Neuromorphic sensorimotor loop embodied by monolithically integrated, low-voltage, soft e-skin
Artificial skin that simultaneously mimics sensory feedback and mechanical properties of natural skin holds substantial promise for next-generation robotic and medical devices. However, achieving such a biomimetic system that can seamlessly integrate with the human body remains a challenge. Through...
Saved in:
Published in | Science (American Association for the Advancement of Science) Vol. 380; no. 6646; pp. 735 - 742 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
The American Association for the Advancement of Science
19.05.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Artificial skin that simultaneously mimics sensory feedback and mechanical properties of natural skin holds substantial promise for next-generation robotic and medical devices. However, achieving such a biomimetic system that can seamlessly integrate with the human body remains a challenge. Through rational design and engineering of material properties, device structures, and system architectures, we realized a monolithic soft prosthetic electronic skin (e-skin). It is capable of multimodal perception, neuromorphic pulse-train signal generation, and closed-loop actuation. With a trilayer, high-permittivity elastomeric dielectric, we achieved a low subthreshold swing comparable to that of polycrystalline silicon transistors, a low operation voltage, low power consumption, and medium-scale circuit integration complexity for stretchable organic devices. Our e-skin mimics the biological sensorimotor loop, whereby a solid-state synaptic transistor elicits stronger actuation when a stimulus of increasing pressure is applied.
Our skin provides a protective layer for our bodies, but it also enables detailed sensory feedback and soft interactions with our surroundings. Wang
et al
. devised a prosthetic electronic skin that incorporates organic semiconductor transistors and has no rigid components, thus mimicking the mechanical aspects of real skin (see the Perspective by Sekitani). At the same time, it can sense external stimuli such as temperature and pressure and encode these stimuli into electrical pulses. The authors showed that the prosthetic skin could evoke neuronal firings at the motor cortex in a rat in vivo, which triggered toe twitching. —Marc S. Lavine
A neuromorphic e-skin system simultaneously emulates closed-loop sensory encoding and mechanical softness of natural skin. |
---|---|
AbstractList | Artificial skin that simultaneously mimics sensory feedback and mechanical properties of natural skin holds substantial promise for next-generation robotic and medical devices. However, achieving such a biomimetic system that can seamlessly integrate with the human body remains a challenge. Through rational design and engineering of material properties, device structures, and system architectures, we realized a monolithic soft prosthetic electronic skin (e-skin). It is capable of multimodal perception, neuromorphic pulse-train signal generation, and closed-loop actuation. With a trilayer, high-permittivity elastomeric dielectric, we achieved a low subthreshold swing comparable to that of polycrystalline silicon transistors, a low operation voltage, low power consumption, and medium-scale circuit integration complexity for stretchable organic devices. Our e-skin mimics the biological sensorimotor loop, whereby a solid-state synaptic transistor elicits stronger actuation when a stimulus of increasing pressure is applied. Editor’s summaryOur skin provides a protective layer for our bodies, but it also enables detailed sensory feedback and soft interactions with our surroundings. Wang et al. devised a prosthetic electronic skin that incorporates organic semiconductor transistors and has no rigid components, thus mimicking the mechanical aspects of real skin (see the Perspective by Sekitani). At the same time, it can sense external stimuli such as temperature and pressure and encode these stimuli into electrical pulses. The authors showed that the prosthetic skin could evoke neuronal firings at the motor cortex in a rat in vivo, which triggered toe twitching. —Marc S. Lavine Artificial skin that simultaneously mimics sensory feedback and mechanical properties of natural skin holds substantial promise for next-generation robotic and medical devices. However, achieving such a biomimetic system that can seamlessly integrate with the human body remains a challenge. Through rational design and engineering of material properties, device structures, and system architectures, we realized a monolithic soft prosthetic electronic skin (e-skin). It is capable of multimodal perception, neuromorphic pulse-train signal generation, and closed-loop actuation. With a trilayer, high-permittivity elastomeric dielectric, we achieved a low subthreshold swing comparable to that of polycrystalline silicon transistors, a low operation voltage, low power consumption, and medium-scale circuit integration complexity for stretchable organic devices. Our e-skin mimics the biological sensorimotor loop, whereby a solid-state synaptic transistor elicits stronger actuation when a stimulus of increasing pressure is applied. Our skin provides a protective layer for our bodies, but it also enables detailed sensory feedback and soft interactions with our surroundings. Wang et al . devised a prosthetic electronic skin that incorporates organic semiconductor transistors and has no rigid components, thus mimicking the mechanical aspects of real skin (see the Perspective by Sekitani). At the same time, it can sense external stimuli such as temperature and pressure and encode these stimuli into electrical pulses. The authors showed that the prosthetic skin could evoke neuronal firings at the motor cortex in a rat in vivo, which triggered toe twitching. —Marc S. Lavine A neuromorphic e-skin system simultaneously emulates closed-loop sensory encoding and mechanical softness of natural skin. Artificial skin that simultaneously mimics sensory feedback and mechanical properties of natural skin holds substantial promise for next-generation robotic and medical devices. However, achieving such a biomimetic system that can seamlessly integrate with the human body remains a challenge. Through rational design and engineering of material properties, device structures, and system architectures, we realized a monolithic soft prosthetic electronic skin (e-skin). It is capable of multimodal perception, neuromorphic pulse-train signal generation, and closed-loop actuation. With a trilayer, high-permittivity elastomeric dielectric, we achieved a low subthreshold swing comparable to that of polycrystalline silicon transistors, a low operation voltage, low power consumption, and medium-scale circuit integration complexity for stretchable organic devices. Our e-skin mimics the biological sensorimotor loop, whereby a solid-state synaptic transistor elicits stronger actuation when a stimulus of increasing pressure is applied.Artificial skin that simultaneously mimics sensory feedback and mechanical properties of natural skin holds substantial promise for next-generation robotic and medical devices. However, achieving such a biomimetic system that can seamlessly integrate with the human body remains a challenge. Through rational design and engineering of material properties, device structures, and system architectures, we realized a monolithic soft prosthetic electronic skin (e-skin). It is capable of multimodal perception, neuromorphic pulse-train signal generation, and closed-loop actuation. With a trilayer, high-permittivity elastomeric dielectric, we achieved a low subthreshold swing comparable to that of polycrystalline silicon transistors, a low operation voltage, low power consumption, and medium-scale circuit integration complexity for stretchable organic devices. Our e-skin mimics the biological sensorimotor loop, whereby a solid-state synaptic transistor elicits stronger actuation when a stimulus of increasing pressure is applied. |
Author | Lai, Jian-Cheng Gong, Huaxin Niu, Simiao Ji, Xiaozhou Nishio, Yuya Zhong, Donglai Yan, Xuzhou Bao, Zhenan Choudhury, Snehashis Zhao, Chuanzhen Xu, Chengyi Wang, Weichen Li, Deling Lin, Qing Zhang, Zhitao Zheng, Yu Lyu, Hao Kim, Jingwan Jiang, Yuanwen Tok, Jeffrey B.-H. Shih, Chien-Chung Wang, Yi-Xuan Ning, Rui Kim, Yun-Hi |
Author_xml | – sequence: 1 givenname: Weichen orcidid: 0000-0001-7891-4089 surname: Wang fullname: Wang, Weichen organization: Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305, USA – sequence: 2 givenname: Yuanwen orcidid: 0000-0002-2056-2639 surname: Jiang fullname: Jiang, Yuanwen organization: Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA – sequence: 3 givenname: Donglai orcidid: 0000-0002-0876-414X surname: Zhong fullname: Zhong, Donglai organization: Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA – sequence: 4 givenname: Zhitao orcidid: 0000-0003-1836-5609 surname: Zhang fullname: Zhang, Zhitao organization: Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA – sequence: 5 givenname: Snehashis surname: Choudhury fullname: Choudhury, Snehashis organization: Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA – sequence: 6 givenname: Jian-Cheng orcidid: 0000-0001-9290-678X surname: Lai fullname: Lai, Jian-Cheng organization: Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA – sequence: 7 givenname: Huaxin orcidid: 0000-0002-2493-0793 surname: Gong fullname: Gong, Huaxin organization: Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA – sequence: 8 givenname: Simiao orcidid: 0000-0003-1973-2204 surname: Niu fullname: Niu, Simiao organization: Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA – sequence: 9 givenname: Xuzhou orcidid: 0000-0002-6114-5743 surname: Yan fullname: Yan, Xuzhou organization: Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA – sequence: 10 givenname: Yu surname: Zheng fullname: Zheng, Yu organization: Department of Chemistry, Stanford University, Stanford, CA 94305, USA – sequence: 11 givenname: Chien-Chung orcidid: 0000-0001-9179-937X surname: Shih fullname: Shih, Chien-Chung organization: Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA – sequence: 12 givenname: Rui surname: Ning fullname: Ning, Rui organization: Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305, USA – sequence: 13 givenname: Qing orcidid: 0000-0002-9274-348X surname: Lin fullname: Lin, Qing organization: Department of Electrical Engineering, Stanford University, Stanford, CA 94305, USA – sequence: 14 givenname: Deling orcidid: 0000-0002-4300-7136 surname: Li fullname: Li, Deling organization: Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University, Stanford, CA 94305, USA., Department of Neurosurgery, Beijing Tiantan Hospital, Beijing Neurosurgical Institute, Capital Medical University, Beijing 100070, China – sequence: 15 givenname: Yun-Hi orcidid: 0000-0001-8856-4414 surname: Kim fullname: Kim, Yun-Hi organization: Department of Chemistry and RINS, Gyeongsang National University, Jinju 660-701, South Korea – sequence: 16 givenname: Jingwan orcidid: 0009-0003-2595-5014 surname: Kim fullname: Kim, Jingwan organization: Department of Chemistry and RINS, Gyeongsang National University, Jinju 660-701, South Korea – sequence: 17 givenname: Yi-Xuan orcidid: 0000-0003-4462-9532 surname: Wang fullname: Wang, Yi-Xuan organization: Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA – sequence: 18 givenname: Chuanzhen orcidid: 0000-0003-0162-1231 surname: Zhao fullname: Zhao, Chuanzhen organization: Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA – sequence: 19 givenname: Chengyi surname: Xu fullname: Xu, Chengyi organization: Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA – sequence: 20 givenname: Xiaozhou orcidid: 0000-0001-9472-0807 surname: Ji fullname: Ji, Xiaozhou organization: Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA – sequence: 21 givenname: Yuya orcidid: 0000-0002-0028-5507 surname: Nishio fullname: Nishio, Yuya organization: Department of Electrical Engineering, Stanford University, Stanford, CA 94305, USA – sequence: 22 givenname: Hao orcidid: 0000-0001-7393-2456 surname: Lyu fullname: Lyu, Hao organization: Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA – sequence: 23 givenname: Jeffrey B.-H. orcidid: 0000-0002-2794-0663 surname: Tok fullname: Tok, Jeffrey B.-H. organization: Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA – sequence: 24 givenname: Zhenan orcidid: 0000-0002-0972-1715 surname: Bao fullname: Bao, Zhenan organization: Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37200416$$D View this record in MEDLINE/PubMed |
BookMark | eNp10U1v1DAQBmALtaLbwpkbisSFQ9OO43w4R1SVD6lqL-VKNLHHxSXxLLYD2n9PVl04VOLkwzzvyJr3VBwFDiTEGwkXUlbtZTKegqELtASg2xdiI6Fvyr4CdSQ2AKotNXTNiThN6RFgnfXqpThRXQVQy3Yjvt3SEnnmuP3uTZEoJI5-5syxmJi3Bc0jW0-2GHfFzIEnn1eI07QrfMj0EDGTPV_t7_IXTxkf6LxI7HJBZfrhwytx7HBK9PrwnomvH6_vrz6XN3efvlx9uCmN6mUuHYIdVS1710qldeXQVmgAJYClztXGmg572dpWOVejBum0AtQjykYp1OpMvH_au438c6GUh9knQ9OEgXhJQ6Vl2zW9VvVK3z2jj7zEsP5ur-q-UrraL3x7UMs4kx2261Uw7oa_l1vB5RMwkVOK5P4RCcO-m-HQzXDoZk00zxLGZ8yeQ47op__m_gCvhpdM |
CitedBy_id | crossref_primary_10_1055_s_0044_1779028 crossref_primary_10_1016_j_mtchem_2024_102223 crossref_primary_10_1002_anie_202420602 crossref_primary_10_1038_s41467_024_44723_3 crossref_primary_10_1073_pnas_2407971121 crossref_primary_10_1039_D4TB00782D crossref_primary_10_20517_ss_2023_33 crossref_primary_10_20517_ss_2024_01 crossref_primary_10_1021_acs_chemrev_4c00513 crossref_primary_10_3390_biomedicines12102307 crossref_primary_10_1007_s12274_024_6566_8 crossref_primary_10_1038_s41467_025_56393_w crossref_primary_10_1021_acs_chemrev_4c00631 crossref_primary_10_1039_D4MH00522H crossref_primary_10_1002_adfm_202411331 crossref_primary_10_1146_annurev_bioeng_103122_032652 crossref_primary_10_1002_adma_202313603 crossref_primary_10_1016_j_cej_2024_155237 crossref_primary_10_1021_acs_analchem_4c01354 crossref_primary_10_1021_acsnano_3c12216 crossref_primary_10_1002_adfm_202407642 crossref_primary_10_1002_adma_202407329 crossref_primary_10_1021_acsami_4c04349 crossref_primary_10_1126_sciadv_adt4839 crossref_primary_10_3390_polym16233287 crossref_primary_10_1016_j_nanoen_2024_109521 crossref_primary_10_1038_s41467_024_47026_9 crossref_primary_10_1016_j_cej_2024_151798 crossref_primary_10_1063_5_0152290 crossref_primary_10_20517_ss_2024_12 crossref_primary_10_3788_AOS241489 crossref_primary_10_1002_adma_202418108 crossref_primary_10_1002_ange_202418949 crossref_primary_10_1021_jacs_3c12653 crossref_primary_10_1109_JSEN_2024_3351998 crossref_primary_10_1021_acsnano_3c06209 crossref_primary_10_1016_j_optlastec_2024_111040 crossref_primary_10_1038_s41467_024_47851_y crossref_primary_10_1063_5_0181949 crossref_primary_10_1002_adfm_202410597 crossref_primary_10_1088_2631_7990_ad9c00 crossref_primary_10_1073_pnas_2414879122 crossref_primary_10_1016_j_cej_2025_161886 crossref_primary_10_1016_j_ijbiomac_2024_136836 crossref_primary_10_1016_j_nanoen_2023_108964 crossref_primary_10_1002_smm2_1248 crossref_primary_10_1016_j_nanoen_2024_109999 crossref_primary_10_1016_j_xinn_2024_100616 crossref_primary_10_1016_j_apmt_2025_102638 crossref_primary_10_1021_acsphotonics_4c02114 crossref_primary_10_1016_j_cej_2024_151529 crossref_primary_10_1016_j_scib_2024_04_070 crossref_primary_10_1186_s40580_024_00472_z crossref_primary_10_1002_advs_202402767 crossref_primary_10_1002_adfm_202402520 crossref_primary_10_1002_pssa_202300281 crossref_primary_10_1002_admt_202400849 crossref_primary_10_1038_s41467_024_51674_2 crossref_primary_10_1002_aelm_202400532 crossref_primary_10_1016_j_apsusc_2024_161050 crossref_primary_10_1021_acsapm_4c03999 crossref_primary_10_1016_j_cej_2025_161618 crossref_primary_10_1016_j_compositesb_2024_112110 crossref_primary_10_1016_j_jcis_2024_01_041 crossref_primary_10_1021_acsnano_5c01406 crossref_primary_10_1021_acsmaterialslett_4c01425 crossref_primary_10_1021_acsami_4c12066 crossref_primary_10_1039_D3MH00858D crossref_primary_10_1002_bkcs_12908 crossref_primary_10_1038_s41467_024_49907_5 crossref_primary_10_1002_anie_202415000 crossref_primary_10_1021_acs_jpclett_4c00869 crossref_primary_10_1016_j_eurpolymj_2024_113024 crossref_primary_10_1002_admt_202301458 crossref_primary_10_1038_s41467_023_44064_7 crossref_primary_10_1016_j_wees_2024_07_003 crossref_primary_10_1021_acsnano_4c14285 crossref_primary_10_1039_D4MH00543K crossref_primary_10_1039_D4TA04996A crossref_primary_10_1002_adhm_202304321 crossref_primary_10_1007_s40843_024_3267_9 crossref_primary_10_1002_adfm_202309861 crossref_primary_10_1016_j_cej_2024_153141 crossref_primary_10_1021_acsaelm_5c00070 crossref_primary_10_1021_acs_chemrev_4c00049 crossref_primary_10_1038_s44222_024_00194_1 crossref_primary_10_1016_j_nanoen_2023_108989 crossref_primary_10_1021_acsami_4c09589 crossref_primary_10_1016_j_cej_2025_161620 crossref_primary_10_1016_j_device_2024_100561 crossref_primary_10_34133_research_0424 crossref_primary_10_1002_ange_202415000 crossref_primary_10_1002_rpm_20230022 crossref_primary_10_1016_j_snb_2024_136975 crossref_primary_10_3390_gels10110715 crossref_primary_10_1021_acs_macromol_4c01684 crossref_primary_10_1016_j_sna_2024_115519 crossref_primary_10_1038_s41378_024_00825_y crossref_primary_10_1002_adma_202409942 crossref_primary_10_1002_smtd_202401156 crossref_primary_10_1007_s11814_023_1578_9 crossref_primary_10_1039_D4MH00174E crossref_primary_10_1002_adma_202313089 crossref_primary_10_1002_adfm_202414489 crossref_primary_10_1021_acsnano_3c04089 crossref_primary_10_1039_D4MH01166J crossref_primary_10_1021_acsami_3c17805 crossref_primary_10_1021_acs_chemmater_3c02417 crossref_primary_10_1126_sciadv_ads4388 crossref_primary_10_1002_inf2_12493 crossref_primary_10_1038_s41467_024_51403_9 crossref_primary_10_3390_nano15050348 crossref_primary_10_1021_acsami_4c22118 crossref_primary_10_1038_s41467_024_55670_4 crossref_primary_10_1002_adfm_202312692 crossref_primary_10_1021_acsnano_3c11281 crossref_primary_10_1002_admt_202401365 crossref_primary_10_1002_idm2_12223 crossref_primary_10_1038_s41528_024_00316_0 crossref_primary_10_3390_s24154915 crossref_primary_10_1039_D3CS00918A crossref_primary_10_1002_adma_202407654 crossref_primary_10_1002_adfm_202401607 crossref_primary_10_1007_s44258_024_00027_1 crossref_primary_10_1007_s40820_024_01349_w crossref_primary_10_1016_j_mtphys_2024_101562 crossref_primary_10_1021_acs_nanolett_4c03896 crossref_primary_10_1016_j_wees_2024_03_002 crossref_primary_10_1063_5_0204104 crossref_primary_10_1002_adfm_202504456 crossref_primary_10_1016_j_compscitech_2024_110769 crossref_primary_10_1002_adma_202415151 crossref_primary_10_1002_inf2_70001 crossref_primary_10_1016_j_bios_2025_117317 crossref_primary_10_1016_j_bios_2024_116625 crossref_primary_10_1063_5_0231127 crossref_primary_10_1002_anie_202418949 crossref_primary_10_1002_dro2_133 crossref_primary_10_1039_D4EE01993H crossref_primary_10_1186_s42490_024_00084_y crossref_primary_10_1021_acsami_3c06681 crossref_primary_10_1021_acssensors_4c01061 crossref_primary_10_1002_adfm_202313645 crossref_primary_10_1007_s40820_024_01532_z crossref_primary_10_1016_j_orgel_2025_107199 crossref_primary_10_1021_acsami_3c17343 crossref_primary_10_1038_s41467_023_42240_3 crossref_primary_10_1021_acsanm_5c00196 crossref_primary_10_1021_acs_chemrev_3c00374 crossref_primary_10_1002_advs_202405828 crossref_primary_10_1016_j_nanoen_2024_109424 crossref_primary_10_1126_science_adg0059 crossref_primary_10_1002_adfm_202412649 crossref_primary_10_1002_adma_202409258 crossref_primary_10_1016_j_taml_2024_100566 crossref_primary_10_1016_j_carbon_2024_119234 crossref_primary_10_1021_acs_nanolett_4c02583 crossref_primary_10_1002_adfm_202404333 crossref_primary_10_1002_admt_202301933 crossref_primary_10_1088_2631_7990_acfd69 crossref_primary_10_3390_biomimetics10030130 crossref_primary_10_1002_adfm_202415595 crossref_primary_10_1002_smll_202311527 crossref_primary_10_1126_science_adf0262 crossref_primary_10_1021_acs_chemrev_4c00369 crossref_primary_10_1016_j_cej_2024_155766 crossref_primary_10_1039_D4TC00855C crossref_primary_10_1039_D3TC04556K crossref_primary_10_1002_adma_202411572 crossref_primary_10_1039_D3MH02202A crossref_primary_10_1002_smtd_202402164 crossref_primary_10_1016_j_nanoen_2024_109899 crossref_primary_10_1038_s41467_024_51609_x crossref_primary_10_1021_acs_nanolett_4c04650 crossref_primary_10_1016_j_wees_2024_09_004 crossref_primary_10_1126_sciadv_adu3146 crossref_primary_10_1016_j_scib_2024_04_011 crossref_primary_10_1039_D4MH00574K crossref_primary_10_1002_smll_202407143 crossref_primary_10_1038_s41467_025_58033_9 crossref_primary_10_1002_adma_202312473 crossref_primary_10_1002_flm2_27 crossref_primary_10_1021_acsapm_4c02007 crossref_primary_10_1002_adfm_202415415 crossref_primary_10_1002_flm2_26 crossref_primary_10_1016_j_cej_2024_155513 crossref_primary_10_1016_j_jcis_2025_137417 crossref_primary_10_1126_sciadv_adp0730 crossref_primary_10_1016_j_sna_2023_114589 crossref_primary_10_1002_adfm_202405722 crossref_primary_10_1063_5_0217297 crossref_primary_10_1016_j_nanoen_2024_109593 crossref_primary_10_1088_2631_7990_ad492e crossref_primary_10_1038_s44287_024_00081_2 crossref_primary_10_1021_acssensors_3c01204 crossref_primary_10_1002_adma_202305707 crossref_primary_10_1038_s41928_024_01236_7 crossref_primary_10_1039_D3TC04821G crossref_primary_10_3390_mi15091115 crossref_primary_10_1039_D4SM00195H crossref_primary_10_34133_cbsystems_0105 crossref_primary_10_1038_s41586_024_07096_7 crossref_primary_10_1038_s41528_025_00390_y crossref_primary_10_20517_microstructures_2024_56 crossref_primary_10_1039_D4CE00031E crossref_primary_10_1021_acs_macromol_4c02596 crossref_primary_10_1002_wnan_1961 crossref_primary_10_1021_acs_nanolett_4c01163 crossref_primary_10_1039_D4MH01848F crossref_primary_10_1126_sciadv_ads1136 crossref_primary_10_1002_adma_202416897 crossref_primary_10_1016_j_bioactmat_2024_04_011 crossref_primary_10_1007_s42242_024_00302_5 crossref_primary_10_1016_j_carbpol_2025_123439 crossref_primary_10_3390_agriculture14111977 crossref_primary_10_1021_acs_nanolett_3c02836 crossref_primary_10_1039_D4CS00541D crossref_primary_10_1002_adma_202311288 crossref_primary_10_1002_adma_202313228 crossref_primary_10_1016_j_wees_2024_05_001 crossref_primary_10_1002_adfm_202307729 crossref_primary_10_1002_adma_202406977 crossref_primary_10_1364_OE_496427 crossref_primary_10_1007_s40820_024_01575_2 crossref_primary_10_1038_s41467_024_50894_w crossref_primary_10_1109_TED_2024_3439503 crossref_primary_10_1002_adfm_202316375 crossref_primary_10_1002_adma_202411082 crossref_primary_10_1016_j_compositesb_2025_112390 crossref_primary_10_1038_s41467_024_46393_7 crossref_primary_10_1038_s41578_023_00622_5 crossref_primary_10_1021_acs_nanolett_4c06189 crossref_primary_10_3390_bios15010037 crossref_primary_10_1002_ange_202420602 crossref_primary_10_1016_j_device_2024_100600 crossref_primary_10_1126_sciadv_adm9322 crossref_primary_10_1002_advs_202409568 crossref_primary_10_1016_j_compositesa_2024_108274 crossref_primary_10_1016_j_mtphys_2024_101588 crossref_primary_10_1039_D3FD00152K crossref_primary_10_1002_smll_202405301 crossref_primary_10_1109_LED_2024_3477598 crossref_primary_10_1021_acsnano_4c03554 crossref_primary_10_1039_D4NR03423F crossref_primary_10_1021_acsami_3c12127 crossref_primary_10_1021_acs_chemrev_4c00571 crossref_primary_10_1002_adfm_202312988 crossref_primary_10_1002_smll_202407957 crossref_primary_10_1016_j_cej_2025_159703 crossref_primary_10_1038_s41928_024_01235_8 crossref_primary_10_1039_D3TC04104B crossref_primary_10_1016_j_cej_2025_161344 crossref_primary_10_1038_s44222_024_00175_4 crossref_primary_10_1109_TED_2024_3377188 crossref_primary_10_1039_D4MH01466A crossref_primary_10_1021_acsami_4c19473 crossref_primary_10_1038_s41528_024_00346_8 crossref_primary_10_1021_acs_chemrev_3c00502 crossref_primary_10_1002_admt_202400661 crossref_primary_10_3390_biomedicines11123195 crossref_primary_10_1016_j_bios_2024_116444 crossref_primary_10_1016_j_device_2024_100436 crossref_primary_10_1038_d41586_024_03675_w crossref_primary_10_1038_s44222_024_00262_6 crossref_primary_10_1109_ACCESS_2024_3387094 crossref_primary_10_1038_s41928_024_01200_5 crossref_primary_10_1016_j_matt_2024_08_024 crossref_primary_10_1002_smll_202406522 crossref_primary_10_1364_OE_498784 crossref_primary_10_1088_1674_4926_24080036 crossref_primary_10_1126_science_adq5978 crossref_primary_10_1002_adfm_202313824 crossref_primary_10_1016_j_cej_2025_161798 crossref_primary_10_1016_j_jmst_2023_11_038 crossref_primary_10_1002_smll_202305951 crossref_primary_10_3390_s23249743 crossref_primary_10_1007_s11814_024_00210_5 crossref_primary_10_1126_science_adf3708 crossref_primary_10_1002_admt_202402052 crossref_primary_10_1002_adma_202401821 crossref_primary_10_1007_s40843_023_2580_2 crossref_primary_10_1021_acsnano_4c14026 crossref_primary_10_1021_acsanm_3c06231 crossref_primary_10_1016_j_device_2024_100426 crossref_primary_10_1038_s42256_024_00904_9 crossref_primary_10_1038_s41467_024_55173_2 crossref_primary_10_1109_TED_2024_3441564 crossref_primary_10_1016_j_cej_2025_160913 crossref_primary_10_1002_admt_202302172 crossref_primary_10_1039_D4TC00704B crossref_primary_10_1016_j_ijbiomac_2024_138934 crossref_primary_10_1016_j_nanoen_2024_109717 crossref_primary_10_1021_acs_nanolett_3c04248 crossref_primary_10_1126_science_adk5556 crossref_primary_10_1002_smm2_1325 crossref_primary_10_1007_s40843_023_2648_5 crossref_primary_10_59717_j_xinn_life_2024_100122 crossref_primary_10_1002_eem2_12767 crossref_primary_10_1002_adma_202308575 crossref_primary_10_1016_j_cej_2024_148980 crossref_primary_10_1126_sciadv_adr4088 crossref_primary_10_1016_j_device_2023_100216 crossref_primary_10_1016_j_device_2024_100658 crossref_primary_10_1016_j_ijmecsci_2025_110007 crossref_primary_10_1002_smll_202409384 crossref_primary_10_1038_s41467_024_47532_w crossref_primary_10_1039_D3NH00570D crossref_primary_10_1016_j_cej_2024_156581 crossref_primary_10_1109_JEDS_2023_3332894 crossref_primary_10_1038_s41467_024_51178_z crossref_primary_10_1063_5_0189061 crossref_primary_10_1021_acs_chemrev_3c00527 crossref_primary_10_1021_acs_nanolett_4c02614 crossref_primary_10_1002_aelm_202400980 crossref_primary_10_1002_adfm_202412244 crossref_primary_10_1002_inf2_12555 crossref_primary_10_1002_adma_202310555 crossref_primary_10_1016_j_matt_2023_12_030 crossref_primary_10_3390_biomimetics9050278 crossref_primary_10_1016_j_nanoen_2024_109701 crossref_primary_10_3390_s25030925 crossref_primary_10_1002_sstr_202300325 crossref_primary_10_1002_adfm_202501677 crossref_primary_10_1016_j_mejo_2024_106543 crossref_primary_10_1002_aelm_202300540 crossref_primary_10_1021_acsmaterialslett_4c00809 crossref_primary_10_20517_ss_2024_77 crossref_primary_10_1016_j_device_2024_100525 crossref_primary_10_1002_smll_202402638 crossref_primary_10_1039_D4IM00048J crossref_primary_10_1016_j_cej_2024_154273 crossref_primary_10_1002_adfm_202402319 crossref_primary_10_1126_scirobotics_adk3925 crossref_primary_10_1002_smsc_202400197 crossref_primary_10_1016_j_device_2025_100707 crossref_primary_10_1016_j_cej_2024_152897 crossref_primary_10_1021_acssensors_4c03193 crossref_primary_10_1039_D3NR06521A crossref_primary_10_1063_5_0205138 crossref_primary_10_1126_sciadv_abq0997 crossref_primary_10_1021_prechem_4c00053 crossref_primary_10_1038_s41467_024_47641_6 crossref_primary_10_1021_acsami_5c01011 |
Cites_doi | 10.1126/science.aao0098 10.1038/nature21004 10.1038/s41583-021-00489-x 10.1021/acsmaterialslett.1c00586 10.1002/adma.201501828 10.1016/j.neuron.2018.08.033 10.1002/adma.201302240 10.1109/TED.2020.3017718 10.1021/acs.chemmater.7b03019 10.1063/1.4811271 10.1016/B978-012170960-0/50022-0 10.1038/s41467-020-18025-3 10.1016/j.apsusc.2018.06.005 10.1038/nmat2835 10.1109/TED.2017.2718730 10.1002/pi.6020 10.1002/adma.202003014 10.1021/acsaelm.1c00062 10.1109/LED.2011.2171914 10.1016/j.jnoncrysol.2005.10.065 10.1126/science.aaa9306 10.1126/science.abc9735 10.1021/acsami.7b06765 10.1109/LED.2020.2985787 10.1038/s41467-020-15105-2 10.1126/science.abh3551 10.1038/ncomms8647 10.1021/acs.chemmater.8b02388 10.1021/acsnano.6b07190 10.1109/LED.2011.2175357 10.1126/scirobotics.aat3818 10.1126/science.aaw1974 10.1126/science.aah4496 10.1021/jacs.6b02428 10.1109/ICICDT.2009.5166290 10.1126/science.aaj1628 10.1038/s41467-019-10145-9 10.1038/s41551-019-0480-6 10.1073/pnas.0401918101 10.1038/s41563-019-0340-5 10.1002/adma.201305462 10.1039/D0TC02363A 10.1143/JJAP.50.03CB03 10.1016/j.kjms.2011.10.016 10.1021/acs.chemrev.8b00045 10.1109/LED.2018.2798061 10.1038/s41467-021-22680-5 10.1002/adma.200501152 10.1126/science.1182383 10.1038/s41467-021-26120-2 10.1126/scirobotics.aax2198 10.1016/j.nanoen.2018.07.008 10.1073/pnas.1909532117 10.1109/TED.2017.2682881 10.1126/sciadv.1700159 10.1002/aenm.201801003 10.1038/nmat4671 10.1038/s41928-021-00557-1 10.1126/sciadv.aat7387 10.1126/sciadv.aav5749 10.1039/D0NR05486K 10.7554/eLife.01488 10.1038/s41467-019-10569-3 10.1038/nrn2621 10.1038/s41928-021-00585-x 10.1016/j.giant.2021.100060 10.1038/s41467-021-25719-9 10.3390/nano12030305 10.1002/aelm.201600477 10.1038/s41928-020-00525-1 10.1126/science.abj7564 10.1126/science.aba5132 10.1126/scirobotics.abl7344 10.1038/s41467-019-13362-4 10.1109/LED.2011.2160931 10.1038/s41928-020-00513-5 10.1109/LED.2019.2933838 10.1038/nature02987 10.1002/adfm.201905340 10.1038/ncomms2573 10.1038/nature20102 10.1088/0022-3727/32/14/201 10.1038/nature11076 10.1126/sciadv.aav3097 10.1038/s41928-018-0056-6 10.1088/1361-6528/ab703f 10.1038/s41467-020-17084-w 10.1126/science.abd0380 10.1038/s41928-018-0041-0 10.1038/nature25494 |
ContentType | Journal Article |
Copyright | Copyright © 2023 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works |
Copyright_xml | – notice: Copyright © 2023 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QF 7QG 7QL 7QP 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7SS 7T7 7TA 7TB 7TK 7TM 7U5 7U9 8BQ 8FD C1K F28 FR3 H8D H8G H94 JG9 JQ2 K9. KR7 L7M L~C L~D M7N P64 RC3 7X8 |
DOI | 10.1126/science.ade0086 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Aluminium Industry Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Ecology Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Entomology Abstracts (Full archive) Industrial and Applied Microbiology Abstracts (Microbiology A) Materials Business File Mechanical & Transportation Engineering Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Solid State and Superconductivity Abstracts Virology and AIDS Abstracts METADEX Technology Research Database Environmental Sciences and Pollution Management ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library AIDS and Cancer Research Abstracts Materials Research Database ProQuest Computer Science Collection ProQuest Health & Medical Complete (Alumni) Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Nucleic Acids Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Health & Medical Complete (Alumni) Materials Business File Environmental Sciences and Pollution Management Aerospace Database Copper Technical Reference Library Engineered Materials Abstracts Genetics Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Civil Engineering Abstracts Aluminium Industry Abstracts Virology and AIDS Abstracts Electronics & Communications Abstracts Ceramic Abstracts Ecology Abstracts Neurosciences Abstracts METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Entomology Abstracts Animal Behavior Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Corrosion Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE Materials Research Database CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) Biology |
EISSN | 1095-9203 |
EndPage | 742 |
ExternalDocumentID | 37200416 10_1126_science_ade0086 |
Genre | Journal Article |
GroupedDBID | --- --Z -DZ -ET -~X .-4 ..I .55 .DC 08G 0R~ 0WA 123 18M 2FS 2KS 2WC 2XV 34G 36B 39C 3R3 53G 5RE 66. 6OB 6TJ 7X2 7~K 85S 8F7 AABCJ AACGO AAIKC AAMNW AANCE AAWTO AAYXX ABCQX ABDBF ABDQB ABEFU ABIVO ABJNI ABOCM ABPLY ABPPZ ABQIJ ABTLG ABWJO ABZEH ACBEA ACBEC ACGFO ACGFS ACGOD ACIWK ACMJI ACNCT ACPRK ACQOY ACUHS ADDRP ADUKH ADXHL AEGBM AENEX AETEA AFBNE AFFNX AFHKK AFQFN AFRAH AGFXO AGNAY AGSOS AHMBA AIDAL AIDUJ AJGZS ALIPV ALMA_UNASSIGNED_HOLDINGS ALSLI ASPBG AVWKF BKF BLC C45 CITATION CS3 DB2 DU5 EBS EMOBN F5P FA8 FEDTE HZ~ I.T IAO IEA IGS IH2 IHR INH INR IOF IOV IPO IPY ISE JCF JLS JSG JST K-O KCC L7B LSO LU7 M0P MQT MVM N9A NEJ NHB O9- OCB OFXIZ OGEVE OMK OVD P-O P2P PQQKQ PZZ RHI RXW SC5 SJN TAE TEORI TN5 TWZ UBW UCV UHB UKR UMD UNMZH UQL USG VVN WH7 WI4 X7M XJF XZL Y6R YK4 YKV YNT YOJ YR2 YR5 YRY YSQ YV5 YWH YYP YZZ ZCA ZE2 ~02 ~G0 ~KM ~ZZ CGR CUY CVF ECM EIF GX1 NPM OK1 UIG YCJ YJ6 7QF 7QG 7QL 7QP 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7SS 7T7 7TA 7TB 7TK 7TM 7U5 7U9 8BQ 8FD C1K F28 FR3 H8D H8G H94 JG9 JQ2 K9. KR7 L7M L~C L~D M7N P64 RC3 7X8 |
ID | FETCH-LOGICAL-c391t-fa0db3419f613882fad2ac0a100de7f4cdc7a916d63ff4a801f830a8ba1533a83 |
ISSN | 0036-8075 1095-9203 |
IngestDate | Fri Jul 11 12:31:46 EDT 2025 Fri Jul 25 19:26:28 EDT 2025 Thu Apr 03 06:53:54 EDT 2025 Thu Apr 24 23:11:26 EDT 2025 Tue Jul 01 03:13:55 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6646 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c391t-fa0db3419f613882fad2ac0a100de7f4cdc7a916d63ff4a801f830a8ba1533a83 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-9274-348X 0000-0001-7393-2456 0000-0001-9179-937X 0000-0003-1836-5609 0000-0001-9472-0807 0009-0003-2595-5014 0000-0003-0162-1231 0000-0002-2056-2639 0000-0002-4300-7136 0000-0002-2794-0663 0000-0002-6114-5743 0000-0002-0876-414X 0000-0001-7891-4089 0000-0001-9290-678X 0000-0001-8856-4414 0000-0002-0028-5507 0000-0002-2493-0793 0000-0003-1973-2204 0000-0003-4462-9532 0000-0002-0972-1715 |
PMID | 37200416 |
PQID | 2814923828 |
PQPubID | 1256 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_2816759834 proquest_journals_2814923828 pubmed_primary_37200416 crossref_primary_10_1126_science_ade0086 crossref_citationtrail_10_1126_science_ade0086 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-05-19 20230519 |
PublicationDateYYYYMMDD | 2023-05-19 |
PublicationDate_xml | – month: 05 year: 2023 text: 2023-05-19 day: 19 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationTitle | Science (American Association for the Advancement of Science) |
PublicationTitleAlternate | Science |
PublicationYear | 2023 |
Publisher | The American Association for the Advancement of Science |
Publisher_xml | – name: The American Association for the Advancement of Science |
References | e_1_3_2_26_2 e_1_3_2_49_2 e_1_3_2_28_2 e_1_3_2_41_2 e_1_3_2_64_2 e_1_3_2_87_2 e_1_3_2_43_2 e_1_3_2_62_2 e_1_3_2_85_2 e_1_3_2_22_2 e_1_3_2_45_2 e_1_3_2_68_2 e_1_3_2_24_2 e_1_3_2_47_2 e_1_3_2_66_2 e_1_3_2_89_2 e_1_3_2_60_2 e_1_3_2_83_2 e_1_3_2_81_2 Fang H. (e_1_3_2_20_2) 2017; 1 e_1_3_2_9_2 e_1_3_2_16_2 e_1_3_2_37_2 e_1_3_2_7_2 e_1_3_2_18_2 e_1_3_2_39_2 e_1_3_2_54_2 e_1_3_2_75_2 e_1_3_2_10_2 e_1_3_2_31_2 e_1_3_2_52_2 e_1_3_2_73_2 e_1_3_2_5_2 e_1_3_2_12_2 e_1_3_2_33_2 e_1_3_2_58_2 e_1_3_2_79_2 e_1_3_2_3_2 e_1_3_2_14_2 e_1_3_2_35_2 e_1_3_2_56_2 e_1_3_2_77_2 e_1_3_2_92_2 e_1_3_2_94_2 e_1_3_2_50_2 e_1_3_2_71_2 e_1_3_2_90_2 e_1_3_2_27_2 e_1_3_2_48_2 e_1_3_2_29_2 e_1_3_2_40_2 e_1_3_2_65_2 e_1_3_2_86_2 e_1_3_2_21_2 e_1_3_2_42_2 e_1_3_2_63_2 e_1_3_2_84_2 e_1_3_2_23_2 e_1_3_2_44_2 e_1_3_2_69_2 e_1_3_2_25_2 e_1_3_2_46_2 e_1_3_2_67_2 e_1_3_2_88_2 e_1_3_2_61_2 e_1_3_2_82_2 e_1_3_2_80_2 e_1_3_2_15_2 e_1_3_2_38_2 e_1_3_2_8_2 e_1_3_2_17_2 e_1_3_2_59_2 e_1_3_2_6_2 e_1_3_2_19_2 e_1_3_2_30_2 e_1_3_2_53_2 e_1_3_2_76_2 e_1_3_2_32_2 e_1_3_2_51_2 e_1_3_2_74_2 e_1_3_2_11_2 e_1_3_2_34_2 e_1_3_2_57_2 e_1_3_2_4_2 e_1_3_2_13_2 e_1_3_2_36_2 e_1_3_2_55_2 e_1_3_2_78_2 e_1_3_2_2_2 e_1_3_2_91_2 e_1_3_2_93_2 e_1_3_2_72_2 e_1_3_2_70_2 37316741 - Nat Biotechnol. 2023 Jun;41(6):766 |
References_xml | – ident: e_1_3_2_11_2 doi: 10.1126/science.aao0098 – ident: e_1_3_2_18_2 doi: 10.1038/nature21004 – ident: e_1_3_2_2_2 doi: 10.1038/s41583-021-00489-x – ident: e_1_3_2_90_2 doi: 10.1021/acsmaterialslett.1c00586 – ident: e_1_3_2_69_2 doi: 10.1002/adma.201501828 – ident: e_1_3_2_6_2 doi: 10.1016/j.neuron.2018.08.033 – ident: e_1_3_2_16_2 doi: 10.1002/adma.201302240 – ident: e_1_3_2_77_2 doi: 10.1109/TED.2020.3017718 – ident: e_1_3_2_52_2 doi: 10.1021/acs.chemmater.7b03019 – ident: e_1_3_2_83_2 doi: 10.1063/1.4811271 – ident: e_1_3_2_87_2 doi: 10.1016/B978-012170960-0/50022-0 – ident: e_1_3_2_38_2 doi: 10.1038/s41467-020-18025-3 – ident: e_1_3_2_79_2 doi: 10.1016/j.apsusc.2018.06.005 – ident: e_1_3_2_22_2 doi: 10.1038/nmat2835 – ident: e_1_3_2_82_2 doi: 10.1109/TED.2017.2718730 – ident: e_1_3_2_92_2 doi: 10.1002/pi.6020 – ident: e_1_3_2_9_2 doi: 10.1002/adma.202003014 – ident: e_1_3_2_44_2 doi: 10.1021/acsaelm.1c00062 – ident: e_1_3_2_74_2 doi: 10.1109/LED.2011.2171914 – ident: e_1_3_2_84_2 doi: 10.1016/j.jnoncrysol.2005.10.065 – ident: e_1_3_2_12_2 doi: 10.1126/science.aaa9306 – ident: e_1_3_2_26_2 doi: 10.1126/science.abc9735 – ident: e_1_3_2_49_2 doi: 10.1021/acsami.7b06765 – ident: e_1_3_2_78_2 doi: 10.1109/LED.2020.2985787 – ident: e_1_3_2_25_2 doi: 10.1038/s41467-020-15105-2 – ident: e_1_3_2_30_2 doi: 10.1126/science.abh3551 – ident: e_1_3_2_67_2 doi: 10.1038/ncomms8647 – ident: e_1_3_2_39_2 – ident: e_1_3_2_55_2 doi: 10.1021/acs.chemmater.8b02388 – ident: e_1_3_2_58_2 doi: 10.1021/acsnano.6b07190 – ident: e_1_3_2_72_2 doi: 10.1109/LED.2011.2175357 – ident: e_1_3_2_4_2 doi: 10.1126/scirobotics.aat3818 – ident: e_1_3_2_24_2 doi: 10.1126/science.aaw1974 – ident: e_1_3_2_42_2 doi: 10.1126/science.aah4496 – ident: e_1_3_2_53_2 doi: 10.1021/jacs.6b02428 – ident: e_1_3_2_71_2 doi: 10.1109/ICICDT.2009.5166290 – ident: e_1_3_2_89_2 doi: 10.1126/science.aaj1628 – ident: e_1_3_2_63_2 doi: 10.1038/s41467-019-10145-9 – ident: e_1_3_2_8_2 doi: 10.1038/s41551-019-0480-6 – ident: e_1_3_2_23_2 doi: 10.1073/pnas.0401918101 – ident: e_1_3_2_28_2 doi: 10.1038/s41563-019-0340-5 – ident: e_1_3_2_48_2 doi: 10.1002/adma.201305462 – ident: e_1_3_2_57_2 doi: 10.1039/D0TC02363A – ident: e_1_3_2_73_2 doi: 10.1143/JJAP.50.03CB03 – ident: e_1_3_2_93_2 doi: 10.1016/j.kjms.2011.10.016 – ident: e_1_3_2_32_2 doi: 10.1021/acs.chemrev.8b00045 – ident: e_1_3_2_76_2 doi: 10.1109/LED.2018.2798061 – ident: e_1_3_2_29_2 doi: 10.1038/s41467-021-22680-5 – ident: e_1_3_2_36_2 doi: 10.1002/adma.200501152 – ident: e_1_3_2_19_2 doi: 10.1126/science.1182383 – ident: e_1_3_2_33_2 doi: 10.1038/s41467-021-26120-2 – ident: e_1_3_2_64_2 doi: 10.1126/scirobotics.aax2198 – ident: e_1_3_2_94_2 doi: 10.1016/j.nanoen.2018.07.008 – ident: e_1_3_2_62_2 doi: 10.1073/pnas.1909532117 – ident: e_1_3_2_81_2 doi: 10.1109/TED.2017.2682881 – volume: 1 start-page: 1 year: 2017 ident: e_1_3_2_20_2 article-title: Capacitively coupled arrays of multiplexed flexible silicon transistors for long-term cardiac electrophysiology publication-title: Nat. Biomed. Eng. – ident: e_1_3_2_70_2 doi: 10.1126/sciadv.1700159 – ident: e_1_3_2_88_2 doi: 10.1002/aenm.201801003 – ident: e_1_3_2_10_2 doi: 10.1038/nmat4671 – ident: e_1_3_2_14_2 doi: 10.1038/s41928-021-00557-1 – ident: e_1_3_2_40_2 doi: 10.1126/sciadv.aat7387 – ident: e_1_3_2_60_2 doi: 10.1126/sciadv.aav5749 – ident: e_1_3_2_68_2 doi: 10.1039/D0NR05486K – ident: e_1_3_2_37_2 doi: 10.7554/eLife.01488 – ident: e_1_3_2_41_2 doi: 10.1038/s41467-019-10569-3 – ident: e_1_3_2_3_2 doi: 10.1038/nrn2621 – ident: e_1_3_2_65_2 doi: 10.1038/s41928-021-00585-x – ident: e_1_3_2_66_2 doi: 10.1016/j.giant.2021.100060 – ident: e_1_3_2_47_2 doi: 10.1038/s41467-021-25719-9 – ident: e_1_3_2_91_2 doi: 10.3390/nano12030305 – ident: e_1_3_2_75_2 – ident: e_1_3_2_54_2 doi: 10.1002/aelm.201600477 – ident: e_1_3_2_56_2 doi: 10.1038/s41928-020-00525-1 – ident: e_1_3_2_27_2 doi: 10.1126/science.abj7564 – ident: e_1_3_2_15_2 doi: 10.1126/science.aba5132 – ident: e_1_3_2_17_2 doi: 10.1126/scirobotics.abl7344 – ident: e_1_3_2_61_2 doi: 10.1038/s41467-019-13362-4 – ident: e_1_3_2_80_2 doi: 10.1109/LED.2011.2160931 – ident: e_1_3_2_13_2 doi: 10.1038/s41928-020-00513-5 – ident: e_1_3_2_51_2 doi: 10.1109/LED.2019.2933838 – ident: e_1_3_2_34_2 doi: 10.1038/nature02987 – ident: e_1_3_2_45_2 doi: 10.1002/adfm.201905340 – ident: e_1_3_2_21_2 doi: 10.1038/ncomms2573 – ident: e_1_3_2_43_2 doi: 10.1038/nature20102 – ident: e_1_3_2_35_2 doi: 10.1088/0022-3727/32/14/201 – ident: e_1_3_2_5_2 doi: 10.1038/nature11076 – ident: e_1_3_2_50_2 doi: 10.1126/sciadv.aav3097 – ident: e_1_3_2_85_2 doi: 10.1038/s41928-018-0056-6 – ident: e_1_3_2_86_2 doi: 10.1088/1361-6528/ab703f – ident: e_1_3_2_46_2 doi: 10.1038/s41467-020-17084-w – ident: e_1_3_2_7_2 doi: 10.1126/science.abd0380 – ident: e_1_3_2_59_2 doi: 10.1038/s41928-018-0041-0 – ident: e_1_3_2_31_2 doi: 10.1038/nature25494 – reference: 37316741 - Nat Biotechnol. 2023 Jun;41(6):766 |
SSID | ssj0009593 |
Score | 2.7374787 |
Snippet | Artificial skin that simultaneously mimics sensory feedback and mechanical properties of natural skin holds substantial promise for next-generation robotic and... Editor’s summaryOur skin provides a protective layer for our bodies, but it also enables detailed sensory feedback and soft interactions with our surroundings.... |
SourceID | proquest pubmed crossref |
SourceType | Aggregation Database Index Database Enrichment Source |
StartPage | 735 |
SubjectTerms | Cortex (motor) Electronics External pressure External stimuli Feedback, Sensory Humans Prostheses Robotics Sensorimotor system Sensory feedback Skin Skin, Artificial Somatosensory cortex Stimuli Transistors Transistors, Electronic Twitching Wearable Electronic Devices |
Title | Neuromorphic sensorimotor loop embodied by monolithically integrated, low-voltage, soft e-skin |
URI | https://www.ncbi.nlm.nih.gov/pubmed/37200416 https://www.proquest.com/docview/2814923828 https://www.proquest.com/docview/2816759834 |
Volume | 380 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1db9MwFLXKJiReEBsfKwxkJB6GukxJnKbOY0epyoAJiU4beyCyHUer6OqpTTWVf8q_4Tp2Ek-jiPESVc6nfE-v77Gvz0XoTY8nQRRwnVYhu0BQEurRTEivyymNSE5g0NUrup-P49FJdHTWPWu1fjlZS8uCH4iff9xX8j9WhTawq94lewfL1g-FBvgN9oUjWBiO_2TjUlnjUkFXTURnAYRUzXXXq3lnqtRVR15yldkQE75JZ7rpxIvpdNWoRJQGnqprD9xUwUyd9QW45o70Fj-sKreNXSs3ADFpvc7jWLdOWOybtIIqy8De5kw5nNo56lOp81BrdB5NbPu3JZtdN-3nFzZteKB0xZHJrbnu84tJwZQ7fxGW2YKOlxw3G2ju8tGuT7eSymZEM27c1xUoQ5-4fp6YklEW0HEcuY67R7pODNAzil-3hxenIKbUOp6aETYjaZU9MOp_Tb8MhumnD8cf76HNEBgMuODN_uHgcLhWEdrqTjk7uqoX3AyZ1vCgMh4aP0IPLZHBfYPKLdSSs21035Q2XW2jLduDC7xnlc3fPkbfXcBiF7BYAxZXgMV8hW8CFjeA3ccOXPexBis2YH2CTobvx-9Gni3w4QmSBIWXMz_jWlAwh6ASqF7OspAJnwW-n8leHolM9BjwlywmeR4xCKZySnxGOdMshVHyFG3M1EzuIJwQHmaExBnhEmLsjGZExEkcchHHTASijQ6qPkyFVb_XRVimacmCwzi1nZ7aTm-jvfqGKyP8sv7S3cooqfUOizSkgdY-pCFto9f1afDdekGOzaRaltcAX08oidromTFm_S5dPcoHtvT87w9_gR40f6pdtFHMl_IlhMkFf2UB9xt3kcZR |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Neuromorphic+sensorimotor+loop+embodied+by+monolithically+integrated%2C+low-voltage%2C+soft+e-skin&rft.jtitle=Science+%28American+Association+for+the+Advancement+of+Science%29&rft.au=Wang%2C+Weichen&rft.au=Jiang%2C+Yuanwen&rft.au=Zhong%2C+Donglai&rft.au=Zhang%2C+Zhitao&rft.date=2023-05-19&rft.pub=The+American+Association+for+the+Advancement+of+Science&rft.issn=0036-8075&rft.eissn=1095-9203&rft.volume=380&rft.issue=6646&rft.spage=735&rft.epage=742&rft_id=info:doi/10.1126%2Fscience.ade0086&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0036-8075&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0036-8075&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0036-8075&client=summon |