Combination of kernel PCA and linear support vector machine for modeling a nonlinear relationship between bioactivity and molecular descriptors

In this paper, a two‐step nonlinear classification algorithm is proposed to model the structure–activity relationship (SAR) between bioactivities and molecular descriptors of compounds, which consists of kernel principal component analysis (KPCA) and linear support vector machines (KPCA + LSVM). KPC...

Full description

Saved in:
Bibliographic Details
Published inJournal of chemometrics Vol. 25; no. 2; pp. 92 - 99
Main Authors Fu, Guang-Hui, Cao, Dong-Sheng, Xu, Qing-Song, Li, Hong-Dong, Liang, Yi-Zeng
Format Journal Article
LanguageEnglish
Published Chichester, UK John Wiley & Sons, Ltd 01.02.2011
Wiley
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text
ISSN0886-9383
1099-128X
1099-128X
DOI10.1002/cem.1364

Cover

Abstract In this paper, a two‐step nonlinear classification algorithm is proposed to model the structure–activity relationship (SAR) between bioactivities and molecular descriptors of compounds, which consists of kernel principal component analysis (KPCA) and linear support vector machines (KPCA + LSVM). KPCA is used to remove some uninformative gradients such as noises and then exactly capture the latent structure of the training dataset using some new variables called the principal components in the kernel‐defined feature space. LSVM makes full use of the maximal margin hyperplane to give the best generalization performance in the KPCA‐transformed space. The combination of KPCA and LSVM can effectively improve the prediction performance compared with the linear SVM as well as two nonlinear methods. Three datasets related to different categorical bioactivities of compounds are used to evaluate the performance of KPCA + LSVM. The results show that our algorithm is competitive. Copyright © 2011 John Wiley & Sons, Ltd. In this paper, a two‐step nonlinear classification algorithm is proposed to model the structure‐activity relationship (SAR) between bioactivities and molecular descriptors of compounds, which consists of kernel principal component analysis (KPCA) and linear support vector machines (KPCA+ LSVM). The combination of KPCA and LSVM can effectively improve the prediction performance compared with the linear SVM as well as two nonlinear methods. Three datasets related to different categorical bioactivities of compounds are used to evaluate the performance of KPCA+LSVM. The results show that our algorithm is competitive.
AbstractList In this paper, a two-step nonlinear classification algorithm is proposed to model the structure-activity relationship (SAR) between bioactivities and molecular descriptors of compounds, which consists of kernel principal component analysis (KPCA) and linear support vector machines (KPCA + LSVM). KPCA is used to remove some uninformative gradients such as noises and then exactly capture the latent structure of the training dataset using some new variables called the principal components in the kernel-defined feature space. LSVM makes full use of the maximal margin hyperplane to give the best generalization performance in the KPCA-transformed space. The combination of KPCA and LSVM can effectively improve the prediction performance compared with the linear SVM as well as two nonlinear methods. Three datasets related to different categorical bioactivities of compounds are used to evaluate the performance of KPCA + LSVM. The results show that our algorithm is competitive. [PUBLICATION ABSTRACT]
In this paper, a two‐step nonlinear classification algorithm is proposed to model the structure–activity relationship (SAR) between bioactivities and molecular descriptors of compounds, which consists of kernel principal component analysis (KPCA) and linear support vector machines (KPCA + LSVM). KPCA is used to remove some uninformative gradients such as noises and then exactly capture the latent structure of the training dataset using some new variables called the principal components in the kernel‐defined feature space. LSVM makes full use of the maximal margin hyperplane to give the best generalization performance in the KPCA‐transformed space. The combination of KPCA and LSVM can effectively improve the prediction performance compared with the linear SVM as well as two nonlinear methods. Three datasets related to different categorical bioactivities of compounds are used to evaluate the performance of KPCA + LSVM. The results show that our algorithm is competitive. Copyright © 2011 John Wiley & Sons, Ltd. In this paper, a two‐step nonlinear classification algorithm is proposed to model the structure‐activity relationship (SAR) between bioactivities and molecular descriptors of compounds, which consists of kernel principal component analysis (KPCA) and linear support vector machines (KPCA+ LSVM). The combination of KPCA and LSVM can effectively improve the prediction performance compared with the linear SVM as well as two nonlinear methods. Three datasets related to different categorical bioactivities of compounds are used to evaluate the performance of KPCA+LSVM. The results show that our algorithm is competitive.
In this paper, a two-step nonlinear classification algorithm is proposed to model the structure-activity relationship (SAR) between bioactivities and molecular descriptors of compounds, which consists of kernel principal component analysis (KPCA) and linear support vector machines (KPCA+LSVM). KPCA is used to remove some uninformative gradients such as noises and then exactly capture the latent structure of the training dataset using some new variables called the principal components in the kernel-defined feature space. LSVM makes full use of the maximal margin hyperplane to give the best generalization performance in the KPCA-transformed space. The combination of KPCA and LSVM can effectively improve the prediction performance compared with the linear SVM as well as two nonlinear methods. Three datasets related to different categorical bioactivities of compounds are used to evaluate the performance of KPCA+LSVM. The results show that our algorithm is competitive.
Author Fu, Guang-Hui
Liang, Yi-Zeng
Xu, Qing-Song
Li, Hong-Dong
Cao, Dong-Sheng
Author_xml – sequence: 1
  givenname: Guang-Hui
  surname: Fu
  fullname: Fu, Guang-Hui
  organization: School of Mathematical Science and Computing Technology, Central South University, Changsha 410083, P. R. China
– sequence: 2
  givenname: Dong-Sheng
  surname: Cao
  fullname: Cao, Dong-Sheng
  organization: Research Center of Modernization of Traditional Chinese Medicines, Central South University, Changsha 410083, P. R. China
– sequence: 3
  givenname: Qing-Song
  surname: Xu
  fullname: Xu, Qing-Song
  email: qsxu@mail.csu.edu.cn
  organization: School of Mathematical Science and Computing Technology, Central South University, Changsha 410083, P. R. China
– sequence: 4
  givenname: Hong-Dong
  surname: Li
  fullname: Li, Hong-Dong
  organization: Research Center of Modernization of Traditional Chinese Medicines, Central South University, Changsha 410083, P. R. China
– sequence: 5
  givenname: Yi-Zeng
  surname: Liang
  fullname: Liang, Yi-Zeng
  organization: Research Center of Modernization of Traditional Chinese Medicines, Central South University, Changsha 410083, P. R. China
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23876609$$DView record in Pascal Francis
BookMark eNp10ctu1TAQBuAIFYnTgsQjWEgINjk4cXzJsopKiyiXBZTuLMcZU7eOndo5LecpeGV8LqpEBauxNN_8GnkOiwMfPBTFywovK4zrdxrGZUVY86RYVLhty6oWlwfFAgvBypYI8qw4TOka49wjzaL43YWxt17NNngUDLqB6MGhr90xUn5AznpQEaXVNIU4ozvQc4hoVPoqN5DZvMMAWf1ECuVN9j6C2yamKzuhHuZ7AI96G5Se7Z2d19vsMTjQK5f5AElHO-Xo9Lx4apRL8GJfj4rv70--dWfl-ZfTD93xealJWzclp9gAIQYU0ao3NaEglGhMTwjNhVZDxRtaV6YdBG_6tmGM1GKgHFpDgQlyVLzZ5U4x3K4gzXK0SYNzykNYJdniinHMaprlq0fyOqyiz8tJQRkmDWt4Rq_3SCWtnInKa5vkFO2o4lrWRHDGcJvd253TMaQUwTyQCsvN_WS-n9zcL9PlI6rtvP3VOSrr_jVQ7gburYP1f4Nld_Lpb2_TDL8evIo3knHCqfzx-VTis48XvLsg8pL8AbGvvnU
CODEN JOCHEU
CitedBy_id crossref_primary_10_1016_j_chemolab_2012_11_008
crossref_primary_10_1016_j_chemolab_2013_07_001
crossref_primary_10_1016_j_chemolab_2015_07_009
crossref_primary_10_1088_1742_6596_1897_1_012057
crossref_primary_10_1002_cem_2746
crossref_primary_10_1186_s12859_020_3411_3
crossref_primary_10_1002_cem_2508
crossref_primary_10_1016_j_cherd_2011_05_005
crossref_primary_10_1002_jccs_201600803
crossref_primary_10_1016_j_snb_2021_129726
crossref_primary_10_1002_bimj_201800148
crossref_primary_10_1002_cem_3311
crossref_primary_10_1016_j_chemolab_2016_11_006
crossref_primary_10_1016_j_chemolab_2020_104196
crossref_primary_10_1002_cem_2490
crossref_primary_10_1002_cem_3094
Cites_doi 10.1162/15324430152748218
10.1023/A:1012487302797
10.1016/j.aca.2006.08.031
10.1002/qsar.200390007
10.1109/72.788641
10.1007/978-1-4757-2440-0
10.1016/j.chemosphere.2005.04.115
10.1021/ci049869h
10.1016/j.ejmech.2008.03.004
10.1021/ci050041k
10.1016/j.chemolab.2009.01.002
10.1080/03610910903072391
10.1007/s521-001-8051-z
10.1021/ci700356w
10.1002/qsar.200810166
10.1007/s10822‐008‐9225‐4
10.2174/157340609788185927
10.3390/ijms10073237
10.1021/jm060604z
10.1021/jm030999b
10.1109/IGARSS.2006.48
10.1124/dmd.108.023507
10.1021/ci049971e
10.1021/ci600343x
10.1137/1.9780898719697
10.1016/j.ejmech.2009.04.050
10.1002/qsar.200610151
10.1016/S0169‐7439(97)00010‐5
10.1002/jcc.21190
ContentType Journal Article
Copyright Copyright © 2011 John Wiley & Sons, Ltd.
2015 INIST-CNRS
Copyright John Wiley and Sons, Limited Feb 2011
Copyright_xml – notice: Copyright © 2011 John Wiley & Sons, Ltd.
– notice: 2015 INIST-CNRS
– notice: Copyright John Wiley and Sons, Limited Feb 2011
DBID BSCLL
AAYXX
CITATION
IQODW
7SC
7U5
8FD
JQ2
L7M
L~C
L~D
DOI 10.1002/cem.1364
DatabaseName Istex
CrossRef
Pascal-Francis
Computer and Information Systems Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database
CrossRef

Technology Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1099-128X
EndPage 99
ExternalDocumentID 2286995351
23876609
10_1002_cem_1364
CEM1364
ark_67375_WNG_0HKV7CV3_X
Genre article
Feature
GroupedDBID .3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
31~
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABDBF
ABEML
ABIJN
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
AQPKS
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
DU5
EBS
EJD
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HF~
HGLYW
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LH5
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
RNS
ROL
RWI
RX1
RYL
SAMSI
SUPJJ
UB1
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WRJ
WXSBR
WYISQ
XG1
XPP
XV2
ZZTAW
~IA
~WT
AAHQN
AAMNL
AANHP
AAYCA
ACRPL
ACUHS
ACYXJ
ADNMO
AFWVQ
ALVPJ
AAYXX
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
IQODW
7SC
7U5
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c3924-750fe33fea3cabf235e8a84fb33584f51d174521f9d874b9466328d57e9f5e683
IEDL.DBID DR2
ISSN 0886-9383
1099-128X
IngestDate Fri Jul 11 04:25:34 EDT 2025
Fri Jul 25 10:40:44 EDT 2025
Mon Jul 21 09:14:45 EDT 2025
Tue Jul 01 03:16:59 EDT 2025
Thu Apr 24 23:01:46 EDT 2025
Wed Jan 22 16:23:44 EST 2025
Wed Oct 30 10:01:58 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Gradient
Support
Prediction
Algorithm
Modeling
de-noising
Structure activity relation
structure-activity relationship (SAR)
Classification
kernel methods
Models
kernel principal component analysis (KPCA)
Structure
Chemometrics
Principal component analysis
support vector machines (SVMs)
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3924-750fe33fea3cabf235e8a84fb33584f51d174521f9d874b9466328d57e9f5e683
Notes ark:/67375/WNG-0HKV7CV3-X
istex:08D606403290E3F1CED58B36EFE825803936F5FD
ArticleID:CEM1364
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-2
content type line 23
PQID 856034647
PQPubID 37374
PageCount 8
ParticipantIDs proquest_miscellaneous_901670625
proquest_journals_856034647
pascalfrancis_primary_23876609
crossref_primary_10_1002_cem_1364
crossref_citationtrail_10_1002_cem_1364
wiley_primary_10_1002_cem_1364_CEM1364
istex_primary_ark_67375_WNG_0HKV7CV3_X
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate February 2011
PublicationDateYYYYMMDD 2011-02-01
PublicationDate_xml – month: 02
  year: 2011
  text: February 2011
PublicationDecade 2010
PublicationPlace Chichester, UK
PublicationPlace_xml – name: Chichester, UK
– name: Bognor Regis
– name: Chichester
PublicationTitle Journal of chemometrics
PublicationTitleAlternate J. Chemometrics
PublicationYear 2011
Publisher John Wiley & Sons, Ltd
Wiley
Wiley Subscription Services, Inc
Publisher_xml – name: John Wiley & Sons, Ltd
– name: Wiley
– name: Wiley Subscription Services, Inc
References Li H, Sun J, Fan X, Sui X, Zhang L, Wang Y, He Z. Considerations and recent advances in qsar models for cytochrome p450-mediated drug metabolism prediction. J. Comput. Aided Mol. Des. 2008; 22(11): 843-855. DOI: 10.1007/s10822-008-9225-4
Vapnik V. The Nature of Statistical Learning Theory. Springer: New York,USA, 1995.
Leong MK, Chen YM, Chen TH. Prediction of human cytochrome p450 2b6-substrate interactions using hierarchical support vector regression approach. J. Comput. Chem. 2009; 30(12): 1899-1909.
Guyon I, Weston J, Barnhill S, Vapnik V. Gene selection for cancer classification using support vector machines. Mach. Learn. 2002; 46(1-3): 389-422.
Schokopf B, Smola A (eds). Learning with Kernels. MIT Press: Cambridge, 2002.
Bierman S, Steel S. Variable selection for support vector machines. Commun. Stat. Simul. Comput. 2009; 38(8): 1640-1658.
Tropsha A, Gramatica P, Gombar V. The importance of being earnest: validation is the absolute essential for successful application and interpretation of QSPR models. QSAR Comb. Sci. 2003; 22(1): 69-77.
Hou T, Wang J, Zhang W, Xu X. Adme evaluation in drug discovery. 7. prediction of oral absorption by correlation and classification. J. Chem. Inf. Model. 2006; 47(1): 208-218. DOI: 10.1021/ci600343x
Yuan YN, Zhang RS, Hu RJ, Ruan XF. Prediction of ccr5 receptor binding affinity of substituted 1-(3,3-diphenylpropyl)-piperidinyl amides and ureas based on the heuristic method, support vector machine and projection pursuit regression. Eur. J. Med. Chem. 2009; 44(1): 25-34.
Willmann S, Schmitt W, Keldenich J, Lippert J, Dressman JB. A physiological model for the estimation of the fraction dose absorbed in humans. J. Med. Chem. 2004; 47(16): 4022-4031. DOI: 10.1021/jm030999b
Wu W, Massart DL, de Jong S. The kernel pca algorithms for wide data. part i: theory and algorithms. Chemom. Intell. Lab. Syst. 1997; 36(2): 165-172. DOI: 10.1016/S0169-7439(97)00010-5
Asikainen A, Kolehmainen M, Ruuskanen J, Tuppurainen K. Structure-based classification of active and inactive estrogenic compounds by decision tree, lvq and knn methods. Chemosphere 2006; 62(4): 658-673.
Darnag R, Schmitzer A, Belmiloud Y, Villemin D, Jarid A, Chait A, Seyagh M, Cherqaoui D. Qsar studies of hept derivatives using support vector machines. QSAR Comb. Sci. 2009; 28(6-7): 709-718.
Hansen P. Rank-deficient and Discrete Ill-posed Problems: Numerical Aspects of Linear Inversion. Society for Industrial Mathematics: Philadelphia, USA, 1998.
Yuan H, Huang JP, Cao CZ. Prediction of skin sensitization with a particle swarm optimized support vector machine. Int. J. Mol. Sci. 2009; 10(7): 3237-3254.
Liu XQ, Kruger U, Littler T, Xie L, Wang SQ. Moving window kernel pca for adaptive monitoring of nonlinear processes. Chemom. Intell. Lab. Syst. 2009; 96(2): 132-143.
Agatonovic-Kustrin S, Davies P, Turner JV. Structure-activity relationships for serotonin transporter and dopamine receptor selectivity. Med. Chem. 2009; 5(3): 271-278.
Wang Y-H, Li Y, Yang S-L, Yang L. Classification of substrates and inhibitors of p-glycoprotein using unsupervised machine learning approach. J. Chem. Inf. Model. 2005; 45(3): 750-757. DOI: 10.1021/ci050041k
Gramatica P. Principles of QSAR models validation: internal and external. QSAR Comb. Sci. 2007; 26(5): 694-701.
Vasanthanathan P, Taboureau O, Oostenbrink C, Vermeulen NPE, Olsen L, Jorgensen FS. Classification of cytochrome p450 1a2 inhibitors and noninhibitors by machine learning techniques. Drug Metab. Dispos. 2009; 37(3): 658-664.
Cristianini N, Shawe-Taylor J (eds). An Introduction to Support Vector Machines. Cambridge University Press: Cambridge, 2000.
Kaiser D, Terfloth L, Kopp S, Schulz J, de Laet R, Chiba P, Ecker GF, Gasteiger J. Self-organizing maps for identification of new inhibitors of p-glycoprotein. J. Med. Chem. 2007; 50(7): 1698-1702. DOI: 10.1021/jm060604z
Mangasarian O, Musicant D. Lagrangian support vector machines. J. Mach. Learn. Res. 2001; 1: 161-177.
Xue Y, Yap CW, Sun LZ, Cao ZW, Wang JF, Chen YZ. Prediction of p-glycoprotein substrates by a support vector machine approach. J. Chem. Inf. Comput. Sci. 2004; 44(4): 1497-1505.
Askjaer S, Langgard M. Combining pharmacophore fingerprints and pls-discriminant analysis for virtual screening and sar elucidation. J. Chem. Inf. Model. 2008; 48(3): 476-488.
Scholkopf B, Mika S, Burges CJC, Knirsch P, Muller KR, Ratsch G, Smola AJ. Input space versus feature space in kernel-based methods. IEEE Trans. Neural Netw. 1999; 10(5): 1000-1017.
Xue Y, Li ZR, Yap CW, Sun LZ, Chen X, Chen YZ. Effect of molecular descriptor feature selection in support vector machine classification of pharmacokinetic and toxicological properties of chemical agents. J. Chem. Inf. Comput. Sci. 2004; 44(5): 1630-1638. DOI: 10.1021/ci049869h
Rosipal R, Girolami M, Trejo LJ, Cichocki A. Kernel pca for feature extraction and de-noising in nonlinear regression. Neural Comput. Appl. 2001; 10(3): 231-243.
Li JZ, Liu HX, Yao XJ, Liu MC, Hu ZD, Fan BT. Structure-activity relationship study of oxindole-based inhibitors of cyclin-dependent kinases based on least-squares support vector machines. Anal. Chim. Acta 2007; 581(2): 333-342.
Dong XW, Jiang CY, Hu HY, Yan JY, Chen J, Hu YZ. Qsar study of akt/protein kinase b (pkb) inhibitors using support vector machine. Eur. J. Med. Chem. 2009; 44(10): 4090-4097.
2009; 44
2004; 44
2004; 47
2007; 581
1998
2006
1995
2007; 50
2002
2005; 45
2009; 28
2009; 30
2009; 96
2009; 10
2006; 62
2000
2002; 46
1997; 36
2006; 47
2008; 48
1999; 10
2008; 22
2009; 5
2001; 1
2009; 38
2009; 37
2007; 26
2003; 22
2001; 10
e_1_2_9_30_2
e_1_2_9_10_2
e_1_2_9_12_2
e_1_2_9_31_2
e_1_2_9_11_2
e_1_2_9_32_2
e_1_2_9_14_2
e_1_2_9_13_2
e_1_2_9_16_2
Cristianini N (e_1_2_9_21_2) 2000
e_1_2_9_15_2
e_1_2_9_18_2
e_1_2_9_17_2
e_1_2_9_19_2
e_1_2_9_20_2
Schokopf B (e_1_2_9_22_2) 2002
e_1_2_9_23_2
e_1_2_9_7_2
e_1_2_9_6_2
e_1_2_9_5_2
e_1_2_9_4_2
e_1_2_9_3_2
e_1_2_9_2_2
e_1_2_9_9_2
e_1_2_9_8_2
e_1_2_9_25_2
e_1_2_9_24_2
e_1_2_9_27_2
e_1_2_9_26_2
e_1_2_9_29_2
e_1_2_9_28_2
References_xml – reference: Wu W, Massart DL, de Jong S. The kernel pca algorithms for wide data. part i: theory and algorithms. Chemom. Intell. Lab. Syst. 1997; 36(2): 165-172. DOI: 10.1016/S0169-7439(97)00010-5
– reference: Liu XQ, Kruger U, Littler T, Xie L, Wang SQ. Moving window kernel pca for adaptive monitoring of nonlinear processes. Chemom. Intell. Lab. Syst. 2009; 96(2): 132-143.
– reference: Asikainen A, Kolehmainen M, Ruuskanen J, Tuppurainen K. Structure-based classification of active and inactive estrogenic compounds by decision tree, lvq and knn methods. Chemosphere 2006; 62(4): 658-673.
– reference: Kaiser D, Terfloth L, Kopp S, Schulz J, de Laet R, Chiba P, Ecker GF, Gasteiger J. Self-organizing maps for identification of new inhibitors of p-glycoprotein. J. Med. Chem. 2007; 50(7): 1698-1702. DOI: 10.1021/jm060604z
– reference: Gramatica P. Principles of QSAR models validation: internal and external. QSAR Comb. Sci. 2007; 26(5): 694-701.
– reference: Li H, Sun J, Fan X, Sui X, Zhang L, Wang Y, He Z. Considerations and recent advances in qsar models for cytochrome p450-mediated drug metabolism prediction. J. Comput. Aided Mol. Des. 2008; 22(11): 843-855. DOI: 10.1007/s10822-008-9225-4
– reference: Vasanthanathan P, Taboureau O, Oostenbrink C, Vermeulen NPE, Olsen L, Jorgensen FS. Classification of cytochrome p450 1a2 inhibitors and noninhibitors by machine learning techniques. Drug Metab. Dispos. 2009; 37(3): 658-664.
– reference: Guyon I, Weston J, Barnhill S, Vapnik V. Gene selection for cancer classification using support vector machines. Mach. Learn. 2002; 46(1-3): 389-422.
– reference: Wang Y-H, Li Y, Yang S-L, Yang L. Classification of substrates and inhibitors of p-glycoprotein using unsupervised machine learning approach. J. Chem. Inf. Model. 2005; 45(3): 750-757. DOI: 10.1021/ci050041k
– reference: Hou T, Wang J, Zhang W, Xu X. Adme evaluation in drug discovery. 7. prediction of oral absorption by correlation and classification. J. Chem. Inf. Model. 2006; 47(1): 208-218. DOI: 10.1021/ci600343x
– reference: Scholkopf B, Mika S, Burges CJC, Knirsch P, Muller KR, Ratsch G, Smola AJ. Input space versus feature space in kernel-based methods. IEEE Trans. Neural Netw. 1999; 10(5): 1000-1017.
– reference: Mangasarian O, Musicant D. Lagrangian support vector machines. J. Mach. Learn. Res. 2001; 1: 161-177.
– reference: Xue Y, Yap CW, Sun LZ, Cao ZW, Wang JF, Chen YZ. Prediction of p-glycoprotein substrates by a support vector machine approach. J. Chem. Inf. Comput. Sci. 2004; 44(4): 1497-1505.
– reference: Yuan YN, Zhang RS, Hu RJ, Ruan XF. Prediction of ccr5 receptor binding affinity of substituted 1-(3,3-diphenylpropyl)-piperidinyl amides and ureas based on the heuristic method, support vector machine and projection pursuit regression. Eur. J. Med. Chem. 2009; 44(1): 25-34.
– reference: Rosipal R, Girolami M, Trejo LJ, Cichocki A. Kernel pca for feature extraction and de-noising in nonlinear regression. Neural Comput. Appl. 2001; 10(3): 231-243.
– reference: Li JZ, Liu HX, Yao XJ, Liu MC, Hu ZD, Fan BT. Structure-activity relationship study of oxindole-based inhibitors of cyclin-dependent kinases based on least-squares support vector machines. Anal. Chim. Acta 2007; 581(2): 333-342.
– reference: Willmann S, Schmitt W, Keldenich J, Lippert J, Dressman JB. A physiological model for the estimation of the fraction dose absorbed in humans. J. Med. Chem. 2004; 47(16): 4022-4031. DOI: 10.1021/jm030999b
– reference: Leong MK, Chen YM, Chen TH. Prediction of human cytochrome p450 2b6-substrate interactions using hierarchical support vector regression approach. J. Comput. Chem. 2009; 30(12): 1899-1909.
– reference: Askjaer S, Langgard M. Combining pharmacophore fingerprints and pls-discriminant analysis for virtual screening and sar elucidation. J. Chem. Inf. Model. 2008; 48(3): 476-488.
– reference: Xue Y, Li ZR, Yap CW, Sun LZ, Chen X, Chen YZ. Effect of molecular descriptor feature selection in support vector machine classification of pharmacokinetic and toxicological properties of chemical agents. J. Chem. Inf. Comput. Sci. 2004; 44(5): 1630-1638. DOI: 10.1021/ci049869h
– reference: Dong XW, Jiang CY, Hu HY, Yan JY, Chen J, Hu YZ. Qsar study of akt/protein kinase b (pkb) inhibitors using support vector machine. Eur. J. Med. Chem. 2009; 44(10): 4090-4097.
– reference: Vapnik V. The Nature of Statistical Learning Theory. Springer: New York,USA, 1995.
– reference: Darnag R, Schmitzer A, Belmiloud Y, Villemin D, Jarid A, Chait A, Seyagh M, Cherqaoui D. Qsar studies of hept derivatives using support vector machines. QSAR Comb. Sci. 2009; 28(6-7): 709-718.
– reference: Cristianini N, Shawe-Taylor J (eds). An Introduction to Support Vector Machines. Cambridge University Press: Cambridge, 2000.
– reference: Agatonovic-Kustrin S, Davies P, Turner JV. Structure-activity relationships for serotonin transporter and dopamine receptor selectivity. Med. Chem. 2009; 5(3): 271-278.
– reference: Yuan H, Huang JP, Cao CZ. Prediction of skin sensitization with a particle swarm optimized support vector machine. Int. J. Mol. Sci. 2009; 10(7): 3237-3254.
– reference: Schokopf B, Smola A (eds). Learning with Kernels. MIT Press: Cambridge, 2002.
– reference: Bierman S, Steel S. Variable selection for support vector machines. Commun. Stat. Simul. Comput. 2009; 38(8): 1640-1658.
– reference: Hansen P. Rank-deficient and Discrete Ill-posed Problems: Numerical Aspects of Linear Inversion. Society for Industrial Mathematics: Philadelphia, USA, 1998.
– reference: Tropsha A, Gramatica P, Gombar V. The importance of being earnest: validation is the absolute essential for successful application and interpretation of QSPR models. QSAR Comb. Sci. 2003; 22(1): 69-77.
– volume: 47
  start-page: 208
  issue: 1
  year: 2006
  end-page: 218
  article-title: Adme evaluation in drug discovery. 7. prediction of oral absorption by correlation and classification
  publication-title: J. Chem. Inf. Model.
– volume: 22
  start-page: 843
  issue: 11
  year: 2008
  end-page: 855
  article-title: Considerations and recent advances in qsar models for cytochrome p450‐mediated drug metabolism prediction
  publication-title: J. Comput. Aided Mol. Des.
– volume: 44
  start-page: 25
  issue: 1
  year: 2009
  end-page: 34
  article-title: Prediction of ccr5 receptor binding affinity of substituted 1‐(3,3‐diphenylpropyl)‐piperidinyl amides and ureas based on the heuristic method, support vector machine and projection pursuit regression
  publication-title: Eur. J. Med. Chem.
– volume: 46
  start-page: 389
  issue: 1–3
  year: 2002
  end-page: 422
  article-title: Gene selection for cancer classification using support vector machines
  publication-title: Mach. Learn.
– volume: 44
  start-page: 1497
  issue: 4
  year: 2004
  end-page: 1505
  article-title: Prediction of p‐glycoprotein substrates by a support vector machine approach
  publication-title: J. Chem. Inf. Comput. Sci.
– volume: 44
  start-page: 4090
  issue: 10
  year: 2009
  end-page: 4097
  article-title: Qsar study of akt/protein kinase b (pkb) inhibitors using support vector machine
  publication-title: Eur. J. Med. Chem.
– volume: 50
  start-page: 1698
  issue: 7
  year: 2007
  end-page: 1702
  article-title: Self‐organizing maps for identification of new inhibitors of p‐glycoprotein
  publication-title: J. Med. Chem.
– volume: 44
  start-page: 1630
  issue: 5
  year: 2004
  end-page: 1638
  article-title: Effect of molecular descriptor feature selection in support vector machine classification of pharmacokinetic and toxicological properties of chemical agents
  publication-title: J. Chem. Inf. Comput. Sci.
– volume: 10
  start-page: 3237
  issue: 7
  year: 2009
  end-page: 3254
  article-title: Prediction of skin sensitization with a particle swarm optimized support vector machine
  publication-title: Int. J. Mol. Sci.
– volume: 37
  start-page: 658
  issue: 3
  year: 2009
  end-page: 664
  article-title: Classification of cytochrome p450 1a2 inhibitors and noninhibitors by machine learning techniques
  publication-title: Drug Metab. Dispos.
– volume: 10
  start-page: 231
  issue: 3
  year: 2001
  end-page: 243
  article-title: Kernel pca for feature extraction and de‐noising in nonlinear regression
  publication-title: Neural Comput. Appl.
– volume: 45
  start-page: 750
  issue: 3
  year: 2005
  end-page: 757
  article-title: Classification of substrates and inhibitors of p‐glycoprotein using unsupervised machine learning approach
  publication-title: J. Chem. Inf. Model.
– year: 2000
– volume: 48
  start-page: 476
  issue: 3
  year: 2008
  end-page: 488
  article-title: Combining pharmacophore fingerprints and pls‐discriminant analysis for virtual screening and sar elucidation
  publication-title: J. Chem. Inf. Model.
– volume: 36
  start-page: 165
  issue: 2
  year: 1997
  end-page: 172
  article-title: The kernel pca algorithms for wide data. part i: theory and algorithms
  publication-title: Chemom. Intell. Lab. Syst.
– volume: 47
  start-page: 4022
  issue: 16
  year: 2004
  end-page: 4031
  article-title: A physiological model for the estimation of the fraction dose absorbed in humans
  publication-title: J. Med. Chem.
– volume: 28
  start-page: 709
  issue: 6–7
  year: 2009
  end-page: 718
  article-title: Qsar studies of hept derivatives using support vector machines
  publication-title: QSAR Comb. Sci.
– year: 1998
– start-page: 168
  year: 2006
  end-page: 171
– volume: 1
  start-page: 161
  year: 2001
  end-page: 177
  article-title: Lagrangian support vector machines
  publication-title: J. Mach. Learn. Res.
– volume: 26
  start-page: 694
  issue: 5
  year: 2007
  end-page: 701
  article-title: Principles of QSAR models validation: internal and external
  publication-title: QSAR Comb. Sci.
– volume: 22
  start-page: 69
  issue: 1
  year: 2003
  end-page: 77
  article-title: The importance of being earnest: validation is the absolute essential for successful application and interpretation of QSPR models
  publication-title: QSAR Comb. Sci.
– year: 2002
– volume: 10
  start-page: 1000
  issue: 5
  year: 1999
  end-page: 1017
  article-title: Input space versus feature space in kernel‐based methods
  publication-title: IEEE Trans. Neural Netw.
– volume: 5
  start-page: 271
  issue: 3
  year: 2009
  end-page: 278
  article-title: Structure‐activity relationships for serotonin transporter and dopamine receptor selectivity
  publication-title: Med. Chem.
– year: 1995
– volume: 96
  start-page: 132
  issue: 2
  year: 2009
  end-page: 143
  article-title: Moving window kernel pca for adaptive monitoring of nonlinear processes
  publication-title: Chemom. Intell. Lab. Syst.
– volume: 581
  start-page: 333
  issue: 2
  year: 2007
  end-page: 342
  article-title: Structure‐activity relationship study of oxindole‐based inhibitors of cyclin‐dependent kinases based on least‐squares support vector machines
  publication-title: Anal. Chim. Acta
– volume: 30
  start-page: 1899
  issue: 12
  year: 2009
  end-page: 1909
  article-title: Prediction of human cytochrome p450 2b6‐substrate interactions using hierarchical support vector regression approach
  publication-title: J. Comput. Chem.
– volume: 38
  start-page: 1640
  issue: 8
  year: 2009
  end-page: 1658
  article-title: Variable selection for support vector machines
  publication-title: Commun. Stat. Simul. Comput.
– volume: 62
  start-page: 658
  issue: 4
  year: 2006
  end-page: 673
  article-title: Structure‐based classification of active and inactive estrogenic compounds by decision tree, lvq and knn methods
  publication-title: Chemosphere
– ident: e_1_2_9_24_2
  doi: 10.1162/15324430152748218
– ident: e_1_2_9_15_2
  doi: 10.1023/A:1012487302797
– ident: e_1_2_9_6_2
  doi: 10.1016/j.aca.2006.08.031
– ident: e_1_2_9_32_2
  doi: 10.1002/qsar.200390007
– ident: e_1_2_9_19_2
  doi: 10.1109/72.788641
– ident: e_1_2_9_23_2
  doi: 10.1007/978-1-4757-2440-0
– ident: e_1_2_9_4_2
  doi: 10.1016/j.chemosphere.2005.04.115
– ident: e_1_2_9_16_2
  doi: 10.1021/ci049869h
– ident: e_1_2_9_8_2
  doi: 10.1016/j.ejmech.2008.03.004
– ident: e_1_2_9_29_2
  doi: 10.1021/ci050041k
– ident: e_1_2_9_17_2
  doi: 10.1016/j.chemolab.2009.01.002
– ident: e_1_2_9_14_2
  doi: 10.1080/03610910903072391
– volume-title: Learning with Kernels
  year: 2002
  ident: e_1_2_9_22_2
– ident: e_1_2_9_18_2
  doi: 10.1007/s521-001-8051-z
– ident: e_1_2_9_5_2
  doi: 10.1021/ci700356w
– ident: e_1_2_9_9_2
  doi: 10.1002/qsar.200810166
– ident: e_1_2_9_2_2
  doi: 10.1007/s10822‐008‐9225‐4
– ident: e_1_2_9_3_2
  doi: 10.2174/157340609788185927
– ident: e_1_2_9_13_2
  doi: 10.3390/ijms10073237
– ident: e_1_2_9_28_2
  doi: 10.1021/jm060604z
– ident: e_1_2_9_27_2
  doi: 10.1021/jm030999b
– ident: e_1_2_9_7_2
  doi: 10.1109/IGARSS.2006.48
– ident: e_1_2_9_12_2
  doi: 10.1124/dmd.108.023507
– ident: e_1_2_9_30_2
  doi: 10.1021/ci049971e
– ident: e_1_2_9_26_2
  doi: 10.1021/ci600343x
– ident: e_1_2_9_25_2
  doi: 10.1137/1.9780898719697
– ident: e_1_2_9_10_2
  doi: 10.1016/j.ejmech.2009.04.050
– volume-title: An Introduction to Support Vector Machines
  year: 2000
  ident: e_1_2_9_21_2
– ident: e_1_2_9_31_2
  doi: 10.1002/qsar.200610151
– ident: e_1_2_9_20_2
  doi: 10.1016/S0169‐7439(97)00010‐5
– ident: e_1_2_9_11_2
  doi: 10.1002/jcc.21190
SSID ssj0009934
Score 2.0221252
Snippet In this paper, a two‐step nonlinear classification algorithm is proposed to model the structure–activity relationship (SAR) between bioactivities and molecular...
In this paper, a two-step nonlinear classification algorithm is proposed to model the structure-activity relationship (SAR) between bioactivities and molecular...
SourceID proquest
pascalfrancis
crossref
wiley
istex
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 92
SubjectTerms Algorithms
Biochemistry
Chemistry
Classification
Comparative analysis
de-noising
Exact sciences and technology
General and physical chemistry
General. Nomenclature, chemical documentation, computer chemistry
kernel methods
kernel principal component analysis (KPCA)
Kernels
Mathematical models
Molecular structure
Nonlinearity
Performance evaluation
Principal components analysis
structure-activity relationship (SAR)
Support vector machines
support vector machines (SVMs)
Synthetic aperture radar
Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry
Title Combination of kernel PCA and linear support vector machine for modeling a nonlinear relationship between bioactivity and molecular descriptors
URI https://api.istex.fr/ark:/67375/WNG-0HKV7CV3-X/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcem.1364
https://www.proquest.com/docview/856034647
https://www.proquest.com/docview/901670625
Volume 25
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZQe4ALlJdYCpWREJzSpvEzxypqWYGoEKJlJQ6Wk9iiWvahZLeq-BP9y52xk5RFICFOWSmTZNYe298kn78h5LXXNcSKs4mouEyQd5FomfsktXkunAIQUQe2xakcn_H3EzHpWJW4FybqQwwv3HBkhPkaB7gt24Nb0dDKzZCjhVKgeEA89PlWOQqWXR4BpExyyMJ63dk0O-gv3FiJtrFRr5AZaVtoHB-rWmzAzl_Ba1h9Th6Qb73fkXQy3V-vyv3q52-Sjv_3x3bI_Q6U0qMYRQ_JHTd_RO4WfS24x-Qapg1IoUMv0oWnU9fAU-in4ojaeU3xmbah7XqJaJ5ehi8BdBZ4mo56_I0Fd2CVpJbOo49g3_REvO8XS9oRxmh5scC9FljSItx71tfvpbWLU9yiaZ-Qs5PjL8U46Uo5JBUAMJ4ALvGOMe8sq2zpMyactpr7kjFAQF4c1pAZAZLwea0VL1H0nmW6FsrlXjip2VOyBe65Z4TqzGepzZzKwZKp1CrvuYBEi2WHEuxH5G3frabqdM6x3MYPExWaMwMNbLCBR-TVYLmM2h5_sHkTImMwsM0UuXBKmK-n70w6_nCuinNmJiOytxE6wwWAiZSUKfi128eS6eaJ1mgAnIxLrkaEDmehb_GrjZ27xbo1OW4USSFNBVdC2PzVV1Mcf8Tj83813CX34ityZOe8IFurZu1eAsZalXthNN0AOpIkFg
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwED6N7WG88ButGwwjIXjKlsVOnIinKWwUtlUIbaMPSJaT2GLq-kNJixD_BP8yd3aTUQQS4qmVemku9tn-zvn8HcALm1YYK0YHcSmSgHgXQZpkNgh1lsVGIoioHNtikPQvxPthPFyD1-1ZGK8P0W240chw8zUNcNqQ3r9RDS3NmEha4hZsCMQZlHm9-XijHYULr_AQMgkyzMNa5dkw2m-vXFmLNqhZvxE3UjfYPNbXtVgBnr_CV7f-HN-Fz63nnnYy2lvMi73y-2-ijv_5aPfgzhKXskMfSPdhzUwewGbeloN7CD9w5sAs2nUkm1o2MjXehn3ID5meVIxuqmvWLGYE6NlX9zKAjR1V0zBL36nmDi6UTLOJdxLt65aL9-VqxpacMVZcTem4BVW1cP89bkv4ssr4WW5aN4_g4vjoPO8Hy2oOQYkYTAQITazh3BrNS13YiMcm1amwBecIgmx8UGFyhGDCZlUqRUG69zxKq1iazMYmSfljWEf3zBawNLJRqCMjM7TkMtTSWhFjrsWjgwTte_Cq7VdVLqXOqeLGtfIizZHCBlbUwD143lnOvLzHH2xeutDoDHQ9IjqcjNWnwVsV9k8uZX7J1bAHuyux012AsEgmSYh-7bTBpJZTRaNSxJxcJEL2gHW_Yt_Sixs9MdNFozI6KxJipoquuLj5q68qPzqjz-1_NXwGm_3zs1N1-m5wsgO3_Y45kXWewPq8XpinCLnmxa4bWj8BZQ0oNQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3bbtQwELWglYAX7hVLoRgJwVPaNL4lj1XoslBYVYiWlXiwnMQW1bIXJbsI8RP8MjN2krIIJMTTRtpJMrHH9pnk-Awhz1xaQaxYE4mSywh5F1EqMxfFJsuEVQAiKs-2GMvRGX8zEZOWVYl7YYI-RP_CDUeGn69xgC8rd3ApGlraGXK0-FWyzSUACQRE7y-lo2Dd5QFByiiDNKwTno2Tg-7MjaVoG1v1G1IjTQOt40JZiw3c-St69cvP8Bb51DkeWCfT_fWq2C-__6bp-H9PdpvcbFEpPQphdIdcsfO75HreFYO7R37AvAE5tO9GunB0amu4Cz3Nj6iZVxTvaWrarJcI5-lX_ymAzjxR01KHx1hxB5ZJaug8-Aj2dcfE-3yxpC1jjBYXC9xsgTUt_LVnXQFfWtkwxy3q5j45Gx5_yEdRW8shKgGB8QiAibOMOWtYaQqXMGFTk3JXMAYQyInDClIjgBIuq1LFC1S9Z0laCWUzJ6xM2Q7ZAvfsA0LTxCWxSazKwJKp2CjnuIBMiyWHEuwH5EXXrbpshc6x3sYXHSSaEw0NrLGBB-Rpb7kM4h5_sHnuI6M3MPUUyXBK6I_jVzoenZyr_JzpyYDsbYROfwKAIiVlDH7tdrGk24mi0SkgTsYlVwNC-3-hb_GzjZnbxbrRGe4UiSFPBVd82PzVV50fv8Pfh_9q-IRcO3051G9fj092yY3wuhyZOo_I1qpe28eAt1bFnh9YPwHXOibk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Combination+of+kernel+PCA+and+linear+support+vector+machine+for+modeling+a+nonlinear+relationship+between+bioactivity+and+molecular+descriptors&rft.jtitle=Journal+of+chemometrics&rft.au=Fu%2C+Guang-Hui&rft.au=Cao%2C+Dong-Sheng&rft.au=Xu%2C+Qing-Song&rft.au=Li%2C+Hong-Dong&rft.date=2011-02-01&rft.issn=1099-128X&rft.volume=25&rft.issue=2&rft.spage=92&rft.epage=99&rft_id=info:doi/10.1002%2Fcem.1364&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0886-9383&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0886-9383&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0886-9383&client=summon