Tunable Metasurfaces: The Path to Fully Active Nanophotonics

In the field of nanophotonics, metasurfaces have come to the forefront in real‐world applications, owing to their accessible exotic optical properties that can be readily designed and fabricated using currently available techniques. The subwavelength dimensions and lightweight characteristics of met...

Full description

Saved in:
Bibliographic Details
Published inAdvanced photonics research Vol. 2; no. 9
Main Authors Badloe, Trevon, Lee, Jihae, Seong, Junhwa, Rho, Junsuk
Format Journal Article
LanguageEnglish
Published Hoboken John Wiley & Sons, Inc 01.09.2021
Wiley-VCH
Subjects
Online AccessGet full text
ISSN2699-9293
2699-9293
DOI10.1002/adpr.202000205

Cover

Loading…
Abstract In the field of nanophotonics, metasurfaces have come to the forefront in real‐world applications, owing to their accessible exotic optical properties that can be readily designed and fabricated using currently available techniques. The subwavelength dimensions and lightweight characteristics of metasurfaces are attractive qualities for the miniaturization of optical devices and are already exploited in devices that can rival, and sometimes even outperform, conventional bulky optics. Over the past decade, ample research has been undertaken to produce high‐performance metasurfaces with exciting optical properties that cannot be found in nature or achieved with conventional optics. To open the path to widely used devices in our everyday lives, the next obvious step for metasurfaces is the development of tunability. Herein, the techniques and development of applications of tunable metasurfaces are presented through the incorporation of active materials and controllable external stimuli, and the uncovered tunable characteristics are critically analyzed. The review rounds up by proposing the future directions and prospects for actively tunable metasurfaces and their potential practical applications. The recent progress of metasurfaces from static to fully tunable at the meta‐atom level is reviewed, focusing on experimentally realized applications in the visible and IR regime. The different methods of tuning metasurfaces are discussed in terms of switchable, continuously tunable, and fully reprogrammable devices. The review rounds up with comments on the future directions of the field.
AbstractList In the field of nanophotonics, metasurfaces have come to the forefront in real‐world applications, owing to their accessible exotic optical properties that can be readily designed and fabricated using currently available techniques. The subwavelength dimensions and lightweight characteristics of metasurfaces are attractive qualities for the miniaturization of optical devices and are already exploited in devices that can rival, and sometimes even outperform, conventional bulky optics. Over the past decade, ample research has been undertaken to produce high‐performance metasurfaces with exciting optical properties that cannot be found in nature or achieved with conventional optics. To open the path to widely used devices in our everyday lives, the next obvious step for metasurfaces is the development of tunability. Herein, the techniques and development of applications of tunable metasurfaces are presented through the incorporation of active materials and controllable external stimuli, and the uncovered tunable characteristics are critically analyzed. The review rounds up by proposing the future directions and prospects for actively tunable metasurfaces and their potential practical applications.
In the field of nanophotonics, metasurfaces have come to the forefront in real‐world applications, owing to their accessible exotic optical properties that can be readily designed and fabricated using currently available techniques. The subwavelength dimensions and lightweight characteristics of metasurfaces are attractive qualities for the miniaturization of optical devices and are already exploited in devices that can rival, and sometimes even outperform, conventional bulky optics. Over the past decade, ample research has been undertaken to produce high‐performance metasurfaces with exciting optical properties that cannot be found in nature or achieved with conventional optics. To open the path to widely used devices in our everyday lives, the next obvious step for metasurfaces is the development of tunability. Herein, the techniques and development of applications of tunable metasurfaces are presented through the incorporation of active materials and controllable external stimuli, and the uncovered tunable characteristics are critically analyzed. The review rounds up by proposing the future directions and prospects for actively tunable metasurfaces and their potential practical applications. The recent progress of metasurfaces from static to fully tunable at the meta‐atom level is reviewed, focusing on experimentally realized applications in the visible and IR regime. The different methods of tuning metasurfaces are discussed in terms of switchable, continuously tunable, and fully reprogrammable devices. The review rounds up with comments on the future directions of the field.
Author Lee, Jihae
Seong, Junhwa
Rho, Junsuk
Badloe, Trevon
Author_xml – sequence: 1
  givenname: Trevon
  surname: Badloe
  fullname: Badloe, Trevon
  organization: Pohang University of Science and Technology (POSTECH)
– sequence: 2
  givenname: Jihae
  surname: Lee
  fullname: Lee, Jihae
  organization: Pohang University of Science and Technology (POSTECH)
– sequence: 3
  givenname: Junhwa
  surname: Seong
  fullname: Seong, Junhwa
  organization: Pohang University of Science and Technology (POSTECH)
– sequence: 4
  givenname: Junsuk
  orcidid: 0000-0002-2179-2890
  surname: Rho
  fullname: Rho, Junsuk
  email: jsrho@postech.ac.kr
  organization: Pohang University of Science and Technology (POSTECH)
BookMark eNqFkEtLAzEUhYMo-Ny6HnDdmslMMom4Kb6hapG6DjeZxKaMk5pklP57p1ZUBHF1H9zvnMvZRZutbw1Chzke5hiTY6gXYUgwwf2A6QbaIUyIgSCi2PzRb6ODGOerG5oXORU76HTataAak92aBLELFrSJJ9l0ZrIJpFmWfHbZNc0yG-nkXk12B61fzHzyrdNxH21ZaKI5-Kx76PHyYnp2PRjfX92cjcYDXQhCB6pmmAlWAQCvS6FLVpMSVGVKMLjilrKKC8EVxpYaxRXgXNdaWU4MpQqqYg_drHVrD3O5CO4ZwlJ6cPJj4cOThJCcbozsEaKJKpmltATOgGNrBdWcEQDGea91tNZaBP_SmZjk3Heh7d-XBeaCM1yVK8fh-koHH2Mw9ss1x3IVuFwFLr8C74HyF6BdguR8mwK45m9MrLE315jlPyZydD55-GbfAeyPlg8
CitedBy_id crossref_primary_10_1021_acsnano_2c04628
crossref_primary_10_1016_j_optlastec_2022_109037
crossref_primary_10_1364_OE_483452
crossref_primary_10_1364_OME_525069
crossref_primary_10_1109_JPHOT_2023_3295595
crossref_primary_10_1021_acsphotonics_1c01833
crossref_primary_10_1021_acs_nanolett_4c01703
crossref_primary_10_1063_5_0199771
crossref_primary_10_1103_PhysRevApplied_22_054022
crossref_primary_10_1038_s41467_022_32987_6
crossref_primary_10_1039_D2NH00555G
crossref_primary_10_29026_oea_2024_230216
crossref_primary_10_1002_lpor_202200098
crossref_primary_10_1364_OME_460059
crossref_primary_10_1021_acs_nanolett_1c02838
crossref_primary_10_29026_oes_2022_220011
crossref_primary_10_1002_adom_202202278
crossref_primary_10_1021_acsphotonics_3c01401
crossref_primary_10_1021_acsphotonics_3c00598
crossref_primary_10_1038_s41467_023_37594_7
crossref_primary_10_1364_OE_485902
crossref_primary_10_1364_OE_535152
crossref_primary_10_1515_nanoph_2022_0801
crossref_primary_10_1515_nanoph_2024_0540
crossref_primary_10_1088_2040_8986_ad4722
crossref_primary_10_34133_ultrafastscience_0074
crossref_primary_10_1002_adma_202205367
crossref_primary_10_1002_lpor_202300355
crossref_primary_10_1021_acs_nanolett_4c04904
crossref_primary_10_1021_acsnano_3c04071
crossref_primary_10_1038_s41565_022_01203_3
crossref_primary_10_1063_5_0078804
crossref_primary_10_1021_acsphotonics_4c00776
crossref_primary_10_3390_photonics11050442
crossref_primary_10_1038_s41377_023_01169_4
crossref_primary_10_1515_nanoph_2023_0446
crossref_primary_10_1002_adom_202202187
crossref_primary_10_1063_5_0217386
crossref_primary_10_3788_AOS240682
crossref_primary_10_1016_j_surfin_2024_104239
crossref_primary_10_3390_nano12010153
crossref_primary_10_1021_acsphotonics_2c00976
crossref_primary_10_1016_j_optlastec_2024_111730
crossref_primary_10_1063_5_0156782
crossref_primary_10_1016_j_physrep_2023_07_005
crossref_primary_10_1038_s44310_024_00010_z
crossref_primary_10_1117_1_AP_4_6_064002
crossref_primary_10_1002_advs_202203962
crossref_primary_10_1364_OME_499704
crossref_primary_10_1364_AO_495205
crossref_primary_10_1515_nanoph_2022_0075
crossref_primary_10_1002_adom_202300137
crossref_primary_10_1007_s42242_024_00295_1
crossref_primary_10_1016_j_mtphys_2023_101273
crossref_primary_10_1021_acs_nanolett_3c01588
crossref_primary_10_1038_s41377_022_00806_8
crossref_primary_10_1002_adom_202303085
crossref_primary_10_1002_adom_202200196
crossref_primary_10_1038_s41378_023_00609_w
crossref_primary_10_3390_mi12101142
crossref_primary_10_1002_rpm_20230017
crossref_primary_10_1021_acs_nanolett_5c00391
crossref_primary_10_1039_D3NR06686J
crossref_primary_10_1021_acsami_1c19223
crossref_primary_10_1016_j_mattod_2023_06_003
crossref_primary_10_1002_advs_202406690
crossref_primary_10_1002_advs_202203747
crossref_primary_10_1515_nanoph_2022_0188
crossref_primary_10_1515_nanoph_2022_0063
crossref_primary_10_1364_OE_540676
crossref_primary_10_1039_D1NR07909C
crossref_primary_10_1117_1_AP_5_4_046005
crossref_primary_10_1515_nanoph_2021_0684
crossref_primary_10_1002_advs_202102646
crossref_primary_10_1002_lpor_202300618
crossref_primary_10_1515_nanoph_2023_0352
crossref_primary_10_3390_photonics10101089
Cites_doi 10.1002/adma.201904069
10.1038/s41467-020-18793-y
10.1126/science.1150124
10.1126/sciadv.abd7097
10.1002/adom.201801813
10.1103/PhysRevLett.126.033901
10.1021/acsnano.8b04889
10.1103/PhysRevApplied.10.054066
10.1364/PRJ.415789
10.1002/adom.202000652
10.1126/science.1210713
10.1038/nphoton.2015.247
10.1002/lpor.201900065
10.1021/acsnano.0c01469
10.1038/nnano.2015.2
10.1021/nl403751p
10.1088/1361-6463/ab25ff
10.1039/D0NR05624C
10.1002/adom.202000783
10.1038/nature13487
10.1021/acsnano.0c05656
10.1002/adpr.202000034
10.1021/acsnano.9b02425
10.1126/sciadv.aar6768
10.1038/srep13384
10.1073/pnas.2001435117
10.1021/acsami.0c12203
10.1021/acsnano.8b05467
10.1038/s41467-020-19312-9
10.1039/D0NR07479A
10.1038/s41578-019-0133-0
10.1002/advs.202000192
10.1038/nature11727
10.1021/acsnano.9b08228
10.1021/acs.nanolett.9b03143
10.1146/annurev-matsci-082908-145405
10.1039/D0TC02427A
10.1007/978-3-030-44992-6_3
10.1002/adfm.201806181
10.1063/5.0028093
10.1021/acsphotonics.0c00787
10.1038/s41377-019-0159-5
10.1209/0295-5075/128/67001
10.1002/lpor.202000373
10.1038/s41467-020-16136-5
10.1038/s41377-020-0329-5
10.1126/sciadv.abd4623
10.1515/nanoph-2020-0440
10.1021/nl071664a
10.1364/AO.386811
10.1038/nmat2226
10.1002/adpr.202000012
10.1038/s41566-020-0691-0
10.1039/C9CP05621A
10.1021/ph500121d
10.1021/acs.nanolett.9b01246
10.1016/j.nanoen.2020.105426
10.1002/adma.201907077
10.1002/adom.202001256
10.1109/ACCESS.2020.3026313
10.1080/00150193.2014.932653
10.1021/acsphotonics.9b00950
10.1126/science.aae0330
10.1021/acsphotonics.0c01168
10.1126/science.aam9189
10.1002/adom.201801786
10.1146/annurev.ms.01.080171.000533
10.1038/s41563-019-0404-6
10.1021/acs.nanolett.7b00359
10.1364/OE.27.005874
10.1021/acsnano.7b07121
10.1021/acsphotonics.7b01373
10.1038/lsa.2017.16
10.1038/s41598-018-28744-9
10.1021/acs.nanolett.7b02336
10.1021/acs.jpcc.7b12609
10.1364/OPTICA.2.000255
10.1021/acsphotonics.8b01243
10.1016/j.mattod.2014.06.001
10.1002/adfm.201704993
10.3390/nano8110871
10.1021/nn101475c
10.1002/adom.202000570
10.1038/nmat2009
10.1103/PhysRevB.99.205404
10.1103/PhysRevLett.118.113901
10.1038/s41565-018-0346-1
10.1088/1361-6528/abc3e5
10.1364/PRJ.7.000734
10.1021/acs.nanolett.7b03665
10.1038/ncomms8337
10.1038/s41467-019-09103-2
10.1021/acsnano.5b05279
10.1002/adom.201801709
10.1002/adom.201900653
10.1088/2040-8986/abc6fa
10.1038/nature14588
10.3390/s16081246
10.1038/s41377-019-0205-3
10.1038/nmat3433
10.1016/j.mee.2019.111146
10.1088/1367-2630/15/12/123029
10.1103/PhysRevLett.116.233901
10.1002/lpor.201600144
10.1126/science.abb0971
10.1063/5.0007351
10.1002/adom.201801782
10.1038/s41598-020-59729-2
10.1038/s41566-018-0246-9
10.1126/sciadv.aat4436
10.1021/acsnano.5b00723
10.1364/PRJ.393333
10.1002/adfm.201806692
10.1021/acsphotonics.0c00983
10.1038/ncomms3807
10.1002/adom.201700261
10.1021/nl1006307
10.1002/adma.202005893
10.1515/nanoph-2019-0474
10.1103/PhysRevB.92.161406
10.1021/acsnano.0c01269
10.1021/acs.nanolett.7b02350
10.1021/la701844s
10.1557/mrs2000.151
10.1126/sciadv.aaw2205
10.1109/JETCAS.2020.2976165
10.1126/science.1125907
10.1038/nphoton.2017.126
10.1364/JOSAB.394671
10.1088/1361-665X/aba6fb
10.1002/adfm.202007210
10.1021/acsphotonics.0c00947
10.1021/nn4054446
10.1002/lpor.202000085
10.1021/acs.nanolett.8b04311
10.1038/s41565-017-0052-4
10.1088/1361-6463/ab7560
10.1002/adom.201700939
10.1021/acsnano.9b09277
10.1515/nanoph-2020-0039
10.1002/adom.201901182
10.3390/mi9110560
10.1364/OE.27.021153
10.1038/ncomms10479
10.1038/s41586-018-0034-1
10.1038/s41467-019-13131-3
10.1103/PhysRevApplied.9.034021
10.1021/acsphotonics.0c01030
10.1364/OL.38.004116
10.1126/sciadv.1701377
10.1038/nphoton.2010.179
10.1126/sciadv.abe9943
10.1002/lpor.202000253
10.1021/acs.nanolett.6b00555
10.3390/en12010089
10.1080/09500340600855106
10.1038/s41378-020-00226-x
10.3390/ma9070556
10.1038/s41598-017-02847-1
10.1021/nl501955e
10.1038/nmat2330
10.1038/s41427-018-0082-x
10.1002/adma.201703878
10.1021/acsphotonics.7b01551
10.1364/OE.412991
10.3390/app8060982
10.1038/s41378-020-00237-8
10.1364/OME.7.000008
10.1038/s41598-018-21479-7
10.1002/adom.201900175
10.1038/s41467-021-21175-7
10.1103/PhysRevApplied.13.021003
10.1038/ncomms10429
10.1021/acs.nanolett.0c02097
10.1038/s41427-018-0061-2
10.1021/acsphotonics.7b01044
10.1038/ncomms15209
10.1002/pssa.201700794
10.1002/adom.201801070
10.1126/science.aat3100
10.1021/acsphotonics.8b00972
10.1126/sciadv.abb7171
10.1063/1.4955272
10.1364/PRJ.395749
10.1126/sciadv.aav6815
10.1016/j.mtphys.2020.100205
10.1021/nl403643v
10.1364/OE.21.026387
10.1515/nanoph-2020-0373
10.1038/s41586-021-03353-1
10.1038/ncomms8032
10.1126/science.1221561
10.1088/2040-8986/abcc52
10.1021/acsami.0c02467
10.1088/2040-8986/abbc55
10.1515/nanoph-2018-0176
10.1364/OL.43.002636
10.1038/s41566-020-0604-2
10.1038/nmat4480
10.1002/adfm.201906711
10.29026/oea.2018.180009
10.1364/OE.26.020258
10.1126/science.1232009
10.1364/OE.18.016492
10.1016/S0370-1573(99)00049-6
10.1002/adma.202001863
10.1016/j.mattod.2020.06.002
10.1002/adfm.202006711
10.1021/acsphotonics.7b01343
10.1038/s41467-019-11598-8
10.1038/nmat3839
10.1002/aelm.201800185
10.1038/s41467-017-00164-9
10.1109/JETCAS.2020.2972764
10.1038/natrevmats.2017.10
10.1021/acsphotonics.9b01807
10.1021/acsami.9b05857
10.1088/1361-6463/abaced
10.1002/adma.201606422
10.1038/nnano.2015.302
10.1186/s40580-019-0213-2
10.1515/nanoph-2019-0117
10.1021/acsphotonics.9b00301
10.1021/acsphotonics.8b01383
10.1016/j.isci.2020.101877
10.1186/s40580-020-00226-7
10.1103/PhysRevLett.95.137404
10.1103/PhysRevApplied.9.034009
10.1038/s41598-018-30835-6
10.1021/acsphotonics.7b01182
10.1021/acsnano.0c05026
10.1038/s41377-020-0309-9
10.1038/s41566-020-0685-y
10.1002/adom.201901932
10.1103/PhysRevB.101.024104
10.1002/adom.202002002
10.1002/lpor.201000014
10.1021/acsami.0c07320
10.1021/acsnano.0c06968
10.1021/acs.nanolett.6b00618
10.1039/C9NA00751B
10.1021/acs.nanolett.6b04378
10.1016/j.mattod.2017.06.007
10.1186/s40580-020-00232-9
10.1021/acsphotonics.0c00554
10.1126/sciadv.abc2709
10.1016/j.optcom.2018.05.085
10.1002/adma.202004664
10.1038/s41377-018-0038-5
10.1039/D0TC00689K
10.1002/adma.201700412
10.1002/adma.202004919
10.1515/nanoph-2020-0311
10.1002/adom.201800169
10.1002/adom.201801639
10.1515/nanoph-2018-0183
10.1038/s41565-020-00787-y
10.3390/s20154108
10.1021/acsphotonics.0c01241
10.1021/acsnano.8b06623
10.1038/s41565-020-0768-4
10.1002/adma.201701044
10.1038/s41467-021-21440-9
10.1088/2040-8978/16/3/032001
10.3390/ma10091046
10.1039/D0NH00139B
10.1021/acsphotonics.7b01517
10.1364/OME.390052
10.1038/s41565-017-0034-6
10.1007/s12206-021-0243-7
10.1038/ncomms14606
10.1002/admt.201900930
10.1021/acs.nanolett.7b00807
ContentType Journal Article
Copyright 2021 The Authors. Advanced Photonics Research published by Wiley‐VCH GmbH
Copyright John Wiley & Sons, Inc. 2021
Copyright_xml – notice: 2021 The Authors. Advanced Photonics Research published by Wiley‐VCH GmbH
– notice: Copyright John Wiley & Sons, Inc. 2021
DBID 24P
AAYXX
CITATION
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
DOA
DOI 10.1002/adpr.202000205
DatabaseName Wiley Online Library Open Access
CrossRef
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database (Proquest)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Publicly Available Content Database


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
EISSN 2699-9293
EndPage n/a
ExternalDocumentID oai_doaj_org_article_2e52c2b46f554a86a80ff95c862aa688
10_1002_adpr_202000205
ADPR202000205
Genre article
GrantInformation_xml – fundername: National Research Foundation (NRF)
  funderid: NRF-2019R1A2C3003129
GroupedDBID 0R~
1OC
24P
AAFWJ
AAHHS
ACCFJ
ACCMX
ADZOD
AEEZP
AEQDE
AFKRA
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
BENPR
CCPQU
EBS
GROUPED_DOAJ
IAO
ITC
M~E
OK1
PIMPY
AAYXX
ADMLS
AFPKN
CITATION
PHGZM
PHGZT
AAMMB
ABUWG
AEFGJ
AGXDD
AIDQK
AIDYY
AZQEC
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
PUEGO
WIN
ID FETCH-LOGICAL-c3925-bd606967aaa8d49c46d24ab7e4ae078f5678998b00f5eb8ba01cdcbf82e55ba73
IEDL.DBID DOA
ISSN 2699-9293
IngestDate Wed Aug 27 01:27:12 EDT 2025
Sun Jul 13 03:47:59 EDT 2025
Thu Apr 24 23:12:24 EDT 2025
Tue Jul 01 01:24:03 EDT 2025
Wed Jan 22 16:27:44 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
License Attribution
http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3925-bd606967aaa8d49c46d24ab7e4ae078f5678998b00f5eb8ba01cdcbf82e55ba73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-2179-2890
OpenAccessLink https://doaj.org/article/2e52c2b46f554a86a80ff95c862aa688
PQID 3089860747
PQPubID 6860423
PageCount 24
ParticipantIDs doaj_primary_oai_doaj_org_article_2e52c2b46f554a86a80ff95c862aa688
proquest_journals_3089860747
crossref_primary_10_1002_adpr_202000205
crossref_citationtrail_10_1002_adpr_202000205
wiley_primary_10_1002_adpr_202000205_ADPR202000205
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate September 2021
PublicationDateYYYYMMDD 2021-09-01
PublicationDate_xml – month: 09
  year: 2021
  text: September 2021
PublicationDecade 2020
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle Advanced photonics research
PublicationYear 2021
Publisher John Wiley & Sons, Inc
Wiley-VCH
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley-VCH
References 2010; 10
2019; 2019
2013; 4
2020; 20
2010; 18
2019; 99
2019; 11
2019; 10
2019; 13
2019; 14
2020; 15
2019; 19
2020; 14
2019; 18
2020; 13
2020; 12
2020; 11
2020; 10
2018; 43
2012; 11
2018; 7
2018; 6
2021; 79
2018; 9
2018; 8
2009; 95
2018; 5
2018; 4
2018; 1
2014; 16
2019; 27
2007; 6
2014; 14
2014; 13
2019; 29
2007; 7
2008; 24
2018; 30
2014; 17
1971; 1
2010; 4
2019; 8
2019; 7
2018; 28
2019; 4
2019; 6
2019; 5
2019; 31
2020; 39
2016; 10
2020; 37
2020; 32
2015; 524
2016; 16
2018; 21
2016; 15
2011; 5
2018; 26
2016; 11
2018; 18
2016; 7
2013; 339
2020; 30
2005; 95
2020; 28
2020; 23
2020; 22
2019; 216
2018; 12
2018; 10
2007; 318
2016; 9
2018; 13
2020; 29
2017; 5
2018; 362
2017; 6
2017; 7
2018; 122
2017; 8
2017; 2
2017; 3
2021; 23
2013; 21
2019; 52
2016; 109
2021; 126
2008; 7
2020; 128
2020; 59
2019; 364
2017; 118
2014; 1
2020; 8
2020; 7
2021; 35
2020; 6
2020; 5
2021; 32
2013; 15
2021; 31
2020; 2
2021; 33
2020; 1
2020; 53
2000; 324
2020; 370
2020; 9
2019; 1090
2016; 352
2021; 592
2016; 116
2014; 8
2012; 336
2015; 2
2021; 9
2021; 8
2011; 334
2021; 7
2015; 6
2015; 5
2021; 2
2000; 25
2011
2015; 92
2020; 220
2018; 426
2015; 10
2017; 23
2017; 29
2020; 101
2007; 54
2015; 9
2014; 511
2006; 312
2021; 13
2014; 468
2021; 16
2021; 15
2021; 12
2013; 38
2018; 556
2021
2017; 17
2020
2017; 11
2017; 10
2020; 116
2020; 117
2013; 493
2013
2009; 39
e_1_2_8_241_1
e_1_2_8_287_1
e_1_2_8_264_1
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_203_1
e_1_2_8_226_1
e_1_2_8_132_1
e_1_2_8_155_1
e_1_2_8_178_1
Frese D. (e_1_2_8_249_1) 2021
e_1_2_8_9_1
e_1_2_8_117_1
e_1_2_8_170_1
e_1_2_8_193_1
e_1_2_8_64_1
e_1_2_8_87_1
e_1_2_8_41_1
e_1_2_8_230_1
e_1_2_8_253_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_238_1
Enoch J. M. (e_1_2_8_2_1) 2007; 54
e_1_2_8_215_1
e_1_2_8_120_1
e_1_2_8_143_1
e_1_2_8_166_1
e_1_2_8_189_1
e_1_2_8_91_1
e_1_2_8_105_1
e_1_2_8_128_1
e_1_2_8_181_1
e_1_2_8_53_1
e_1_2_8_76_1
e_1_2_8_30_1
e_1_2_8_242_1
e_1_2_8_265_1
e_1_2_8_25_1
e_1_2_8_280_1
e_1_2_8_48_1
e_1_2_8_227_1
e_1_2_8_288_1
e_1_2_8_204_1
e_1_2_8_133_1
e_1_2_8_179_1
e_1_2_8_110_1
e_1_2_8_171_1
e_1_2_8_86_1
e_1_2_8_118_1
e_1_2_8_194_1
e_1_2_8_63_1
e_1_2_8_40_1
e_1_2_8_156_1
e_1_2_8_231_1
e_1_2_8_14_1
e_1_2_8_37_1
e_1_2_8_239_1
e_1_2_8_216_1
e_1_2_8_144_1
e_1_2_8_90_1
e_1_2_8_121_1
e_1_2_8_98_1
e_1_2_8_106_1
e_1_2_8_182_1
e_1_2_8_75_1
e_1_2_8_129_1
e_1_2_8_52_1
e_1_2_8_167_1
Li Y. (e_1_2_8_58_1) 2020; 12
e_1_2_8_243_1
e_1_2_8_281_1
Liu S. (e_1_2_8_220_1) 2017; 23
e_1_2_8_228_1
e_1_2_8_266_1
e_1_2_8_205_1
e_1_2_8_289_1
e_1_2_8_81_1
e_1_2_8_111_1
e_1_2_8_7_1
Mao L. (e_1_2_8_50_1) 2020; 2
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_66_1
e_1_2_8_89_1
e_1_2_8_119_1
e_1_2_8_172_1
e_1_2_8_195_1
e_1_2_8_134_1
e_1_2_8_157_1
e_1_2_8_17_1
e_1_2_8_232_1
He Q. (e_1_2_8_28_1) 2019; 2019
e_1_2_8_270_1
e_1_2_8_217_1
e_1_2_8_255_1
e_1_2_8_278_1
e_1_2_8_70_1
e_1_2_8_122_1
e_1_2_8_160_1
e_1_2_8_32_1
e_1_2_8_55_1
e_1_2_8_78_1
e_1_2_8_107_1
e_1_2_8_183_1
e_1_2_8_145_1
e_1_2_8_168_1
e_1_2_8_93_1
e_1_2_8_221_1
e_1_2_8_282_1
e_1_2_8_27_1
e_1_2_8_229_1
e_1_2_8_244_1
e_1_2_8_267_1
e_1_2_8_206_1
e_1_2_8_80_1
e_1_2_8_150_1
e_1_2_8_8_1
e_1_2_8_42_1
e_1_2_8_88_1
e_1_2_8_173_1
e_1_2_8_112_1
e_1_2_8_158_1
e_1_2_8_196_1
e_1_2_8_135_1
e_1_2_8_39_1
e_1_2_8_210_1
e_1_2_8_271_1
e_1_2_8_16_1
e_1_2_8_218_1
e_1_2_8_256_1
e_1_2_8_279_1
e_1_2_8_92_1
e_1_2_8_100_1
e_1_2_8_161_1
e_1_2_8_31_1
e_1_2_8_77_1
e_1_2_8_54_1
e_1_2_8_108_1
e_1_2_8_184_1
e_1_2_8_123_1
e_1_2_8_169_1
e_1_2_8_146_1
e_1_2_8_283_1
e_1_2_8_68_1
e_1_2_8_260_1
e_1_2_8_222_1
e_1_2_8_207_1
e_1_2_8_245_1
e_1_2_8_268_1
e_1_2_8_5_1
e_1_2_8_151_1
Saha S. (e_1_2_8_233_1) 2020
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_113_1
e_1_2_8_136_1
e_1_2_8_159_1
e_1_2_8_174_1
e_1_2_8_197_1
Ko B. (e_1_2_8_65_1) 2021
e_1_2_8_60_1
e_1_2_8_83_1
e_1_2_8_19_1
e_1_2_8_109_1
e_1_2_8_272_1
e_1_2_8_57_1
e_1_2_8_211_1
e_1_2_8_234_1
e_1_2_8_257_1
e_1_2_8_95_1
e_1_2_8_219_1
e_1_2_8_162_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_101_1
e_1_2_8_124_1
e_1_2_8_147_1
e_1_2_8_185_1
e_1_2_8_72_1
e_1_2_8_29_1
e_1_2_8_284_1
e_1_2_8_261_1
e_1_2_8_200_1
e_1_2_8_223_1
Ren Q. (e_1_2_8_254_1) 2020; 8
e_1_2_8_269_1
e_1_2_8_152_1
e_1_2_8_208_1
e_1_2_8_6_1
Li S. Q. (e_1_2_8_99_1) 2019; 1090
e_1_2_8_21_1
e_1_2_8_67_1
e_1_2_8_44_1
e_1_2_8_137_1
e_1_2_8_175_1
e_1_2_8_82_1
e_1_2_8_114_1
e_1_2_8_198_1
e_1_2_8_18_1
e_1_2_8_273_1
e_1_2_8_250_1
e_1_2_8_79_1
e_1_2_8_212_1
e_1_2_8_235_1
e_1_2_8_258_1
e_1_2_8_94_1
e_1_2_8_163_1
e_1_2_8_140_1
e_1_2_8_10_1
e_1_2_8_56_1
e_1_2_8_33_1
e_1_2_8_102_1
e_1_2_8_148_1
e_1_2_8_186_1
e_1_2_8_71_1
e_1_2_8_125_1
Popov A. K. (e_1_2_8_246_1) 2011
e_1_2_8_262_1
e_1_2_8_285_1
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_224_1
e_1_2_8_201_1
e_1_2_8_247_1
e_1_2_8_3_1
e_1_2_8_130_1
e_1_2_8_153_1
e_1_2_8_209_1
e_1_2_8_138_1
e_1_2_8_62_1
e_1_2_8_85_1
e_1_2_8_115_1
e_1_2_8_176_1
e_1_2_8_199_1
e_1_2_8_251_1
e_1_2_8_274_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_59_1
e_1_2_8_190_1
e_1_2_8_213_1
e_1_2_8_259_1
Kim I. (e_1_2_8_141_1) 2021
e_1_2_8_236_1
e_1_2_8_164_1
e_1_2_8_97_1
e_1_2_8_149_1
e_1_2_8_51_1
e_1_2_8_74_1
e_1_2_8_126_1
e_1_2_8_187_1
e_1_2_8_240_1
e_1_2_8_263_1
Jiang J. (e_1_2_8_277_1) 2020
e_1_2_8_286_1
e_1_2_8_46_1
e_1_2_8_69_1
e_1_2_8_180_1
e_1_2_8_202_1
e_1_2_8_225_1
e_1_2_8_248_1
e_1_2_8_154_1
Wiecha P. (e_1_2_8_276_1) 2021
e_1_2_8_4_1
e_1_2_8_131_1
e_1_2_8_192_1
e_1_2_8_116_1
e_1_2_8_23_1
e_1_2_8_139_1
e_1_2_8_84_1
e_1_2_8_61_1
e_1_2_8_177_1
e_1_2_8_252_1
e_1_2_8_275_1
e_1_2_8_35_1
e_1_2_8_191_1
e_1_2_8_214_1
e_1_2_8_237_1
e_1_2_8_165_1
e_1_2_8_96_1
e_1_2_8_142_1
Nam V. B. (e_1_2_8_127_1) 2020; 7
e_1_2_8_12_1
e_1_2_8_73_1
Xiao S. (e_1_2_8_103_1) 2009; 95
e_1_2_8_104_1
e_1_2_8_188_1
References_xml – volume: 5
  start-page: eaaw2205
  year: 2019
  publication-title: Sci. Adv.
– volume: 9
  start-page: 034009
  year: 2018
  publication-title: Phys. Rev. Appl.
– volume: 9
  start-page: 10647
  year: 2015
  publication-title: ACS Nano
– volume: 324
  start-page: 107
  year: 2000
  publication-title: Phys. Rep.
– volume: 92
  start-page: 161406
  year: 2015
  publication-title: Phys. Rev. B
– volume: 18
  start-page: 16492
  year: 2010
  publication-title: Opt. Express
– volume: 18
  start-page: 8054
  year: 2018
  publication-title: Nano Lett.
– volume: 5
  start-page: 1800
  year: 2018
  publication-title: ACS Photonics
– volume: 43
  start-page: 2636
  year: 2018
  publication-title: Opt. Lett.
– volume: 5
  start-page: 4677
  year: 2018
  publication-title: ACS Photonics
– volume: 10
  start-page: 054066
  year: 2018
  publication-title: Phys. Rev. Appl.
– volume: 5
  start-page: 1700261
  year: 2017
  publication-title: Adv. Opt. Mater.
– volume: 16
  start-page: 032001
  year: 2014
  publication-title: J. Opt.
– volume: 7
  start-page: 1801639
  year: 2019
  publication-title: Adv. Opt. Mater.
– volume: 4
  start-page: 742
  year: 2019
  publication-title: Nat. Rev. Mater.
– volume: 9
  start-page: 034021
  year: 2018
  publication-title: Phys. Rev. Appl.
– volume: 15
  start-page: 123029
  year: 2013
  publication-title: New J. Phys.
– volume: 29
  start-page: 115018
  year: 2020
  publication-title: Smart Mater. Struct.
– volume: 6
  start-page: 1800169
  year: 2018
  publication-title: Adv. Opt. Mater.
– volume: 8
  start-page: 175753
  year: 2020
  publication-title: IEEE Access
– volume: 8
  start-page: 10639
  year: 2018
  publication-title: Sci. Rep.
– volume: 21
  start-page: 26387
  year: 2013
  publication-title: Opt. Express
– volume: 10
  start-page: 3654
  year: 2019
  publication-title: Nat. Commun.
– volume: 28
  start-page: 37590
  year: 2020
  publication-title: Opt. Express
– volume: 7
  start-page: 18
  year: 2020
  publication-title: Nano Converg.
– volume: 22
  start-page: 2337
  year: 2020
  publication-title: Phys. Chem. Chem. Phys.
– volume: 8
  start-page: 98
  year: 2019
  publication-title: Light Sci. Appl.
– volume: 7
  start-page: 26
  year: 2018
  publication-title: Light Sci. Appl.
– volume: 10
  start-page: 60
  year: 2016
  publication-title: Nat. Photonics
– volume: 32
  start-page: 065202
  year: 2021
  publication-title: Nanotechnology
– volume: 7
  start-page: 3122
  year: 2007
  publication-title: Nano Lett.
– volume: 7
  start-page: 1813
  year: 2020
  publication-title: ACS Photonics
– volume: 116
  start-page: 163504
  year: 2020
  publication-title: Appl. Phys. Lett.
– volume: 12
  start-page: 924
  year: 2021
  publication-title: Nat. Commun.
– volume: 7
  start-page: eabe9943
  year: 2021
  publication-title: Sci. Adv.
– volume: 8
  start-page: 415
  year: 2019
  publication-title: Nanophotonics
– volume: 17
  start-page: 7033
  year: 2017
  publication-title: Nano Lett.
– volume: 99
  start-page: 205404
  year: 2019
  publication-title: Phys. Rev. B
– volume: 29
  start-page: 1606422
  year: 2017
  publication-title: Adv. Mater.
– volume: 14
  start-page: 658
  year: 2020
  publication-title: Nat. Photonics
– volume: 29
  start-page: 1806692
  year: 2019
  publication-title: Adv. Funct. Mater.
– volume: 556
  start-page: 360
  year: 2018
  publication-title: Nature
– volume: 14
  start-page: 5555
  year: 2014
  publication-title: Nano Lett.
– volume: 468
  start-page: 1
  year: 2014
  publication-title: Ferroelectrics
– volume: 27
  start-page: 21153
  year: 2019
  publication-title: Opt. Express
– volume: 23
  start-page: 1
  year: 2017
  publication-title: IEEE J. Sel. Top. Quantum Electron.
– volume: 10
  start-page: 6
  year: 2020
  publication-title: IEEE J. Emerg. Sel. Top. Circuits Syst.
– volume: 14
  start-page: 2000085
  year: 2020
  publication-title: Laser Photonics Rev.
– volume: 27
  start-page: 5874
  year: 2019
  publication-title: Opt. Express
– volume: 7
  start-page: 2618
  year: 2020
  publication-title: ACS Photonics
– volume: 12
  start-page: 2151
  year: 2018
  publication-title: ACS Nano
– volume: 19
  start-page: 7988
  year: 2019
  publication-title: Nano Lett.
– volume: 12
  start-page: 42393
  year: 2020
  publication-title: ACS Appl. Mater. Interfaces
– volume: 22
  start-page: 114002
  year: 2020
  publication-title: J. Opt.
– volume: 35
  start-page: 837
  year: 2021
  publication-title: J. Mech. Sci. Technol.
– volume: 6
  start-page: e17016
  year: 2017
  publication-title: Light Sci. Appl.
– volume: 5
  start-page: 1742
  year: 2018
  publication-title: ACS Photonics
– volume: 1
  start-page: 2000012
  year: 2020
  publication-title: Adv. Photonics Res.
– volume: 7
  start-page: 1900175
  year: 2019
  publication-title: Adv. Opt. Mater.
– volume: 8
  start-page: 7189
  year: 2020
  publication-title: J. Mater. Chem. C
– volume: 339
  start-page: 1232009
  year: 2013
  publication-title: Science
– volume: 13
  start-page: 227
  year: 2018
  publication-title: Nat. Nanotechnol.
– volume: 95
  start-page: 2007
  year: 2009
  publication-title: Appl. Phys. Lett.
– volume: 8
  start-page: 1177
  year: 2020
  publication-title: Photonics Res.
– volume: 33
  start-page: 2005893
  year: 2021
  publication-title: Adv. Mater.
– volume: 10
  start-page: 308
  year: 2015
  publication-title: Nat. Nanotechnol.
– volume: 7
  start-page: 972
  year: 2008
  publication-title: Nat. Mater.
– volume: 24
  start-page: 541
  year: 2008
  publication-title: Langmuir
– volume: 10
  start-page: 1046
  year: 2017
  publication-title: Materials
– volume: 7
  start-page: 3096
  year: 2020
  publication-title: ACS Photonics
– volume: 20
  start-page: 6084
  year: 2020
  publication-title: Nano Lett.
– volume: 16
  start-page: 1246
  year: 2016
  publication-title: Sensors
– volume: 43
  start-page: 94
  year: 2018
– volume: 39
  start-page: 89
  year: 2020
  publication-title: Mater. Today
– volume: 8
  start-page: 871
  year: 2018
  publication-title: Nanomaterials
– volume: 17
  start-page: 407
  year: 2017
  publication-title: Nano Lett.
– volume: 33
  start-page: 2004919
  year: 2021
  publication-title: Adv. Mater.
– volume: 1090
  start-page: 1087
  year: 2019
  publication-title: Science
– volume: 511
  start-page: 206
  year: 2014
  publication-title: Nature
– volume: 12
  start-page: 30815
  year: 2020
  publication-title: ACS Appl. Mater. Interfaces
– volume: 32
  start-page: 1907077
  year: 2020
  publication-title: Adv. Mater.
– volume: 334
  start-page: 333
  year: 2011
  publication-title: Science
– volume: 8
  start-page: 2001256
  year: 2020
  publication-title: Adv. Opt. Mater.
– volume: 8
  start-page: 1900653
  year: 2020
  publication-title: Adv. Opt. Mater.
– volume: 9
  start-page: 556
  year: 2016
  publication-title: Materials
– volume: 31
  start-page: 2006711
  year: 2021
  publication-title: Adv. Funct. Mater.
– volume: 1
  start-page: 18000901
  year: 2018
  publication-title: Opto-Electron. Adv.
– volume: 122
  start-page: 4600
  year: 2018
  publication-title: J. Phys. Chem. C
– volume: 8
  start-page: 982
  year: 2018
  publication-title: Appl. Sci.
– volume: 17
  start-page: 3027
  year: 2017
  publication-title: Nano Lett.
– volume: 6
  start-page: eabc2709
  year: 2020
  publication-title: Sci. Adv.
– volume: 312
  start-page: 1780
  year: 2006
  publication-title: Science
– volume: 10
  start-page: 259
  year: 2020
  publication-title: Nanophotonics
– volume: 14
  start-page: 7892
  year: 2020
  publication-title: ACS Nano
– volume: 12
  start-page: 10683
  year: 2018
  publication-title: ACS Nano
– volume: 12
  start-page: 1225
  year: 2021
  publication-title: Nat. Commun.
– volume: 8
  start-page: 797
  year: 2014
  publication-title: ACS Nano
– volume: 11
  start-page: 24264
  year: 2019
  publication-title: ACS Appl. Mater. Interfaces
– volume: 8
  start-page: 1901932
  year: 2020
  publication-title: Adv. Opt. Mater.
– volume: 4
  start-page: 518
  year: 2010
  publication-title: Nat. Photonics
– volume: 8
  start-page: 2000570
  year: 2020
  publication-title: Adv. Opt. Mater.
– volume: 318
  start-page: 1750
  year: 2007
  publication-title: Science
– volume: 7
  start-page: 23
  year: 2020
  publication-title: Nano Converg.
– volume: 493
  start-page: 195
  year: 2013
  publication-title: Nature
– volume: 524
  start-page: 204
  year: 2015
  publication-title: Nature
– volume: 39
  start-page: 25
  year: 2009
  publication-title: Annu. Rev. Mater. Res.
– volume: 8
  start-page: 14606
  year: 2017
  publication-title: Nat. Commun.
– volume: 8
  start-page: 2000652
  year: 2020
  publication-title: Adv. Opt. Mater.
– volume: 5
  start-page: 308
  year: 2011
  publication-title: Laser Photonics Rev.
– start-page: 117
  year: 2011
  end-page: 158
– volume: 4
  start-page: 5233
  year: 2010
  publication-title: ACS Nano
– volume: 6
  start-page: 2860
  year: 2019
  publication-title: ACS Photonics
– volume: 13
  start-page: 021003
  year: 2020
  publication-title: Phys. Rev. Appl.
– volume: 8
  start-page: 3378
  year: 2018
  publication-title: Sci. Rep.
– volume: 38
  start-page: 4116
  year: 2013
  publication-title: Opt. Lett.
– volume: 14
  start-page: 15317
  year: 2020
  publication-title: ACS Nano
– volume: 9
  start-page: 4407
  year: 2020
  publication-title: Nanophotonics
– volume: 37
  start-page: 2534
  year: 2020
  publication-title: J. Opt. Soc. Am. B
– volume: 9
  start-page: 1189
  year: 2020
  publication-title: Nanophotonics
– volume: 10
  start-page: 5030
  year: 2019
  publication-title: Nat. Commun.
– volume: 6
  start-page: 7032
  year: 2015
  publication-title: Nat. Commun.
– volume: 220
  start-page: 111146
  year: 2020
  publication-title: Microelectron. Eng.
– volume: 7
  start-page: 734
  year: 2019
  publication-title: Photonics Res.
– volume: 7
  start-page: eabd7097
  year: 2021
  publication-title: Sci. Adv.
– year: 2020
  publication-title: Nat. Rev. Mater.
– volume: 16
  start-page: 5319
  year: 2016
  publication-title: Nano Lett.
– volume: 216
  start-page: 1700794
  year: 2019
  publication-title: Phys. Status Solidi
– volume: 2
  start-page: 17010
  year: 2017
  publication-title: Nat. Rev. Mater.
– volume: 10
  start-page: 4522
  year: 2020
  publication-title: Sci. Rep.
– volume: 10
  start-page: 581
  year: 2018
  publication-title: NPG Asia Mater.
– volume: 19
  start-page: 3961
  year: 2019
  publication-title: Nano Lett.
– volume: 30
  start-page: 1703878
  year: 2018
  publication-title: Adv. Mater.
– volume: 10
  start-page: 1082
  year: 2019
  publication-title: Nat. Commun.
– volume: 17
  start-page: 5555
  year: 2017
  publication-title: Nano Lett.
– volume: 14
  start-page: 15042
  year: 2020
  publication-title: ACS Nano
– volume: 14
  start-page: 237
  year: 2019
  publication-title: Nat. Nanotechnol.
– start-page: QTh1B.3
  year: 2013
– volume: 29
  start-page: 1700412
  year: 2017
  publication-title: Adv. Mater.
– volume: 336
  start-page: 1566
  year: 2012
  publication-title: Science
– volume: 13
  start-page: 220
  year: 2018
  publication-title: Nat. Nanotechnol.
– volume: 9
  start-page: 560
  year: 2018
  publication-title: Micromachines
– volume: 7
  start-page: 1801070
  year: 2018
  publication-title: Adv. Opt. Mater.
– volume: 10
  start-page: 888
  year: 2018
  publication-title: NPG Asia Mater.
– volume: 7
  start-page: 1801786
  year: 2019
  publication-title: Adv. Opt. Mater.
– volume: 1
  start-page: 833
  year: 2014
  publication-title: ACS Photonics
– volume: 6
  start-page: eabb7171
  year: 2020
  publication-title: Sci. Adv.
– volume: 117
  start-page: 13350
  year: 2020
  publication-title: Proc. Natl. Acad. Sci.
– volume: 32
  start-page: 2001863
  year: 2020
  publication-title: Adv. Mater.
– volume: 8
  start-page: 2000783
  year: 2020
  publication-title: Adv. Opt. Mater.
– volume: 5
  start-page: 4513
  year: 2018
  publication-title: ACS Photonics
– volume: 17
  start-page: 426
  year: 2014
  publication-title: Mater. Today
– volume: 4
  start-page: 2807
  year: 2013
  publication-title: Nat. Commun.
– volume: 22
  start-page: 124001
  year: 2020
  publication-title: J. Opt.
– volume: 12
  start-page: 1
  year: 2020
  publication-title: IEEE Photonics J.
– volume: 53
  start-page: 503002
  year: 2020
  publication-title: J. Phys. D: Appl. Phys.
– volume: 6
  start-page: 824
  year: 2007
  publication-title: Nat. Mater.
– volume: 15
  start-page: 2000373
  year: 2021
  publication-title: Laser Photonics Rev.
– volume: 11
  start-page: 2268
  year: 2020
  publication-title: Nat. Commun.
– volume: 2
  start-page: 255
  year: 2015
  publication-title: Optica
– volume: 53
  start-page: 204001
  year: 2020
  publication-title: J. Phys. D: Appl. Phys.
– year: 2020
  publication-title: Mater. Today
– start-page: 1
  year: 2021
  publication-title: Photonics Res.
– volume: 8
  start-page: 15209
  year: 2017
  publication-title: Nat. Commun.
– volume: 10
  start-page: 919
  year: 2020
  publication-title: Nanophotonics
– volume: 52
  start-page: 373002
  year: 2019
  publication-title: J. Phys. D. Appl. Phys.
– volume: 14
  start-page: 1166
  year: 2020
  publication-title: ACS Nano
– volume: 12
  start-page: 21392
  year: 2020
  publication-title: Nanoscale
– volume: 54
  start-page: 1221
  year: 2007
  publication-title: J. Mod. Opt.
– volume: 5
  start-page: 2631
  year: 2018
  publication-title: ACS Photonics
– volume: 11
  start-page: 936
  year: 2012
  publication-title: Nat. Mater.
– volume: 3
  start-page: e1701377
  year: 2017
  publication-title: Sci. Adv.
– volume: 7
  start-page: 5
  year: 2021
  publication-title: Microsyst. Nanoeng.
– volume: 5
  start-page: 1088
  year: 2020
  publication-title: Nanoscale Horizons
– volume: 8
  start-page: 11572
  year: 2020
  publication-title: J. Mater. Chem. C
– volume: 29
  start-page: 1701044
  year: 2017
  publication-title: Adv. Mater.
– volume: 13
  start-page: 1900065
  year: 2019
  publication-title: Laser Photonics Rev.
– volume: 31
  start-page: 1904069
  year: 2019
  publication-title: Adv. Mater.
– volume: 11
  start-page: 465
  year: 2017
  publication-title: Nat. Photonics
– volume: 116
  start-page: 233901
  year: 2016
  publication-title: Phys. Rev. Lett.
– volume: 2019
  start-page: 1
  year: 2019
  publication-title: Research
– volume: 28
  start-page: 1704993
  year: 2018
  publication-title: Adv. Funct. Mater.
– volume: 9
  start-page: 1041
  year: 2020
  publication-title: Nanophotonics
– volume: 10
  start-page: 1053
  year: 2020
  publication-title: Opt. Mater. Express
– volume: 2
  start-page: 2000034
  year: 2021
  publication-title: Adv. Photonics Res.
– volume: 8
  start-page: 197
  year: 2017
  publication-title: Nat. Commun.
– volume: 8
  start-page: 1409
  year: 2020
  publication-title: Photonics Res.
– volume: 13
  start-page: 100205
  year: 2020
  publication-title: Mater. Today Phys.
– volume: 2
  start-page: 1
  year: 2020
  publication-title: Adv. Photonics
– volume: 13
  start-page: 7100
  year: 2019
  publication-title: ACS Nano
– volume: 4
  start-page: 1800185
  year: 2018
  publication-title: Adv. Electron. Mater.
– volume: 11
  start-page: 5484
  year: 2020
  publication-title: Nat. Commun.
– volume: 15
  start-page: 698
  year: 2021
  publication-title: ACS Nano
– volume: 12
  start-page: 89
  year: 2018
  publication-title: Energies
– volume: 10
  start-page: 114
  year: 2020
  publication-title: IEEE J. Emerg. Sel. Top. Circuits Syst.
– volume: 23
  start-page: 101877
  year: 2020
  publication-title: iScience
– volume: 5
  start-page: 4702
  year: 2018
  publication-title: ACS Photonics
– volume: 126
  start-page: 033901
  year: 2021
  publication-title: Phys. Rev. Lett.
– volume: 5
  start-page: 1643
  year: 2018
  publication-title: ACS Photonics
– volume: 20
  start-page: 4108
  year: 2020
  publication-title: Sensors
– volume: 5
  start-page: eaav6815
  year: 2019
  publication-title: Sci. Adv.
– volume: 4
  start-page: eaar6768
  year: 2018
  publication-title: Sci. Adv.
– volume: 26
  start-page: 20258
  year: 2018
  publication-title: Opt. Express
– volume: 8
  start-page: 47
  year: 2021
  publication-title: ACS Photonics
– volume: 7
  start-page: 1801813
  year: 2019
  publication-title: Adv. Opt. Mater.
– volume: 15
  start-page: 77
  year: 2021
  publication-title: Nat. Photonics
– volume: 31
  start-page: 2007210
  year: 2021
  publication-title: Adv. Funct. Mater.
– volume: 5
  start-page: 2549
  year: 2018
  publication-title: ACS Photonics
– volume: 5
  start-page: 110901
  year: 2020
  publication-title: APL Photonics
– volume: 13
  start-page: 440
  year: 2019
  publication-title: ACS Nano
– volume: 25
  start-page: 52
  year: 2000
  publication-title: MRS Bull.
– volume: 79
  start-page: 105426
  year: 2021
  publication-title: Nano Energy
– volume: 11
  start-page: 5055
  year: 2020
  publication-title: Nat. Commun.
– volume: 8
  start-page: 18
  year: 2021
  publication-title: ACS Photonics
– volume: 30
  start-page: 1906711
  year: 2020
  publication-title: Adv. Funct. Mater.
– volume: 8
  start-page: 12393
  year: 2018
  publication-title: Sci. Rep.
– volume: 426
  start-page: 443
  year: 2018
  publication-title: Opt. Commun.
– volume: 29
  start-page: 1806181
  year: 2019
  publication-title: Adv. Funct. Mater.
– volume: 5
  start-page: 13384
  year: 2015
  publication-title: Sci. Rep.
– volume: 14
  start-page: 2000253
  year: 2020
  publication-title: Laser Photonics Rev.
– volume: 5
  start-page: 1493
  year: 2018
  publication-title: ACS Photonics
– volume: 10
  start-page: 1002
  year: 2016
  publication-title: Laser Photonics Rev.
– volume: 7
  start-page: 1801709
  year: 2019
  publication-title: Adv. Opt. Mater.
– year: 2021
  publication-title: ChemNanoMat
– volume: 2
  start-page: 605
  year: 2020
  publication-title: Nanoscale Adv.
– volume: 6
  start-page: 1533
  year: 2019
  publication-title: ACS Photonics
– volume: 4
  start-page: eaat4436
  year: 2018
  publication-title: Sci. Adv.
– volume: 7
  start-page: 14
  year: 2021
  publication-title: Microsyst. Nanoeng.
– volume: 7
  start-page: 10429
  year: 2016
  publication-title: Nat. Commun.
– volume: 14
  start-page: 6912
  year: 2020
  publication-title: ACS Nano
– volume: 128
  start-page: 67001
  year: 2020
  publication-title: EPL
– volume: 7
  start-page: 8
  year: 2017
  publication-title: Opt. Mater. Express
– volume: 13
  start-page: 139
  year: 2014
  publication-title: Nat. Mater.
– volume: 7
  start-page: 1425
  year: 2020
  publication-title: ACS Photonics
– volume: 15
  start-page: 311
  year: 2016
  publication-title: Nat. Mater.
– volume: 7
  start-page: 1801782
  year: 2019
  publication-title: Adv. Opt. Mater.
– volume: 14
  start-page: 1140
  year: 2014
  publication-title: Nano Lett.
– volume: 118
  start-page: 113901
  year: 2017
  publication-title: Phys. Rev. Lett.
– volume: 8
  start-page: 1255
  year: 2019
  publication-title: Nanophotonics
– volume: 362
  start-page: 1037
  year: 2018
  publication-title: Science
– volume: 7
  start-page: 2236
  year: 2020
  publication-title: ACS Photonics
– volume: 7
  start-page: 2000192
  year: 2020
  publication-title: Adv. Sci.
– start-page: 2002002
  year: 2021
  publication-title: Adv. Opt. Mater.
– volume: 1
  start-page: 101
  year: 1971
  publication-title: Annu. Rev. Mater. Sci.
– volume: 5
  start-page: 1900930
  year: 2020
  publication-title: Adv. Mater. Technol.
– volume: 7
  start-page: 2958
  year: 2020
  publication-title: ACS Photonics
– volume: 12
  start-page: 659
  year: 2018
  publication-title: Nat. Photonics
– volume: 7
  start-page: 3
  year: 2020
  publication-title: Nano Converge.
– volume: 364
  start-page: eaat3100
  year: 2019
  publication-title: Science
– volume: 9
  start-page: 4308
  year: 2015
  publication-title: ACS Nano
– volume: 14
  start-page: 214
  year: 2014
  publication-title: Nano Lett.
– volume: 9
  start-page: 75
  year: 2020
  publication-title: Light Sci. Appl.
– volume: 8
  start-page: 1901182
  year: 2020
  publication-title: Adv. Opt. Mater.
– year: 2021
  publication-title: ACS Photonics
– volume: 592
  start-page: 54
  year: 2021
  publication-title: Nature
– year: 2021
  publication-title: Nat. Nanotechnol.
– volume: 13
  start-page: 2113
  year: 2021
  publication-title: Nanoscale
– volume: 7
  start-page: eabd4623
  year: 2021
  publication-title: Sci. Adv.
– volume: 14
  start-page: 1418
  year: 2020
  publication-title: ACS Nano
– volume: 370
  start-page: 786
  year: 2020
  publication-title: Science
– volume: 6
  start-page: 1700939
  year: 2018
  publication-title: Adv. Opt. Mater.
– volume: 7
  start-page: 653
  year: 2008
  publication-title: Nat. Mater.
– volume: 7
  start-page: 2611
  year: 2017
  publication-title: Sci. Rep.
– volume: 16
  start-page: 2818
  year: 2016
  publication-title: Nano Lett.
– volume: 12
  start-page: 8817
  year: 2018
  publication-title: ACS Nano
– volume: 101
  start-page: 024104
  year: 2020
  publication-title: Phys. Rev. B
– volume: 9
  start-page: B153
  year: 2021
  publication-title: Photonics Res.
– volume: 95
  start-page: 137404
  year: 2005
  publication-title: Phys. Rev. Lett.
– volume: 10
  start-page: 2111
  year: 2010
  publication-title: Nano Lett.
– volume: 7
  start-page: 10479
  year: 2016
  publication-title: Nat. Commun.
– volume: 8
  start-page: 48
  year: 2019
  publication-title: Light Sci. Appl.
– volume: 14
  start-page: 383
  year: 2020
  publication-title: Nat. Photonics
– volume: 16
  start-page: 69
  year: 2021
  publication-title: Nat. Nanotechnol.
– volume: 21
  start-page: 8
  year: 2018
  publication-title: Mater. Today
– volume: 109
  start-page: 011901
  year: 2016
  publication-title: Appl. Phys. Lett.
– volume: 17
  start-page: 3641
  year: 2017
  publication-title: Nano Lett.
– volume: 18
  start-page: 820
  year: 2019
  publication-title: Nat. Mater.
– volume: 12
  start-page: 23554
  year: 2020
  publication-title: ACS Appl. Mater. Interfaces
– volume: 59
  start-page: 3660
  year: 2020
  publication-title: Appl. Opt.
– volume: 23
  start-page: 013001
  year: 2021
  publication-title: J. Opt.
– volume: 32
  start-page: 2004664
  year: 2020
  publication-title: Adv. Mater.
– volume: 6
  start-page: 7337
  year: 2015
  publication-title: Nat. Commun.
– start-page: 55
  year: 2020
  end-page: 79
– volume: 17
  start-page: 6034
  year: 2017
  publication-title: Nano Lett.
– volume: 352
  start-page: 795
  year: 2016
  publication-title: Science
– volume: 9
  start-page: 98
  year: 2020
  publication-title: Light Sci. Appl.
– volume: 15
  start-page: 948
  year: 2020
  publication-title: Nat. Nanotechnol.
– volume: 11
  start-page: 16
  year: 2016
  publication-title: Nat. Nanotechnol.
– volume: 8
  start-page: 339
  year: 2019
  publication-title: Nanophotonics
– ident: e_1_2_8_222_1
  doi: 10.1002/adma.201904069
– ident: e_1_2_8_257_1
  doi: 10.1038/s41467-020-18793-y
– ident: e_1_2_8_67_1
  doi: 10.1126/science.1150124
– ident: e_1_2_8_237_1
  doi: 10.1126/sciadv.abd7097
– ident: e_1_2_8_100_1
  doi: 10.1002/adom.201801813
– ident: e_1_2_8_247_1
  doi: 10.1103/PhysRevLett.126.033901
– ident: e_1_2_8_186_1
  doi: 10.1021/acsnano.8b04889
– ident: e_1_2_8_268_1
  doi: 10.1103/PhysRevApplied.10.054066
– ident: e_1_2_8_279_1
  doi: 10.1364/PRJ.415789
– ident: e_1_2_8_234_1
  doi: 10.1002/adom.202000652
– ident: e_1_2_8_8_1
  doi: 10.1126/science.1210713
– ident: e_1_2_8_61_1
  doi: 10.1038/nphoton.2015.247
– ident: e_1_2_8_193_1
  doi: 10.1002/lpor.201900065
– ident: e_1_2_8_96_1
  doi: 10.1021/acsnano.0c01469
– ident: e_1_2_8_10_1
  doi: 10.1038/nnano.2015.2
– ident: e_1_2_8_160_1
  doi: 10.1021/nl403751p
– ident: e_1_2_8_243_1
  doi: 10.1088/1361-6463/ab25ff
– ident: e_1_2_8_18_1
  doi: 10.1039/D0NR05624C
– ident: e_1_2_8_288_1
  doi: 10.1002/adom.202000783
– ident: e_1_2_8_60_1
  doi: 10.1038/nature13487
– ident: e_1_2_8_17_1
  doi: 10.1021/acsnano.0c05656
– ident: e_1_2_8_166_1
  doi: 10.1002/adpr.202000034
– ident: e_1_2_8_97_1
  doi: 10.1021/acsnano.9b02425
– ident: e_1_2_8_94_1
  doi: 10.1126/sciadv.aar6768
– ident: e_1_2_8_76_1
  doi: 10.1038/srep13384
– ident: e_1_2_8_120_1
  doi: 10.1073/pnas.2001435117
– volume: 1090
  start-page: 1087
  year: 2019
  ident: e_1_2_8_99_1
  publication-title: Science
– ident: e_1_2_8_267_1
  doi: 10.1021/acsami.0c12203
– ident: e_1_2_8_92_1
  doi: 10.1021/acsnano.8b05467
– ident: e_1_2_8_226_1
  doi: 10.1038/s41467-020-19312-9
– ident: e_1_2_8_189_1
  doi: 10.1039/D0NR07479A
– ident: e_1_2_8_130_1
  doi: 10.1038/s41578-019-0133-0
– ident: e_1_2_8_190_1
  doi: 10.1002/advs.202000192
– ident: e_1_2_8_227_1
  doi: 10.1038/nature11727
– ident: e_1_2_8_188_1
  doi: 10.1021/acsnano.9b08228
– ident: e_1_2_8_143_1
  doi: 10.1021/acs.nanolett.9b03143
– ident: e_1_2_8_37_1
  doi: 10.1146/annurev-matsci-082908-145405
– ident: e_1_2_8_82_1
  doi: 10.1039/D0TC02427A
– ident: e_1_2_8_244_1
  doi: 10.1007/978-3-030-44992-6_3
– ident: e_1_2_8_235_1
  doi: 10.1002/adfm.201806181
– ident: e_1_2_8_42_1
  doi: 10.1063/5.0028093
– ident: e_1_2_8_113_1
  doi: 10.1021/acsphotonics.0c00787
– ident: e_1_2_8_273_1
  doi: 10.1038/s41377-019-0159-5
– ident: e_1_2_8_49_1
  doi: 10.1209/0295-5075/128/67001
– ident: e_1_2_8_256_1
  doi: 10.1002/lpor.202000373
– ident: e_1_2_8_15_1
  doi: 10.1038/s41467-020-16136-5
– ident: e_1_2_8_165_1
  doi: 10.1038/s41377-020-0329-5
– ident: e_1_2_8_151_1
  doi: 10.1126/sciadv.abd4623
– ident: e_1_2_8_171_1
  doi: 10.1515/nanoph-2020-0440
– ident: e_1_2_8_161_1
– ident: e_1_2_8_86_1
  doi: 10.1021/nl071664a
– ident: e_1_2_8_216_1
  doi: 10.1364/AO.386811
– ident: e_1_2_8_46_1
  doi: 10.1038/nmat2226
– ident: e_1_2_8_219_1
  doi: 10.1002/adpr.202000012
– ident: e_1_2_8_248_1
  doi: 10.1038/s41566-020-0691-0
– ident: e_1_2_8_286_1
  doi: 10.1039/C9CP05621A
– ident: e_1_2_8_59_1
  doi: 10.1021/ph500121d
– ident: e_1_2_8_74_1
  doi: 10.1021/acs.nanolett.9b01246
– ident: e_1_2_8_199_1
  doi: 10.1016/j.nanoen.2020.105426
– ident: e_1_2_8_209_1
  doi: 10.1002/adma.201907077
– ident: e_1_2_8_134_1
  doi: 10.1002/adom.202001256
– volume: 8
  start-page: 175753
  year: 2020
  ident: e_1_2_8_254_1
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3026313
– ident: e_1_2_8_105_1
  doi: 10.1080/00150193.2014.932653
– ident: e_1_2_8_136_1
  doi: 10.1021/acsphotonics.9b00950
– ident: e_1_2_8_251_1
  doi: 10.1126/science.aae0330
– ident: e_1_2_8_112_1
  doi: 10.1021/acsphotonics.0c01168
– ident: e_1_2_8_72_1
  doi: 10.1126/science.aam9189
– ident: e_1_2_8_21_1
  doi: 10.1002/adom.201801786
– ident: e_1_2_8_75_1
  doi: 10.1146/annurev.ms.01.080171.000533
– ident: e_1_2_8_205_1
  doi: 10.1038/s41563-019-0404-6
– ident: e_1_2_8_57_1
– ident: e_1_2_8_163_1
  doi: 10.1021/acs.nanolett.7b00359
– ident: e_1_2_8_282_1
  doi: 10.1364/OE.27.005874
– ident: e_1_2_8_264_1
  doi: 10.1021/acsnano.7b07121
– ident: e_1_2_8_132_1
  doi: 10.1021/acsphotonics.7b01373
– ident: e_1_2_8_54_1
  doi: 10.1038/lsa.2017.16
– ident: e_1_2_8_125_1
  doi: 10.1038/s41598-018-28744-9
– ident: e_1_2_8_93_1
  doi: 10.1021/acs.nanolett.7b02336
– ident: e_1_2_8_117_1
  doi: 10.1021/acs.jpcc.7b12609
– ident: e_1_2_8_182_1
  doi: 10.1364/OPTICA.2.000255
– volume: 2019
  start-page: 1
  year: 2019
  ident: e_1_2_8_28_1
  publication-title: Research
– ident: e_1_2_8_90_1
  doi: 10.1021/acsphotonics.8b01243
– ident: e_1_2_8_152_1
  doi: 10.1016/j.mattod.2014.06.001
– ident: e_1_2_8_51_1
  doi: 10.1002/adfm.201704993
– volume: 12
  start-page: 1
  year: 2020
  ident: e_1_2_8_58_1
  publication-title: IEEE Photonics J.
– ident: e_1_2_8_98_1
  doi: 10.3390/nano8110871
– ident: e_1_2_8_87_1
  doi: 10.1021/nn101475c
– ident: e_1_2_8_221_1
  doi: 10.1002/adom.202000570
– ident: e_1_2_8_48_1
  doi: 10.1038/nmat2009
– ident: e_1_2_8_253_1
  doi: 10.1103/PhysRevB.99.205404
– volume: 2
  start-page: 1
  year: 2020
  ident: e_1_2_8_50_1
  publication-title: Adv. Photonics
– ident: e_1_2_8_231_1
  doi: 10.1103/PhysRevLett.118.113901
– ident: e_1_2_8_287_1
  doi: 10.1038/s41565-018-0346-1
– ident: e_1_2_8_137_1
  doi: 10.1088/1361-6528/abc3e5
– ident: e_1_2_8_78_1
  doi: 10.1364/PRJ.7.000734
– ident: e_1_2_8_149_1
  doi: 10.1021/acs.nanolett.7b03665
– ident: e_1_2_8_167_1
  doi: 10.1038/ncomms8337
– ident: e_1_2_8_274_1
  doi: 10.1038/s41467-019-09103-2
– ident: e_1_2_8_183_1
  doi: 10.1021/acsnano.5b05279
– year: 2020
  ident: e_1_2_8_277_1
  publication-title: Nat. Rev. Mater.
– ident: e_1_2_8_44_1
  doi: 10.1002/adom.201801709
– ident: e_1_2_8_180_1
  doi: 10.1002/adom.201900653
– ident: e_1_2_8_146_1
  doi: 10.1088/2040-8986/abc6fa
– ident: e_1_2_8_202_1
  doi: 10.1038/nature14588
– ident: e_1_2_8_261_1
  doi: 10.3390/s16081246
– ident: e_1_2_8_266_1
  doi: 10.1038/s41377-019-0205-3
– ident: e_1_2_8_153_1
  doi: 10.1038/nmat3433
– ident: e_1_2_8_192_1
  doi: 10.1016/j.mee.2019.111146
– ident: e_1_2_8_157_1
  doi: 10.1088/1367-2630/15/12/123029
– ident: e_1_2_8_250_1
  doi: 10.1103/PhysRevLett.116.233901
– ident: e_1_2_8_184_1
  doi: 10.1002/lpor.201600144
– ident: e_1_2_8_198_1
  doi: 10.1126/science.abb0971
– ident: e_1_2_8_269_1
  doi: 10.1063/5.0007351
– ident: e_1_2_8_38_1
  doi: 10.1002/adom.201801782
– volume: 95
  start-page: 2007
  year: 2009
  ident: e_1_2_8_103_1
  publication-title: Appl. Phys. Lett.
– ident: e_1_2_8_63_1
  doi: 10.1038/s41598-020-59729-2
– ident: e_1_2_8_271_1
  doi: 10.1038/s41566-018-0246-9
– ident: e_1_2_8_207_1
  doi: 10.1126/sciadv.aat4436
– ident: e_1_2_8_115_1
  doi: 10.1021/acsnano.5b00723
– ident: e_1_2_8_210_1
  doi: 10.1364/PRJ.393333
– ident: e_1_2_8_24_1
  doi: 10.1002/adfm.201806692
– ident: e_1_2_8_176_1
  doi: 10.1021/acsphotonics.0c00983
– ident: e_1_2_8_11_1
  doi: 10.1038/ncomms3807
– ident: e_1_2_8_45_1
  doi: 10.1002/adom.201700261
– ident: e_1_2_8_121_1
  doi: 10.1021/nl1006307
– ident: e_1_2_8_258_1
  doi: 10.1002/adma.202005893
– ident: e_1_2_8_281_1
  doi: 10.1515/nanoph-2019-0474
– ident: e_1_2_8_252_1
  doi: 10.1103/PhysRevB.92.161406
– ident: e_1_2_8_213_1
  doi: 10.1021/acsnano.0c01269
– ident: e_1_2_8_187_1
  doi: 10.1021/acs.nanolett.7b02350
– start-page: 1
  year: 2021
  ident: e_1_2_8_276_1
  publication-title: Photonics Res.
– ident: e_1_2_8_114_1
  doi: 10.1021/la701844s
– ident: e_1_2_8_124_1
  doi: 10.1557/mrs2000.151
– ident: e_1_2_8_148_1
  doi: 10.1126/sciadv.aaw2205
– ident: e_1_2_8_289_1
  doi: 10.1109/JETCAS.2020.2976165
– ident: e_1_2_8_4_1
  doi: 10.1126/science.1125907
– ident: e_1_2_8_41_1
  doi: 10.1038/nphoton.2017.126
– ident: e_1_2_8_197_1
  doi: 10.1364/JOSAB.394671
– ident: e_1_2_8_262_1
  doi: 10.1088/1361-665X/aba6fb
– ident: e_1_2_8_62_1
  doi: 10.1002/adfm.202007210
– ident: e_1_2_8_19_1
  doi: 10.1021/acsphotonics.0c00947
– ident: e_1_2_8_68_1
  doi: 10.1021/nn4054446
– ident: e_1_2_8_255_1
  doi: 10.1002/lpor.202000085
– ident: e_1_2_8_241_1
  doi: 10.1021/acs.nanolett.8b04311
– year: 2021
  ident: e_1_2_8_141_1
  publication-title: Nat. Nanotechnol.
– ident: e_1_2_8_14_1
  doi: 10.1038/s41565-017-0052-4
– ident: e_1_2_8_55_1
  doi: 10.1088/1361-6463/ab7560
– ident: e_1_2_8_83_1
  doi: 10.1002/adom.201700939
– ident: e_1_2_8_164_1
  doi: 10.1021/acsnano.9b09277
– ident: e_1_2_8_43_1
  doi: 10.1515/nanoph-2020-0039
– ident: e_1_2_8_169_1
  doi: 10.1002/adom.201901182
– ident: e_1_2_8_23_1
  doi: 10.3390/mi9110560
– ident: e_1_2_8_95_1
  doi: 10.1364/OE.27.021153
– ident: e_1_2_8_147_1
  doi: 10.1038/ncomms10479
– ident: e_1_2_8_173_1
  doi: 10.1038/s41586-018-0034-1
– ident: e_1_2_8_145_1
  doi: 10.1038/s41467-019-13131-3
– ident: e_1_2_8_158_1
  doi: 10.1103/PhysRevApplied.9.034021
– ident: e_1_2_8_260_1
  doi: 10.1021/acsphotonics.0c01030
– ident: e_1_2_8_109_1
  doi: 10.1364/OL.38.004116
– ident: e_1_2_8_155_1
  doi: 10.1126/sciadv.1701377
– ident: e_1_2_8_122_1
  doi: 10.1038/nphoton.2010.179
– ident: e_1_2_8_119_1
  doi: 10.1126/sciadv.abe9943
– ident: e_1_2_8_101_1
  doi: 10.1002/lpor.202000253
– ident: e_1_2_8_129_1
  doi: 10.1021/acs.nanolett.6b00555
– ident: e_1_2_8_200_1
  doi: 10.3390/en12010089
– volume: 54
  start-page: 1221
  year: 2007
  ident: e_1_2_8_2_1
  publication-title: J. Mod. Opt.
  doi: 10.1080/09500340600855106
– ident: e_1_2_8_230_1
  doi: 10.1038/s41378-020-00226-x
– ident: e_1_2_8_71_1
  doi: 10.3390/ma9070556
– ident: e_1_2_8_174_1
  doi: 10.1038/s41598-017-02847-1
– ident: e_1_2_8_104_1
  doi: 10.1021/nl501955e
– ident: e_1_2_8_47_1
  doi: 10.1038/nmat2330
– ident: e_1_2_8_208_1
  doi: 10.1038/s41427-018-0082-x
– ident: e_1_2_8_85_1
  doi: 10.1002/adma.201703878
– ident: e_1_2_8_156_1
  doi: 10.1021/acsphotonics.7b01551
– ident: e_1_2_8_81_1
  doi: 10.1364/OE.412991
– ident: e_1_2_8_170_1
  doi: 10.3390/app8060982
– volume: 23
  start-page: 1
  year: 2017
  ident: e_1_2_8_220_1
  publication-title: IEEE J. Sel. Top. Quantum Electron.
– ident: e_1_2_8_33_1
  doi: 10.1038/s41378-020-00237-8
– ident: e_1_2_8_110_1
  doi: 10.1364/OME.7.000008
– ident: e_1_2_8_204_1
  doi: 10.1038/s41598-018-21479-7
– ident: e_1_2_8_79_1
  doi: 10.1002/adom.201900175
– ident: e_1_2_8_238_1
  doi: 10.1038/s41467-021-21175-7
– ident: e_1_2_8_217_1
  doi: 10.1103/PhysRevApplied.13.021003
– ident: e_1_2_8_154_1
  doi: 10.1038/ncomms10429
– ident: e_1_2_8_144_1
  doi: 10.1021/acs.nanolett.0c02097
– ident: e_1_2_8_66_1
  doi: 10.1038/s41427-018-0061-2
– ident: e_1_2_8_12_1
  doi: 10.1021/acsphotonics.7b01044
– ident: e_1_2_8_168_1
  doi: 10.1038/ncomms15209
– ident: e_1_2_8_126_1
  doi: 10.1002/pssa.201700794
– year: 2021
  ident: e_1_2_8_249_1
  publication-title: ACS Photonics
– ident: e_1_2_8_172_1
  doi: 10.1002/adom.201801070
– ident: e_1_2_8_27_1
  doi: 10.1126/science.aat3100
– ident: e_1_2_8_80_1
  doi: 10.1021/acsphotonics.8b00972
– ident: e_1_2_8_236_1
  doi: 10.1126/sciadv.abb7171
– ident: e_1_2_8_263_1
  doi: 10.1063/1.4955272
– ident: e_1_2_8_232_1
  doi: 10.1364/PRJ.395749
– ident: e_1_2_8_69_1
  doi: 10.1126/sciadv.aav6815
– ident: e_1_2_8_70_1
  doi: 10.1016/j.mtphys.2020.100205
– ident: e_1_2_8_89_1
  doi: 10.1021/nl403643v
– ident: e_1_2_8_131_1
  doi: 10.1364/OE.21.026387
– ident: e_1_2_8_259_1
  doi: 10.1515/nanoph-2020-0373
– ident: e_1_2_8_35_1
  doi: 10.1038/s41586-021-03353-1
– ident: e_1_2_8_162_1
  doi: 10.1038/ncomms8032
– ident: e_1_2_8_36_1
  doi: 10.1126/science.1221561
– ident: e_1_2_8_179_1
  doi: 10.1088/2040-8986/abcc52
– ident: e_1_2_8_218_1
  doi: 10.1021/acsami.0c02467
– ident: e_1_2_8_39_1
  doi: 10.1088/2040-8986/abbc55
– ident: e_1_2_8_138_1
  doi: 10.1515/nanoph-2018-0176
– ident: e_1_2_8_159_1
  doi: 10.1364/OL.43.002636
– ident: e_1_2_8_280_1
  doi: 10.1038/s41566-020-0604-2
– ident: e_1_2_8_88_1
  doi: 10.1038/nmat4480
– ident: e_1_2_8_212_1
  doi: 10.1002/adfm.201906711
– ident: e_1_2_8_29_1
  doi: 10.29026/oea.2018.180009
– ident: e_1_2_8_108_1
  doi: 10.1364/OE.26.020258
– ident: e_1_2_8_9_1
  doi: 10.1126/science.1232009
– ident: e_1_2_8_102_1
  doi: 10.1364/OE.18.016492
– ident: e_1_2_8_106_1
  doi: 10.1016/S0370-1573(99)00049-6
– ident: e_1_2_8_203_1
  doi: 10.1002/adma.202001863
– start-page: 117
  volume-title: Metamaterials Fundam. Appl. IV
  year: 2011
  ident: e_1_2_8_246_1
– ident: e_1_2_8_30_1
  doi: 10.1016/j.mattod.2020.06.002
– ident: e_1_2_8_191_1
  doi: 10.1002/adfm.202006711
– ident: e_1_2_8_116_1
  doi: 10.1021/acsphotonics.7b01343
– ident: e_1_2_8_239_1
  doi: 10.1038/s41467-019-11598-8
– ident: e_1_2_8_7_1
  doi: 10.1038/nmat3839
– ident: e_1_2_8_142_1
  doi: 10.1002/aelm.201800185
– ident: e_1_2_8_225_1
  doi: 10.1038/s41467-017-00164-9
– ident: e_1_2_8_275_1
  doi: 10.1109/JETCAS.2020.2972764
– year: 2021
  ident: e_1_2_8_65_1
  publication-title: ChemNanoMat
– ident: e_1_2_8_242_1
  doi: 10.1038/natrevmats.2017.10
– ident: e_1_2_8_228_1
  doi: 10.1021/acsphotonics.9b01807
– ident: e_1_2_8_284_1
  doi: 10.1021/acsami.9b05857
– ident: e_1_2_8_22_1
  doi: 10.1088/1361-6463/abaced
– ident: e_1_2_8_224_1
  doi: 10.1002/adma.201606422
– ident: e_1_2_8_177_1
  doi: 10.1038/nnano.2015.302
– ident: e_1_2_8_26_1
  doi: 10.1186/s40580-019-0213-2
– ident: e_1_2_8_285_1
  doi: 10.1515/nanoph-2019-0117
– ident: e_1_2_8_111_1
  doi: 10.1021/acsphotonics.9b00301
– ident: e_1_2_8_128_1
  doi: 10.1021/acsphotonics.8b01383
– ident: e_1_2_8_194_1
  doi: 10.1016/j.isci.2020.101877
– ident: e_1_2_8_178_1
  doi: 10.1186/s40580-020-00226-7
– ident: e_1_2_8_3_1
  doi: 10.1103/PhysRevLett.95.137404
– ident: e_1_2_8_73_1
  doi: 10.1103/PhysRevApplied.9.034009
– ident: e_1_2_8_175_1
  doi: 10.1038/s41598-018-30835-6
– year: 2020
  ident: e_1_2_8_233_1
  publication-title: Mater. Today
– ident: e_1_2_8_5_1
  doi: 10.1021/acsphotonics.7b01182
– ident: e_1_2_8_214_1
  doi: 10.1021/acsnano.0c05026
– ident: e_1_2_8_206_1
  doi: 10.1038/s41377-020-0309-9
– ident: e_1_2_8_283_1
  doi: 10.1038/s41566-020-0685-y
– ident: e_1_2_8_265_1
  doi: 10.1002/adom.201901932
– ident: e_1_2_8_270_1
  doi: 10.1103/PhysRevB.101.024104
– ident: e_1_2_8_229_1
  doi: 10.1002/adom.202002002
– ident: e_1_2_8_272_1
  doi: 10.1002/lpor.201000014
– ident: e_1_2_8_107_1
  doi: 10.1021/acsami.0c07320
– ident: e_1_2_8_34_1
  doi: 10.1021/acsnano.0c06968
– ident: e_1_2_8_195_1
  doi: 10.1021/acs.nanolett.6b00618
– ident: e_1_2_8_6_1
  doi: 10.1039/C9NA00751B
– ident: e_1_2_8_135_1
  doi: 10.1021/acs.nanolett.6b04378
– ident: e_1_2_8_245_1
  doi: 10.1016/j.mattod.2017.06.007
– volume: 7
  start-page: 23
  year: 2020
  ident: e_1_2_8_127_1
  publication-title: Nano Converg.
  doi: 10.1186/s40580-020-00232-9
– ident: e_1_2_8_123_1
  doi: 10.1021/acsphotonics.0c00554
– ident: e_1_2_8_25_1
  doi: 10.1126/sciadv.abc2709
– ident: e_1_2_8_77_1
  doi: 10.1016/j.optcom.2018.05.085
– ident: e_1_2_8_118_1
  doi: 10.1002/adma.202004664
– ident: e_1_2_8_53_1
  doi: 10.1038/s41377-018-0038-5
– ident: e_1_2_8_223_1
  doi: 10.1039/D0TC00689K
– ident: e_1_2_8_201_1
  doi: 10.1002/adma.201700412
– ident: e_1_2_8_211_1
  doi: 10.1002/adma.202004919
– ident: e_1_2_8_20_1
  doi: 10.1515/nanoph-2020-0311
– ident: e_1_2_8_52_1
  doi: 10.1002/adom.201800169
– ident: e_1_2_8_240_1
  doi: 10.1002/adom.201801639
– ident: e_1_2_8_278_1
  doi: 10.1515/nanoph-2018-0183
– ident: e_1_2_8_140_1
  doi: 10.1038/s41565-020-00787-y
– ident: e_1_2_8_31_1
  doi: 10.3390/s20154108
– ident: e_1_2_8_84_1
  doi: 10.1021/acsphotonics.0c01241
– ident: e_1_2_8_185_1
  doi: 10.1021/acsnano.8b06623
– ident: e_1_2_8_13_1
  doi: 10.1038/s41565-020-0768-4
– ident: e_1_2_8_139_1
  doi: 10.1002/adma.201701044
– ident: e_1_2_8_56_1
  doi: 10.1038/s41467-021-21440-9
– ident: e_1_2_8_181_1
  doi: 10.1088/2040-8978/16/3/032001
– ident: e_1_2_8_40_1
  doi: 10.3390/ma10091046
– ident: e_1_2_8_64_1
  doi: 10.1039/D0NH00139B
– ident: e_1_2_8_133_1
  doi: 10.1021/acsphotonics.7b01517
– ident: e_1_2_8_150_1
  doi: 10.1364/OME.390052
– ident: e_1_2_8_16_1
  doi: 10.1038/s41565-017-0034-6
– ident: e_1_2_8_32_1
  doi: 10.1007/s12206-021-0243-7
– ident: e_1_2_8_91_1
  doi: 10.1038/ncomms14606
– ident: e_1_2_8_215_1
  doi: 10.1002/admt.201900930
– ident: e_1_2_8_196_1
  doi: 10.1021/acs.nanolett.7b00807
SSID ssj0002513159
Score 2.4690094
Snippet In the field of nanophotonics, metasurfaces have come to the forefront in real‐world applications, owing to their accessible exotic optical properties that can...
SourceID doaj
proquest
crossref
wiley
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms active
Design
Optical properties
Optics
Phase transitions
programmable
reconfigurable
switchable
tunable
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1NTxsxELVouPRSUUHVFKj2gMTJysZrO16EhEJLhJASRRFI3Cx_lgPKBrIc-PfMOM62HNoe17Isa8aeeTM7fkPICWjSlSKUVChZUQ4ugdqhi5R7ayMXvqo4PhSezuT1Hb-5F_c54bbOZZVbm5gMtW8c5sgHValqJZHu_WL1RLFrFP5dzS00PpBdMMEKTvju5dVsvuiyLOC9q2HqmMYkUlGCc9syN5ZsYPwKKUFZ-h8n3nmmROD_DnX-iV2T85nskU8ZNRbjjZo_k52w3Cfnty_p4VMxDS0m-iJWV50VoPhiDriuaJsCA8zXYpxsWgGGtFk9NC2S4a4PyN3k6vbHNc3NEKgDCCOo9RBq1HJkjFGe145Lz7ixo8BNADcfBXgdCJ1A9lEEq6wph847GxULQlgzqr6Q3rJZhq9YzVT5CLDEDpWDlVjNTfQ2AnKwVQ2DfUK3gtAuM4Vjw4pHveE4ZhoFpzvB9clpN3-14cj468xLlGs3C7mt00Dz_Evnq6Jhw8wxy2UEqGOUNKqMsRYOYi9jpILtHW21ovOFW-vfx6NPWNLUf7aixz_ni-7r27_XPCQfGdaypNqyI9Jrn1_CMYCR1n7PJ-4N5vTZMQ
  priority: 102
  providerName: ProQuest
– databaseName: Wiley Online Library Open Access
  dbid: 24P
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA4-Ll5EUbFaZQ-Cp6XbbJJmxUt9lCJUiih4C3nqQbql3R78986k29UeRPC4IbuEmUzmm-zMN4RcgCZtxn2WcinylIFLSE3XhpQ5YwLjLs8ZFgqPHsXwhT288tcfVfxLfojmwg0tI57XaODazDvfpKHaTZHPk8afaXyTbGN9Le50ysbNLQt477wbO6ZRgVSU4NxWzI0Z7ax_Ys0zRQL_NdT5E7tG5zPYI7s1akz6SzXvkw0_OSDXz4tY-JSMfIUXfQGzq64SUHwyBlyXVGWCAeZn0o9nWgIHaTl9Lyskw50fkpfB_fPtMK2bIaQWIAxPjYNQoxA9rbV0rLBMOMq06XmmPbj5wMHrQOgEsg_cG2l01rXOmiCp59zoXn5EtiblxB9jNlPuAsAS05UWvkQLpoMzAZCDyQsYbJF0JQhla6ZwbFjxoZYcx1Sh4FQjuBa5bOZPlxwZv868Qbk2s5DbOg6UszdVm4qCBVNLDRMBoI6WQssshIJbiL20FhKW115pRdUGN1d5JgspsBtAi9CoqT-Wovp346fm6eQ_L52SHYoZLjHjrE22qtnCnwFEqcx53IVfu-zbFA
  priority: 102
  providerName: Wiley-Blackwell
Title Tunable Metasurfaces: The Path to Fully Active Nanophotonics
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadpr.202000205
https://www.proquest.com/docview/3089860747
https://doaj.org/article/2e52c2b46f554a86a80ff95c862aa688
Volume 2
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PS8MwGA06L15EUbE6Rw-Cp7IuTbpUvGy6MYSNMjbYLeQnHmQbrjt48W_3S9qV7SBevBQaQgnva_Pe13x5QegBIqliauKIsjSJCFBCJDvKRkRLaQnVSULcRuHxJB3NyduCLvaO-nI1YaU9cAlcGxuKFZYktUB8gqWCxdZmVIESFyJlfpsvcN5eMuXmYGDtBIh659IY47bQa2f_if3aGz1gIW_Wf6Aw93WqJ5rhOTqrFGLYK0d2gY7M8hI9z7Z-k1M4NoX7qWddJdVTCEEOc9BwYbEKXTL5Ffb8_BXCpLlav68KZ3y7uULz4WD2Moqqgw8iBXKFRlJDWpGlXSEE0yRTJNWYCNk1RBigdEuBYSBNApwtNZJJEXeUVtIyAItK0U2uUWO5WpobV7mUaAsSRHaYgifhjAirpQXEZJJBY4CiHRBcVa7g7nCKD176GWPugOM1cAF6rPuvSz-MX3v2Ha51L-dj7RsguryKLv8rugFq7qLCq49rw5OYZSx1zv8Bwj5SfwyF917zaX13-x8Du0On2FW3-GqzJmoUn1tzD_KkkC10jEneQif9wSSftvx7Cdfx9-AH03Xhwg
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELZKeoALogJESkt9AHGyuvErXlSEUtoqpU0UVanUm_ETDigbmq1Q_xS_kbGzu9ADcOpxLcvyzoxnPtvjbxB6DZp0hQgFEUoywiEkEDtwkXBvbeTCM8bTQ-HJVI4v-acrcbWBfrZvYVJaZesTs6P2lUtn5PusUKWSie79w_I7SVWj0u1qW0JjbRZn4fYHbNlW70-PQL9vKD05nn8ck6aqAHGABQSxHjB7KYfGGOV56bj0lBs7DNwEiJdRgPuGPQj8RBTBKmuKgfPORkWDENYMGYz7AG1yBlChhzYPj6ezi-5UB9ACG-QKbVQm6ksIpi1TZEH3jV8mClKa7__EnUiYCwbcQbl_YuUc7E6eoMcNSsWjtVltoY2weIoO5jf5oRWehDodLMaUzfUOg6HhGeBIXFc4bWhv8Sj7UAyOu1p-repEvrt6hi7vRUzPUW9RLcKLlD3FfAQYZAfKwUi05CZ6GwGpWFZCYx-RVhDaNczkqUDGN73mVKY6CU53guujt13_5ZqT4689D5Ncu16JSzs3VNdfdLM0NUyYOmq5jACtjJJGFTGWwsFezxipYHo7rVZ0s8BX-rc59hHNmvrPVPToaHbRfW3_e8w99HA8n5zr89Pp2Uv0iKY8mpzXtoN69fVN2AUgVNtXjfVh9Pm-Df4Xvk0XAw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA5aQbyIomJ97kHwtLjNJmlWvFRr8U0RBW8hTz1It-h68N87k25XexDB44ZsCDOZzDfJ5BtCDkCTNuM-S7kUecrAJaSmY0PKnDGBcZfnDB8K396Ji0d29cSffrzin_BDNAduaBlxv0YDH7tw9E0aqt0Y-TxpvEzj82QBb_xwjVM2bE5ZwHvnnVgxjQqkogTnNmVuzOjR7BAznikS-M-gzp_YNTqfwQpZrlFj0puoeZXM-dEaOXn4iA-fkltf4UFfwOyq4wQUnwwB1yVVmWCA-Zn04p6WwEZajl_KCslw39fJ4-D84ewirYshpBYgDE-Ng1CjEF2ttXSssEw4yrTpeqY9uPnAwetA6ASyD9wbaXTWsc6aIKnn3OhuvkFao3LkNzGbKXcBYInpSAsj0YLp4EwA5GDyAhrbJJ0KQtmaKRwLVryqCccxVSg41QiuTQ6b_uMJR8avPU9Rrk0v5LaODeXbs6pNRcGEqaWGiQBQR0uhZRZCwS3EXloLCdPbmWpF1Qb3rvJMFlJgNYA2oVFTf0xF9frD--Zr6z8_7ZPFYX-gbi7vrrfJEsVkl5h8tkNa1duH3wW0Upm9uCC_AGq63bI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tunable+Metasurfaces%3A+The+Path+to+Fully+Active+Nanophotonics&rft.jtitle=Advanced+photonics+research&rft.au=Trevon+Badloe&rft.au=Jihae+Lee&rft.au=Junhwa+Seong&rft.au=Junsuk+Rho&rft.date=2021-09-01&rft.pub=Wiley-VCH&rft.eissn=2699-9293&rft.volume=2&rft.issue=9&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadpr.202000205&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_2e52c2b46f554a86a80ff95c862aa688
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2699-9293&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2699-9293&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2699-9293&client=summon