Multisensory fusion and the stochastic structure of postural sway
We analyze the stochastic structure of postural sway and demonstrate that this structure imposes important constraints on models of postural control. Linear stochastic models of various orders were fit to the center-of-mass trajectories of subjects during quiet stance in four sensory conditions: (i)...
Saved in:
Published in | Biological cybernetics Vol. 87; no. 4; pp. 262 - 277 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Germany
Springer Nature B.V
01.10.2002
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | We analyze the stochastic structure of postural sway and demonstrate that this structure imposes important constraints on models of postural control. Linear stochastic models of various orders were fit to the center-of-mass trajectories of subjects during quiet stance in four sensory conditions: (i) light touch and vision, (ii) light touch, (iii) vision, and (iv) neither touch nor vision. For each subject and condition, the model of appropriate order was determined, and this model was characterized by the eigenvalues and coefficients of its autocovariance function. In most cases, postural-sway trajectories were similar to those produced by a third-order model with eigenvalues corresponding to a slow first-order decay plus a faster-decaying damped oscillation. The slow-decay fraction, which we define as the slow-decay autocovariance coefficient divided by the total variance, was usually near 1. We compare the stochastic structure of our data to two linear control-theory models: (i) a proportional-integral-derivative control model in which the postural system's state is assumed to be known, and (ii) an optimal-control model in which the system's state is estimated based on noisy multisensory information using a Kalman filter. Under certain assumptions, both models have eigenvalues consistent with our results. However, the slow-decay fraction predicted by both models is less than we observe. We show that our results are more consistent with a modification of the optimal-control model in which noise is added to the computations performed by the state estimator. This modified model has a slow-decay fraction near 1 in a parameter regime in which sensory information related to the body's velocity is more accurate than sensory information related to position and acceleration. These findings suggest that: (i) computation noise is responsible for much of the variance observed in postural sway, and (ii) the postural control system under the conditions tested resides in the regime of accurate velocity information. |
---|---|
AbstractList | We analyze the stochastic structure of postural sway and demonstrate that this structure imposes important constraints on models of postural control. Linear stochastic models of various orders were fit to the center-of-mass trajectories of subjects during quiet stance in four sensory conditions: (i) light touch and vision, (ii) light touch, (iii) vision, and (iv) neither touch nor vision. For each subject and condition, the model of appropriate order was determined, and this model was characterized by the eigenvalues and coefficients of its autocovariance function. In most cases, postural-sway trajectories were similar to those produced by a third-order model with eigenvalues corresponding to a slow first-order decay plus a faster-decaying damped oscillation. The slow-decay fraction, which we define as the slow-decay autocovariance coefficient divided by the total variance, was usually near 1. We compare the stochastic structure of our data to two linear control-theory models: (i) a proportional-integral-derivative control model in which the postural system's state is assumed to be known, and (ii) an optimal-control model in which the system's state is estimated based on noisy multisensory information using a Kalman filter. Under certain assumptions, both models have eigenvalues consistent with our results. However, the slow-decay fraction predicted by both models is less than we observe. We show that our results are more consistent with a modification of the optimal-control model in which noise is added to the computations performed by the state estimator. This modified model has a slow-decay fraction near 1 in a parameter regime in which sensory information related to the body's velocity is more accurate than sensory information related to position and acceleration. These findings suggest that: (i) computation noise is responsible for much of the variance observed in postural sway, and (ii) the postural control system under the conditions tested resides in the regime of accurate velocity information. We analyze the stochastic structure of postural sway and demonstrate that this structure imposes important constraints on models of postural control. Linear stochastic models of various orders were fit to the center-of-mass trajectories of subjects during quiet stance in four sensory conditions: (i) light touch and vision, (ii) light touch, (iii) vision, and (iv) neither touch nor vision. For each subject and condition, the model of appropriate order was determined, and this model was characterized by the eigenvalues and coefficients of its autocovariance function. In most cases, postural-sway trajectories were similar to those produced by a third-order model with eigenvalues corresponding to a slow first-order decay plus a faster-decaying damped oscillation. The slow-decay fraction, which we define as the slow-decay autocovariance coefficient divided by the total variance, was usually near 1. We compare the stochastic structure of our data to two linear control-theory models: (i) a proportional-integral-derivative control model in which the postural system's state is assumed to be known, and (ii) an optimal-control model in which the system's state is estimated based on noisy multisensory information using a Kalman filter. Under certain assumptions, both models have eigenvalues consistent with our results. However, the slow-decay fraction predicted by both models is less than we observe. We show that our results are more consistent with a modification of the optimal-control model in which noise is added to the computations performed by the state estimator. This modified model has a slow-decay fraction near 1 in a parameter regime in which sensory information related to the body's velocity is more accurate than sensory information related to position and acceleration. These findings suggest that: (i) computation noise is responsible for much of the variance observed in postural sway, and (ii) the postural control system under the conditions tested resides in the regime of accurate velocity information.[PUBLICATION ABSTRACT] We analyze the stochastic structure of postural sway and demonstrate that this structure imposes important constraints on models of postural control. Linear stochastic models of various orders were fit to the center-of-mass trajectories of subjects during quiet stance in four sensory conditions: (i) light touch and vision, (ii) light touch, (iii) vision, and (iv) neither touch nor vision. For each subject and condition, the model of appropriate order was determined, and this model was characterized by the eigenvalues and coefficients of its autocovariance function. In most cases, postural-sway trajectories were similar to those produced by a third-order model with eigenvalues corresponding to a slow first-order decay plus a faster-decaying damped oscillation. The slow-decay fraction, which we define as the slow-decay autocovariance coefficient divided by the total variance, was usually near 1. We compare the stochastic structure of our data to two linear control-theory models: (i) a proportional-integral-derivative control model in which the postural system's state is assumed to be known, and (ii) an optimal-control model in which the system's state is estimated based on noisy multisensory information using a Kalman filter. Under certain assumptions, both models have eigenvalues consistent with our results. However, the slow-decay fraction predicted by both models is less than we observe. We show that our results are more consistent with a modification of the optimal-control model in which noise is added to the computations performed by the state estimator. This modified model has a slow-decay fraction near 1 in a parameter regime in which sensory information related to the body's velocity is more accurate than sensory information related to position and acceleration. These findings suggest that: (i) computation noise is responsible for much of the variance observed in postural sway, and (ii) the postural control system under the conditions tested resides in the regime of accurate velocity information.We analyze the stochastic structure of postural sway and demonstrate that this structure imposes important constraints on models of postural control. Linear stochastic models of various orders were fit to the center-of-mass trajectories of subjects during quiet stance in four sensory conditions: (i) light touch and vision, (ii) light touch, (iii) vision, and (iv) neither touch nor vision. For each subject and condition, the model of appropriate order was determined, and this model was characterized by the eigenvalues and coefficients of its autocovariance function. In most cases, postural-sway trajectories were similar to those produced by a third-order model with eigenvalues corresponding to a slow first-order decay plus a faster-decaying damped oscillation. The slow-decay fraction, which we define as the slow-decay autocovariance coefficient divided by the total variance, was usually near 1. We compare the stochastic structure of our data to two linear control-theory models: (i) a proportional-integral-derivative control model in which the postural system's state is assumed to be known, and (ii) an optimal-control model in which the system's state is estimated based on noisy multisensory information using a Kalman filter. Under certain assumptions, both models have eigenvalues consistent with our results. However, the slow-decay fraction predicted by both models is less than we observe. We show that our results are more consistent with a modification of the optimal-control model in which noise is added to the computations performed by the state estimator. This modified model has a slow-decay fraction near 1 in a parameter regime in which sensory information related to the body's velocity is more accurate than sensory information related to position and acceleration. These findings suggest that: (i) computation noise is responsible for much of the variance observed in postural sway, and (ii) the postural control system under the conditions tested resides in the regime of accurate velocity information. |
Author | Jeka, John J. Kiemel, Tim Oie, Kelvin S. |
Author_xml | – sequence: 1 givenname: Tim surname: Kiemel fullname: Kiemel, Tim – sequence: 2 givenname: Kelvin S. surname: Oie fullname: Oie, Kelvin S. – sequence: 3 givenname: John J. surname: Jeka fullname: Jeka, John J. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/12386742$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kUtLAzEUhYNU7EN_gBsZENyN3jxmklmW4gsqbroPmUyGTplOah5I_70prS4KLkJO4DuHm3umaDTYwSB0i-ERA_AnD8AIyQHSoZTm5AJNMKPpxTmM0AQogxwTgDGaer8BgIoU1RUaY0JFyRmZoPlH7EPnzeCt22dt9J0dMjU0WVibzAer18qHTifpog7Rmcy22c76JFWf-W-1v0aXreq9uTndM7R6eV4t3vLl5-v7Yr7MNa1wyNuyVg2UTHPcJkFrQUXdKN2UQhQcm7LkqiUEcMUaCkKYulS0qJgSiuv0uRl6OMbunP2Kxge57bw2fa8GY6OXnGDBmYAE3p-BGxvdkEaTGAjmlBTFIe7uRMV6axq5c91Wub383UwC-BHQznrvTCt1F1RI6wlOdX3KkocO5LEDmTqQhw7kwYnPnH_h_3p-AN3wh6w |
CitedBy_id | crossref_primary_10_1007_s00221_016_4642_4 crossref_primary_10_1371_journal_pone_0113897 crossref_primary_10_1007_s10439_013_0821_7 crossref_primary_10_1016_S0167_8760_03_00127_2 crossref_primary_10_1007_s00221_006_0441_7 crossref_primary_10_1152_japplphysiol_00390_2010 crossref_primary_10_1152_jn_01144_2004 crossref_primary_10_1523_JNEUROSCI_4205_10_2010 crossref_primary_10_1016_j_neuroscience_2020_04_028 crossref_primary_10_3389_fncom_2022_956932 crossref_primary_10_1016_j_gaitpost_2005_03_001 crossref_primary_10_1371_journal_pone_0088132 crossref_primary_10_1016_j_humov_2005_12_005 crossref_primary_10_3390_medicina58060812 crossref_primary_10_1007_s00221_003_1441_5 crossref_primary_10_1007_s00221_006_0502_y crossref_primary_10_1007_s00422_005_0004_1 crossref_primary_10_1016_j_neunet_2008_03_013 crossref_primary_10_1007_s00221_009_1715_7 crossref_primary_10_1088_1741_2552_aba160 crossref_primary_10_1016_j_neures_2015_12_002 crossref_primary_10_1152_jn_00162_2010 crossref_primary_10_1007_s00221_007_1057_2 crossref_primary_10_1371_journal_pone_0132711 crossref_primary_10_1088_1741_2552_ac63ed crossref_primary_10_1080_00222895_2018_1468310 crossref_primary_10_1016_j_infbeh_2006_07_005 crossref_primary_10_1063_1_4871880 crossref_primary_10_1016_j_gaitpost_2006_09_007 crossref_primary_10_3233_JAD_230305 crossref_primary_10_3233_VES_220075 crossref_primary_10_1093_pnasnexus_pgac174 crossref_primary_10_1016_j_neulet_2014_02_029 crossref_primary_10_1016_j_humov_2021_102909 crossref_primary_10_1016_j_neuroscience_2010_05_072 crossref_primary_10_1016_j_gaitpost_2011_04_007 crossref_primary_10_1109_TNSRE_2010_2047593 crossref_primary_10_1152_jn_01272_2007 crossref_primary_10_1007_s00422_015_0655_5 crossref_primary_10_4236_health_2013_512A010 crossref_primary_10_1080_00222895_2021_2013768 crossref_primary_10_1098_rsta_2009_0214 crossref_primary_10_1016_j_mbs_2013_02_002 crossref_primary_10_1152_jn_00856_2004 crossref_primary_10_1016_j_otorri_2012_09_003 crossref_primary_10_3109_08990220_2012_725680 crossref_primary_10_1371_journal_pcbi_1000629 crossref_primary_10_1016_j_humov_2023_103098 crossref_primary_10_1007_s00221_004_2030_y crossref_primary_10_1016_j_jbiomech_2007_06_003 crossref_primary_10_1007_s00221_006_0559_7 crossref_primary_10_1186_s12984_021_00907_2 crossref_primary_10_1007_s10441_010_9101_1 crossref_primary_10_1016_j_jphysparis_2009_08_003 crossref_primary_10_1016_j_jphysparis_2009_08_002 crossref_primary_10_1371_journal_pone_0040932 crossref_primary_10_1007_s00422_021_00889_3 crossref_primary_10_1109_TBME_2006_870222 crossref_primary_10_1113_jphysiol_2009_168690 crossref_primary_10_1123_jab_22_1_51 crossref_primary_10_2478_phr_2020_0016 crossref_primary_10_7554_eLife_65085 crossref_primary_10_1016_j_apergo_2018_01_015 crossref_primary_10_1109_TOH_2013_64 crossref_primary_10_1007_s42600_024_00361_8 crossref_primary_10_1016_j_medengphy_2009_06_004 crossref_primary_10_1007_s00422_004_0535_x crossref_primary_10_1007_s00221_004_2082_z crossref_primary_10_1007_s00221_007_1145_3 crossref_primary_10_3389_fphys_2022_803185 crossref_primary_10_1038_s41598_019_53028_1 crossref_primary_10_1038_s41598_020_64911_7 crossref_primary_10_1152_jn_00075_2024 crossref_primary_10_1007_s00422_011_0466_2 crossref_primary_10_1007_s00221_004_2205_6 crossref_primary_10_1097_MD_0000000000013387 crossref_primary_10_1007_s00221_008_1308_x crossref_primary_10_1016_S0926_6410_02_00071_X crossref_primary_10_1038_s42256_023_00745_y crossref_primary_10_1016_j_humov_2016_08_002 crossref_primary_10_1007_s00422_017_0733_y crossref_primary_10_1080_00222895_2010_481693 crossref_primary_10_1007_s00221_006_0620_6 crossref_primary_10_3390_app9050934 crossref_primary_10_1002_dev_20037 crossref_primary_10_1007_s11517_009_0477_5 crossref_primary_10_1152_jn_00983_2003 crossref_primary_10_1371_journal_pone_0213870 crossref_primary_10_1016_j_jneumeth_2005_01_003 crossref_primary_10_1186_s12938_020_00811_1 crossref_primary_10_1016_j_gaitpost_2015_02_005 crossref_primary_10_1088_1748_3182_3_2_026002 crossref_primary_10_1016_j_psychsport_2010_02_003 crossref_primary_10_1134_S036211970703005X crossref_primary_10_1016_S1762_827X_21_45092_3 crossref_primary_10_3389_fnhum_2023_1239071 crossref_primary_10_1007_s00421_013_2627_6 crossref_primary_10_1016_j_humov_2016_04_011 crossref_primary_10_1038_s41598_024_81865_2 crossref_primary_10_1007_s00221_008_1539_x crossref_primary_10_1016_j_gaitpost_2016_09_028 crossref_primary_10_1109_TNSRE_2015_2436344 crossref_primary_10_1371_journal_pcbi_1001089 crossref_primary_10_3389_fpsyg_2021_661312 crossref_primary_10_1007_s00221_010_2414_0 crossref_primary_10_1007_s00221_017_4972_x crossref_primary_10_1152_jn_00428_2016 crossref_primary_10_1007_s00221_011_2693_0 crossref_primary_10_1152_jn_01110_2007 crossref_primary_10_1371_journal_pone_0285098 crossref_primary_10_1007_s12662_009_0076_5 crossref_primary_10_1007_s00221_012_3210_9 crossref_primary_10_1152_jn_00457_2006 crossref_primary_10_1038_srep17830 crossref_primary_10_3390_e24070909 crossref_primary_10_1007_s00421_022_05043_w crossref_primary_10_1051_sm_2011107 crossref_primary_10_1080_00222895_2011_568991 crossref_primary_10_3109_09593985_2015_1037875 crossref_primary_10_1007_s00221_007_1236_1 crossref_primary_10_1152_jn_01008_2011 crossref_primary_10_1371_journal_pone_0091554 crossref_primary_10_1007_s00422_006_0069_5 crossref_primary_10_1016_j_gaitpost_2005_02_008 crossref_primary_10_1152_jn_00353_2022 crossref_primary_10_1098_rsif_2012_0077 crossref_primary_10_1007_s10827_010_0291_y crossref_primary_10_1016_j_gaitpost_2013_04_017 crossref_primary_10_1007_s00422_009_0313_x crossref_primary_10_1016_j_otoeng_2013_04_007 crossref_primary_10_3389_fneur_2018_00899 crossref_primary_10_1016_j_jbiomech_2019_109400 crossref_primary_10_1098_rsos_200111 crossref_primary_10_2466_30_PMS_120v14x6 crossref_primary_10_1371_journal_pone_0040339 crossref_primary_10_14814_phy2_12329 crossref_primary_10_1016_j_exger_2024_112360 |
ContentType | Journal Article |
Copyright | Springer-Verlag Berlin Heidelberg 2002 |
Copyright_xml | – notice: Springer-Verlag Berlin Heidelberg 2002 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QO 7TK 7X7 7XB 88A 88E 88I 8AL 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ H8D HCIFZ JQ2 K7- K9. L7M LK8 M0N M0S M1P M2P M7P P5Z P62 P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI Q9U 7X8 |
DOI | 10.1007/s00422-002-0333-2 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Biotechnology Research Abstracts Neurosciences Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection ProQuest One ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student Aerospace Database SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database ProQuest Health & Medical Complete (Alumni) Advanced Technologies Database with Aerospace Biological Sciences Computing Database Health & Medical Collection (Alumni) PML(ProQuest Medical Library) Science Database Biological Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central Basic MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Computer Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection SciTech Premium Collection ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Biology Journals (Alumni Edition) ProQuest Central Aerospace Database ProQuest Health & Medical Research Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Advanced Technologies Database with Aerospace ProQuest Computing ProQuest Central Basic ProQuest Science Journals ProQuest Computing (Alumni Edition) ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE Computer Science Database MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1432-0770 |
EndPage | 277 |
ExternalDocumentID | 2693846471 12386742 10_1007_s00422_002_0333_2 |
Genre | Research Support, U.S. Gov't, P.H.S Journal Article |
GrantInformation_xml | – fundername: PHS HHS grantid: R29 N35070-01A2 |
GroupedDBID | -Y2 -~X .4S .86 .DC .GJ .VR 06C 06D 0R~ 0VY 1N0 203 23N 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 36B 4.4 406 408 409 40D 40E 4P2 5VS 67N 67Z 6NX 78A 7X7 88E 88I 8AO 8FE 8FG 8FH 8FI 8FJ 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANXM AANZL AAPKM AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYXX AAYZH ABAKF ABBBX ABBRH ABBXA ABDBE ABDBF ABDZT ABECU ABFSG ABFTV ABHLI ABHQN ABIVO ABJNI ABJOX ABKCH ABKTR ABLJU ABMNI ABMQK ABNWP ABPLI ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACGOD ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACPRK ACSTC ACUHS ACZOJ ADBBV ADHIR ADHKG ADIMF ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEUYN AEVLU AEXYK AEZWR AFBBN AFDZB AFGCZ AFHIU AFKRA AFLOW AFQWF AFRAH AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGQPQ AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHMBA AHPBZ AHSBF AHWEU AHYZX AIAKS AIGIU AILAN AITGF AIXLP AJBLW AJRNO AJZVZ AKMHD ALIPV ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AOCGG ARAPS ARCSS ARMRJ ASPBG ATHPR AVWKF AXYYD AYFIA AZFZN AZQEC B-. B0M BA0 BBNVY BDATZ BENPR BGLVJ BGNMA BHPHI BPHCQ BSONS BVXVI CCPQU CITATION CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EAD EAP EBC EBD EBLON EBS ECS EDH EDO EIOEI EJD EMB EMK EMOBN EN4 EPAXT EPL ESBYG EST ESX F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC FYUFA G-Y G-Z GGCAI GGRSB GJIRD GNUQQ GNWQR GQ7 GQ8 GXS HCIFZ HF~ HG5 HG6 HMCUK HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K6V K7- KDC KOV KPH LAS LK8 LLZTM M1P M2P M4Y M7P MA- MK~ N2Q N9A NB0 NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P62 PF0 PHGZM PHGZT PQQKQ PROAC PSQYO PT4 PT5 QOK QOR QOS R89 R9I RHV RIG RNS ROL RPX RRX RSV S16 S27 S3A S3B SAP SBL SBY SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW SSXJD STPWE SV3 SZN T13 TN5 TSG TSK TSV TUC TUS U2A U9L UG4 UKHRP UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WH7 WJK WK8 YLTOR Z45 ZMTXR ZOVNA ~8M ~EX ~KM -4W -56 -5G -BR -EM -~C 28- 3SX 3V. 53G 5QI 88A ADINQ ADYPR AEFIE AFEXP AGGDS AIIXL BBWZM CAG CGR COF CUY CVF ECM EIF GQ6 H13 KOW M0L M0N NDZJH NPM OVD Q2X R4E RNI RZK S1Z S26 S28 SCLPG T16 TEORI WK6 Z7R Z7X Z7Z Z83 Z88 Z8M Z8R Z8T Z8W Z92 ZXP 7QO 7TK 7XB 8AL 8FD 8FK ABRTQ FR3 H8D JQ2 K9. L7M P64 PJZUB PKEHL PPXIY PQEST PQGLB PQUKI Q9U 7X8 |
ID | FETCH-LOGICAL-c391t-f6bad064c71fad03b838bdacd688571e667af220194d3088eb6a3594a8a7c333 |
IEDL.DBID | 7X7 |
ISSN | 0340-1200 |
IngestDate | Fri Jul 11 00:46:31 EDT 2025 Fri Jul 25 19:13:50 EDT 2025 Wed Feb 19 01:34:33 EST 2025 Tue Jul 01 01:28:23 EDT 2025 Thu Apr 24 22:54:27 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
License | http://www.springer.com/tdm |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c391t-f6bad064c71fad03b838bdacd688571e667af220194d3088eb6a3594a8a7c333 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
PMID | 12386742 |
PQID | 1021732553 |
PQPubID | 54056 |
PageCount | 16 |
ParticipantIDs | proquest_miscellaneous_72187480 proquest_journals_1021732553 pubmed_primary_12386742 crossref_citationtrail_10_1007_s00422_002_0333_2 crossref_primary_10_1007_s00422_002_0333_2 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2002-10-01 |
PublicationDateYYYYMMDD | 2002-10-01 |
PublicationDate_xml | – month: 10 year: 2002 text: 2002-10-01 day: 01 |
PublicationDecade | 2000 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Heidelberg |
PublicationTitle | Biological cybernetics |
PublicationTitleAlternate | Biol Cybern |
PublicationYear | 2002 |
Publisher | Springer Nature B.V |
Publisher_xml | – name: Springer Nature B.V |
SSID | ssj0009259 |
Score | 2.0805936 |
Snippet | We analyze the stochastic structure of postural sway and demonstrate that this structure imposes important constraints on models of postural control. Linear... |
SourceID | proquest pubmed crossref |
SourceType | Aggregation Database Index Database Enrichment Source |
StartPage | 262 |
SubjectTerms | Adult Biomechanics Central Nervous System - physiology Control systems Decay Feedback - physiology Humans Linear Models Older people Photic Stimulation Physical Stimulation Posture Posture - physiology Proprioception - physiology Sensory perception Stochastic models Stochastic Processes Touch - physiology Visual Perception - physiology |
Title | Multisensory fusion and the stochastic structure of postural sway |
URI | https://www.ncbi.nlm.nih.gov/pubmed/12386742 https://www.proquest.com/docview/1021732553 https://www.proquest.com/docview/72187480 |
Volume | 87 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9NAEB5Bc-EClGcglD1wQrJwdte76xNKS9MItRGCIOVm7cvqAdkhboTy75nxIxEHerEt-SXPzM5jZ_19AB_SEFMeTUxKy1UiscBIHLd5wnnIpRTcxNCutliqxU_5dZ2t-wm3pl9WOfjE1lGH2tMc-SeioNYCE2DxefM7IdYo6q72FBoPYUTQZWTVeq2PoLu8JUtLBfUv0RyGrmbagYhiGUb-IBVEZ_ZvXPpPstkGnflTeNxni2zWqfcUHsTqGTwZmBhYPzCfw6z9j7bBkrTe7lm5oykwZqvAML1jmN75W0t4zKxDi91tI6tLtqmbFnSDNX_s_gWs5peri0XSkyMkXuTTu6RUzgbMJ7yelnggnBHGBeuDMibT06iUtiXH8J7LINCVRKesyHJpjdUev_glnFR1FV8Dc5nk3jjvQzTSU8jXYaoyHUuC9wtuDOkgmcL3wOHEX_GrOEAet8IsUJgFCbPgY_h4uGXToWbcd_FkEHfRD6CmOKp7DO8Pp9H0qZ9hq1jvmgKLV6OlScfwqlPS8V2YiCgs-t_c_-i38Kgjd6G1eRM4QR3Ed5hj3Lmz1pBwa-ZXZzCafbm5_oH788vlt-9_AUQ00Kg |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB5V5QAXoDwXCvUBLkgRWduxnUNVVZRlS0tPi9Sb5VfUA0qWpqtqfxT_kZk8dsWB3nqLlJc0Hs9847G_D-BDHlPOk0lZ5bjKJBYYmeeuzDiPpZSCmxS73RYXav5Tfr8sLnfgz3gWhrZVjjGxC9SxCbRG_pkkqLVAACyOlr8zUo2i7uooodG7xVla32LJ1h6enuD4fuR89nXxZZ4NqgJZEOX0JquUdxETcdDTCi-EN8L46EJUxhR6mpTSruKYF0sZBc7B5JUTRSmdcToIWv_EiP9ACkzkdDB99m3L8cs7bbZcULsUvW9souY9ZylWfRR-ckHqaf-mwf9g2y7HzZ7C4wGcsuPem_ZgJ9XP4Mko_MCGOPAcjrtjuy1WwM31mlUrWnFjro4M0SRDNBmuHNE_s56cdnWdWFOxZdN2HB-svXXrF7C4D6u9hN26qdNrYL6QPBgfQkxGBkIYOk5VoVNFbILRTyAfLWPDwFNOchm_7IZhuTOmRWNaMqblE_i0eWXZk3Tc9fD-aG47zNfWbr1rAgeb2zjTqH3i6tSsWou1stHS5BN41Q_S9l-Ie5SW_M3dnz6Ah_PFj3N7fnpx9hYe9boytC1wH3ZxPNI7hDc3_n3nVAzsPTvxXxojCOM |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1La9wwEB7CBkovfT-2TRsd2kvBxCvJknwoJW2yJE1ZQkkhN6GX6aHY2zhL2J_Wf9cZP3bpobnlZvALRqOZbzTS9wG8y2PKeTIpqxxXmcQCI_PclRnnsZRScJNit9tioU5-yK-XxeUO_BnPwtC2yjEmdoE6NoHWyA9IgloLBMDioBq2RZwfzT8tf2ekIEWd1lFOo3eRs7S-wfKt_Xh6hGP9nvP58cWXk2xQGMiCKGfXWaW8i5iUg55VeCG8EcZHF6IyptCzpJR2FcccWcoocD4mr5woSumM00HQWihG_11NRdEEdj8fL86_bxl_eafUlgtqnqIvji3VvGcwxRqQglEuSEvt36T4H6TbZbz5I3gwQFV22PvWY9hJ9RN4OMpAsCEqPIXD7hBvi_Vwc7Vm1YrW35irI0NsyRBbhp-OyKBZT1W7ukqsqdiyaTvGD9beuPUzuLgLuz2HSd3U6SUwX0gejA8hJiMD4Q0dZ6rQqSJuweinkI-WsWFgLSfxjF92w7fcGdOiMS0Z0_IpfNi8suwpO257eG80tx1mb2u3vjaF_c1tnHfUTHF1alatxcrZaGnyKbzoB2n7L0RBSkv-6vZP78M9dGD77XRx9hru9yIztEdwDyY4HOkNYp1r_3bwKgb2jv34L-k7DnU |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multisensory+fusion+and+the+stochastic+structure+of+postural+sway&rft.jtitle=Biological+cybernetics&rft.au=Kiemel%2C+Tim&rft.au=Oie%2C+Kelvin+S.&rft.au=Jeka%2C+John+J.&rft.date=2002-10-01&rft.issn=0340-1200&rft.volume=87&rft.issue=4&rft.spage=262&rft.epage=277&rft_id=info:doi/10.1007%2Fs00422-002-0333-2&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s00422_002_0333_2 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0340-1200&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0340-1200&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0340-1200&client=summon |