Ce and P123 modified layered double hydroxide (LDH) composite for the synthesis of polypropylene glycol monomethyl ether

The application of recyclable heterogeneous catalysts in the production of polypropylene glycol monomethyl ether (MPPG) is of great significance to the green chemical industry. In this study, the CeO 2 /MgAl-LDH(P123) composite was prepared using a nucleation/crystallization isolation method and aqu...

Full description

Saved in:
Bibliographic Details
Published inRSC advances Vol. 12; no. 36; pp. 23183 - 23192
Main Authors Cao, Xiaoyan, Kong, Lingxin, Gu, Zhenggui, Xu, Xiao
Format Journal Article
LanguageEnglish
Published England Royal Society of Chemistry 16.08.2022
The Royal Society of Chemistry
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The application of recyclable heterogeneous catalysts in the production of polypropylene glycol monomethyl ether (MPPG) is of great significance to the green chemical industry. In this study, the CeO 2 /MgAl-LDH(P123) composite was prepared using a nucleation/crystallization isolation method and aqueous reconstruction method, and CeO 2 /MgAl-LDO(P123) solid base catalyst was prepared by calcination with it as precursor. Thereafter, the morphology, crystal structure, functional group, and thermal stability of the catalyst were characterized using scanning electron microscopy, X-ray diffraction, Fourier-transform infrared spectroscopy, Brunauer-Emmett-Teller analysis, temperature-programmed desorption of carbon dioxide, thermogravimetry, and X-ray photoelectron spectroscopy. The results showed that the catalyst had a larger specific surface area, pore size and pore volume and more basic sites, providing sufficient catalytic activity for the polymerization process. The experimental results for the fabrication of MPPG using CeO 2 /MgAl-LDO(P123) as catalyst and methanol and propylene oxide as reaction raw materials showed that the conversion of propylene oxide reached 92.04% and the molecular weight of MPPG was 405 under the optimal reaction conditions. Moreover, the conversion of propylene oxide was maintained above 83.69% after the catalyst was reused six times. This study offers a new prospect for the green synthesis of MPPG products. The application of recyclable heterogeneous catalysts in the production of polypropylene glycol monomethyl ether (MPPG) is of great significance to the green chemical industry.
AbstractList The application of recyclable heterogeneous catalysts in the production of polypropylene glycol monomethyl ether (MPPG) is of great significance to the green chemical industry. In this study, the CeO /MgAl-LDH(P123) composite was prepared using a nucleation/crystallization isolation method and aqueous reconstruction method, and CeO /MgAl-LDO(P123) solid base catalyst was prepared by calcination with it as precursor. Thereafter, the morphology, crystal structure, functional group, and thermal stability of the catalyst were characterized using scanning electron microscopy, X-ray diffraction, Fourier-transform infrared spectroscopy, Brunauer-Emmett-Teller analysis, temperature-programmed desorption of carbon dioxide, thermogravimetry, and X-ray photoelectron spectroscopy. The results showed that the catalyst had a larger specific surface area, pore size and pore volume and more basic sites, providing sufficient catalytic activity for the polymerization process. The experimental results for the fabrication of MPPG using CeO /MgAl-LDO(P123) as catalyst and methanol and propylene oxide as reaction raw materials showed that the conversion of propylene oxide reached 92.04% and the molecular weight of MPPG was 405 under the optimal reaction conditions. Moreover, the conversion of propylene oxide was maintained above 83.69% after the catalyst was reused six times. This study offers a new prospect for the green synthesis of MPPG products.
The application of recyclable heterogeneous catalysts in the production of polypropylene glycol monomethyl ether (MPPG) is of great significance to the green chemical industry. In this study, the CeO2/MgAl-LDH(P123) composite was prepared using a nucleation/crystallization isolation method and aqueous reconstruction method, and CeO2/MgAl-LDO(P123) solid base catalyst was prepared by calcination with it as precursor. Thereafter, the morphology, crystal structure, functional group, and thermal stability of the catalyst were characterized using scanning electron microscopy, X-ray diffraction, Fourier-transform infrared spectroscopy, Brunauer–Emmett–Teller analysis, temperature-programmed desorption of carbon dioxide, thermogravimetry, and X-ray photoelectron spectroscopy. The results showed that the catalyst had a larger specific surface area, pore size and pore volume and more basic sites, providing sufficient catalytic activity for the polymerization process. The experimental results for the fabrication of MPPG using CeO2/MgAl-LDO(P123) as catalyst and methanol and propylene oxide as reaction raw materials showed that the conversion of propylene oxide reached 92.04% and the molecular weight of MPPG was 405 under the optimal reaction conditions. Moreover, the conversion of propylene oxide was maintained above 83.69% after the catalyst was reused six times. This study offers a new prospect for the green synthesis of MPPG products.
The application of recyclable heterogeneous catalysts in the production of polypropylene glycol monomethyl ether (MPPG) is of great significance to the green chemical industry. In this study, the CeO 2 /MgAl-LDH(P123) composite was prepared using a nucleation/crystallization isolation method and aqueous reconstruction method, and CeO 2 /MgAl-LDO(P123) solid base catalyst was prepared by calcination with it as precursor. Thereafter, the morphology, crystal structure, functional group, and thermal stability of the catalyst were characterized using scanning electron microscopy, X-ray diffraction, Fourier-transform infrared spectroscopy, Brunauer-Emmett-Teller analysis, temperature-programmed desorption of carbon dioxide, thermogravimetry, and X-ray photoelectron spectroscopy. The results showed that the catalyst had a larger specific surface area, pore size and pore volume and more basic sites, providing sufficient catalytic activity for the polymerization process. The experimental results for the fabrication of MPPG using CeO 2 /MgAl-LDO(P123) as catalyst and methanol and propylene oxide as reaction raw materials showed that the conversion of propylene oxide reached 92.04% and the molecular weight of MPPG was 405 under the optimal reaction conditions. Moreover, the conversion of propylene oxide was maintained above 83.69% after the catalyst was reused six times. This study offers a new prospect for the green synthesis of MPPG products. The application of recyclable heterogeneous catalysts in the production of polypropylene glycol monomethyl ether (MPPG) is of great significance to the green chemical industry.
The application of recyclable heterogeneous catalysts in the production of polypropylene glycol monomethyl ether (MPPG) is of great significance to the green chemical industry. In this study, the CeO 2 /MgAl-LDH(P123) composite was prepared using a nucleation/crystallization isolation method and aqueous reconstruction method, and CeO 2 /MgAl-LDO(P123) solid base catalyst was prepared by calcination with it as precursor. Thereafter, the morphology, crystal structure, functional group, and thermal stability of the catalyst were characterized using scanning electron microscopy, X-ray diffraction, Fourier-transform infrared spectroscopy, Brunauer–Emmett–Teller analysis, temperature-programmed desorption of carbon dioxide, thermogravimetry, and X-ray photoelectron spectroscopy. The results showed that the catalyst had a larger specific surface area, pore size and pore volume and more basic sites, providing sufficient catalytic activity for the polymerization process. The experimental results for the fabrication of MPPG using CeO 2 /MgAl-LDO(P123) as catalyst and methanol and propylene oxide as reaction raw materials showed that the conversion of propylene oxide reached 92.04% and the molecular weight of MPPG was 405 under the optimal reaction conditions. Moreover, the conversion of propylene oxide was maintained above 83.69% after the catalyst was reused six times. This study offers a new prospect for the green synthesis of MPPG products.
The application of recyclable heterogeneous catalysts in the production of polypropylene glycol monomethyl ether (MPPG) is of great significance to the green chemical industry. In this study, the CeO₂/MgAl-LDH(P123) composite was prepared using a nucleation/crystallization isolation method and aqueous reconstruction method, and CeO₂/MgAl-LDO(P123) solid base catalyst was prepared by calcination with it as precursor. Thereafter, the morphology, crystal structure, functional group, and thermal stability of the catalyst were characterized using scanning electron microscopy, X-ray diffraction, Fourier-transform infrared spectroscopy, Brunauer–Emmett–Teller analysis, temperature-programmed desorption of carbon dioxide, thermogravimetry, and X-ray photoelectron spectroscopy. The results showed that the catalyst had a larger specific surface area, pore size and pore volume and more basic sites, providing sufficient catalytic activity for the polymerization process. The experimental results for the fabrication of MPPG using CeO₂/MgAl-LDO(P123) as catalyst and methanol and propylene oxide as reaction raw materials showed that the conversion of propylene oxide reached 92.04% and the molecular weight of MPPG was 405 under the optimal reaction conditions. Moreover, the conversion of propylene oxide was maintained above 83.69% after the catalyst was reused six times. This study offers a new prospect for the green synthesis of MPPG products.
The application of recyclable heterogeneous catalysts in the production of polypropylene glycol monomethyl ether (MPPG) is of great significance to the green chemical industry. In this study, the CeO2/MgAl-LDH(P123) composite was prepared using a nucleation/crystallization isolation method and aqueous reconstruction method, and CeO2/MgAl-LDO(P123) solid base catalyst was prepared by calcination with it as precursor. Thereafter, the morphology, crystal structure, functional group, and thermal stability of the catalyst were characterized using scanning electron microscopy, X-ray diffraction, Fourier-transform infrared spectroscopy, Brunauer-Emmett-Teller analysis, temperature-programmed desorption of carbon dioxide, thermogravimetry, and X-ray photoelectron spectroscopy. The results showed that the catalyst had a larger specific surface area, pore size and pore volume and more basic sites, providing sufficient catalytic activity for the polymerization process. The experimental results for the fabrication of MPPG using CeO2/MgAl-LDO(P123) as catalyst and methanol and propylene oxide as reaction raw materials showed that the conversion of propylene oxide reached 92.04% and the molecular weight of MPPG was 405 under the optimal reaction conditions. Moreover, the conversion of propylene oxide was maintained above 83.69% after the catalyst was reused six times. This study offers a new prospect for the green synthesis of MPPG products.The application of recyclable heterogeneous catalysts in the production of polypropylene glycol monomethyl ether (MPPG) is of great significance to the green chemical industry. In this study, the CeO2/MgAl-LDH(P123) composite was prepared using a nucleation/crystallization isolation method and aqueous reconstruction method, and CeO2/MgAl-LDO(P123) solid base catalyst was prepared by calcination with it as precursor. Thereafter, the morphology, crystal structure, functional group, and thermal stability of the catalyst were characterized using scanning electron microscopy, X-ray diffraction, Fourier-transform infrared spectroscopy, Brunauer-Emmett-Teller analysis, temperature-programmed desorption of carbon dioxide, thermogravimetry, and X-ray photoelectron spectroscopy. The results showed that the catalyst had a larger specific surface area, pore size and pore volume and more basic sites, providing sufficient catalytic activity for the polymerization process. The experimental results for the fabrication of MPPG using CeO2/MgAl-LDO(P123) as catalyst and methanol and propylene oxide as reaction raw materials showed that the conversion of propylene oxide reached 92.04% and the molecular weight of MPPG was 405 under the optimal reaction conditions. Moreover, the conversion of propylene oxide was maintained above 83.69% after the catalyst was reused six times. This study offers a new prospect for the green synthesis of MPPG products.
Author Cao, Xiaoyan
Xu, Xiao
Gu, Zhenggui
Kong, Lingxin
AuthorAffiliation School of Chemistry and Materials Science
Nanjing Normal Univesity
Jiangsu Provincial Key Laboratory of Materials Cycling and Pollution Control
AuthorAffiliation_xml – name: School of Chemistry and Materials Science
– name: Nanjing Normal Univesity
– name: Jiangsu Provincial Key Laboratory of Materials Cycling and Pollution Control
Author_xml – sequence: 1
  givenname: Xiaoyan
  surname: Cao
  fullname: Cao, Xiaoyan
– sequence: 2
  givenname: Lingxin
  surname: Kong
  fullname: Kong, Lingxin
– sequence: 3
  givenname: Zhenggui
  surname: Gu
  fullname: Gu, Zhenggui
– sequence: 4
  givenname: Xiao
  surname: Xu
  fullname: Xu, Xiao
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36090400$$D View this record in MEDLINE/PubMed
BookMark eNqNks9rFTEQx4NUbK29eFcCXqrwND_2Vy5Cea1WeKCInkM2mfSlZJM12ZXuf2_qa2stHswhM5DPfPlmZp6ivRADIPSckreUcPHOsKQIb2kDj9ABI1WzYqQRe_fyfXSU8yUpp6kpa-gTtM8bIkhFyAG6WgNWweAvlHE8ROOsA4O9WiCVaOLce8DbxaR45Qzg483p-Wus4zDG7CbANiY8bQHnJZSQXcbR4jH6ZUxxXDwEwBd-0dEX7RAHmLaLx-WG9Aw9tspnOLqJh-j7h7Nv6_PV5vPHT-uTzUpzQaeVNdYYDcQ2qvhvLe96K4ygtOJtr5XgtifADVeU00orbkVlqOlrqFnHOq75IXq_0x3nfoAiFaakvByTG1RaZFRO_v0S3FZexJ9S8I7UFS0CxzcCKf6YIU9ycFmD9ypAnLNkLe1K_0Vb_Q9akYYwzgr66gF6GecUSicKReoyoJp3hXp53_yd69v5FYDsAJ1izgms1G5Sk4vXf3FeUiKvt0Sesq8nv7fkrJS8eVByq_pP-MUOTlnfcX9Wjv8CoPDHMg
CitedBy_id crossref_primary_10_1039_D4NR00111G
crossref_primary_10_1016_j_hazl_2024_100103
crossref_primary_10_1002_advs_202307094
crossref_primary_10_1016_j_heliyon_2025_e42072
crossref_primary_10_1016_j_jclepro_2023_140191
crossref_primary_10_1038_s41598_024_75724_3
crossref_primary_10_1016_j_surfcoat_2024_130943
crossref_primary_10_1021_acsaem_4c01984
Cites_doi 10.1016/j.apcata.2007.06.031
10.1016/j.catcom.2011.01.027
10.1039/c1nr10628g
10.1007/s10562-020-03099-x
10.1007/s11144-020-01869-7
10.1016/j.clay.2006.06.010
10.1039/C5DT01479D
10.1016/j.jssc.2018.10.018
10.1016/j.jssc.2010.08.027
10.1016/j.jpcs.2009.12.018
10.1039/D1RA00227A
10.1016/S1381-1169(96)00371-8
10.1039/C7CS00318H
10.1002/sia.740180905
10.1039/C7DT03861E
10.1016/j.apcata.2019.117215
10.1081/CR-120001809
10.1039/C5CS00090D
10.1016/j.molcata.2004.12.025
10.1039/C6TA01668E
10.1016/j.ijhydene.2016.08.062
10.5650/jos.ess18177
10.1016/S1872-2067(14)60171-6
10.1039/C9CY01323G
10.1080/01614949608006464
10.1021/cr200434v
10.1007/s10934-019-00825-8
10.1016/j.jcat.2017.08.008
10.1016/j.jssc.2018.09.023
10.1016/0920-5861(91)80068-K
10.1039/C4CS00160E
10.1021/ie901114d
10.1002/pola.1991.080290502
10.1016/j.jcat.2019.02.028
10.1016/j.micromeso.2004.09.011
10.1016/j.cej.2019.03.048
ContentType Journal Article
Copyright This journal is © The Royal Society of Chemistry.
Copyright Royal Society of Chemistry 2022
This journal is © The Royal Society of Chemistry 2022 The Royal Society of Chemistry
Copyright_xml – notice: This journal is © The Royal Society of Chemistry.
– notice: Copyright Royal Society of Chemistry 2022
– notice: This journal is © The Royal Society of Chemistry 2022 The Royal Society of Chemistry
DBID AAYXX
CITATION
NPM
7SR
8BQ
8FD
JG9
7X8
7S9
L.6
5PM
DOI 10.1039/d2ra03716e
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList PubMed
Materials Research Database

CrossRef

AGRICOLA
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 2046-2069
EndPage 23192
ExternalDocumentID PMC9380541
36090400
10_1039_D2RA03716E
d2ra03716e
Genre Journal Article
GrantInformation_xml – fundername: ;
  grantid: J418013-3
– fundername: ;
  grantid: 21973045
GroupedDBID 0-7
0R
AAGNR
AAIWI
ABGFH
ACGFS
ADBBV
ADMRA
AENEX
AFVBQ
AGRSR
AGSTE
AGSWI
ALMA_UNASSIGNED_HOLDINGS
ANUXI
ASKNT
AUDPV
BCNDV
BLAPV
BSQNT
C6K
EBS
EE0
EF-
GROUPED_DOAJ
H13
HZ
H~N
J3I
JG
O9-
OK1
R7C
R7G
RCNCU
RPM
RPMJG
RRC
RSCEA
RVUXY
SLH
SMJ
ZCN
0R~
53G
AAFWJ
AAHBH
AAJAE
AARTK
AAWGC
AAXHV
AAYXX
ABEMK
ABIQK
ABPDG
ABXOH
AEFDR
AESAV
AFLYV
AFPKN
AGEGJ
AHGCF
AKBGW
APEMP
CITATION
HZ~
M~E
PGMZT
NPM
7SR
8BQ
8FD
JG9
7X8
7S9
L.6
5PM
ID FETCH-LOGICAL-c391t-fdfddce0f6a0067f38bf9d911437bca93fb0e3d3a1314ca3f94d1db5e528283c3
ISSN 2046-2069
IngestDate Thu Aug 21 14:07:16 EDT 2025
Thu Jul 10 22:43:50 EDT 2025
Fri Jul 11 07:41:16 EDT 2025
Mon Jun 30 06:53:39 EDT 2025
Mon Jul 21 06:04:31 EDT 2025
Tue Jul 01 04:20:18 EDT 2025
Thu Apr 24 23:05:55 EDT 2025
Wed Aug 24 10:45:25 EDT 2022
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 36
Language English
License This journal is © The Royal Society of Chemistry.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c391t-fdfddce0f6a0067f38bf9d911437bca93fb0e3d3a1314ca3f94d1db5e528283c3
Notes Electronic supplementary information (ESI) available. See
https://doi.org/10.1039/d2ra03716e
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-4625-2281
0000-0003-1519-4904
OpenAccessLink http://dx.doi.org/10.1039/d2ra03716e
PMID 36090400
PQID 2705360538
PQPubID 2047525
PageCount 1
ParticipantIDs proquest_miscellaneous_2714060232
pubmed_primary_36090400
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9380541
crossref_citationtrail_10_1039_D2RA03716E
crossref_primary_10_1039_D2RA03716E
rsc_primary_d2ra03716e
proquest_miscellaneous_2718371974
proquest_journals_2705360538
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-08-16
PublicationDateYYYYMMDD 2022-08-16
PublicationDate_xml – month: 08
  year: 2022
  text: 2022-08-16
  day: 16
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Cambridge
PublicationTitle RSC advances
PublicationTitleAlternate RSC Adv
PublicationYear 2022
Publisher Royal Society of Chemistry
The Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
– name: The Royal Society of Chemistry
References Manríquez (D2RA03716E/cit25/1) 2020; 131
Kwok (D2RA03716E/cit30/1) 2018; 47
Kuśtrowski (D2RA03716E/cit13/1) 2005; 78
Liu (D2RA03716E/cit35/1) 2019; 369
Wang (D2RA03716E/cit41/1) 2021; 11
Jiang (D2RA03716E/cit20/1) 2019; 9
Nayak (D2RA03716E/cit21/1) 2016; 41
Ingo (D2RA03716E/cit37/1) 2010; 18
Hu (D2RA03716E/cit38/1) 2011; 12
Tran (D2RA03716E/cit40/1) 2019; 372
Gu (D2RA03716E/cit1/1) 2009
Dan (D2RA03716E/cit31/1) 2018; 23
Nguyen (D2RA03716E/cit32/1) 2017; 23
Sels (D2RA03716E/cit9/1) 2001; 43
Pinthong (D2RA03716E/cit14/1) 2019; 68
Al-Aani (D2RA03716E/cit23/1) 2019; 586
Tan (D2RA03716E/cit16/1) 2014; 35
Wang (D2RA03716E/cit17/1) 2010; 183
Zhang (D2RA03716E/cit36/1) 2005; 231
Meis (D2RA03716E/cit29/1) 2010; 49
Martin (D2RA03716E/cit18/1) 1997; 118
Del Hoyo Martínez (D2RA03716E/cit12/1) 2007; 36
Sun (D2RA03716E/cit15/1) 2015; 44
Hong (D2RA03716E/cit28/1) 2011; 3
Feng (D2RA03716E/cit10/1) 2015; 46
Cabrera-Munguia (D2RA03716E/cit22/1) 2020; 150
Bukhtiyarova (D2RA03716E/cit7/1) 2019; 269
Faour (D2RA03716E/cit24/1) 2010; 71
Cavani (D2RA03716E/cit8/1) 1991; 11
Biedron (D2RA03716E/cit39/1) 1991; 29
Mohapatra (D2RA03716E/cit11/1) 2016; 4
Fan (D2RA03716E/cit4/1) 2014; 43
Trovarelli (D2RA03716E/cit19/1) 1996; 38
Wu (D2RA03716E/cit34/1) 2007; 329
Jing (D2RA03716E/cit42/1)
Bing (D2RA03716E/cit2/1) 2019; 269
Wang (D2RA03716E/cit3/1) 2012; 112
Cosano (D2RA03716E/cit26/1) 2020; 27
Duan (D2RA03716E/cit6/1) 2006
Yu (D2RA03716E/cit5/1) 2017; 46
Marquez (D2RA03716E/cit33/1) 2017; 354
Wang (D2RA03716E/cit27/1) 2015; 44
References_xml – doi: Jing Rong Dong Sun
– issn: 2009
  end-page: 2
  doi: Gu Sheng Huang Chen
– volume: 329
  start-page: 106
  year: 2007
  ident: D2RA03716E/cit34/1
  publication-title: Appl. Catal., A
  doi: 10.1016/j.apcata.2007.06.031
– volume: 12
  start-page: 794
  year: 2011
  ident: D2RA03716E/cit38/1
  publication-title: Catal. Commun.
  doi: 10.1016/j.catcom.2011.01.027
– volume: 3
  start-page: 4655
  year: 2011
  ident: D2RA03716E/cit28/1
  publication-title: Nanoscale
  doi: 10.1039/c1nr10628g
– volume: 150
  start-page: 1957
  year: 2020
  ident: D2RA03716E/cit22/1
  publication-title: Catal. Lett.
  doi: 10.1007/s10562-020-03099-x
– volume: 131
  start-page: 1
  year: 2020
  ident: D2RA03716E/cit25/1
  publication-title: React. Kinet., Mech. Catal.
  doi: 10.1007/s11144-020-01869-7
– volume: 46
  start-page: 5291
  year: 2015
  ident: D2RA03716E/cit10/1
  publication-title: ChemInform
– volume: 36
  start-page: 103
  year: 2007
  ident: D2RA03716E/cit12/1
  publication-title: Appl. Clay Sci.
  doi: 10.1016/j.clay.2006.06.010
– volume: 44
  start-page: 11223
  year: 2015
  ident: D2RA03716E/cit27/1
  publication-title: Dalton Trans.
  doi: 10.1039/C5DT01479D
– start-page: 193
  year: 2006
  ident: D2RA03716E/cit6/1
  publication-title: Struct. Bonding
– volume: 269
  start-page: 494
  year: 2019
  ident: D2RA03716E/cit7/1
  publication-title: J. Solid State Chem.
  doi: 10.1016/j.jssc.2018.10.018
– volume: 183
  start-page: 2511
  year: 2010
  ident: D2RA03716E/cit17/1
  publication-title: J. Solid State Chem.
  doi: 10.1016/j.jssc.2010.08.027
– volume: 71
  start-page: 487
  year: 2010
  ident: D2RA03716E/cit24/1
  publication-title: J. Phys. Chem. Solids
  doi: 10.1016/j.jpcs.2009.12.018
– volume: 11
  start-page: 8375
  year: 2021
  ident: D2RA03716E/cit41/1
  publication-title: RSC Adv.
  doi: 10.1039/D1RA00227A
– volume: 118
  start-page: 113
  year: 1997
  ident: D2RA03716E/cit18/1
  publication-title: J. Mol. Catal. A: Chem.
  doi: 10.1016/S1381-1169(96)00371-8
– start-page: 2
  year: 2009
  ident: D2RA03716E/cit1/1
– volume: 46
  start-page: 5950
  year: 2017
  ident: D2RA03716E/cit5/1
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C7CS00318H
– volume: 18
  start-page: 661
  year: 2010
  ident: D2RA03716E/cit37/1
  publication-title: Surf. Interface Anal.
  doi: 10.1002/sia.740180905
– volume: 47
  start-page: 143
  year: 2018
  ident: D2RA03716E/cit30/1
  publication-title: Dalton Trans.
  doi: 10.1039/C7DT03861E
– volume: 23
  start-page: 137
  year: 2018
  ident: D2RA03716E/cit31/1
  publication-title: Chem.-Didact.-Ecol.-Metrol.
– volume: 586
  start-page: 117215
  year: 2019
  ident: D2RA03716E/cit23/1
  publication-title: Appl. Catal., A
  doi: 10.1016/j.apcata.2019.117215
– volume: 43
  start-page: 443
  year: 2001
  ident: D2RA03716E/cit9/1
  publication-title: Catal. Rev.
  doi: 10.1081/CR-120001809
– volume: 44
  start-page: 5092
  year: 2015
  ident: D2RA03716E/cit15/1
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C5CS00090D
– volume: 231
  start-page: 83
  year: 2005
  ident: D2RA03716E/cit36/1
  publication-title: J. Mol. Catal. A: Chem.
  doi: 10.1016/j.molcata.2004.12.025
– volume: 4
  start-page: 10744
  year: 2016
  ident: D2RA03716E/cit11/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C6TA01668E
– volume: 41
  start-page: 21166
  year: 2016
  ident: D2RA03716E/cit21/1
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2016.08.062
– volume: 68
  start-page: 95
  year: 2019
  ident: D2RA03716E/cit14/1
  publication-title: J. Oleo Sci.
  doi: 10.5650/jos.ess18177
– volume: 35
  start-page: 1955
  year: 2014
  ident: D2RA03716E/cit16/1
  publication-title: Chin. J. Catal.
  doi: 10.1016/S1872-2067(14)60171-6
– volume: 9
  start-page: 6335
  year: 2019
  ident: D2RA03716E/cit20/1
  publication-title: Catal. Sci. Technol.
  doi: 10.1039/C9CY01323G
– volume: 38
  start-page: 439
  year: 1996
  ident: D2RA03716E/cit19/1
  publication-title: Catal. Rev.
  doi: 10.1080/01614949608006464
– volume: 112
  start-page: 4124
  year: 2012
  ident: D2RA03716E/cit3/1
  publication-title: Chem. Rev.
  doi: 10.1021/cr200434v
– volume: 27
  start-page: 441
  year: 2020
  ident: D2RA03716E/cit26/1
  publication-title: J. Porous Mater.
  doi: 10.1007/s10934-019-00825-8
– volume: 354
  start-page: 92
  year: 2017
  ident: D2RA03716E/cit33/1
  publication-title: J. Catal.
  doi: 10.1016/j.jcat.2017.08.008
– volume: 269
  start-page: 184
  year: 2019
  ident: D2RA03716E/cit2/1
  publication-title: J. Solid State Chem.
  doi: 10.1016/j.jssc.2018.09.023
– volume: 11
  start-page: 173
  year: 1991
  ident: D2RA03716E/cit8/1
  publication-title: Catal. Today
  doi: 10.1016/0920-5861(91)80068-K
– volume: 23
  start-page: 1
  year: 2017
  ident: D2RA03716E/cit32/1
  publication-title: J. Porous Mater.
– ident: D2RA03716E/cit42/1
– volume: 43
  start-page: 7040
  year: 2014
  ident: D2RA03716E/cit4/1
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C4CS00160E
– volume: 49
  start-page: 1229
  year: 2010
  ident: D2RA03716E/cit29/1
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie901114d
– volume: 29
  start-page: 619
  year: 1991
  ident: D2RA03716E/cit39/1
  publication-title: J. Polym. Sci., Part A: Polym. Chem.
  doi: 10.1002/pola.1991.080290502
– volume: 372
  start-page: 86
  year: 2019
  ident: D2RA03716E/cit40/1
  publication-title: J. Catal.
  doi: 10.1016/j.jcat.2019.02.028
– volume: 78
  start-page: 11
  year: 2005
  ident: D2RA03716E/cit13/1
  publication-title: Microporous Mesoporous Mater.
  doi: 10.1016/j.micromeso.2004.09.011
– volume: 369
  start-page: 205
  year: 2019
  ident: D2RA03716E/cit35/1
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2019.03.048
SSID ssj0000651261
Score 2.3993018
Snippet The application of recyclable heterogeneous catalysts in the production of polypropylene glycol monomethyl ether (MPPG) is of great significance to the green...
SourceID pubmedcentral
proquest
pubmed
crossref
rsc
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 23183
SubjectTerms Carbon dioxide
Catalysts
Catalytic activity
Cerium oxides
Chemical industry
Chemistry
Conversion
Crystal structure
Crystallization
desorption
electron microscopy
Fourier transform infrared spectroscopy
Fourier transforms
Functional groups
Hydroxides
Infrared analysis
Infrared spectroscopy
isolation techniques
methanol
molecular weight
Nucleation
Photoelectrons
polymerization
Polypropylene glycol
polypropylenes
Pore size
porosity
Propylene oxide
Raw materials
Spectrum analysis
surface area
Thermal stability
Thermogravimetry
X ray photoelectron spectroscopy
X-ray diffraction
Title Ce and P123 modified layered double hydroxide (LDH) composite for the synthesis of polypropylene glycol monomethyl ether
URI https://www.ncbi.nlm.nih.gov/pubmed/36090400
https://www.proquest.com/docview/2705360538
https://www.proquest.com/docview/2714060232
https://www.proquest.com/docview/2718371974
https://pubmed.ncbi.nlm.nih.gov/PMC9380541
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db5swELfW9mF7mbqPbmxd5Wl7WBXRBkwIfqxoumiLOilLJvaEANsJUgRRGqTQv35nAyZRo6nbC4mOk-NwP9-HOd8h9JnSnmcLl5gi7iUmKDzL9BLBTe7F3OWwnpwqQfbWHU6db0EvaNNt1emSdXyR3O89V_I_UgUayFWekv0HyepBgQDfQb5wBQnD9VEy9utkf7ALsqVNKqQ_uYhK2X-zw_JCnoqal2yVb1KmfMnR9VBuA8g8cpmsxXWS4V2ZwUddnGSZL-RBqGUJFol3ZosSwALjZ7lsN10uOuqM8LZXO_7pN8kE2kX3I7UJG6RRXrYI_F5nAEMIPNukmvy1UC9J5jybzYq0oQZFM8L23gSEtbJWrNuqMBuib5BY1Yzlgu-hNTrY3sIa2dGoUuns1fVdIkulMnsVybKDLm8tWvMW__ZHeDMdjcLJIJgcoCMbIglQhUfjX9Pgt96IAx_MslVdXT2zpowtoZft8LuOy4No5GFS7cGq6SGjfJXJMXpeBxn4qkLMC_SEZy_RU7_p7fcKbXyOATlYIgc3yME1cnCFHKyRg78Abs6xRg0G1GDAANaowbnAO6jBFWpwixqsUPMaTW8GE39o1j04zIRQa20KJhj8pa5wI-nYCOLFgjKwkA7px0lEiYi7nDASWcRykogI6jCLxT3ek7E8ScgJOszyjL9F2BaMQ7BNqJtwByKJyGNdGzgF0CmNmIHOmwccJnWBetknZRGqRAlCw2t7fKWEMTDQJ827rMqy7OU6beQU1sv2LrT7YHcgiCeegT7q2_D85ZuyKON5IXkscHTBnbX_yuPBr0A8bqA3lej1VGB8Kq2jgfo7oNAMsqj77p0snavi7pR4EEVZBjoB-Gj-FobvHjHp9-hZuxpP0eF6VfAP4Duv4zO153RWr4E_jnLKkA
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ce+and+P123+modified+layered+double+hydroxide+%28LDH%29+composite+for+the+synthesis+of+polypropylene+glycol+monomethyl+ether&rft.jtitle=RSC+advances&rft.au=Cao%2C+Xiaoyan&rft.au=Kong%2C+Lingxin&rft.au=Gu%2C+Zhenggui&rft.au=Xu%2C+Xiao&rft.date=2022-08-16&rft.issn=2046-2069&rft.eissn=2046-2069&rft.volume=12&rft.issue=36&rft.spage=23183&rft_id=info:doi/10.1039%2Fd2ra03716e&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2046-2069&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2046-2069&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2046-2069&client=summon