Rhythmic cilia changes support SCN neuron coherence in circadian clock
The suprachiasmatic nucleus (SCN) drives circadian clock coherence through intercellular coupling, which is resistant to environmental perturbations. We report that primary cilia are required for intercellular coupling among SCN neurons to maintain the robustness of the internal clock in mice. Cilia...
Saved in:
Published in | Science (American Association for the Advancement of Science) Vol. 380; no. 6648; pp. 972 - 979 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
The American Association for the Advancement of Science
02.06.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The suprachiasmatic nucleus (SCN) drives circadian clock coherence through intercellular coupling, which is resistant to environmental perturbations. We report that primary cilia are required for intercellular coupling among SCN neurons to maintain the robustness of the internal clock in mice. Cilia in neuromedin S–producing (NMS) neurons exhibit pronounced circadian rhythmicity in abundance and length. Genetic ablation of ciliogenesis in NMS neurons enabled a rapid phase shift of the internal clock under jet-lag conditions. The circadian rhythms of individual neurons in cilia-deficient SCN slices lost their coherence after external perturbations. Rhythmic cilia changes drive oscillations of Sonic Hedgehog (Shh) signaling and clock gene expression. Inactivation of Shh signaling in NMS neurons phenocopied the effects of cilia ablation. Thus, cilia-Shh signaling in the SCN aids intercellular coupling.
Coordination of physiology with daily rhythms is regulated by the neurons of the suprachiasmatic nucleus (SCN), the central pacemaker of the biological clock. Tu
et al
. describe a signaling mechanism at cilia in these neurons that keeps the individual cells of the SCN synchronized (see the Perspective by Kim and Blackshaw). The length and abundance of primary cilia in SCN neurons oscillated with daily light-dark cycles. Cilia organize signaling by the morphogen Sonic Hedgehog (SHH), and regulation of the expression of this gene was required for synchrony of the SCN cells. In mice exposed to an altered light cycle to induce experimental jet lag, disrupting SHH signaling allowed the animals to adjust more quickly to the altered environment. —L. Bryan Ray
Signaling at cilia helps couple neurons in the master biological clock in the brain. |
---|---|
AbstractList | Editor’s summaryCoordination of physiology with daily rhythms is regulated by the neurons of the suprachiasmatic nucleus (SCN), the central pacemaker of the biological clock. Tu et al. describe a signaling mechanism at cilia in these neurons that keeps the individual cells of the SCN synchronized (see the Perspective by Kim and Blackshaw). The length and abundance of primary cilia in SCN neurons oscillated with daily light-dark cycles. Cilia organize signaling by the morphogen Sonic Hedgehog (SHH), and regulation of the expression of this gene was required for synchrony of the SCN cells. In mice exposed to an altered light cycle to induce experimental jet lag, disrupting SHH signaling allowed the animals to adjust more quickly to the altered environment. —L. Bryan Ray The suprachiasmatic nucleus (SCN) drives circadian clock coherence through intercellular coupling, which is resistant to environmental perturbations. We report that primary cilia are required for intercellular coupling among SCN neurons to maintain the robustness of the internal clock in mice. Cilia in neuromedin S-producing (NMS) neurons exhibit pronounced circadian rhythmicity in abundance and length. Genetic ablation of ciliogenesis in NMS neurons enabled a rapid phase shift of the internal clock under jet-lag conditions. The circadian rhythms of individual neurons in cilia-deficient SCN slices lost their coherence after external perturbations. Rhythmic cilia changes drive oscillations of Sonic Hedgehog (Shh) signaling and clock gene expression. Inactivation of Shh signaling in NMS neurons phenocopied the effects of cilia ablation. Thus, cilia-Shh signaling in the SCN aids intercellular coupling. The suprachiasmatic nucleus (SCN) drives circadian clock coherence through intercellular coupling, which is resistant to environmental perturbations. We report that primary cilia are required for intercellular coupling among SCN neurons to maintain the robustness of the internal clock in mice. Cilia in neuromedin S-producing (NMS) neurons exhibit pronounced circadian rhythmicity in abundance and length. Genetic ablation of ciliogenesis in NMS neurons enabled a rapid phase shift of the internal clock under jet-lag conditions. The circadian rhythms of individual neurons in cilia-deficient SCN slices lost their coherence after external perturbations. Rhythmic cilia changes drive oscillations of Sonic Hedgehog (Shh) signaling and clock gene expression. Inactivation of Shh signaling in NMS neurons phenocopied the effects of cilia ablation. Thus, cilia-Shh signaling in the SCN aids intercellular coupling.The suprachiasmatic nucleus (SCN) drives circadian clock coherence through intercellular coupling, which is resistant to environmental perturbations. We report that primary cilia are required for intercellular coupling among SCN neurons to maintain the robustness of the internal clock in mice. Cilia in neuromedin S-producing (NMS) neurons exhibit pronounced circadian rhythmicity in abundance and length. Genetic ablation of ciliogenesis in NMS neurons enabled a rapid phase shift of the internal clock under jet-lag conditions. The circadian rhythms of individual neurons in cilia-deficient SCN slices lost their coherence after external perturbations. Rhythmic cilia changes drive oscillations of Sonic Hedgehog (Shh) signaling and clock gene expression. Inactivation of Shh signaling in NMS neurons phenocopied the effects of cilia ablation. Thus, cilia-Shh signaling in the SCN aids intercellular coupling. The suprachiasmatic nucleus (SCN) drives circadian clock coherence through intercellular coupling, which is resistant to environmental perturbations. We report that primary cilia are required for intercellular coupling among SCN neurons to maintain the robustness of the internal clock in mice. Cilia in neuromedin S–producing (NMS) neurons exhibit pronounced circadian rhythmicity in abundance and length. Genetic ablation of ciliogenesis in NMS neurons enabled a rapid phase shift of the internal clock under jet-lag conditions. The circadian rhythms of individual neurons in cilia-deficient SCN slices lost their coherence after external perturbations. Rhythmic cilia changes drive oscillations of Sonic Hedgehog (Shh) signaling and clock gene expression. Inactivation of Shh signaling in NMS neurons phenocopied the effects of cilia ablation. Thus, cilia-Shh signaling in the SCN aids intercellular coupling. Coordination of physiology with daily rhythms is regulated by the neurons of the suprachiasmatic nucleus (SCN), the central pacemaker of the biological clock. Tu et al . describe a signaling mechanism at cilia in these neurons that keeps the individual cells of the SCN synchronized (see the Perspective by Kim and Blackshaw). The length and abundance of primary cilia in SCN neurons oscillated with daily light-dark cycles. Cilia organize signaling by the morphogen Sonic Hedgehog (SHH), and regulation of the expression of this gene was required for synchrony of the SCN cells. In mice exposed to an altered light cycle to induce experimental jet lag, disrupting SHH signaling allowed the animals to adjust more quickly to the altered environment. —L. Bryan Ray Signaling at cilia helps couple neurons in the master biological clock in the brain. |
Author | Wu, Min Zhang, Xue-Min Song, Guang-Ping Zhou, Tao Yuan, Jin-Feng Li, Ai-Ling Li, Sen Jian, Xiao-Xiao Hu, Huai-Bin Li, Pei-Yao Shen, Xiao-Lin Xu, Yu-Ling Li, Jia-Ning Song, Zeng-Qing Han, Qiu-Ying Li, Hui-Yan Tu, Hai-Qing Liang, Li-Yun Wang, Kai Zhang, Yu-Cheng Li, Ting-Ting Zhang, Tao |
Author_xml | – sequence: 1 givenname: Hai-Qing orcidid: 0009-0002-7833-605X surname: Tu fullname: Tu, Hai-Qing organization: Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, China – sequence: 2 givenname: Sen orcidid: 0009-0000-7846-3134 surname: Li fullname: Li, Sen organization: Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, China – sequence: 3 givenname: Yu-Ling orcidid: 0009-0001-3754-9019 surname: Xu fullname: Xu, Yu-Ling organization: Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, China – sequence: 4 givenname: Yu-Cheng orcidid: 0000-0002-7844-3202 surname: Zhang fullname: Zhang, Yu-Cheng organization: Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, China – sequence: 5 givenname: Pei-Yao orcidid: 0009-0005-3408-5166 surname: Li fullname: Li, Pei-Yao organization: Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, China – sequence: 6 givenname: Li-Yun surname: Liang fullname: Liang, Li-Yun organization: Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, China – sequence: 7 givenname: Guang-Ping surname: Song fullname: Song, Guang-Ping organization: Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, China – sequence: 8 givenname: Xiao-Xiao surname: Jian fullname: Jian, Xiao-Xiao organization: Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, China – sequence: 9 givenname: Min surname: Wu fullname: Wu, Min organization: Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, China – sequence: 10 givenname: Zeng-Qing surname: Song fullname: Song, Zeng-Qing organization: Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, China – sequence: 11 givenname: Ting-Ting orcidid: 0000-0003-0534-6492 surname: Li fullname: Li, Ting-Ting organization: Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, China – sequence: 12 givenname: Huai-Bin surname: Hu fullname: Hu, Huai-Bin organization: Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, China – sequence: 13 givenname: Jin-Feng surname: Yuan fullname: Yuan, Jin-Feng organization: Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, China – sequence: 14 givenname: Xiao-Lin surname: Shen fullname: Shen, Xiao-Lin organization: Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, China – sequence: 15 givenname: Jia-Ning surname: Li fullname: Li, Jia-Ning organization: Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, China – sequence: 16 givenname: Qiu-Ying orcidid: 0009-0003-9145-6969 surname: Han fullname: Han, Qiu-Ying organization: Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, China – sequence: 17 givenname: Kai surname: Wang fullname: Wang, Kai organization: Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, China – sequence: 18 givenname: Tao surname: Zhang fullname: Zhang, Tao organization: Laboratory Animal Center, Academy of Military Medical Sciences, Beijing, China – sequence: 19 givenname: Tao orcidid: 0000-0001-6222-2053 surname: Zhou fullname: Zhou, Tao organization: Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, China – sequence: 20 givenname: Ai-Ling surname: Li fullname: Li, Ai-Ling organization: Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, China., School of Basic Medical Sciences, Fudan University, Shanghai, China – sequence: 21 givenname: Xue-Min orcidid: 0000-0003-0207-4532 surname: Zhang fullname: Zhang, Xue-Min organization: Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, China., School of Basic Medical Sciences, Fudan University, Shanghai, China – sequence: 22 givenname: Hui-Yan orcidid: 0000-0002-6394-7205 surname: Li fullname: Li, Hui-Yan organization: Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, China., School of Basic Medical Sciences, Fudan University, Shanghai, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37262147$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kctPwzAMxiM0xB5w5oYqceFSFie0aY5o4iUhkHicq9T1WKBNRtIe-O_ptMEBiZNt-ffZlr8pGznviLFj4OcAIp9HtOSQzk3Vgs7FHpsA11mqBZcjNuFc5mnBVTZm0xjfOR96Wh6wsVQiF3ChJuz6afXVrVqLCdrGmgRXxr1RTGK_XvvQJc-Lh8RRH7xL0K8obLYldihsQFNbM2SNx49Dtr80TaSjXZyx1-url8Vtev94c7e4vE9RaujSZQ2cpKoKQoNCIeGSiiKreSHowkABVY61FlCpGmokpTOoRZahNopXUks5Y2fbuevgP3uKXdnaiNQ0xpHvYykKIaSCQosBPf2Dvvs-uOG6DQVSKaFhoE52VF-1VJfrYFsTvsqfDw3AfAtg8DEGWv4iwMuNB-XOg3LnwaDI_ijQdqaz3nXB2OZf3Temxo20 |
CitedBy_id | crossref_primary_10_1016_j_fmre_2024_03_021 crossref_primary_10_1016_j_isci_2024_110078 crossref_primary_10_1016_j_neuron_2025_02_002 crossref_primary_10_1016_j_tins_2024_03_004 crossref_primary_10_1073_pnas_2321228121 crossref_primary_10_1016_j_molmed_2024_10_012 crossref_primary_10_1126_science_adi3177 crossref_primary_10_1111_jpi_12993 crossref_primary_10_1007_s00429_023_02756_2 crossref_primary_10_7554_eLife_93168_3 crossref_primary_10_1242_jcs_261988 crossref_primary_10_3389_fendo_2025_1525844 crossref_primary_10_1186_s13041_024_01143_0 crossref_primary_10_1016_j_cub_2024_04_043 crossref_primary_10_15252_embr_202356870 crossref_primary_10_1177_02698811231219058 crossref_primary_10_1080_09291016_2025_2480145 crossref_primary_10_33549_physiolres_935304 crossref_primary_10_1017_jfm_2025_79 crossref_primary_10_1159_000539344 crossref_primary_10_1080_09291016_2024_2384635 crossref_primary_10_1016_j_cmet_2024_02_010 crossref_primary_10_1016_j_cub_2024_07_033 crossref_primary_10_1016_j_celrep_2025_115383 crossref_primary_10_3390_genes15020157 crossref_primary_10_1083_jcb_202404038 crossref_primary_10_1016_j_jbc_2024_107917 crossref_primary_10_7554_eLife_93168 crossref_primary_10_1016_j_bios_2025_117254 crossref_primary_10_1042_BST20231403 crossref_primary_10_3788_LOP232684 crossref_primary_10_1002_advs_202305068 crossref_primary_10_1016_j_neuint_2025_105929 crossref_primary_10_3390_cells13030259 |
Cites_doi | 10.1172/JCI138107 10.1016/j.cell.2009.08.031 10.15252/embj.2021108614 10.3390/biology8010013 10.1016/j.neuron.2020.07.012 10.1016/j.cell.2022.07.026 10.1038/nm.2011 10.1016/S0092-8674(00)00205-1 10.1016/j.cell.2015.06.060 10.1016/j.cell.2007.02.047 10.1126/science.1226339 10.1126/science.1238599 10.1016/S0092-8674(02)00736-5 10.1038/nrg2430 10.1038/s41580-019-0179-2 10.1016/j.neuron.2021.07.026 10.1016/j.tins.2011.05.003 10.1126/science.aaw7365 10.1073/pnas.0308709101 10.1083/jcb.151.3.709 10.1126/science.1195262 10.15252/embr.201540632 10.1126/science.aay3152 10.1172/JCI41192 10.1126/science.abb0738 10.1038/s41583-018-0026-z 10.1126/science.aat4104 10.1126/science.aao0318 10.1038/nrg.2016.150 10.1016/j.cell.2019.11.005 10.1371/journal.pone.0096462 10.1056/NEJMra1010172 10.1126/science.1152506 10.1073/pnas.1602393113 10.1126/science.1139740 10.1126/science.abk0297 10.1038/nature04117 10.1016/j.cell.2017.06.035 10.1016/j.cub.2006.02.023 10.1016/j.neuron.2015.02.006 10.1126/science.1157983 10.1146/annurev-neuro-060909-153128 10.1073/pnas.0607466103 10.7554/eLife.50208 10.1091/mbc.e06-02-0133 10.1016/j.cell.2016.12.032 |
ContentType | Journal Article |
Copyright | Copyright © 2023 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works |
Copyright_xml | – notice: Copyright © 2023 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QF 7QG 7QL 7QP 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7SS 7T7 7TA 7TB 7TK 7TM 7U5 7U9 8BQ 8FD C1K F28 FR3 H8D H8G H94 JG9 JQ2 K9. KR7 L7M L~C L~D M7N P64 RC3 7X8 |
DOI | 10.1126/science.abm1962 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Aluminium Industry Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Ecology Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Entomology Abstracts (Full archive) Industrial and Applied Microbiology Abstracts (Microbiology A) Materials Business File Mechanical & Transportation Engineering Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Solid State and Superconductivity Abstracts Virology and AIDS Abstracts METADEX Technology Research Database Environmental Sciences and Pollution Management ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library AIDS and Cancer Research Abstracts Materials Research Database ProQuest Computer Science Collection ProQuest Health & Medical Complete (Alumni) Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Nucleic Acids Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Health & Medical Complete (Alumni) Materials Business File Environmental Sciences and Pollution Management Aerospace Database Copper Technical Reference Library Engineered Materials Abstracts Genetics Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Civil Engineering Abstracts Aluminium Industry Abstracts Virology and AIDS Abstracts Electronics & Communications Abstracts Ceramic Abstracts Ecology Abstracts Neurosciences Abstracts METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Entomology Abstracts Animal Behavior Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Corrosion Abstracts MEDLINE - Academic |
DatabaseTitleList | Materials Research Database MEDLINE MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) Biology |
EISSN | 1095-9203 |
EndPage | 979 |
ExternalDocumentID | 37262147 10_1126_science_abm1962 |
Genre | Journal Article |
GroupedDBID | --- --Z -DZ -ET -~X .-4 ..I .55 .DC 08G 0R~ 0WA 123 18M 2FS 2KS 2WC 2XV 34G 36B 39C 3R3 53G 5RE 66. 6OB 6TJ 7X2 7~K 85S 8F7 AABCJ AACGO AAIKC AAMNW AANCE AAWTO AAYXX ABCQX ABDBF ABDQB ABEFU ABIVO ABJNI ABOCM ABPLY ABPPZ ABQIJ ABTLG ABWJO ABZEH ACBEA ACBEC ACGFO ACGFS ACGOD ACIWK ACMJI ACNCT ACPRK ACQOY ACUHS ADDRP ADUKH ADXHL AEGBM AENEX AETEA AFBNE AFFNX AFHKK AFQFN AFRAH AGFXO AGNAY AGSOS AHMBA AIDAL AIDUJ AJGZS ALIPV ALMA_UNASSIGNED_HOLDINGS ALSLI ASPBG AVWKF BKF BLC C45 CITATION CS3 DB2 DU5 EBS EMOBN F5P FA8 FEDTE HZ~ I.T IAO IEA IGS IH2 IHR INH INR IOF IOV IPO IPY ISE JCF JLS JSG JST K-O KCC L7B LSO LU7 M0P MQT MVM N9A NEJ NHB O9- OCB OFXIZ OGEVE OMK OVD P-O P2P PQQKQ PZZ RHI RXW SC5 SJN TAE TEORI TN5 TWZ UBW UCV UHB UKR UMD UNMZH UQL USG VVN WH7 WI4 X7M XJF XZL Y6R YK4 YKV YNT YOJ YR2 YR5 YRY YSQ YV5 YWH YYP YZZ ZCA ZE2 ~02 ~G0 ~KM ~ZZ CGR CUY CVF ECM EIF GX1 NPM OK1 UIG YCJ YJ6 7QF 7QG 7QL 7QP 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7SS 7T7 7TA 7TB 7TK 7TM 7U5 7U9 8BQ 8FD C1K F28 FR3 H8D H8G H94 JG9 JQ2 K9. KR7 L7M L~C L~D M7N P64 RC3 7X8 |
ID | FETCH-LOGICAL-c391t-fd10e37b8ecac27cecfe885d082e4a181b6cd921b7d1dce7951d255c9a70b3933 |
ISSN | 0036-8075 1095-9203 |
IngestDate | Fri Jul 11 03:48:09 EDT 2025 Fri Jul 25 19:02:43 EDT 2025 Thu Apr 03 07:04:36 EDT 2025 Thu Apr 24 22:55:40 EDT 2025 Tue Jul 01 03:13:56 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6648 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c391t-fd10e37b8ecac27cecfe885d082e4a181b6cd921b7d1dce7951d255c9a70b3933 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0009-0003-9145-6969 0000-0001-6222-2053 0009-0002-7833-605X 0000-0002-7844-3202 0000-0003-0534-6492 0009-0000-7846-3134 0009-0005-3408-5166 0000-0003-0207-4532 0000-0002-6394-7205 0009-0001-3754-9019 |
PMID | 37262147 |
PQID | 2821377291 |
PQPubID | 1256 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_2822371892 proquest_journals_2821377291 pubmed_primary_37262147 crossref_primary_10_1126_science_abm1962 crossref_citationtrail_10_1126_science_abm1962 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-06-02 20230602 |
PublicationDateYYYYMMDD | 2023-06-02 |
PublicationDate_xml | – month: 06 year: 2023 text: 2023-06-02 day: 02 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationTitle | Science (American Association for the Advancement of Science) |
PublicationTitleAlternate | Science |
PublicationYear | 2023 |
Publisher | The American Association for the Advancement of Science |
Publisher_xml | – name: The American Association for the Advancement of Science |
References | e_1_3_3_17_2 e_1_3_3_16_2 e_1_3_3_19_2 e_1_3_3_38_2 e_1_3_3_18_2 e_1_3_3_39_2 e_1_3_3_13_2 e_1_3_3_36_2 e_1_3_3_12_2 e_1_3_3_37_2 e_1_3_3_15_2 e_1_3_3_34_2 e_1_3_3_14_2 e_1_3_3_35_2 e_1_3_3_32_2 e_1_3_3_33_2 e_1_3_3_11_2 e_1_3_3_30_2 e_1_3_3_10_2 e_1_3_3_31_2 e_1_3_3_40_2 e_1_3_3_6_2 e_1_3_3_5_2 e_1_3_3_8_2 e_1_3_3_7_2 e_1_3_3_28_2 e_1_3_3_9_2 e_1_3_3_27_2 e_1_3_3_29_2 Park Y. G. (e_1_3_3_46_2) 2018 e_1_3_3_24_2 e_1_3_3_47_2 e_1_3_3_23_2 e_1_3_3_48_2 e_1_3_3_26_2 e_1_3_3_45_2 e_1_3_3_25_2 e_1_3_3_2_2 e_1_3_3_20_2 e_1_3_3_43_2 e_1_3_3_44_2 e_1_3_3_4_2 e_1_3_3_22_2 e_1_3_3_41_2 e_1_3_3_3_2 e_1_3_3_21_2 e_1_3_3_42_2 |
References_xml | – ident: e_1_3_3_29_2 doi: 10.1172/JCI138107 – ident: e_1_3_3_40_2 doi: 10.1016/j.cell.2009.08.031 – ident: e_1_3_3_15_2 doi: 10.15252/embj.2021108614 – ident: e_1_3_3_4_2 doi: 10.3390/biology8010013 – ident: e_1_3_3_22_2 doi: 10.1016/j.neuron.2020.07.012 – ident: e_1_3_3_28_2 doi: 10.1016/j.cell.2022.07.026 – ident: e_1_3_3_39_2 doi: 10.1038/nm.2011 – ident: e_1_3_3_31_2 doi: 10.1016/S0092-8674(00)00205-1 – ident: e_1_3_3_24_2 doi: 10.1016/j.cell.2015.06.060 – ident: e_1_3_3_5_2 doi: 10.1016/j.cell.2007.02.047 – ident: e_1_3_3_14_2 doi: 10.1126/science.1226339 – ident: e_1_3_3_21_2 doi: 10.1126/science.1238599 – ident: e_1_3_3_20_2 doi: 10.1016/S0092-8674(02)00736-5 – ident: e_1_3_3_8_2 doi: 10.1038/nrg2430 – ident: e_1_3_3_10_2 doi: 10.1038/s41580-019-0179-2 – ident: e_1_3_3_11_2 doi: 10.1016/j.neuron.2021.07.026 – ident: e_1_3_3_16_2 doi: 10.1016/j.tins.2011.05.003 – ident: e_1_3_3_32_2 doi: 10.1126/science.aaw7365 – ident: e_1_3_3_44_2 doi: 10.1073/pnas.0308709101 – ident: e_1_3_3_35_2 doi: 10.1083/jcb.151.3.709 – ident: e_1_3_3_18_2 doi: 10.1126/science.1195262 – ident: e_1_3_3_34_2 doi: 10.15252/embr.201540632 – ident: e_1_3_3_17_2 doi: 10.1126/science.aay3152 – ident: e_1_3_3_47_2 doi: 10.1172/JCI41192 – ident: e_1_3_3_9_2 doi: 10.1126/science.abb0738 – ident: e_1_3_3_3_2 doi: 10.1038/s41583-018-0026-z – year: 2018 ident: e_1_3_3_46_2 article-title: Protection of tissue physicochemical properties using polyfunctional crosslinkers publication-title: Nat. Biotechnol. – ident: e_1_3_3_12_2 doi: 10.1126/science.aat4104 – ident: e_1_3_3_2_2 doi: 10.1126/science.aao0318 – ident: e_1_3_3_13_2 doi: 10.1038/nrg.2016.150 – ident: e_1_3_3_26_2 doi: 10.1016/j.cell.2019.11.005 – ident: e_1_3_3_48_2 doi: 10.1371/journal.pone.0096462 – ident: e_1_3_3_27_2 doi: 10.1056/NEJMra1010172 – ident: e_1_3_3_43_2 doi: 10.1126/science.1152506 – ident: e_1_3_3_45_2 doi: 10.1073/pnas.1602393113 – ident: e_1_3_3_25_2 doi: 10.1126/science.1139740 – ident: e_1_3_3_7_2 doi: 10.1126/science.abk0297 – ident: e_1_3_3_41_2 doi: 10.1038/nature04117 – ident: e_1_3_3_37_2 doi: 10.1016/j.cell.2017.06.035 – ident: e_1_3_3_23_2 doi: 10.1016/j.cub.2006.02.023 – ident: e_1_3_3_33_2 doi: 10.1016/j.neuron.2015.02.006 – ident: e_1_3_3_38_2 doi: 10.1126/science.1157983 – ident: e_1_3_3_6_2 doi: 10.1146/annurev-neuro-060909-153128 – ident: e_1_3_3_19_2 doi: 10.1073/pnas.0607466103 – ident: e_1_3_3_42_2 doi: 10.7554/eLife.50208 – ident: e_1_3_3_36_2 doi: 10.1091/mbc.e06-02-0133 – ident: e_1_3_3_30_2 doi: 10.1016/j.cell.2016.12.032 |
SSID | ssj0009593 |
Score | 2.5750916 |
Snippet | The suprachiasmatic nucleus (SCN) drives circadian clock coherence through intercellular coupling, which is resistant to environmental perturbations. We report... Editor’s summaryCoordination of physiology with daily rhythms is regulated by the neurons of the suprachiasmatic nucleus (SCN), the central pacemaker of the... |
SourceID | proquest pubmed crossref |
SourceType | Aggregation Database Index Database Enrichment Source |
StartPage | 972 |
SubjectTerms | Animals Biological clocks Cilia Cilia - metabolism Cilia - physiology Circadian Clocks - genetics Circadian Rhythm - physiology Circadian rhythms Gene expression Gene Expression Regulation Hedgehog protein Hedgehog Proteins - genetics Hedgehog Proteins - metabolism Jet lag Mice Mice, Transgenic Neurons Signal Transduction Signaling Suprachiasmatic nucleus Suprachiasmatic Nucleus Neurons - physiology |
Title | Rhythmic cilia changes support SCN neuron coherence in circadian clock |
URI | https://www.ncbi.nlm.nih.gov/pubmed/37262147 https://www.proquest.com/docview/2821377291 https://www.proquest.com/docview/2822371892 |
Volume | 380 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLZgE2gviI1bYSAj8TBUpUrsXB-7QjUhmATrpPIU-RY1YuuqNXkYv57jW5oKKgEvUWs7juTv8_GxfS4IvRM5J6KK4yDJCxnESSJhSsVRUJAoTSSLc2H8K76cp2eX8ad5Mu_dmGrvkoaPxM8_-pX8D6pQBrhqL9l_QLbrFArgN-ALT0AYnn-F8bfFXbPQxu2ivqqZc-JdD9ftSmvVw4vJ-dDEq9Sm5gsXT1bbnde3woYkELCU_ejrp36qg97Z3eX0EOyMEsfWdMBbErjXescKs9YsaqwOvvrFUZv9GNuBi4372dw0-94Gn3utukNsKJ8slKtwRxOEGhMqK1uVFaehzgRJQtqXt9SmbnLESlMbadMJ0MIm8vldsPdSUaoR49cgObZaAjKra4MzzUiqsy9tVrjO7tBX3Uf7BLYVIBf3x6cfTqdbYZpdAKiea5X_3gF66HvYVmN27E2MjjJ7jB65zQUeW6YcontqeYQe2HSjd0fo0MG0xicu2vj7J2jqSYQNibAjEXYkwkAibEmEOxLhGv54EmFDoqfocvpxNjkLXHKNQNAiaoJKRqGiGc-VYIJkQolK5XkiQSVUMQO9j6dCwozlmYykUBlo4hK2n6JgWchpQekztLe8WaoXCKdJRUFRzlgUw8wOBZewD-WkUIxFVSSrARr5sSqFizyvE6BclWYHStLSjXPpxnmATroXVjboyu6mx37wSzcz1yXJiQ6kSYpogN521SA39WUYW6qb1rQhFBSzArp4bkHrvuVBfrmz5hU62BD-GO01t616Ddppw984Sv0Cz1GQ7g |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Rhythmic+cilia+changes+support+SCN+neuron+coherence+in+circadian+clock&rft.jtitle=Science+%28American+Association+for+the+Advancement+of+Science%29&rft.au=Tu%2C+Hai-Qing&rft.au=Li%2C+Sen&rft.au=Xu%2C+Yu-Ling&rft.au=Zhang%2C+Yu-Cheng&rft.date=2023-06-02&rft.eissn=1095-9203&rft.volume=380&rft.issue=6648&rft.spage=972&rft_id=info:doi/10.1126%2Fscience.abm1962&rft_id=info%3Apmid%2F37262147&rft.externalDocID=37262147 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0036-8075&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0036-8075&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0036-8075&client=summon |