mater. Today – volume: 4 start-page: 2807 year: 2013 publication-title: Nat. Commun. – volume: 22 start-page: 124001 year: 2020 publication-title: J. Opt. – volume: 12 start-page: 1 year: 2020 publication-title: IEEE Photonics J. – volume: 53 start-page: 503002 year: 2020 publication-title: J. Phys. D: Appl. Phys. – volume: 6 start-page: 824 year: 2007 publication-title: Nat. Mater. – volume: 15 start-page: 2000373 year: 2021 publication-title: Laser Photonics Rev. – volume: 11 start-page: 2268 year: 2020 publication-title: Nat. Commun. – volume: 2 start-page: 255 year: 2015 publication-title: Optica – volume: 53 start-page: 204001 year: 2020 publication-title: J. Phys. D: Appl. Phys. – year: 2020 publication-title: Mater. Today – start-page: 1 year: 2021 publication-title: Photonics Res. – volume: 8 start-page: 15209 year: 2017 publication-title: Nat. Commun. – volume: 10 start-page: 919 year: 2020 publication-title: Nanophotonics – volume: 52 start-page: 373002 year: 2019 publication-title: J. Phys. D. Appl. Phys. – volume: 14 start-page: 1166 year: 2020 publication-title: ACS Nano – volume: 12 start-page: 21392 year: 2020 publication-title: Nanoscale – volume: 54 start-page: 1221 year: 2007 publication-title: J. Mod. Opt. – volume: 5 start-page: 2631 year: 2018 publication-title: ACS Photonics – volume: 11 start-page: 936 year: 2012 publication-title: Nat. Mater. – volume: 3 start-page: e1701377 year: 2017 publication-title: Sci. Adv. – volume: 7 start-page: 5 year: 2021 publication-title: Microsyst. Nanoeng. – volume: 5 start-page: 1088 year: 2020 publication-title: Nanoscale Horizons – volume: 8 start-page: 11572 year: 2020 publication-title: J. Mater. Chem. C – volume: 29 start-page: 1701044 year: 2017 publication-title: Adv. Mater. – volume: 13 start-page: 1900065 year: 2019 publication-title: Laser Photonics Rev. – volume: 31 start-page: 1904069 year: 2019 publication-title: Adv. Mater. – volume: 11 start-page: 465 year: 2017 publication-title: Nat. Photonics – volume: 116 start-page: 233901 year: 2016 publication-title: Phys. Rev. Lett. – volume: 2019 start-page: 1 year: 2019 publication-title: Research – volume: 28 start-page: 1704993 year: 2018 publication-title: Adv. Funct. Mater. – volume: 9 start-page: 1041 year: 2020 publication-title: Nanophotonics – volume: 10 start-page: 1053 year: 2020 publication-title: Opt. Mater. Express – volume: 2 start-page: 2000034 year: 2021 publication-title: Adv. Photonics Res. – volume: 8 start-page: 197 year: 2017 publication-title: Nat. Commun. – volume: 8 start-page: 1409 year: 2020 publication-title: Photonics Res. – volume: 13 start-page: 100205 year: 2020 publication-title: Mater. Today Phys. – volume: 2 start-page: 1 year: 2020 publication-title: Adv. Photonics – volume: 13 start-page: 7100 year: 2019 publication-title: ACS Nano – volume: 4 start-page: 1800185 year: 2018 publication-title: Adv. Electron. Mater. – volume: 11 start-page: 5484 year: 2020 publication-title: Nat. Commun. – volume: 15 start-page: 698 year: 2021 publication-title: ACS Nano – volume: 12 start-page: 89 year: 2018 publication-title: Energies – volume: 10 start-page: 114 year: 2020 publication-title: IEEE J. Emerg. Sel. Top. Circuits Syst. – volume: 23 start-page: 101877 year: 2020 publication-title: iScience – volume: 5 start-page: 4702 year: 2018 publication-title: ACS Photonics – volume: 126 start-page: 033901 year: 2021 publication-title: Phys. Rev. Lett. – volume: 5 start-page: 1643 year: 2018 publication-title: ACS Photonics – volume: 20 start-page: 4108 year: 2020 publication-title: Sensors – volume: 5 start-page: eaav6815 year: 2019 publication-title: Sci. Adv. – volume: 4 start-page: eaar6768 year: 2018 publication-title: Sci. Adv. – volume: 26 start-page: 20258 year: 2018 publication-title: Opt. Express – volume: 8 start-page: 47 year: 2021 publication-title: ACS Photonics – volume: 7 start-page: 1801813 year: 2019 publication-title: Adv. Opt. Mater. – volume: 15 start-page: 77 year: 2021 publication-title: Nat. Photonics – volume: 31 start-page: 2007210 year: 2021 publication-title: Adv. Funct. Mater. – volume: 5 start-page: 2549 year: 2018 publication-title: ACS Photonics – volume: 5 start-page: 110901 year: 2020 publication-title: APL Photonics – volume: 13 start-page: 440 year: 2019 publication-title: ACS Nano – volume: 25 start-page: 52 year: 2000 publication-title: MRS Bull. – volume: 79 start-page: 105426 year: 2021 publication-title: Nano Energy – volume: 11 start-page: 5055 year: 2020 publication-title: Nat. Commun. – volume: 8 start-page: 18 year: 2021 publication-title: ACS Photonics – volume: 30 start-page: 1906711 year: 2020 publication-title: Adv. Funct. Mater. – volume: 8 start-page: 12393 year: 2018 publication-title: Sci. Rep. – volume: 426 start-page: 443 year: 2018 publication-title: Opt. Commun. – volume: 29 start-page: 1806181 year: 2019 publication-title: Adv. Funct. Mater. – volume: 5 start-page: 13384 year: 2015 publication-title: Sci. Rep. – volume: 14 start-page: 2000253 year: 2020 publication-title: Laser Photonics Rev. – volume: 5 start-page: 1493 year: 2018 publication-title: ACS Photonics – volume: 10 start-page: 1002 year: 2016 publication-title: Laser Photonics Rev. – volume: 7 start-page: 1801709 year: 2019 publication-title: Adv. Opt. Mater. – year: 2021 publication-title: ChemNanoMat – volume: 2 start-page: 605 year: 2020 publication-title: Nanoscale Adv. – volume: 6 start-page: 1533 year: 2019 publication-title: ACS Photonics – volume: 4 start-page: eaat4436 year: 2018 publication-title: Sci. Adv. – volume: 7 start-page: 14 year: 2021 publication-title: Microsyst. Nanoeng. – volume: 7 start-page: 10429 year: 2016 publication-title: Nat. Commun. – volume: 14 start-page: 6912 year: 2020 publication-title: ACS Nano – volume: 128 start-page: 67001 year: 2020 publication-title: EPL – volume: 7 start-page: 8 year: 2017 publication-title: Opt. Mater. Express – volume: 13 start-page: 139 year: 2014 publication-title: Nat. Mater. – volume: 7 start-page: 1425 year: 2020 publication-title: ACS Photonics – volume: 15 start-page: 311 year: 2016 publication-title: Nat. Mater. – volume: 7 start-page: 1801782 year: 2019 publication-title: Adv. Opt. Mater. – volume: 14 start-page: 1140 year: 2014 publication-title: Nano Lett. – volume: 118 start-page: 113901 year: 2017 publication-title: Phys. Rev. Lett. – volume: 8 start-page: 1255 year: 2019 publication-title: Nanophotonics – volume: 362 start-page: 1037 year: 2018 publication-title: Science – volume: 7 start-page: 2236 year: 2020 publication-title: ACS Photonics – volume: 7 start-page: 2000192 year: 2020 publication-title: Adv. Sci. – start-page: 2002002 year: 2021 publication-title: Adv. Opt. Mater. – volume: 1 start-page: 101 year: 1971 publication-title: Annu. Rev. Mater. Sci. – volume: 5 start-page: 1900930 year: 2020 publication-title: Adv. Mater. Technol. – volume: 7 start-page: 2958 year: 2020 publication-title: ACS Photonics – volume: 12 start-page: 659 year: 2018 publication-title: Nat. Photonics – volume: 7 start-page: 3 year: 2020 publication-title: Nano Converge. – volume: 364 start-page: eaat3100 year: 2019 publication-title: Science – volume: 9 start-page: 4308 year: 2015 publication-title: ACS Nano – volume: 14 start-page: 214 year: 2014 publication-title: Nano Lett. – volume: 9 start-page: 75 year: 2020 publication-title: Light Sci. Appl. – volume: 8 start-page: 1901182 year: 2020 publication-title: Adv. Opt. Mater. – year: 2021 publication-title: ACS Photonics – volume: 592 start-page: 54 year: 2021 publication-title: Nature – year: 2021 publication-title: Nat. Nanotechnol. – volume: 13 start-page: 2113 year: 2021 publication-title: Nanoscale – volume: 7 start-page: eabd4623 year: 2021 publication-title: Sci. Adv. – volume: 14 start-page: 1418 year: 2020 publication-title: ACS Nano – volume: 370 start-page: 786 year: 2020 publication-title: Science – volume: 6 start-page: 1700939 year: 2018 publication-title: Adv. Opt. Mater. – volume: 7 start-page: 653 year: 2008 publication-title: Nat. Mater. – volume: 7 start-page: 2611 year: 2017 publication-title: Sci. Rep. – volume: 16 start-page: 2818 year: 2016 publication-title: Nano Lett. – volume: 12 start-page: 8817 year: 2018 publication-title: ACS Nano – volume: 101 start-page: 024104 year: 2020 publication-title: Phys. Rev. B – volume: 9 start-page: B153 year: 2021 publication-title: Photonics Res. – volume: 95 start-page: 137404 year: 2005 publication-title: Phys. Rev. Lett. – volume: 10 start-page: 2111 year: 2010 publication-title: Nano Lett. – volume: 7 start-page: 10479 year: 2016 publication-title: Nat. Commun. – volume: 8 start-page: 48 year: 2019 publication-title: Light Sci. Appl. – volume: 14 start-page: 383 year: 2020 publication-title: Nat. Photonics – volume: 16 start-page: 69 year: 2021 publication-title: Nat. Nanotechnol. – volume: 21 start-page: 8 year: 2018 publication-title: Mater. Today – volume: 109 start-page: 011901 year: 2016 publication-title: Appl. Phys. Lett. – volume: 17 start-page: 3641 year: 2017 publication-title: Nano Lett. – volume: 18 start-page: 820 year: 2019 publication-title: Nat. Mater. – volume: 12 start-page: 23554 year: 2020 publication-title: ACS Appl. Mater. Interfaces – volume: 59 start-page: 3660 year: 2020 publication-title: Appl. Opt. – volume: 23 start-page: 013001 year: 2021 publication-title: J. Opt. – volume: 32 start-page: 2004664 year: 2020 publication-title: Adv. Mater. – volume: 6 start-page: 7337 year: 2015 publication-title: Nat. Commun. – start-page: 55 year: 2020 end-page: 79 – volume: 17 start-page: 6034 year: 2017 publication-title: Nano Lett. – volume: 352 start-page: 795 year: 2016 publication-title: Science – volume: 9 start-page: 98 year: 2020 publication-title: Light Sci. Appl. – volume: 15 start-page: 948 year: 2020 publication-title: Nat. Nanotechnol. – volume: 11 start-page: 16 year: 2016 publication-title: Nat. Nanotechnol. – volume: 8 start-page: 339 year: 2019 publication-title: Nanophotonics – ident: e_1_2_8_222_1 doi: 10.1002/adma.201904069 – ident: e_1_2_8_257_1 doi: 10.1038/s41467-020-18793-y – ident: e_1_2_8_67_1 doi: 10.1126/science.1150124 – ident: e_1_2_8_237_1 doi: 10.1126/sciadv.abd7097 – ident: e_1_2_8_100_1 doi: 10.1002/adom.201801813 – ident: e_1_2_8_247_1 doi: 10.1103/PhysRevLett.126.033901 – ident: e_1_2_8_186_1 doi: 10.1021/acsnano.8b04889 – ident: e_1_2_8_268_1 doi: 10.1103/PhysRevApplied.10.054066 – ident: e_1_2_8_279_1 doi: 10.1364/PRJ.415789 – ident: e_1_2_8_234_1 doi: 10.1002/adom.202000652 – ident: e_1_2_8_8_1 doi: 10.1126/science.1210713 – ident: e_1_2_8_61_1 doi: 10.1038/nphoton.2015.247 – ident: e_1_2_8_193_1 doi: 10.1002/lpor.201900065 – ident: e_1_2_8_96_1 doi: 10.1021/acsnano.0c01469 – ident: e_1_2_8_10_1 doi: 10.1038/nnano.2015.2 – ident: e_1_2_8_160_1 doi: 10.1021/nl403751p – ident: e_1_2_8_243_1 doi: 10.1088/1361-6463/ab25ff – ident: e_1_2_8_18_1 doi: 10.1039/D0NR05624C – ident: e_1_2_8_288_1 doi: 10.1002/adom.202000783 – ident: e_1_2_8_60_1 doi: 10.1038/nature13487 – ident: e_1_2_8_17_1 doi: 10.1021/acsnano.0c05656 – ident: e_1_2_8_166_1 doi: 10.1002/adpr.202000034 – ident: e_1_2_8_97_1 doi: 10.1021/acsnano.9b02425 – ident: e_1_2_8_94_1 doi: 10.1126/sciadv.aar6768 – ident: e_1_2_8_76_1 doi: 10.1038/srep13384 – ident: e_1_2_8_120_1 doi: 10.1073/pnas.2001435117 – volume: 1090 start-page: 1087 year: 2019 ident: e_1_2_8_99_1 publication-title: Science – ident: e_1_2_8_267_1 doi: 10.1021/acsami.0c12203 – ident: e_1_2_8_92_1 doi: 10.1021/acsnano.8b05467 – ident: e_1_2_8_226_1 doi: 10.1038/s41467-020-19312-9 – ident: e_1_2_8_189_1 doi: 10.1039/D0NR07479A – ident: e_1_2_8_130_1 doi: 10.1038/s41578-019-0133-0 – ident: e_1_2_8_190_1 doi: 10.1002/advs.202000192 – ident: e_1_2_8_227_1 doi: 10.1038/nature11727 – ident: e_1_2_8_188_1 doi: 10.1021/acsnano.9b08228 – ident: e_1_2_8_143_1 doi: 10.1021/acs.nanolett.9b03143 – ident: e_1_2_8_37_1 doi: 10.1146/annurev-matsci-082908-145405 – ident: e_1_2_8_82_1 doi: 10.1039/D0TC02427A – ident: e_1_2_8_244_1 doi: 10.1007/978-3-030-44992-6_3 – ident: e_1_2_8_235_1 doi: 10.1002/adfm.201806181 – ident: e_1_2_8_42_1 doi: 10.1063/5.0028093 – ident: e_1_2_8_113_1 doi: 10.1021/acsphotonics.0c00787 – ident: e_1_2_8_273_1 doi: 10.1038/s41377-019-0159-5 – ident: e_1_2_8_49_1 doi: 10.1209/0295-5075/128/67001 – ident: e_1_2_8_256_1 doi: 10.1002/lpor.202000373 – ident: e_1_2_8_15_1 doi: 10.1038/s41467-020-16136-5 – ident: e_1_2_8_165_1 doi: 10.1038/s41377-020-0329-5 – ident: e_1_2_8_151_1 doi: 10.1126/sciadv.abd4623 – ident: e_1_2_8_171_1 doi: 10.1515/nanoph-2020-0440 – ident: e_1_2_8_161_1 – ident: e_1_2_8_86_1 doi: 10.1021/nl071664a – ident: e_1_2_8_216_1 doi: 10.1364/AO.386811 – ident: e_1_2_8_46_1 doi: 10.1038/nmat2226 – ident: e_1_2_8_219_1 doi: 10.1002/adpr.202000012 – ident: e_1_2_8_248_1 doi: 10.1038/s41566-020-0691-0 – ident: e_1_2_8_286_1 doi: 10.1039/C9CP05621A – ident: e_1_2_8_59_1 doi: 10.1021/ph500121d – ident: e_1_2_8_74_1 doi: 10.1021/acs.nanolett.9b01246 – ident: e_1_2_8_199_1 doi: 10.1016/j.nanoen.2020.105426 – ident: e_1_2_8_209_1 doi: 10.1002/adma.201907077 – ident: e_1_2_8_134_1 doi: 10.1002/adom.202001256 – volume: 8 start-page: 175753 year: 2020 ident: e_1_2_8_254_1 publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3026313 – ident: e_1_2_8_105_1 doi: 10.1080/00150193.2014.932653 – ident: e_1_2_8_136_1 doi: 10.1021/acsphotonics.9b00950 – ident: e_1_2_8_251_1 doi: 10.1126/science.aae0330 – ident: e_1_2_8_112_1 doi: 10.1021/acsphotonics.0c01168 – ident: e_1_2_8_72_1 doi: 10.1126/science.aam9189 – ident: e_1_2_8_21_1 doi: 10.1002/adom.201801786 – ident: e_1_2_8_75_1 doi: 10.1146/annurev.ms.01.080171.000533 – ident: e_1_2_8_205_1 doi: 10.1038/s41563-019-0404-6 – ident: e_1_2_8_57_1 – ident: e_1_2_8_163_1 doi: 10.1021/acs.nanolett.7b00359 – ident: e_1_2_8_282_1 doi: 10.1364/OE.27.005874 – ident: e_1_2_8_264_1 doi: 10.1021/acsnano.7b07121 – ident: e_1_2_8_132_1 doi: 10.1021/acsphotonics.7b01373 – ident: e_1_2_8_54_1 doi: 10.1038/lsa.2017.16 – ident: e_1_2_8_125_1 doi: 10.1038/s41598-018-28744-9 – ident: e_1_2_8_93_1 doi: 10.1021/acs.nanolett.7b02336 – ident: e_1_2_8_117_1 doi: 10.1021/acs.jpcc.7b12609 – ident: e_1_2_8_182_1 doi: 10.1364/OPTICA.2.000255 – volume: 2019 start-page: 1 year: 2019 ident: e_1_2_8_28_1 publication-title: Research – ident: e_1_2_8_90_1 doi: 10.1021/acsphotonics.8b01243 – ident: e_1_2_8_152_1 doi: 10.1016/j.mattod.2014.06.001 – ident: e_1_2_8_51_1 doi: 10.1002/adfm.201704993 – volume: 12 start-page: 1 year: 2020 ident: e_1_2_8_58_1 publication-title: IEEE Photonics J. – ident: e_1_2_8_98_1 doi: 10.3390/nano8110871 – ident: e_1_2_8_87_1 doi: 10.1021/nn101475c – ident: e_1_2_8_221_1 doi: 10.1002/adom.202000570 – ident: e_1_2_8_48_1 doi: 10.1038/nmat2009 – ident: e_1_2_8_253_1 doi: 10.1103/PhysRevB.99.205404 – volume: 2 start-page: 1 year: 2020 ident: e_1_2_8_50_1 publication-title: Adv. Photonics – ident: e_1_2_8_231_1 doi: 10.1103/PhysRevLett.118.113901 – ident: e_1_2_8_287_1 doi: 10.1038/s41565-018-0346-1 – ident: e_1_2_8_137_1 doi: 10.1088/1361-6528/abc3e5 – ident: e_1_2_8_78_1 doi: 10.1364/PRJ.7.000734 – ident: e_1_2_8_149_1 doi: 10.1021/acs.nanolett.7b03665 – ident: e_1_2_8_167_1 doi: 10.1038/ncomms8337 – ident: e_1_2_8_274_1 doi: 10.1038/s41467-019-09103-2 – ident: e_1_2_8_183_1 doi: 10.1021/acsnano.5b05279 – year: 2020 ident: e_1_2_8_277_1 publication-title: Nat. Rev. Mater. – ident: e_1_2_8_44_1 doi: 10.1002/adom.201801709 – ident: e_1_2_8_180_1 doi: 10.1002/adom.201900653 – ident: e_1_2_8_146_1 doi: 10.1088/2040-8986/abc6fa – ident: e_1_2_8_202_1 doi: 10.1038/nature14588 – ident: e_1_2_8_261_1 doi: 10.3390/s16081246 – ident: e_1_2_8_266_1 doi: 10.1038/s41377-019-0205-3 – ident: e_1_2_8_153_1 doi: 10.1038/nmat3433 – ident: e_1_2_8_192_1 doi: 10.1016/j.mee.2019.111146 – ident: e_1_2_8_157_1 doi: 10.1088/1367-2630/15/12/123029 – ident: e_1_2_8_250_1 doi: 10.1103/PhysRevLett.116.233901 – ident: e_1_2_8_184_1 doi: 10.1002/lpor.201600144 – ident: e_1_2_8_198_1 doi: 10.1126/science.abb0971 – ident: e_1_2_8_269_1 doi: 10.1063/5.0007351 – ident: e_1_2_8_38_1 doi: 10.1002/adom.201801782 – volume: 95 start-page: 2007 year: 2009 ident: e_1_2_8_103_1 publication-title: Appl. Phys. Lett. – ident: e_1_2_8_63_1 doi: 10.1038/s41598-020-59729-2 – ident: e_1_2_8_271_1 doi: 10.1038/s41566-018-0246-9 – ident: e_1_2_8_207_1 doi: 10.1126/sciadv.aat4436 – ident: e_1_2_8_115_1 doi: 10.1021/acsnano.5b00723 – ident: e_1_2_8_210_1 doi: 10.1364/PRJ.393333 – ident: e_1_2_8_24_1 doi: 10.1002/adfm.201806692 – ident: e_1_2_8_176_1 doi: 10.1021/acsphotonics.0c00983 – ident: e_1_2_8_11_1 doi: 10.1038/ncomms3807 – ident: e_1_2_8_45_1 doi: 10.1002/adom.201700261 – ident: e_1_2_8_121_1 doi: 10.1021/nl1006307 – ident: e_1_2_8_258_1 doi: 10.1002/adma.202005893 – ident: e_1_2_8_281_1 doi: 10.1515/nanoph-2019-0474 – ident: e_1_2_8_252_1 doi: 10.1103/PhysRevB.92.161406 – ident: e_1_2_8_213_1 doi: 10.1021/acsnano.0c01269 – ident: e_1_2_8_187_1 doi: 10.1021/acs.nanolett.7b02350 – start-page: 1 year: 2021 ident: e_1_2_8_276_1 publication-title: Photonics Res. – ident: e_1_2_8_114_1 doi: 10.1021/la701844s – ident: e_1_2_8_124_1 doi: 10.1557/mrs2000.151 – ident: e_1_2_8_148_1 doi: 10.1126/sciadv.aaw2205 – ident: e_1_2_8_289_1 doi: 10.1109/JETCAS.2020.2976165 – ident: e_1_2_8_4_1 doi: 10.1126/science.1125907 – ident: e_1_2_8_41_1 doi: 10.1038/nphoton.2017.126 – ident: e_1_2_8_197_1 doi: 10.1364/JOSAB.394671 – ident: e_1_2_8_262_1 doi: 10.1088/1361-665X/aba6fb – ident: e_1_2_8_62_1 doi: 10.1002/adfm.202007210 – ident: e_1_2_8_19_1 doi: 10.1021/acsphotonics.0c00947 – ident: e_1_2_8_68_1 doi: 10.1021/nn4054446 – ident: e_1_2_8_255_1 doi: 10.1002/lpor.202000085 – ident: e_1_2_8_241_1 doi: 10.1021/acs.nanolett.8b04311 – year: 2021 ident: e_1_2_8_141_1 publication-title: Nat. Nanotechnol. – ident: e_1_2_8_14_1 doi: 10.1038/s41565-017-0052-4 – ident: e_1_2_8_55_1 doi: 10.1088/1361-6463/ab7560 – ident: e_1_2_8_83_1 doi: 10.1002/adom.201700939 – ident: e_1_2_8_164_1 doi: 10.1021/acsnano.9b09277 – ident: e_1_2_8_43_1 doi: 10.1515/nanoph-2020-0039 – ident: e_1_2_8_169_1 doi: 10.1002/adom.201901182 – ident: e_1_2_8_23_1 doi: 10.3390/mi9110560 – ident: e_1_2_8_95_1 doi: 10.1364/OE.27.021153 – ident: e_1_2_8_147_1 doi: 10.1038/ncomms10479 – ident: e_1_2_8_173_1 doi: 10.1038/s41586-018-0034-1 – ident: e_1_2_8_145_1 doi: 10.1038/s41467-019-13131-3 – ident: e_1_2_8_158_1 doi: 10.1103/PhysRevApplied.9.034021 – ident: e_1_2_8_260_1 doi: 10.1021/acsphotonics.0c01030 – ident: e_1_2_8_109_1 doi: 10.1364/OL.38.004116 – ident: e_1_2_8_155_1 doi: 10.1126/sciadv.1701377 – ident: e_1_2_8_122_1 doi: 10.1038/nphoton.2010.179 – ident: e_1_2_8_119_1 doi: 10.1126/sciadv.abe9943 – ident: e_1_2_8_101_1 doi: 10.1002/lpor.202000253 – ident: e_1_2_8_129_1 doi: 10.1021/acs.nanolett.6b00555 – ident: e_1_2_8_200_1 doi: 10.3390/en12010089 – volume: 54 start-page: 1221 year: 2007 ident: e_1_2_8_2_1 publication-title: J. Mod. Opt. doi: 10.1080/09500340600855106 – ident: e_1_2_8_230_1 doi: 10.1038/s41378-020-00226-x – ident: e_1_2_8_71_1 doi: 10.3390/ma9070556 – ident: e_1_2_8_174_1 doi: 10.1038/s41598-017-02847-1 – ident: e_1_2_8_104_1 doi: 10.1021/nl501955e – ident: e_1_2_8_47_1 doi: 10.1038/nmat2330 – ident: e_1_2_8_208_1 doi: 10.1038/s41427-018-0082-x – ident: e_1_2_8_85_1 doi: 10.1002/adma.201703878 – ident: e_1_2_8_156_1 doi: 10.1021/acsphotonics.7b01551 – ident: e_1_2_8_81_1 doi: 10.1364/OE.412991 – ident: e_1_2_8_170_1 doi: 10.3390/app8060982 – volume: 23 start-page: 1 year: 2017 ident: e_1_2_8_220_1 publication-title: IEEE J. Sel. Top. Quantum Electron. – ident: e_1_2_8_33_1 doi: 10.1038/s41378-020-00237-8 – ident: e_1_2_8_110_1 doi: 10.1364/OME.7.000008 – ident: e_1_2_8_204_1 doi: 10.1038/s41598-018-21479-7 – ident: e_1_2_8_79_1 doi: 10.1002/adom.201900175 – ident: e_1_2_8_238_1 doi: 10.1038/s41467-021-21175-7 – ident: e_1_2_8_217_1 doi: 10.1103/PhysRevApplied.13.021003 – ident: e_1_2_8_154_1 doi: 10.1038/ncomms10429 – ident: e_1_2_8_144_1 doi: 10.1021/acs.nanolett.0c02097 – ident: e_1_2_8_66_1 doi: 10.1038/s41427-018-0061-2 – ident: e_1_2_8_12_1 doi: 10.1021/acsphotonics.7b01044 – ident: e_1_2_8_168_1 doi: 10.1038/ncomms15209 – ident: e_1_2_8_126_1 doi: 10.1002/pssa.201700794 – year: 2021 ident: e_1_2_8_249_1 publication-title: ACS Photonics – ident: e_1_2_8_172_1 doi: 10.1002/adom.201801070 – ident: e_1_2_8_27_1 doi: 10.1126/science.aat3100 – ident: e_1_2_8_80_1 doi: 10.1021/acsphotonics.8b00972 – ident: e_1_2_8_236_1 doi: 10.1126/sciadv.abb7171 – ident: e_1_2_8_263_1 doi: 10.1063/1.4955272 – ident: e_1_2_8_232_1 doi: 10.1364/PRJ.395749 – ident: e_1_2_8_69_1 doi: 10.1126/sciadv.aav6815 – ident: e_1_2_8_70_1 doi: 10.1016/j.mtphys.2020.100205 – ident: e_1_2_8_89_1 doi: 10.1021/nl403643v – ident: e_1_2_8_131_1 doi: 10.1364/OE.21.026387 – ident: e_1_2_8_259_1 doi: 10.1515/nanoph-2020-0373 – ident: e_1_2_8_35_1 doi: 10.1038/s41586-021-03353-1 – ident: e_1_2_8_162_1 doi: 10.1038/ncomms8032 – ident: e_1_2_8_36_1 doi: 10.1126/science.1221561 – ident: e_1_2_8_179_1 doi: 10.1088/2040-8986/abcc52 – ident: e_1_2_8_218_1 doi: 10.1021/acsami.0c02467 – ident: e_1_2_8_39_1 doi: 10.1088/2040-8986/abbc55 – ident: e_1_2_8_138_1 doi: 10.1515/nanoph-2018-0176 – ident: e_1_2_8_159_1 doi: 10.1364/OL.43.002636 – ident: e_1_2_8_280_1 doi: 10.1038/s41566-020-0604-2 – ident: e_1_2_8_88_1 doi: 10.1038/nmat4480 – ident: e_1_2_8_212_1 doi: 10.1002/adfm.201906711 – ident: e_1_2_8_29_1 doi: 10.29026/oea.2018.180009 – ident: e_1_2_8_108_1 doi: 10.1364/OE.26.020258 – ident: e_1_2_8_9_1 doi: 10.1126/science.1232009 – ident: e_1_2_8_102_1 doi: 10.1364/OE.18.016492 – ident: e_1_2_8_106_1 doi: 10.1016/S0370-1573(99)00049-6 – ident: e_1_2_8_203_1 doi: 10.1002/adma.202001863 – start-page: 117 volume-title: Metamaterials Fundam. Appl. IV year: 2011 ident: e_1_2_8_246_1 – ident: e_1_2_8_30_1 doi: 10.1016/j.mattod.2020.06.002 – ident: e_1_2_8_191_1 doi: 10.1002/adfm.202006711 – ident: e_1_2_8_116_1 doi: 10.1021/acsphotonics.7b01343 – ident: e_1_2_8_239_1 doi: 10.1038/s41467-019-11598-8 – ident: e_1_2_8_7_1 doi: 10.1038/nmat3839 – ident: e_1_2_8_142_1 doi: 10.1002/aelm.201800185 – ident: e_1_2_8_225_1 doi: 10.1038/s41467-017-00164-9 – ident: e_1_2_8_275_1 doi: 10.1109/JETCAS.2020.2972764 – year: 2021 ident: e_1_2_8_65_1 publication-title: ChemNanoMat – ident: e_1_2_8_242_1 doi: 10.1038/natrevmats.2017.10 – ident: e_1_2_8_228_1 doi: 10.1021/acsphotonics.9b01807 – ident: e_1_2_8_284_1 doi: 10.1021/acsami.9b05857 – ident: e_1_2_8_22_1 doi: 10.1088/1361-6463/abaced – ident: e_1_2_8_224_1 doi: 10.1002/adma.201606422 – ident: e_1_2_8_177_1 doi: 10.1038/nnano.2015.302 – ident: e_1_2_8_26_1 doi: 10.1186/s40580-019-0213-2 – ident: e_1_2_8_285_1 doi: 10.1515/nanoph-2019-0117 – ident: e_1_2_8_111_1 doi: 10.1021/acsphotonics.9b00301 – ident: e_1_2_8_128_1 doi: 10.1021/acsphotonics.8b01383 – ident: e_1_2_8_194_1 doi: 10.1016/j.isci.2020.101877 – ident: e_1_2_8_178_1 doi: 10.1186/s40580-020-00226-7 – ident: e_1_2_8_3_1 doi: 10.1103/PhysRevLett.95.137404 – ident: e_1_2_8_73_1 doi: 10.1103/PhysRevApplied.9.034009 – ident: e_1_2_8_175_1 doi: 10.1038/s41598-018-30835-6 – year: 2020 ident: e_1_2_8_233_1 publication-title: Mater. Today – ident: e_1_2_8_5_1 doi: 10.1021/acsphotonics.7b01182 – ident: e_1_2_8_214_1 doi: 10.1021/acsnano.0c05026 – ident: e_1_2_8_206_1 doi: 10.1038/s41377-020-0309-9 – ident: e_1_2_8_283_1 doi: 10.1038/s41566-020-0685-y – ident: e_1_2_8_265_1 doi: 10.1002/adom.201901932 – ident: e_1_2_8_270_1 doi: 10.1103/PhysRevB.101.024104 – ident: e_1_2_8_229_1 doi: 10.1002/adom.202002002 – ident: e_1_2_8_272_1 doi: 10.1002/lpor.201000014 – ident: e_1_2_8_107_1 doi: 10.1021/acsami.0c07320 – ident: e_1_2_8_34_1 doi: 10.1021/acsnano.0c06968 – ident: e_1_2_8_195_1 doi: 10.1021/acs.nanolett.6b00618 – ident: e_1_2_8_6_1 doi: 10.1039/C9NA00751B – ident: e_1_2_8_135_1 doi: 10.1021/acs.nanolett.6b04378 – ident: e_1_2_8_245_1 doi: 10.1016/j.mattod.2017.06.007 – volume: 7 start-page: 23 year: 2020 ident: e_1_2_8_127_1 publication-title: Nano Converg. doi: 10.1186/s40580-020-00232-9 – ident: e_1_2_8_123_1 doi: 10.1021/acsphotonics.0c00554 – ident: e_1_2_8_25_1 doi: 10.1126/sciadv.abc2709 – ident: e_1_2_8_77_1 doi: 10.1016/j.optcom.2018.05.085 – ident: e_1_2_8_118_1 doi: 10.1002/adma.202004664 – ident: e_1_2_8_53_1 doi: 10.1038/s41377-018-0038-5 – ident: e_1_2_8_223_1 doi: 10.1039/D0TC00689K – ident: e_1_2_8_201_1 doi: 10.1002/adma.201700412 – ident: e_1_2_8_211_1 doi: 10.1002/adma.202004919 – ident: e_1_2_8_20_1 doi: 10.1515/nanoph-2020-0311 – ident: e_1_2_8_52_1 doi: 10.1002/adom.201800169 – ident: e_1_2_8_240_1 doi: 10.1002/adom.201801639 – ident: e_1_2_8_278_1 doi: 10.1515/nanoph-2018-0183 – ident: e_1_2_8_140_1 doi: 10.1038/s41565-020-00787-y – ident: e_1_2_8_31_1 doi: 10.3390/s20154108 – ident: e_1_2_8_84_1 doi: 10.1021/acsphotonics.0c01241 – ident: e_1_2_8_185_1 doi: 10.1021/acsnano.8b06623 – ident: e_1_2_8_13_1 doi: 10.1038/s41565-020-0768-4 – ident: e_1_2_8_139_1 doi: 10.1002/adma.201701044 – ident: e_1_2_8_56_1 doi: 10.1038/s41467-021-21440-9 – ident: e_1_2_8_181_1 doi: 10.1088/2040-8978/16/3/032001 – ident: e_1_2_8_40_1 doi: 10.3390/ma10091046 – ident: e_1_2_8_64_1 doi: 10.1039/D0NH00139B – ident: e_1_2_8_133_1 doi: 10.1021/acsphotonics.7b01517 – ident: e_1_2_8_150_1 doi: 10.1364/OME.390052 – ident: e_1_2_8_16_1 doi: 10.1038/s41565-017-0034-6 – ident: e_1_2_8_32_1 doi: 10.1007/s12206-021-0243-7 – ident: e_1_2_8_91_1 doi: 10.1038/ncomms14606 – ident: e_1_2_8_215_1 doi: 10.1002/admt.201900930 – ident: e_1_2_8_196_1 doi: 10.1021/acs.nanolett.7b00807 |
SSID | ssj0002513159 |
Score | 2.4690094 |
Snippet | In the field of nanophotonics, metasurfaces have come to the forefront in real‐world applications, owing to their accessible exotic optical properties that can... |
SourceID | doaj proquest crossref wiley |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | active Design Optical properties Optics Phase transitions programmable reconfigurable switchable tunable |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1NTxsxELVouPRSUUHVFKj2gMTJysZrO16EhEJLhJASRRFI3Cx_lgPKBrIc-PfMOM62HNoe17Isa8aeeTM7fkPICWjSlSKUVChZUQ4ugdqhi5R7ayMXvqo4PhSezuT1Hb-5F_c54bbOZZVbm5gMtW8c5sgHValqJZHu_WL1RLFrFP5dzS00PpBdMMEKTvju5dVsvuiyLOC9q2HqmMYkUlGCc9syN5ZsYPwKKUFZ-h8n3nmmROD_DnX-iV2T85nskU8ZNRbjjZo_k52w3Cfnty_p4VMxDS0m-iJWV50VoPhiDriuaJsCA8zXYpxsWgGGtFk9NC2S4a4PyN3k6vbHNc3NEKgDCCOo9RBq1HJkjFGe145Lz7ixo8BNADcfBXgdCJ1A9lEEq6wph847GxULQlgzqr6Q3rJZhq9YzVT5CLDEDpWDlVjNTfQ2AnKwVQ2DfUK3gtAuM4Vjw4pHveE4ZhoFpzvB9clpN3-14cj468xLlGs3C7mt00Dz_Evnq6Jhw8wxy2UEqGOUNKqMsRYOYi9jpILtHW21ovOFW-vfx6NPWNLUf7aixz_ni-7r27_XPCQfGdaypNqyI9Jrn1_CMYCR1n7PJ-4N5vTZMQ priority: 102 providerName: ProQuest – databaseName: Wiley Online Library Open Access dbid: 24P link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA4-Ll5EUbFaZQ-Cp6XbbJJmxUt9lCJUiih4C3nqQbql3R78986k29UeRPC4IbuEmUzmm-zMN4RcgCZtxn2WcinylIFLSE3XhpQ5YwLjLs8ZFgqPHsXwhT288tcfVfxLfojmwg0tI57XaODazDvfpKHaTZHPk8afaXyTbGN9Le50ysbNLQt477wbO6ZRgVSU4NxWzI0Z7ax_Ys0zRQL_NdT5E7tG5zPYI7s1akz6SzXvkw0_OSDXz4tY-JSMfIUXfQGzq64SUHwyBlyXVGWCAeZn0o9nWgIHaTl9Lyskw50fkpfB_fPtMK2bIaQWIAxPjYNQoxA9rbV0rLBMOMq06XmmPbj5wMHrQOgEsg_cG2l01rXOmiCp59zoXn5EtiblxB9jNlPuAsAS05UWvkQLpoMzAZCDyQsYbJF0JQhla6ZwbFjxoZYcx1Sh4FQjuBa5bOZPlxwZv868Qbk2s5DbOg6UszdVm4qCBVNLDRMBoI6WQssshIJbiL20FhKW115pRdUGN1d5JgspsBtAi9CoqT-Wovp346fm6eQ_L52SHYoZLjHjrE22qtnCnwFEqcx53IVfu-zbFA priority: 102 providerName: Wiley-Blackwell |
Title | Tunable Metasurfaces: The Path to Fully Active Nanophotonics |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadpr.202000205 https://www.proquest.com/docview/3089860747 https://doaj.org/article/2e52c2b46f554a86a80ff95c862aa688 |
Volume | 2 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PS8MwGA06L15EUbE6Rw-Cp7IuTbpUvGy6MYSNMjbYLeQnHmQbrjt48W_3S9qV7SBevBQaQgnva_Pe13x5QegBIqliauKIsjSJCFBCJDvKRkRLaQnVSULcRuHxJB3NyduCLvaO-nI1YaU9cAlcGxuKFZYktUB8gqWCxdZmVIESFyJlfpsvcN5eMuXmYGDtBIh659IY47bQa2f_if3aGz1gIW_Wf6Aw93WqJ5rhOTqrFGLYK0d2gY7M8hI9z7Z-k1M4NoX7qWddJdVTCEEOc9BwYbEKXTL5Ffb8_BXCpLlav68KZ3y7uULz4WD2Moqqgw8iBXKFRlJDWpGlXSEE0yRTJNWYCNk1RBigdEuBYSBNApwtNZJJEXeUVtIyAItK0U2uUWO5WpobV7mUaAsSRHaYgifhjAirpQXEZJJBY4CiHRBcVa7g7nCKD176GWPugOM1cAF6rPuvSz-MX3v2Ha51L-dj7RsguryKLv8rugFq7qLCq49rw5OYZSx1zv8Bwj5SfwyF917zaX13-x8Du0On2FW3-GqzJmoUn1tzD_KkkC10jEneQif9wSSftvx7Cdfx9-AH03Xhwg |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELZKeoALogJESkt9AHGyuvErXlSEUtoqpU0UVanUm_ETDigbmq1Q_xS_kbGzu9ADcOpxLcvyzoxnPtvjbxB6DZp0hQgFEUoywiEkEDtwkXBvbeTCM8bTQ-HJVI4v-acrcbWBfrZvYVJaZesTs6P2lUtn5PusUKWSie79w_I7SVWj0u1qW0JjbRZn4fYHbNlW70-PQL9vKD05nn8ck6aqAHGABQSxHjB7KYfGGOV56bj0lBs7DNwEiJdRgPuGPQj8RBTBKmuKgfPORkWDENYMGYz7AG1yBlChhzYPj6ezi-5UB9ACG-QKbVQm6ksIpi1TZEH3jV8mClKa7__EnUiYCwbcQbl_YuUc7E6eoMcNSsWjtVltoY2weIoO5jf5oRWehDodLMaUzfUOg6HhGeBIXFc4bWhv8Sj7UAyOu1p-repEvrt6hi7vRUzPUW9RLcKLlD3FfAQYZAfKwUi05CZ6GwGpWFZCYx-RVhDaNczkqUDGN73mVKY6CU53guujt13_5ZqT4689D5Ncu16JSzs3VNdfdLM0NUyYOmq5jACtjJJGFTGWwsFezxipYHo7rVZ0s8BX-rc59hHNmvrPVPToaHbRfW3_e8w99HA8n5zr89Pp2Uv0iKY8mpzXtoN69fVN2AUgVNtXjfVh9Pm-Df4Xvk0XAw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA5aQbyIomJ97kHwtLjNJmlWvFRr8U0RBW8hTz1It-h68N87k25XexDB44ZsCDOZzDfJ5BtCDkCTNuM-S7kUecrAJaSmY0PKnDGBcZfnDB8K396Ji0d29cSffrzin_BDNAduaBlxv0YDH7tw9E0aqt0Y-TxpvEzj82QBb_xwjVM2bE5ZwHvnnVgxjQqkogTnNmVuzOjR7BAznikS-M-gzp_YNTqfwQpZrlFj0puoeZXM-dEaOXn4iA-fkltf4UFfwOyq4wQUnwwB1yVVmWCA-Zn04p6WwEZajl_KCslw39fJ4-D84ewirYshpBYgDE-Ng1CjEF2ttXSssEw4yrTpeqY9uPnAwetA6ASyD9wbaXTWsc6aIKnn3OhuvkFao3LkNzGbKXcBYInpSAsj0YLp4EwA5GDyAhrbJJ0KQtmaKRwLVryqCccxVSg41QiuTQ6b_uMJR8avPU9Rrk0v5LaODeXbs6pNRcGEqaWGiQBQR0uhZRZCwS3EXloLCdPbmWpF1Qb3rvJMFlJgNYA2oVFTf0xF9frD--Zr6z8_7ZPFYX-gbi7vrrfJEsVkl5h8tkNa1duH3wW0Upm9uCC_AGq63bI |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tunable+Metasurfaces%3A+The+Path+to+Fully+Active+Nanophotonics&rft.jtitle=Advanced+photonics+research&rft.au=Trevon+Badloe&rft.au=Jihae+Lee&rft.au=Junhwa+Seong&rft.au=Junsuk+Rho&rft.date=2021-09-01&rft.pub=Wiley-VCH&rft.eissn=2699-9293&rft.volume=2&rft.issue=9&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadpr.202000205&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_2e52c2b46f554a86a80ff95c862aa688 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2699-9293&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2699-9293&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2699-9293&client=summon |