Gray Box Time Variant Clogging behaviour and Pressure Drop Prediction of the Air Filter in the HVAC System
Identification and prediction of clogging behavior in heating, ventilation, and air conditioning (HVAC) filters is crucial to avoid issues such as system overheating, energy waste, lower indoor air quality, etc. Researchers are focusing more on the particle loading characteristics of a filter medium...
Saved in:
Published in | E3S web of conferences Vol. 246; p. 10002 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article Conference Proceeding |
Language | English |
Published |
Les Ulis
EDP Sciences
01.01.2021
|
Subjects | |
Online Access | Get full text |
ISSN | 2267-1242 2555-0403 2267-1242 |
DOI | 10.1051/e3sconf/202124610002 |
Cover
Abstract | Identification and prediction of clogging behavior in heating, ventilation, and air conditioning (HVAC) filters is crucial to avoid issues such as system overheating, energy waste, lower indoor air quality, etc. Researchers are focusing more on the particle loading characteristics of a filter medium in a laboratory environment under steady-state conditions, fixed particle concentrations, area of porosity, dust feed and volumetric flow rate. However, recent research still shows uncertainties in modeling as well as the implementation problems of constructing the HVAC laboratory test bench and equipment. In addition, subjects such as non-uniform particle deposition depreciation of the condition and various type of mechanical filters such as fibrous, fabric, granular, and membrane filter or electrostatic filters which typically used in HVAC systems perform under some assumptions and still need more research. The studies become even more difficult acquiring a large number of time-varying and noisy signals. Another approach among studies is data-driven knowing that Building Automation System (BAS) is not equipped with appropriate sensor measuring the clogging, it is needed to drive the clogging mathematical model from the pressure drop signal. This paper bridges the gap between particle-size study and black box modeling of HVAC filter which has not received much attention from authors. The proposed method assumes that the pressure drop is the result of two time-varying functions; f(t), which represents the dynamics of clogging and, g(t), which refers to dynamics of remained terms. The exponential and polynomial of second order functions are proposed to express the clogging behavior. The software package based on Particle Swarm Optimization Artificial Bee Colony (PSOABC) algorithm, is developed and implemented to estimate the coefficients of the clogging functions based on smallest RMSE, high coefficient of correlation and acceptable tracking. Five Air Handling Unit (AHUs) are selected for practical verification of the model and the results show that the applied method can successfully predict clogging and pressure drop behaviour of HVAC filters. |
---|---|
AbstractList | Identification and prediction of clogging behavior in heating, ventilation, and air conditioning (HVAC) filters is crucial to avoid issues such as system overheating, energy waste, lower indoor air quality, etc. Researchers are focusing more on the particle loading characteristics of a filter medium in a laboratory environment under steady-state conditions, fixed particle concentrations, area of porosity, dust feed and volumetric flow rate. However, recent research still shows uncertainties in modeling as well as the implementation problems of constructing the HVAC laboratory test bench and equipment. In addition, subjects such as non-uniform particle deposition depreciation of the condition and various type of mechanical filters such as fibrous, fabric, granular, and membrane filter or electrostatic filters which typically used in HVAC systems perform under some assumptions and still need more research. The studies become even more difficult acquiring a large number of time-varying and noisy signals. Another approach among studies is data-driven knowing that Building Automation System (BAS) is not equipped with appropriate sensor measuring the clogging, it is needed to drive the clogging mathematical model from the pressure drop signal. This paper bridges the gap between particle-size study and black box modeling of HVAC filter which has not received much attention from authors. The proposed method assumes that the pressure drop is the result of two time-varying functions; f(t), which represents the dynamics of clogging and, g(t), which refers to dynamics of remained terms. The exponential and polynomial of second order functions are proposed to express the clogging behavior. The software package based on Particle Swarm Optimization Artificial Bee Colony (PSOABC) algorithm, is developed and implemented to estimate the coefficients of the clogging functions based on smallest RMSE, high coefficient of correlation and acceptable tracking. Five Air Handling Unit (AHUs) are selected for practical verification of the model and the results show that the applied method can successfully predict clogging and pressure drop behaviour of HVAC filters. |
Author | Kull, Tuule Mall Alimohammadi, Hossein Mikola, Alo Thalfeldt, Martin Vassiljeva, Kristina Petlenkov, Eduard Köse, Ahmet |
Author_xml | – sequence: 1 givenname: Hossein surname: Alimohammadi fullname: Alimohammadi, Hossein – sequence: 2 givenname: Kristina surname: Vassiljeva fullname: Vassiljeva, Kristina – sequence: 3 givenname: Eduard surname: Petlenkov fullname: Petlenkov, Eduard – sequence: 4 givenname: Martin surname: Thalfeldt fullname: Thalfeldt, Martin – sequence: 5 givenname: Alo surname: Mikola fullname: Mikola, Alo – sequence: 6 givenname: Tuule Mall surname: Kull fullname: Kull, Tuule Mall – sequence: 7 givenname: Ahmet surname: Köse fullname: Köse, Ahmet |
BookMark | eNp9UU1P6zAQtBBIfP4DDpY4F2zHcRJupVBAQnpP4uNqbZx1cZXaxXYR_fcvpegJceC0u6OZ2dXOIdn1wSMhp5ydc1byCyySCd5eCCa4kIozxsQOORBCVaMBELvf-n1yktJ8YHBR1pLJAzK_jbCmV-GDPrkF0heIDnymkz7MZs7PaIuv8O7CKlLwHf0bMaVVRHodw3Izdc5kFzwNluZXpGMX6dT1GSN1_hO5exlP6OM6ZVwckz0LfcKTr3pEnqc3T5O70cOf2_vJ-GFkiobnkTVopYLOtlJKFFYAQ25UY7hikldNY1XDWFtWLQBYDlVdc2xVZUWnBK-wOCL3W98uwFwvo1tAXOsATn8CIc40xOxMj7pUVd0iWmGMkkaKllnJma1tIWtoWTF4nW29ljG8rTBlPR9-4YfztShZpVRRl3xgyS3LxJBSRPt_K2d6E5L-Ckl_D2mQXf6QGZdh888cwfW_i_8B09qaDw |
CitedBy_id | crossref_primary_10_1016_j_adapen_2023_100135 crossref_primary_10_1007_s10586_024_04802_y |
Cites_doi | 10.1002/cjce.5450640302 10.1016/j.enbuild.2011.10.058 10.1021/i260015a011 10.1016/j.seppur.2010.06.001 10.1016/j.enconman.2011.11.002 10.1016/j.conengprac.2006.08.005 10.1016/S0032-5910(98)00063-1 10.1016/j.apenergy.2010.07.036 10.1016/0021-8502(90)90027-U 10.1016/S0021-8502(98)00036-6 10.1080/10789669.2013.803915 10.1109/ACC.2010.5531211 10.1016/j.ijheatmasstransfer.2013.04.037 10.1080/10789669.2008.10390993 10.1016/j.ijrefrig.2013.05.006 10.1080/10789669.2002.10391290 10.1016/j.buildenv.2013.03.009 |
ContentType | Journal Article Conference Proceeding |
Copyright | 2021. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2021. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 7ST 8FD 8FE 8FG ABJCF ABUWG AEUYN AFKRA ATCPS AZQEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU DWQXO FR3 GNUQQ H8D HCIFZ KR7 L6V L7M M7S PATMY PCBAR PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS PYCSY SOI DOA |
DOI | 10.1051/e3sconf/202124610002 |
DatabaseName | CrossRef Environment Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials ProQuest Central ProQuest Technology Collection (LUT) ProQuest Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Engineering Research Database ProQuest Central Student Aerospace Database SciTech Premium Collection Civil Engineering Abstracts ProQuest Engineering Collection Advanced Technologies Database with Aerospace Engineering Database Environmental Science Database Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering collection Environmental Science Collection Environment Abstracts DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Central Student Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China Environmental Sciences and Pollution Management Earth, Atmospheric & Aquatic Science Collection ProQuest Central ProQuest One Applied & Life Sciences Aerospace Database ProQuest One Sustainability ProQuest Engineering Collection Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection ProQuest Central (New) Advanced Technologies Database with Aerospace Engineering Collection Civil Engineering Abstracts Engineering Database ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection ProQuest SciTech Collection Environmental Science Collection ProQuest One Academic UKI Edition Materials Science & Engineering Collection Environmental Science Database Engineering Research Database ProQuest One Academic Environment Abstracts ProQuest One Academic (New) |
DatabaseTitleList | CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ (Directory of Open Access Journals) url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Environmental Sciences |
EISSN | 2267-1242 |
ExternalDocumentID | oai_doaj_org_article_5678beef2cc64c42b0f410f8f348ab03 10_1051_e3sconf_202124610002 |
Genre | Conference Proceeding |
GroupedDBID | 5VS 7XC 8FE 8FG 8FH AAFWJ AAYXX ABJCF ADBBV ADMLS AEUYN AFKRA AFPKN ALMA_UNASSIGNED_HOLDINGS ARCSS ATCPS BCNDV BENPR BGLVJ BHPHI BKSAR CCPQU CITATION EBS EJD GI~ GROUPED_DOAJ HCIFZ IPNFZ KQ8 L6V LK5 M7R M7S M~E OK1 PATMY PCBAR PHGZM PHGZT PIMPY PROAC PTHSS PYCSY RIG 7ST 8FD ABUWG AZQEC C1K DWQXO FR3 GNUQQ H8D KR7 L7M PKEHL PQEST PQGLB PQQKQ PQUKI PRINS SOI PUEGO |
ID | FETCH-LOGICAL-c391t-fcef46adfb444e2f2a0e1c69c16041799f6900b57baaaf1a7881eb67f2d6217e3 |
IEDL.DBID | 8FG |
ISSN | 2267-1242 2555-0403 |
IngestDate | Wed Aug 27 01:30:53 EDT 2025 Sun Jul 13 04:54:02 EDT 2025 Tue Jul 01 02:33:50 EDT 2025 Thu Apr 24 22:51:45 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c391t-fcef46adfb444e2f2a0e1c69c16041799f6900b57baaaf1a7881eb67f2d6217e3 |
Notes | ObjectType-Conference Proceeding-1 SourceType-Conference Papers & Proceedings-1 content type line 21 |
OpenAccessLink | https://www.proquest.com/docview/2507663851?pq-origsite=%requestingapplication% |
PQID | 2507663851 |
PQPubID | 2040555 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_5678beef2cc64c42b0f410f8f348ab03 proquest_journals_2507663851 crossref_primary_10_1051_e3sconf_202124610002 crossref_citationtrail_10_1051_e3sconf_202124610002 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-01-01 |
PublicationDateYYYYMMDD | 2021-01-01 |
PublicationDate_xml | – month: 01 year: 2021 text: 2021-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Les Ulis |
PublicationPlace_xml | – name: Les Ulis |
PublicationTitle | E3S web of conferences |
PublicationYear | 2021 |
Publisher | EDP Sciences |
Publisher_xml | – name: EDP Sciences |
References | R2 R3 R4 R5 R6 R7 R8 R9 R10 R21 R20 R12 R11 R14 R13 R16 R15 R18 R17 R19 R1 |
References_xml | – ident: R2 doi: 10.1002/cjce.5450640302 – ident: R17 doi: 10.1016/j.enbuild.2011.10.058 – ident: R13 – ident: R1 doi: 10.1021/i260015a011 – ident: R3 doi: 10.1016/j.seppur.2010.06.001 – ident: R20 doi: 10.1016/j.enconman.2011.11.002 – ident: R9 doi: 10.1016/j.conengprac.2006.08.005 – ident: R7 doi: 10.1016/S0032-5910(98)00063-1 – ident: R19 doi: 10.1016/j.apenergy.2010.07.036 – ident: R4 doi: 10.1016/0021-8502(90)90027-U – ident: R8 doi: 10.1016/S0021-8502(98)00036-6 – ident: R21 doi: 10.1080/10789669.2013.803915 – ident: R11 doi: 10.1109/ACC.2010.5531211 – ident: R15 doi: 10.1016/j.ijheatmasstransfer.2013.04.037 – ident: R18 doi: 10.1080/10789669.2008.10390993 – ident: R12 doi: 10.1016/j.ijrefrig.2013.05.006 – ident: R14 doi: 10.1080/10789669.2002.10391290 – ident: R10 doi: 10.1016/j.buildenv.2013.03.009 – ident: R16 – ident: R5 – ident: R6 |
SSID | ssj0001258404 |
Score | 2.1529994 |
Snippet | Identification and prediction of clogging behavior in heating, ventilation, and air conditioning (HVAC) filters is crucial to avoid issues such as system... |
SourceID | doaj proquest crossref |
SourceType | Open Website Aggregation Database Enrichment Source Index Database |
StartPage | 10002 |
SubjectTerms | Air conditioning Air filters Air quality Algorithms Automation Behavior Building automation Building management systems Depreciation Filters Flow rates Flow velocity Functions (mathematics) HVAC HVAC equipment Indoor air pollution Indoor air quality Indoor environments Laboratories Laboratory tests Mathematical models Overheating Particle deposition Particle swarm optimization Polynomials Porosity Pressure Pressure drop System identification |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV09T8MwELUQEwviU5QveWCNaieO04yltFRIMEHVLbKdO6kIpVVaJPj3nOMEKjGwMMZxlOh89r1n594xduOsgIy4dASoXKTAlVEuEhMlOrUaUApIfL7z45OevqiHeTrfKvXl_wkL8sDBcP2UVlMLgLFzWjkVW4FKChxgogbGBp1PkYstMhV2VyiwCtXlyqWyD8maCCZ6si-9hprodlK6WNRI9v9akZswMzlg-y0-5MPwXYdsB6ojdjr-SUejm-18XB-z1_vafPLb5Qf3qRx8RsSXLMVHtKD54kO8TcJ_r7mpSh5SAWvgd_Vy5a_KRZPVwJfICQfy4aLmk4U_PueLqmmZzoYjHkTNT9jLZPw8mkZt9YTIJbncROjI_NqUaJVSEGNsBEincye18GXHciRiLGyaWWMMSuN15cHqDONSE0-B5JTtVssKzhhHivlEug3BRaKTWZbHUMYKlRGZRqFtjyWdHQvXSov7ChdvRXPEncqitX6xbf0ei76fWgVpjT_63_oh-u7rhbGbBnKXonWX4i936bHLboCLdrauC4KBGSEvAp_n__GOC7bnvzts1Fyy3U39DlcEXTb2uvHSL-BY63E priority: 102 providerName: Directory of Open Access Journals |
Title | Gray Box Time Variant Clogging behaviour and Pressure Drop Prediction of the Air Filter in the HVAC System |
URI | https://www.proquest.com/docview/2507663851 https://doaj.org/article/5678beef2cc64c42b0f410f8f348ab03 |
Volume | 246 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1La9wwEBZpcumtj4Rumyw69CoiWbK8PpXsdh8tNITQhNyMJGvKlmBvvBtoL_3tGWnl3UChvRgsy2A0o5n5Rv5mCPnoLPcFYmnmQTmmvKtZyaVhUudWexDcy8B3_napFzfq611-lxJu6_RbZW8To6GuWxdy5Ofoqgv0jhggfFo9sNA1KpyuphYaL8iRQE8T9Hw0mz_LsaB7jR0EMXDOGeqr7NlzuTj3co2QEwL8F6GqGu9zK713ikX8_7LR0fHMXpHjPSWPXu2czWty4Js35GS6p6mZe5r26fot-TnvzG86bn_RQPGgtwiIcQXpBA1daEpEEzn_saOmqemWIth5-rlrV-GuXka2A22BYnxIL5YdnS3DsTpdNnFkcXsxodti58fkZjb9Plmw1FWBOVmKDQOHYtGmBquU8hlkhnvhdOmE5qEdWQkImLnNC2uMAWFCvXlvdQFZrRG_eHlCDpu28e8IBYwFEIwbDCMRZhZFmfk6U6AMigq4tgMi-9WsXCo5Hjpf3Ffx6DsXVZJB9VwGA8J2b622JTf-M38cBLWbGwpmx4G2-1Gl_Vfl6JSt95A5p5VTmeWgBIcRSDUylssBOe3FXKVdvK72Ovf-348_kJfhi7apmVNyuOke_RkGKxs7jBo5JEfj6eXV9TBCfrzOv_x5AgV_6nI |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NT9swFH9i5bDd9gFaN7b5sB0tHNtxyAFNtLQrAyo0AeKW2Y6NOqGkpEUb_9T-xj3no0WatJ04xnGiyO_5fTm_9wP4aA1zCebS1HlpqXQ2pykTmgoVG-V8xJwIeOfTqZpcyK9X8dUG_O6wMOG3ys4m1oY6L22oke-iq07QO2KA8Hl-SwNrVDhd7Sg0GrU4dvc_MWVb7B8donw_cT4enQ8ntGUVoFak0ZJ6i5-ldO6NlNJxzzVzkVWpjRQLdFypx4SRmTgxWmsf6dBv3RmVeJ4rjN-dwPc-gU0ZEK092ByMpmffHlR10KHXnIUYqscUd4jo8HpxtOvEApNcHwoOUejjxrpqTucPa9qAv7xC7erGz2FrDQIkZyv39gI2XPEStkdrYJy-Ia1lWLyCH18qfU8G5S8SQCXkElNwlBkZomkNNEikbQdwVxFd5KQBJVaOHFblPFzlsxpfQUpPMCIlB7OKjGfhIJ_MinpkcnkwJE179S24eJQV34ZeURbuNRCP0Qem_xoDV0xskyTlLufSS43K4ZkyfRDdama2bXIeuDZusvqwPY6yVgbZQxn0ga6emjdNPv4zfxAEtZobWnTXA2V1nbU7PosxDDDOeW6tklZyw7yMmN_zQu5pw0QfdjoxZ63dWGRrLX_z79sf4Onk_PQkOzmaHr-FZ-HrmsLQDvSW1Z17h6HS0rxv9ZPA98feEn8AEl4l_A |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=E3S+web+of+conferences&rft.atitle=Gray+Box+Time+Variant+Clogging+behaviour+and+Pressure+Drop+Prediction+of+the+Air+Filter+in+the+HVAC+System&rft.au=Alimohammadi%2C+Hossein&rft.au=Vassiljeva%2C+Kristina&rft.au=Petlenkov%2C+Eduard&rft.au=Thalfeldt%2C+Martin&rft.date=2021-01-01&rft.pub=EDP+Sciences&rft.issn=2555-0403&rft.eissn=2267-1242&rft.volume=246&rft_id=info:doi/10.1051%2Fe3sconf%2F202124610002 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2267-1242&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2267-1242&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2267-1242&client=summon |