Eleven years of ground–air temperature tracking over different land cover types

ABSTRACT We have analyzed series of air, near‐surface and shallow ground temperatures under four land cover types, namely bare clayey soil, sand, short‐cut grass and asphalt; the samples were collected between 2002 and 2013 and monitored at the Geothermal Climate Change Observatory Sporilov, Prague...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of climatology Vol. 37; no. 2; pp. 1084 - 1099
Main Authors Cermak, Vladimir, Bodri, Louise, Kresl, Milan, Dedecek, Petr, Safanda, Jan
Format Journal Article
LanguageEnglish
Published Chichester, UK John Wiley & Sons, Ltd 01.02.2017
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract ABSTRACT We have analyzed series of air, near‐surface and shallow ground temperatures under four land cover types, namely bare clayey soil, sand, short‐cut grass and asphalt; the samples were collected between 2002 and 2013 and monitored at the Geothermal Climate Change Observatory Sporilov, Prague (50°02.43′N, 14°28.54′E, 226 m a.s.l.). A comparison of all of the obtained temperature series revealed a strong dependence of the subsurface thermal regime on the respective surface cover material. The ground ‘skin’ temperature was generally warmer than the surface air temperature over all monitored surfaces; however, the temperatures over different land cover types differed significantly. Asphalt exhibited the highest temperatures, and temperatures below the grassy surface were the lowest. Special attention was paid to assessing the value of the ‘temperature offset’, the instant value of which sometimes varied dramatically, on both daily and annual scales, by up to 30+ K; however, on a long‐time scale, the temperature offset was generally constant and reflected the surface material. The characteristic 2003–2013 mean values for the individual covers are as follows: asphalt 4.1 K, sand 1.6 K, clay 1.4 K and grass 0.2 K. All four surface covers revealed typical daily and inter‐annual cycles, which were monitored and are discussed in detail. Incident solar radiation was the primary variable for determining the amount and temporal changes of the temperature offset values. A linear relationship between air–ground temperature differences and incident solar radiation was detected. The mean slope of the linear regression between both variables is clearly surface cover dependent. The greatest value, 3.3 K per 100 W m−2, was found for asphalt cover; rates of 1.0–1.2 apply to bare soil and sand cover, and a negative slope of −0.44 K per 100 W m−2 represents grass cover.
AbstractList We have analyzed series of air, near-surface and shallow ground temperatures under four land cover types, namely bare clayey soil, sand, short-cut grass and asphalt; the samples were collected between 2002 and 2013 and monitored at the Geothermal Climate Change Observatory Sporilov, Prague (50 degree 02.43'N, 14 degree 28.54'E, 226ma.s.l.). A comparison of all of the obtained temperature series revealed a strong dependence of the subsurface thermal regime on the respective surface cover material. The ground 'skin' temperature was generally warmer than the surface air temperature over all monitored surfaces; however, the temperatures over different land cover types differed significantly. Asphalt exhibited the highest temperatures, and temperatures below the grassy surface were the lowest. Special attention was paid to assessing the value of the 'temperature offset', the instant value of which sometimes varied dramatically, on both daily and annual scales, by up to 30+ K; however, on a long-time scale, the temperature offset was generally constant and reflected the surface material. The characteristic 2003-2013 mean values for the individual covers are as follows: asphalt 4.1K, sand 1.6K, clay 1.4K and grass 0.2K. All four surface covers revealed typical daily and inter-annual cycles, which were monitored and are discussed in detail. Incident solar radiation was the primary variable for determining the amount and temporal changes of the temperature offset values. A linear relationship between air-ground temperature differences and incident solar radiation was detected. The mean slope of the linear regression between both variables is clearly surface cover dependent. The greatest value, 3.3K per 100Wm super(-2), was found for asphalt cover; rates of 1.0-1.2 apply to bare soil and sand cover, and a negative slope of -0.44K per 100Wm super(-2) represents grass cover.
We have analyzed series of air, near-surface and shallow ground temperatures under four land cover types, namely bare clayey soil, sand, short-cut grass and asphalt; the samples were collected between 2002 and 2013 and monitored at the Geothermal Climate Change Observatory Sporilov, Prague (50°02.43'N, 14°28.54'E, 226ma.s.l.). A comparison of all of the obtained temperature series revealed a strong dependence of the subsurface thermal regime on the respective surface cover material. The ground 'skin' temperature was generally warmer than the surface air temperature over all monitored surfaces; however, the temperatures over different land cover types differed significantly. Asphalt exhibited the highest temperatures, and temperatures below the grassy surface were the lowest. Special attention was paid to assessing the value of the 'temperature offset', the instant value of which sometimes varied dramatically, on both daily and annual scales, by up to 30+ K; however, on a long-time scale, the temperature offset was generally constant and reflected the surface material. The characteristic 2003-2013 mean values for the individual covers are as follows: asphalt 4.1K, sand 1.6K, clay 1.4K and grass 0.2K. All four surface covers revealed typical daily and inter-annual cycles, which were monitored and are discussed in detail. Incident solar radiation was the primary variable for determining the amount and temporal changes of the temperature offset values. A linear relationship between air-ground temperature differences and incident solar radiation was detected. The mean slope of the linear regression between both variables is clearly surface cover dependent. The greatest value, 3.3K per 100Wm-2, was found for asphalt cover; rates of 1.0-1.2 apply to bare soil and sand cover, and a negative slope of -0.44K per 100Wm-2 represents grass cover.
ABSTRACT We have analyzed series of air, near‐surface and shallow ground temperatures under four land cover types, namely bare clayey soil, sand, short‐cut grass and asphalt; the samples were collected between 2002 and 2013 and monitored at the Geothermal Climate Change Observatory Sporilov, Prague (50°02.43′N, 14°28.54′E, 226 m a.s.l.). A comparison of all of the obtained temperature series revealed a strong dependence of the subsurface thermal regime on the respective surface cover material. The ground ‘skin’ temperature was generally warmer than the surface air temperature over all monitored surfaces; however, the temperatures over different land cover types differed significantly. Asphalt exhibited the highest temperatures, and temperatures below the grassy surface were the lowest. Special attention was paid to assessing the value of the ‘temperature offset’, the instant value of which sometimes varied dramatically, on both daily and annual scales, by up to 30+ K; however, on a long‐time scale, the temperature offset was generally constant and reflected the surface material. The characteristic 2003–2013 mean values for the individual covers are as follows: asphalt 4.1 K, sand 1.6 K, clay 1.4 K and grass 0.2 K. All four surface covers revealed typical daily and inter‐annual cycles, which were monitored and are discussed in detail. Incident solar radiation was the primary variable for determining the amount and temporal changes of the temperature offset values. A linear relationship between air–ground temperature differences and incident solar radiation was detected. The mean slope of the linear regression between both variables is clearly surface cover dependent. The greatest value, 3.3 K per 100 W m −2 , was found for asphalt cover; rates of 1.0–1.2 apply to bare soil and sand cover, and a negative slope of −0.44 K per 100 W m −2 represents grass cover.
ABSTRACT We have analyzed series of air, near‐surface and shallow ground temperatures under four land cover types, namely bare clayey soil, sand, short‐cut grass and asphalt; the samples were collected between 2002 and 2013 and monitored at the Geothermal Climate Change Observatory Sporilov, Prague (50°02.43′N, 14°28.54′E, 226 m a.s.l.). A comparison of all of the obtained temperature series revealed a strong dependence of the subsurface thermal regime on the respective surface cover material. The ground ‘skin’ temperature was generally warmer than the surface air temperature over all monitored surfaces; however, the temperatures over different land cover types differed significantly. Asphalt exhibited the highest temperatures, and temperatures below the grassy surface were the lowest. Special attention was paid to assessing the value of the ‘temperature offset’, the instant value of which sometimes varied dramatically, on both daily and annual scales, by up to 30+ K; however, on a long‐time scale, the temperature offset was generally constant and reflected the surface material. The characteristic 2003–2013 mean values for the individual covers are as follows: asphalt 4.1 K, sand 1.6 K, clay 1.4 K and grass 0.2 K. All four surface covers revealed typical daily and inter‐annual cycles, which were monitored and are discussed in detail. Incident solar radiation was the primary variable for determining the amount and temporal changes of the temperature offset values. A linear relationship between air–ground temperature differences and incident solar radiation was detected. The mean slope of the linear regression between both variables is clearly surface cover dependent. The greatest value, 3.3 K per 100 W m−2, was found for asphalt cover; rates of 1.0–1.2 apply to bare soil and sand cover, and a negative slope of −0.44 K per 100 W m−2 represents grass cover.
Author Safanda, Jan
Bodri, Louise
Cermak, Vladimir
Kresl, Milan
Dedecek, Petr
Author_xml – sequence: 1
  givenname: Vladimir
  surname: Cermak
  fullname: Cermak, Vladimir
  email: cermak@ig.cas.cz
  organization: Academy of Sciences of the Czech Republic
– sequence: 2
  givenname: Louise
  surname: Bodri
  fullname: Bodri, Louise
  organization: Eotvos Lorand University
– sequence: 3
  givenname: Milan
  surname: Kresl
  fullname: Kresl, Milan
  organization: Academy of Sciences of the Czech Republic
– sequence: 4
  givenname: Petr
  surname: Dedecek
  fullname: Dedecek, Petr
  organization: Academy of Sciences of the Czech Republic
– sequence: 5
  givenname: Jan
  surname: Safanda
  fullname: Safanda, Jan
  organization: Academy of Sciences of the Czech Republic
BookMark eNp10N9KwzAUBvAgCm5T8BEC3njTedJkaXIpY_5jMITdlyw9HZ1dU5N20jvfwTf0Sew2QRC8OnD4nY_DNySnlauQkCsGYwYQ326cHYtEihMyYKCTCECpUzIApXWkBFPnZBjCBgC0ZnJAXmYl7rCiHRofqMvp2ru2yr4-Pk3haYPbGr1pWo-08ca-FtWauh16mhV5jh6rhpamyqg9LJuuxnBBznJTBrz8mSOyvJ8tp4_RfPHwNL2bR5brWESaJ0rkgCyRoK2WaqUzgzpWKubAMV4B18yIibA6ETZbSSHQGolKxMjMhI_IzTG29u6txdCk2yJYLPt30LUhZUoqDlIkvKfXf-jGtb7qn9srrhSAkL-B1rsQPOZp7Yut8V3KIN1X21_ZdF9tT6MjfS9K7P516fNievDflXh7_w
CitedBy_id crossref_primary_10_1016_j_renene_2022_09_044
crossref_primary_10_1080_10643389_2022_2083899
crossref_primary_10_1007_s11707_017_0678_4
crossref_primary_10_1029_2023GL104631
crossref_primary_10_1016_j_tecto_2023_230154
crossref_primary_10_5194_cp_16_453_2020
crossref_primary_10_1002_joc_7662
crossref_primary_10_3390_w13101417
crossref_primary_10_1016_j_rser_2019_02_019
crossref_primary_10_1016_j_scitotenv_2018_06_253
crossref_primary_10_1038_s41561_020_00648_2
crossref_primary_10_1364_OE_507927
crossref_primary_10_1007_s00531_016_1351_y
crossref_primary_10_5194_soil_10_1_2024
crossref_primary_10_1016_j_quascirev_2020_106259
crossref_primary_10_1016_j_conbuildmat_2024_136786
crossref_primary_10_1016_j_geothermics_2020_101862
crossref_primary_10_1016_j_atmosres_2021_105449
crossref_primary_10_1093_jue_juae001
crossref_primary_10_1029_2024JD040916
crossref_primary_10_1016_j_gca_2019_03_018
crossref_primary_10_1016_j_palaeo_2018_12_004
crossref_primary_10_5194_hess_22_3143_2018
Cites_doi 10.1080/19648189.2014.945043
10.1016/j.jhydrol.2008.11.019
10.1088/1742-2132/10/2/025012
10.1016/0040-1951(94)90114-7
10.1007/s10584-011-0373-5
10.3141/1764-19
10.1016/S0921-8181(01)00098-4
10.5194/cp-3-453-2007
10.1175/JCLI3808.1
10.1061/(ASCE)0733-947X(2006)132:2(162)
10.1016/j.jastp.2003.07.007
10.1029/98WR02225
10.1029/2003GL018251
10.1029/2008/WR007394
10.9734/BJECC/2013/3062
10.1029/2004RG000157
10.1016/j.epsl.2005.12.001
10.1029/2006JF000703
10.1029/96JB01903
10.1007/s11200-013-0356-2
10.1029/2007WR005993
10.1002/qj.49708938207
10.1017/S1350482706002179
10.1016/j.buildenv.2012.10.014
10.1002/joc.859
10.1016/S0921-8181(97)00002-7
10.1029/2006WR005702
10.1002/joc.1397
10.1016/j.jhydrol.2008.04.020
10.1016/S0921-8181(01)00097-2
10.1016/S0096-3003(01)00089-3
10.1016/S0309-1708(99)00020-2
ContentType Journal Article
Copyright 2016 Royal Meteorological Society
2017 Royal Meteorological Society
Copyright_xml – notice: 2016 Royal Meteorological Society
– notice: 2017 Royal Meteorological Society
DBID AAYXX
CITATION
7TG
7TN
F1W
H96
KL.
L.G
DOI 10.1002/joc.4764
DatabaseName CrossRef
Meteorological & Geoastrophysical Abstracts
Oceanic Abstracts
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Meteorological & Geoastrophysical Abstracts - Academic
Aquatic Science & Fisheries Abstracts (ASFA) Professional
DatabaseTitle CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Meteorological & Geoastrophysical Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Oceanic Abstracts
Meteorological & Geoastrophysical Abstracts - Academic
ASFA: Aquatic Sciences and Fisheries Abstracts
DatabaseTitleList Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aquatic Science & Fisheries Abstracts (ASFA) Professional
CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Meteorology & Climatology
EISSN 1097-0088
EndPage 1099
ExternalDocumentID 4311835431
10_1002_joc_4764
JOC4764
Genre article
GrantInformation_xml – fundername: Grant Agency of the Czech Republic
  funderid: GACR P210/11/0183
– fundername: Ministry of Education of the Czech Republic
  funderid: MSMT‐9344/2013‐311
GroupedDBID .3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
24P
31~
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DDYGU
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EDH
EJD
F00
F01
F04
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HVGLF
HZ~
IX1
J0M
JPC
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M62
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RWI
RX1
RYL
SAMSI
SUPJJ
TN5
UB1
V2E
VOH
W8V
W99
WBKPD
WH7
WIB
WIH
WIK
WOHZO
WQJ
WRC
WUPDE
WWD
WXSBR
WYISQ
XG1
XJT
XPP
XV2
ZZTAW
~02
~IA
~WT
AAYXX
CITATION
7TG
7TN
F1W
H96
KL.
L.G
ID FETCH-LOGICAL-c3924-93784f0e17609c968b9dae92882303e2b0391a454c974cdb644eca6e842e1a53
IEDL.DBID DR2
ISSN 0899-8418
IngestDate Fri Aug 16 14:07:07 EDT 2024
Thu Oct 10 16:14:09 EDT 2024
Fri Aug 23 03:51:13 EDT 2024
Sat Aug 24 01:06:32 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3924-93784f0e17609c968b9dae92882303e2b0391a454c974cdb644eca6e842e1a53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1863880046
PQPubID 996368
PageCount 16
ParticipantIDs proquest_miscellaneous_1868306473
proquest_journals_1863880046
crossref_primary_10_1002_joc_4764
wiley_primary_10_1002_joc_4764_JOC4764
PublicationCentury 2000
PublicationDate February 2017
PublicationDateYYYYMMDD 2017-02-01
PublicationDate_xml – month: 02
  year: 2017
  text: February 2017
PublicationDecade 2010
PublicationPlace Chichester, UK
PublicationPlace_xml – name: Chichester, UK
– name: Bognor Regis
PublicationTitle International journal of climatology
PublicationYear 2017
Publisher John Wiley & Sons, Ltd
Wiley Subscription Services, Inc
Publisher_xml – name: John Wiley & Sons, Ltd
– name: Wiley Subscription Services, Inc
References 2009; 45
2013; 3
2015; 19
1963; 89
2006; 13
2002; 130
1999; 23
2007
2006; 132
2006; 19
2005; 43
2001; 1764
2003
2001; 29
2012; 59
1994; 239
2003; 30
1996; 101
2007; 112
2012; 113
2013; 10
1997; 15
1987
2014; 58
2006; 242
2009; 365
2008; 44
2008; 356
2007; 3
1998; 34
2003; 65
2003; 23
2007; 27
e_1_2_11_10_1
e_1_2_11_32_1
e_1_2_11_31_1
e_1_2_11_30_1
e_1_2_11_36_1
e_1_2_11_14_1
e_1_2_11_13_1
e_1_2_11_35_1
e_1_2_11_12_1
e_1_2_11_34_1
e_1_2_11_11_1
e_1_2_11_33_1
e_1_2_11_7_1
e_1_2_11_29_1
e_1_2_11_28_1
e_1_2_11_5_1
e_1_2_11_27_1
e_1_2_11_4_1
e_1_2_11_26_1
e_1_2_11_3_1
e_1_2_11_2_1
e_1_2_11_21_1
e_1_2_11_20_1
e_1_2_11_25_1
e_1_2_11_24_1
e_1_2_11_9_1
e_1_2_11_23_1
e_1_2_11_8_1
e_1_2_11_22_1
Bodri L (e_1_2_11_6_1) 2007
e_1_2_11_18_1
e_1_2_11_17_1
e_1_2_11_16_1
e_1_2_11_15_1
e_1_2_11_37_1
e_1_2_11_19_1
References_xml – volume: 365
  start-page: 195
  year: 2009
  end-page: 212
  article-title: Simulation of heat export by rainfall‐runoff from a paved surface
  publication-title: J. Hydrol.
– volume: 15
  start-page: 33
  year: 1997
  end-page: 45
  article-title: The borehole temperature record of climate warming in the mid‐continent of North America
  publication-title: Glob. Planet. Change
– volume: 23
  start-page: 1
  year: 2003
  end-page: 26
  article-title: Two decades of urban climate research: a review of turbulence, exchanges of energy and water, and the urban heat island
  publication-title: Int. J. Climatol.
– volume: 19
  start-page: 387
  issue: 4
  year: 2015
  end-page: 399
  article-title: Thermal‐moisture dynamics of embankments with asphalt pavement in permafrost regions of central Tibetan Plateau
  publication-title: Eur. J. Environ. Civil Eng.
– volume: 130
  start-page: 171
  year: 2002
  end-page: 200
  article-title: Numerical solution of a complete surface energy balance model for simulation of heat fluxes and surface temperature under bare soil environment
  publication-title: Appl. Math. Comput.
– volume: 239
  start-page: 187
  year: 1994
  end-page: 197
  article-title: Effects of topography and climate changes on temperature in borehole GFU‐1, Prague
  publication-title: Tectonophysics
– volume: 34
  start-page: 2919
  issue: 11
  year: 1998
  end-page: 2929
  article-title: Diurnal fluctuations of water and heat flows in a bare soil
  publication-title: Water Resour. Res.
– year: 2007
– year: 1987
– volume: 3
  start-page: 86
  issue: 1
  year: 2013
  end-page: 102
  article-title: Relative efficiency of surface energy partitioning over different land covers
  publication-title: Br. J. Environ. Clim. Change
– year: 2003
– volume: 44
  start-page: W05S07
  year: 2008
  article-title: Long‐term meteorological and soil hydrology database, Wallnut Culch Experimental Watershed, Arisona, United States
  publication-title: Water Resour. Res.
– volume: 101
  start-page: 21877
  year: 1996
  end-page: 21890
  article-title: A geothermal climate‐change observatory: first year results from Emigrant Pass Observatory in northwest Utah
  publication-title: J. Geophys. Res.
– volume: 29
  start-page: 311
  year: 2001
  end-page: 325
  article-title: A decade of air‐ground temperature exchange from Fargo, North Dakota
  publication-title: Global Planet. Change
– volume: 30
  start-page: 2147
  year: 2003
  end-page: 2150
  article-title: The effect of vegetation on surface temperature: a statistical analysis of NDVI and climate data
  publication-title: Geophys. Res. Lett.
– volume: 356
  start-page: 327
  year: 2008
  end-page: 343
  article-title: Ground surface temperature simulation for different land covers
  publication-title: J. Hydrol.
– volume: 45
  start-page: W03423
  year: 2009
  article-title: Comparison of algorithms for incoming atmospheric long‐wave radiation
  publication-title: Water Resour. Res.
– volume: 44
  start-page: W11405
  issue: 11
  year: 2008
  article-title: Modeling of thermal runoff response from an asphalt‐paved plot in the framework of the mass response functions
  publication-title: Water Resour. Res.
– volume: 3
  start-page: 453
  year: 2007
  end-page: 462
  article-title: Repeated temperature logs from Czech, Slovenian and Portuguese borehole climate observatories
  publication-title: Clim. Past
– volume: 43
  issue: 4
  year: 2005
  article-title: Influence of the seasonal snow cover on the ground thermal regime: an overview
  publication-title: Rev. Geophys.
– volume: 1764
  start-page: 180
  year: 2001
  end-page: 188
  article-title: Mathematical model for calculation of pavement temperatures: comparison of calculated and measured temperatures
  publication-title: Transp. Res. Rec.
– volume: 113
  start-page: 787
  year: 2012
  end-page: 801
  article-title: Detection and quantification of local anthropogenic and regional climatic transient signals in temperature logs from Czechia and Slovenia
  publication-title: Clim. Change
– volume: 65
  start-page: 1107
  year: 2003
  end-page: 1116
  article-title: Downward atmospheric longwave irradiance under clear and cloudy skies: measurement and parameterization
  publication-title: J. Atmos. Sol.‐Terr. Phys.
– volume: 58
  start-page: 403
  year: 2014
  end-page: 424
  article-title: Ground‐air temperature tracking and multi‐year cycles in the subsurface temperature time series at geothermal climate‐change observatory
  publication-title: Stud. Geophys. Geod.
– volume: 132
  start-page: 162
  issue: 2
  year: 2006
  end-page: 167
  article-title: Model to predict pavement temperature profile: development and validation
  publication-title: J. Transp. Eng.
– volume: 59
  start-page: 536
  year: 2012
  end-page: 546
  article-title: Field measurement of albedo for different land cover materials and effects on thermal performance
  publication-title: Build. Environ.
– volume: 10
  start-page: 1
  year: 2013
  end-page: 9
  article-title: Six years of ground‐air temperature tracking at Malence (Slovenia): thermal diffusivity from subsurface temperature data
  publication-title: J. Geophys. Eng.
– volume: 242
  start-page: 217
  year: 2006
  end-page: 222
  article-title: Transient lateral heat flow due to land‐use changes
  publication-title: Earth Planet. Sci. Lett.
– volume: 27
  start-page: 211
  issue: 2
  year: 2007
  end-page: 220
  article-title: Climate change detection over different land surface vegetation classes
  publication-title: Int. J. Climatol.
– volume: 23
  start-page: 165
  year: 1999
  end-page: 175
  article-title: SEWAB – a parametrization of the surface energy and water balance for atmospheric and hydrologic models
  publication-title: Adv. Water Resour.
– volume: 89
  start-page: 507
  year: 1963
  end-page: 531
  article-title: The horizontal transport of heat and moisture – a micrometeorological study
  publication-title: Q. J. R. Meteorol. Soc.
– volume: 29
  start-page: 327
  year: 2001
  end-page: 348
  article-title: On the relationship between ground temperature histories and meteorological records: a report on the Pomquet station
  publication-title: Glob. Planet. Change
– volume: 112
  start-page: F04015
  issue: F4
  year: 2007
  article-title: The impact of horizontal groundwater flow and localized deforestation on the development of shallow temperature anomalies
  publication-title: J. Geophys. Res.
– volume: 13
  start-page: 203
  year: 2006
  end-page: 212
  article-title: Heat balance of an asphalt surface: observations and physically‐based simulations
  publication-title: Meteorol. Appl.
– volume: 19
  start-page: 3722
  year: 2006
  end-page: 3731
  article-title: A decade of ground‐air temperature tracking at Emigrant Pass Observatory, Utah
  publication-title: J. Clim.
– ident: e_1_2_11_35_1
  doi: 10.1080/19648189.2014.945043
– ident: e_1_2_11_18_1
  doi: 10.1016/j.jhydrol.2008.11.019
– ident: e_1_2_11_10_1
  doi: 10.1088/1742-2132/10/2/025012
– ident: e_1_2_11_24_1
– ident: e_1_2_11_29_1
  doi: 10.1016/0040-1951(94)90114-7
– ident: e_1_2_11_9_1
  doi: 10.1007/s10584-011-0373-5
– ident: e_1_2_11_16_1
  doi: 10.3141/1764-19
– ident: e_1_2_11_4_1
  doi: 10.1016/S0921-8181(01)00098-4
– ident: e_1_2_11_30_1
  doi: 10.5194/cp-3-453-2007
– ident: e_1_2_11_3_1
  doi: 10.1175/JCLI3808.1
– ident: e_1_2_11_11_1
  doi: 10.1061/(ASCE)0733-947X(2006)132:2(162)
– ident: e_1_2_11_17_1
  doi: 10.1016/j.jastp.2003.07.007
– volume-title: Borehole Climatology, A New Method on How to Reconstruct Climate
  year: 2007
  ident: e_1_2_11_6_1
  contributor:
    fullname: Bodri L
– ident: e_1_2_11_31_1
  doi: 10.1029/98WR02225
– ident: e_1_2_11_20_1
  doi: 10.1029/2003GL018251
– ident: e_1_2_11_13_1
  doi: 10.1029/2008/WR007394
– ident: e_1_2_11_36_1
  doi: 10.9734/BJECC/2013/3062
– ident: e_1_2_11_37_1
  doi: 10.1029/2004RG000157
– ident: e_1_2_11_12_1
  doi: 10.1016/j.epsl.2005.12.001
– ident: e_1_2_11_5_1
  doi: 10.1029/2006JF000703
– ident: e_1_2_11_26_1
  doi: 10.1029/96JB01903
– ident: e_1_2_11_7_1
  doi: 10.1007/s11200-013-0356-2
– ident: e_1_2_11_22_1
  doi: 10.1029/2007WR005993
– ident: e_1_2_11_28_1
  doi: 10.1002/qj.49708938207
– ident: e_1_2_11_19_1
  doi: 10.1017/S1350482706002179
– ident: e_1_2_11_23_1
  doi: 10.1016/j.buildenv.2012.10.014
– ident: e_1_2_11_2_1
  doi: 10.1002/joc.859
– ident: e_1_2_11_14_1
  doi: 10.1016/S0921-8181(97)00002-7
– ident: e_1_2_11_34_1
– ident: e_1_2_11_21_1
  doi: 10.1029/2006WR005702
– ident: e_1_2_11_8_1
  doi: 10.1002/joc.1397
– ident: e_1_2_11_15_1
  doi: 10.1016/j.jhydrol.2008.04.020
– ident: e_1_2_11_32_1
  doi: 10.1016/S0921-8181(01)00097-2
– ident: e_1_2_11_33_1
– ident: e_1_2_11_27_1
  doi: 10.1016/S0096-3003(01)00089-3
– ident: e_1_2_11_25_1
  doi: 10.1016/S0309-1708(99)00020-2
SSID ssj0009916
Score 2.367557
Snippet ABSTRACT We have analyzed series of air, near‐surface and shallow ground temperatures under four land cover types, namely bare clayey soil, sand, short‐cut...
We have analyzed series of air, near-surface and shallow ground temperatures under four land cover types, namely bare clayey soil, sand, short-cut grass and...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Publisher
StartPage 1084
SubjectTerms borehole climatology
climate change
land‐cover materials
long‐term temperature monitoring
underground climate signal
Title Eleven years of ground–air temperature tracking over different land cover types
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjoc.4764
https://www.proquest.com/docview/1863880046
https://search.proquest.com/docview/1868306473
Volume 37
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFA6yJ1-8i9MpEWRv3dr0ljzK2BiDKcqEgQ8lTVOYSitb96BP_gf_ob_Ec9J2U0EQn0rbtGkuX_Odk5MvhFyEQDKcQArLVz5uYcYUQCrQViIDV6GYiOC4Gnl8FQzvvNHUn1ZRlbgWptSHWDncEBnmf40Al_GiuxYNfchVxwsDlAJFHT3kQ7dr5SikPYZACmFxz-G17qzNuvWD30eiNb38SlLNKDPYJvf195XBJY-dZRF31OsP6cb_FWCHbFXkk16WvWWXbOhsjzTHwJvzuXGv0zbtPc2AxJqzfXLTf0KFJ_oCeFjQPKW4CCRLPt7e5WxOUdaq0mSmxVwq9LpTDAml9bYrBcXASarMRfT2Lg7IZNCf9IZWtQmDpYA6eRbQF-6ltnbCwBZKBDwWidSCcZyhczWLUWJeer6nwDJRSQz8SisZaO4x7UjfPSSNLM_0EaEOS-LUlmmooNDCTrjiHNDPwtCPwYxzm-S8bo_ouZTaiEpRZRZBXUVYV03SqhsqqsC2iBx8DUdLH16xug0wwbkPmel8adJwNLZCyKZtWuXXPKLRdQ-Px39NeEI2GQ72Jpa7RRrFfKlPgaoU8ZnplJ9sdOWh
link.rule.ids 315,786,790,1382,27955,27956,46327,46751
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1dT9swFL1i5WF7YWOAKGPgSYi3lMR1Elt7mjpQ-SiIqUg8TIocx5UKVYLa9AGe-A_8Q37J7nUaCkiTEE9REseOP4597rV9DLATI8kIIq280IR0hBk3CKnIepmO2obERJSk3ci906h7IY4uw8sF-Fnvhan0IZ4cboQM118TwMkhvTdXDb0qTEvEkfgAi4j2kFD5-89cO4qIj6OQSnlSBLJWnvX5Xv3ly7FoTjCf01Q3zhx8hr_1H1bLS65b0zJtmbtX4o3vzMIXWJrxT_arajDLsGDzr9DsIXUuxs7DznZZZzREHuvuVuB8f0QiT-wWITFhxYDRPpA8e7x_0MMxI2WrmSwzK8fakOOd0apQVp-8UjJaO8mMe0gO38kq9A_2-52uNzuHwTPInoSHDEaKgW-DOPKVUZFMVaat4pIm6dqWp6Qyr0UoDBonJkuRYlmjIysFt4EO22vQyIvcrgMLeJYOfD2IDWZa-Zk0UmIHwOM4TNGSazfhR10hyU2ltpFUuso8wbJKqKyasFnXVDLD2yQJKBpJxj5G8fQakULTHzq3xdSFkWRvxZjMrquW_6aRHJ116Lrx1oDb8LHb750kJ4enx9_gE6ex3y3t3oRGOZ7a78hcynTLtdB_0NXpwQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LTtwwFLXoIFXdUKCtGBjASIhdhsRxHHuJBkZAy1MgIXUROY4j8VCCZjILuuo_9A_5Eu51EgaQKiFWURInjh8nPvf6-piQzRhIRiC08iIT4RZmzACkhPUyLUKDYiJK4mrko2Oxf8kPr6KrJqoS18LU-hDPDjdEhvtfI8Dvs3x7Khp6U5o-jwX_RGa5CBkaXrvnU-ko5D2OQSrlSR7IVnjWZ9vtk6-Hoim_fMlS3TAz_Ep-tx9YR5fc9idV2jd_3mg3fqwE82SuYZ90p-4uC2TGFoukewTEuRw5_zrdooO7a2Cx7uwbOdu7Q4kn-gCAGNMyp7gKpMge__7T1yOKulaNKDOtRtqg251iTCht912pKEZOUuMuort3_J1cDPcuBvteswuDZ4A7cQ_4i-S5b4NY-MooIVOVaauYxCm60LIUNeY1j7gB08RkKRAsa7SwkjMb6Cj8QTpFWdglQgOWpbmv89hAoZWfSSMlwJ_FcZSCHRd2yUbbHsl9rbWR1KrKLIG6SrCuuqTXNlTSoG2cBPgaiaY-vOL5NuAEJz90YcuJSyPR2oohmy3XKv_NIzk8GeBx-b0J18nn091h8uvg-OcK-cJw4Hdx3T3SqUYTuwq0pUrXXP98Ai8D6HA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Eleven+years+of+ground%E2%80%93air+temperature+tracking+over+different+land+cover+types&rft.jtitle=International+journal+of+climatology&rft.au=Cermak%2C+Vladimir&rft.au=Bodri%2C+Louise&rft.au=Kresl%2C+Milan&rft.au=Dedecek%2C+Petr&rft.date=2017-02-01&rft.pub=John+Wiley+%26+Sons%2C+Ltd&rft.issn=0899-8418&rft.eissn=1097-0088&rft.volume=37&rft.issue=2&rft.spage=1084&rft.epage=1099&rft_id=info:doi/10.1002%2Fjoc.4764&rft.externalDBID=10.1002%252Fjoc.4764&rft.externalDocID=JOC4764
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0899-8418&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0899-8418&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0899-8418&client=summon