Multisensory fusion and the stochastic structure of postural sway

We analyze the stochastic structure of postural sway and demonstrate that this structure imposes important constraints on models of postural control. Linear stochastic models of various orders were fit to the center-of-mass trajectories of subjects during quiet stance in four sensory conditions: (i)...

Full description

Saved in:
Bibliographic Details
Published inBiological cybernetics Vol. 87; no. 4; pp. 262 - 277
Main Authors Kiemel, Tim, Oie, Kelvin S., Jeka, John J.
Format Journal Article
LanguageEnglish
Published Germany Springer Nature B.V 01.10.2002
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We analyze the stochastic structure of postural sway and demonstrate that this structure imposes important constraints on models of postural control. Linear stochastic models of various orders were fit to the center-of-mass trajectories of subjects during quiet stance in four sensory conditions: (i) light touch and vision, (ii) light touch, (iii) vision, and (iv) neither touch nor vision. For each subject and condition, the model of appropriate order was determined, and this model was characterized by the eigenvalues and coefficients of its autocovariance function. In most cases, postural-sway trajectories were similar to those produced by a third-order model with eigenvalues corresponding to a slow first-order decay plus a faster-decaying damped oscillation. The slow-decay fraction, which we define as the slow-decay autocovariance coefficient divided by the total variance, was usually near 1. We compare the stochastic structure of our data to two linear control-theory models: (i) a proportional-integral-derivative control model in which the postural system's state is assumed to be known, and (ii) an optimal-control model in which the system's state is estimated based on noisy multisensory information using a Kalman filter. Under certain assumptions, both models have eigenvalues consistent with our results. However, the slow-decay fraction predicted by both models is less than we observe. We show that our results are more consistent with a modification of the optimal-control model in which noise is added to the computations performed by the state estimator. This modified model has a slow-decay fraction near 1 in a parameter regime in which sensory information related to the body's velocity is more accurate than sensory information related to position and acceleration. These findings suggest that: (i) computation noise is responsible for much of the variance observed in postural sway, and (ii) the postural control system under the conditions tested resides in the regime of accurate velocity information.
AbstractList We analyze the stochastic structure of postural sway and demonstrate that this structure imposes important constraints on models of postural control. Linear stochastic models of various orders were fit to the center-of-mass trajectories of subjects during quiet stance in four sensory conditions: (i) light touch and vision, (ii) light touch, (iii) vision, and (iv) neither touch nor vision. For each subject and condition, the model of appropriate order was determined, and this model was characterized by the eigenvalues and coefficients of its autocovariance function. In most cases, postural-sway trajectories were similar to those produced by a third-order model with eigenvalues corresponding to a slow first-order decay plus a faster-decaying damped oscillation. The slow-decay fraction, which we define as the slow-decay autocovariance coefficient divided by the total variance, was usually near 1. We compare the stochastic structure of our data to two linear control-theory models: (i) a proportional-integral-derivative control model in which the postural system's state is assumed to be known, and (ii) an optimal-control model in which the system's state is estimated based on noisy multisensory information using a Kalman filter. Under certain assumptions, both models have eigenvalues consistent with our results. However, the slow-decay fraction predicted by both models is less than we observe. We show that our results are more consistent with a modification of the optimal-control model in which noise is added to the computations performed by the state estimator. This modified model has a slow-decay fraction near 1 in a parameter regime in which sensory information related to the body's velocity is more accurate than sensory information related to position and acceleration. These findings suggest that: (i) computation noise is responsible for much of the variance observed in postural sway, and (ii) the postural control system under the conditions tested resides in the regime of accurate velocity information.
We analyze the stochastic structure of postural sway and demonstrate that this structure imposes important constraints on models of postural control. Linear stochastic models of various orders were fit to the center-of-mass trajectories of subjects during quiet stance in four sensory conditions: (i) light touch and vision, (ii) light touch, (iii) vision, and (iv) neither touch nor vision. For each subject and condition, the model of appropriate order was determined, and this model was characterized by the eigenvalues and coefficients of its autocovariance function. In most cases, postural-sway trajectories were similar to those produced by a third-order model with eigenvalues corresponding to a slow first-order decay plus a faster-decaying damped oscillation. The slow-decay fraction, which we define as the slow-decay autocovariance coefficient divided by the total variance, was usually near 1. We compare the stochastic structure of our data to two linear control-theory models: (i) a proportional-integral-derivative control model in which the postural system's state is assumed to be known, and (ii) an optimal-control model in which the system's state is estimated based on noisy multisensory information using a Kalman filter. Under certain assumptions, both models have eigenvalues consistent with our results. However, the slow-decay fraction predicted by both models is less than we observe. We show that our results are more consistent with a modification of the optimal-control model in which noise is added to the computations performed by the state estimator. This modified model has a slow-decay fraction near 1 in a parameter regime in which sensory information related to the body's velocity is more accurate than sensory information related to position and acceleration. These findings suggest that: (i) computation noise is responsible for much of the variance observed in postural sway, and (ii) the postural control system under the conditions tested resides in the regime of accurate velocity information.[PUBLICATION ABSTRACT]
We analyze the stochastic structure of postural sway and demonstrate that this structure imposes important constraints on models of postural control. Linear stochastic models of various orders were fit to the center-of-mass trajectories of subjects during quiet stance in four sensory conditions: (i) light touch and vision, (ii) light touch, (iii) vision, and (iv) neither touch nor vision. For each subject and condition, the model of appropriate order was determined, and this model was characterized by the eigenvalues and coefficients of its autocovariance function. In most cases, postural-sway trajectories were similar to those produced by a third-order model with eigenvalues corresponding to a slow first-order decay plus a faster-decaying damped oscillation. The slow-decay fraction, which we define as the slow-decay autocovariance coefficient divided by the total variance, was usually near 1. We compare the stochastic structure of our data to two linear control-theory models: (i) a proportional-integral-derivative control model in which the postural system's state is assumed to be known, and (ii) an optimal-control model in which the system's state is estimated based on noisy multisensory information using a Kalman filter. Under certain assumptions, both models have eigenvalues consistent with our results. However, the slow-decay fraction predicted by both models is less than we observe. We show that our results are more consistent with a modification of the optimal-control model in which noise is added to the computations performed by the state estimator. This modified model has a slow-decay fraction near 1 in a parameter regime in which sensory information related to the body's velocity is more accurate than sensory information related to position and acceleration. These findings suggest that: (i) computation noise is responsible for much of the variance observed in postural sway, and (ii) the postural control system under the conditions tested resides in the regime of accurate velocity information.We analyze the stochastic structure of postural sway and demonstrate that this structure imposes important constraints on models of postural control. Linear stochastic models of various orders were fit to the center-of-mass trajectories of subjects during quiet stance in four sensory conditions: (i) light touch and vision, (ii) light touch, (iii) vision, and (iv) neither touch nor vision. For each subject and condition, the model of appropriate order was determined, and this model was characterized by the eigenvalues and coefficients of its autocovariance function. In most cases, postural-sway trajectories were similar to those produced by a third-order model with eigenvalues corresponding to a slow first-order decay plus a faster-decaying damped oscillation. The slow-decay fraction, which we define as the slow-decay autocovariance coefficient divided by the total variance, was usually near 1. We compare the stochastic structure of our data to two linear control-theory models: (i) a proportional-integral-derivative control model in which the postural system's state is assumed to be known, and (ii) an optimal-control model in which the system's state is estimated based on noisy multisensory information using a Kalman filter. Under certain assumptions, both models have eigenvalues consistent with our results. However, the slow-decay fraction predicted by both models is less than we observe. We show that our results are more consistent with a modification of the optimal-control model in which noise is added to the computations performed by the state estimator. This modified model has a slow-decay fraction near 1 in a parameter regime in which sensory information related to the body's velocity is more accurate than sensory information related to position and acceleration. These findings suggest that: (i) computation noise is responsible for much of the variance observed in postural sway, and (ii) the postural control system under the conditions tested resides in the regime of accurate velocity information.
Author Jeka, John J.
Kiemel, Tim
Oie, Kelvin S.
Author_xml – sequence: 1
  givenname: Tim
  surname: Kiemel
  fullname: Kiemel, Tim
– sequence: 2
  givenname: Kelvin S.
  surname: Oie
  fullname: Oie, Kelvin S.
– sequence: 3
  givenname: John J.
  surname: Jeka
  fullname: Jeka, John J.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/12386742$$D View this record in MEDLINE/PubMed
BookMark eNp1kUtLAzEUhYNU7EN_gBsZENyN3jxmklmW4gsqbroPmUyGTplOah5I_70prS4KLkJO4DuHm3umaDTYwSB0i-ERA_AnD8AIyQHSoZTm5AJNMKPpxTmM0AQogxwTgDGaer8BgIoU1RUaY0JFyRmZoPlH7EPnzeCt22dt9J0dMjU0WVibzAer18qHTifpog7Rmcy22c76JFWf-W-1v0aXreq9uTndM7R6eV4t3vLl5-v7Yr7MNa1wyNuyVg2UTHPcJkFrQUXdKN2UQhQcm7LkqiUEcMUaCkKYulS0qJgSiuv0uRl6OMbunP2Kxge57bw2fa8GY6OXnGDBmYAE3p-BGxvdkEaTGAjmlBTFIe7uRMV6axq5c91Wub383UwC-BHQznrvTCt1F1RI6wlOdX3KkocO5LEDmTqQhw7kwYnPnH_h_3p-AN3wh6w
CitedBy_id crossref_primary_10_1007_s00221_016_4642_4
crossref_primary_10_1371_journal_pone_0113897
crossref_primary_10_1007_s10439_013_0821_7
crossref_primary_10_1016_S0167_8760_03_00127_2
crossref_primary_10_1007_s00221_006_0441_7
crossref_primary_10_1152_japplphysiol_00390_2010
crossref_primary_10_1152_jn_01144_2004
crossref_primary_10_1523_JNEUROSCI_4205_10_2010
crossref_primary_10_1016_j_neuroscience_2020_04_028
crossref_primary_10_3389_fncom_2022_956932
crossref_primary_10_1016_j_gaitpost_2005_03_001
crossref_primary_10_1371_journal_pone_0088132
crossref_primary_10_1016_j_humov_2005_12_005
crossref_primary_10_3390_medicina58060812
crossref_primary_10_1007_s00221_003_1441_5
crossref_primary_10_1007_s00221_006_0502_y
crossref_primary_10_1007_s00422_005_0004_1
crossref_primary_10_1016_j_neunet_2008_03_013
crossref_primary_10_1007_s00221_009_1715_7
crossref_primary_10_1088_1741_2552_aba160
crossref_primary_10_1016_j_neures_2015_12_002
crossref_primary_10_1152_jn_00162_2010
crossref_primary_10_1007_s00221_007_1057_2
crossref_primary_10_1371_journal_pone_0132711
crossref_primary_10_1088_1741_2552_ac63ed
crossref_primary_10_1080_00222895_2018_1468310
crossref_primary_10_1016_j_infbeh_2006_07_005
crossref_primary_10_1063_1_4871880
crossref_primary_10_1016_j_gaitpost_2006_09_007
crossref_primary_10_3233_JAD_230305
crossref_primary_10_3233_VES_220075
crossref_primary_10_1093_pnasnexus_pgac174
crossref_primary_10_1016_j_neulet_2014_02_029
crossref_primary_10_1016_j_humov_2021_102909
crossref_primary_10_1016_j_neuroscience_2010_05_072
crossref_primary_10_1016_j_gaitpost_2011_04_007
crossref_primary_10_1109_TNSRE_2010_2047593
crossref_primary_10_1152_jn_01272_2007
crossref_primary_10_1007_s00422_015_0655_5
crossref_primary_10_4236_health_2013_512A010
crossref_primary_10_1080_00222895_2021_2013768
crossref_primary_10_1098_rsta_2009_0214
crossref_primary_10_1016_j_mbs_2013_02_002
crossref_primary_10_1152_jn_00856_2004
crossref_primary_10_1016_j_otorri_2012_09_003
crossref_primary_10_3109_08990220_2012_725680
crossref_primary_10_1371_journal_pcbi_1000629
crossref_primary_10_1016_j_humov_2023_103098
crossref_primary_10_1007_s00221_004_2030_y
crossref_primary_10_1016_j_jbiomech_2007_06_003
crossref_primary_10_1007_s00221_006_0559_7
crossref_primary_10_1186_s12984_021_00907_2
crossref_primary_10_1007_s10441_010_9101_1
crossref_primary_10_1016_j_jphysparis_2009_08_003
crossref_primary_10_1016_j_jphysparis_2009_08_002
crossref_primary_10_1371_journal_pone_0040932
crossref_primary_10_1007_s00422_021_00889_3
crossref_primary_10_1109_TBME_2006_870222
crossref_primary_10_1113_jphysiol_2009_168690
crossref_primary_10_1123_jab_22_1_51
crossref_primary_10_2478_phr_2020_0016
crossref_primary_10_7554_eLife_65085
crossref_primary_10_1016_j_apergo_2018_01_015
crossref_primary_10_1109_TOH_2013_64
crossref_primary_10_1007_s42600_024_00361_8
crossref_primary_10_1016_j_medengphy_2009_06_004
crossref_primary_10_1007_s00422_004_0535_x
crossref_primary_10_1007_s00221_004_2082_z
crossref_primary_10_1007_s00221_007_1145_3
crossref_primary_10_3389_fphys_2022_803185
crossref_primary_10_1038_s41598_019_53028_1
crossref_primary_10_1038_s41598_020_64911_7
crossref_primary_10_1152_jn_00075_2024
crossref_primary_10_1007_s00422_011_0466_2
crossref_primary_10_1007_s00221_004_2205_6
crossref_primary_10_1097_MD_0000000000013387
crossref_primary_10_1007_s00221_008_1308_x
crossref_primary_10_1016_S0926_6410_02_00071_X
crossref_primary_10_1038_s42256_023_00745_y
crossref_primary_10_1016_j_humov_2016_08_002
crossref_primary_10_1007_s00422_017_0733_y
crossref_primary_10_1080_00222895_2010_481693
crossref_primary_10_1007_s00221_006_0620_6
crossref_primary_10_3390_app9050934
crossref_primary_10_1002_dev_20037
crossref_primary_10_1007_s11517_009_0477_5
crossref_primary_10_1152_jn_00983_2003
crossref_primary_10_1371_journal_pone_0213870
crossref_primary_10_1016_j_jneumeth_2005_01_003
crossref_primary_10_1186_s12938_020_00811_1
crossref_primary_10_1016_j_gaitpost_2015_02_005
crossref_primary_10_1088_1748_3182_3_2_026002
crossref_primary_10_1016_j_psychsport_2010_02_003
crossref_primary_10_1134_S036211970703005X
crossref_primary_10_1016_S1762_827X_21_45092_3
crossref_primary_10_3389_fnhum_2023_1239071
crossref_primary_10_1007_s00421_013_2627_6
crossref_primary_10_1016_j_humov_2016_04_011
crossref_primary_10_1038_s41598_024_81865_2
crossref_primary_10_1007_s00221_008_1539_x
crossref_primary_10_1016_j_gaitpost_2016_09_028
crossref_primary_10_1109_TNSRE_2015_2436344
crossref_primary_10_1371_journal_pcbi_1001089
crossref_primary_10_3389_fpsyg_2021_661312
crossref_primary_10_1007_s00221_010_2414_0
crossref_primary_10_1007_s00221_017_4972_x
crossref_primary_10_1152_jn_00428_2016
crossref_primary_10_1007_s00221_011_2693_0
crossref_primary_10_1152_jn_01110_2007
crossref_primary_10_1371_journal_pone_0285098
crossref_primary_10_1007_s12662_009_0076_5
crossref_primary_10_1007_s00221_012_3210_9
crossref_primary_10_1152_jn_00457_2006
crossref_primary_10_1038_srep17830
crossref_primary_10_3390_e24070909
crossref_primary_10_1007_s00421_022_05043_w
crossref_primary_10_1051_sm_2011107
crossref_primary_10_1080_00222895_2011_568991
crossref_primary_10_3109_09593985_2015_1037875
crossref_primary_10_1007_s00221_007_1236_1
crossref_primary_10_1152_jn_01008_2011
crossref_primary_10_1371_journal_pone_0091554
crossref_primary_10_1007_s00422_006_0069_5
crossref_primary_10_1016_j_gaitpost_2005_02_008
crossref_primary_10_1152_jn_00353_2022
crossref_primary_10_1098_rsif_2012_0077
crossref_primary_10_1007_s10827_010_0291_y
crossref_primary_10_1016_j_gaitpost_2013_04_017
crossref_primary_10_1007_s00422_009_0313_x
crossref_primary_10_1016_j_otoeng_2013_04_007
crossref_primary_10_3389_fneur_2018_00899
crossref_primary_10_1016_j_jbiomech_2019_109400
crossref_primary_10_1098_rsos_200111
crossref_primary_10_2466_30_PMS_120v14x6
crossref_primary_10_1371_journal_pone_0040339
crossref_primary_10_14814_phy2_12329
crossref_primary_10_1016_j_exger_2024_112360
ContentType Journal Article
Copyright Springer-Verlag Berlin Heidelberg 2002
Copyright_xml – notice: Springer-Verlag Berlin Heidelberg 2002
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QO
7TK
7X7
7XB
88A
88E
88I
8AL
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H8D
HCIFZ
JQ2
K7-
K9.
L7M
LK8
M0N
M0S
M1P
M2P
M7P
P5Z
P62
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
Q9U
7X8
DOI 10.1007/s00422-002-0333-2
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Biotechnology Research Abstracts
Neurosciences Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
ProQuest One
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
Aerospace Database
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Health & Medical Complete (Alumni)
Advanced Technologies Database with Aerospace
Biological Sciences
Computing Database
Health & Medical Collection (Alumni)
PML(ProQuest Medical Library)
Science Database
Biological Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central Basic
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
SciTech Premium Collection
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
Aerospace Database
ProQuest Health & Medical Research Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Advanced Technologies Database with Aerospace
ProQuest Computing
ProQuest Central Basic
ProQuest Science Journals
ProQuest Computing (Alumni Edition)
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE
Computer Science Database
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1432-0770
EndPage 277
ExternalDocumentID 2693846471
12386742
10_1007_s00422_002_0333_2
Genre Research Support, U.S. Gov't, P.H.S
Journal Article
GrantInformation_xml – fundername: PHS HHS
  grantid: R29 N35070-01A2
GroupedDBID -Y2
-~X
.4S
.86
.DC
.GJ
.VR
06C
06D
0R~
0VY
1N0
203
23N
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
36B
4.4
406
408
409
40D
40E
4P2
5VS
67N
67Z
6NX
78A
7X7
88E
88I
8AO
8FE
8FG
8FH
8FI
8FJ
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANXM
AANZL
AAPKM
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYXX
AAYZH
ABAKF
ABBBX
ABBRH
ABBXA
ABDBE
ABDBF
ABDZT
ABECU
ABFSG
ABFTV
ABHLI
ABHQN
ABIVO
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABPLI
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACPRK
ACSTC
ACUHS
ACZOJ
ADBBV
ADHIR
ADHKG
ADIMF
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEUYN
AEVLU
AEXYK
AEZWR
AFBBN
AFDZB
AFGCZ
AFHIU
AFKRA
AFLOW
AFQWF
AFRAH
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGQPQ
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHMBA
AHPBZ
AHSBF
AHWEU
AHYZX
AIAKS
AIGIU
AILAN
AITGF
AIXLP
AJBLW
AJRNO
AJZVZ
AKMHD
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
ATHPR
AVWKF
AXYYD
AYFIA
AZFZN
AZQEC
B-.
B0M
BA0
BBNVY
BDATZ
BENPR
BGLVJ
BGNMA
BHPHI
BPHCQ
BSONS
BVXVI
CCPQU
CITATION
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EAD
EAP
EBC
EBD
EBLON
EBS
ECS
EDH
EDO
EIOEI
EJD
EMB
EMK
EMOBN
EN4
EPAXT
EPL
ESBYG
EST
ESX
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
FYUFA
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ7
GQ8
GXS
HCIFZ
HF~
HG5
HG6
HMCUK
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K6V
K7-
KDC
KOV
KPH
LAS
LK8
LLZTM
M1P
M2P
M4Y
M7P
MA-
MK~
N2Q
N9A
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P62
PF0
PHGZM
PHGZT
PQQKQ
PROAC
PSQYO
PT4
PT5
QOK
QOR
QOS
R89
R9I
RHV
RIG
RNS
ROL
RPX
RRX
RSV
S16
S27
S3A
S3B
SAP
SBL
SBY
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
SSXJD
STPWE
SV3
SZN
T13
TN5
TSG
TSK
TSV
TUC
TUS
U2A
U9L
UG4
UKHRP
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WH7
WJK
WK8
YLTOR
Z45
ZMTXR
ZOVNA
~8M
~EX
~KM
-4W
-56
-5G
-BR
-EM
-~C
28-
3SX
3V.
53G
5QI
88A
ADINQ
ADYPR
AEFIE
AFEXP
AGGDS
AIIXL
BBWZM
CAG
CGR
COF
CUY
CVF
ECM
EIF
GQ6
H13
KOW
M0L
M0N
NDZJH
NPM
OVD
Q2X
R4E
RNI
RZK
S1Z
S26
S28
SCLPG
T16
TEORI
WK6
Z7R
Z7X
Z7Z
Z83
Z88
Z8M
Z8R
Z8T
Z8W
Z92
ZXP
7QO
7TK
7XB
8AL
8FD
8FK
ABRTQ
FR3
H8D
JQ2
K9.
L7M
P64
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
Q9U
7X8
ID FETCH-LOGICAL-c391t-f6bad064c71fad03b838bdacd688571e667af220194d3088eb6a3594a8a7c333
IEDL.DBID 7X7
ISSN 0340-1200
IngestDate Fri Jul 11 00:46:31 EDT 2025
Fri Jul 25 19:13:50 EDT 2025
Wed Feb 19 01:34:33 EST 2025
Tue Jul 01 01:28:23 EDT 2025
Thu Apr 24 22:54:27 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License http://www.springer.com/tdm
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c391t-f6bad064c71fad03b838bdacd688571e667af220194d3088eb6a3594a8a7c333
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
PMID 12386742
PQID 1021732553
PQPubID 54056
PageCount 16
ParticipantIDs proquest_miscellaneous_72187480
proquest_journals_1021732553
pubmed_primary_12386742
crossref_citationtrail_10_1007_s00422_002_0333_2
crossref_primary_10_1007_s00422_002_0333_2
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2002-10-01
PublicationDateYYYYMMDD 2002-10-01
PublicationDate_xml – month: 10
  year: 2002
  text: 2002-10-01
  day: 01
PublicationDecade 2000
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Heidelberg
PublicationTitle Biological cybernetics
PublicationTitleAlternate Biol Cybern
PublicationYear 2002
Publisher Springer Nature B.V
Publisher_xml – name: Springer Nature B.V
SSID ssj0009259
Score 2.0805936
Snippet We analyze the stochastic structure of postural sway and demonstrate that this structure imposes important constraints on models of postural control. Linear...
SourceID proquest
pubmed
crossref
SourceType Aggregation Database
Index Database
Enrichment Source
StartPage 262
SubjectTerms Adult
Biomechanics
Central Nervous System - physiology
Control systems
Decay
Feedback - physiology
Humans
Linear Models
Older people
Photic Stimulation
Physical Stimulation
Posture
Posture - physiology
Proprioception - physiology
Sensory perception
Stochastic models
Stochastic Processes
Touch - physiology
Visual Perception - physiology
Title Multisensory fusion and the stochastic structure of postural sway
URI https://www.ncbi.nlm.nih.gov/pubmed/12386742
https://www.proquest.com/docview/1021732553
https://www.proquest.com/docview/72187480
Volume 87
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9NAEB5Bc-EClGcglD1wQrJwdte76xNKS9MItRGCIOVm7cvqAdkhboTy75nxIxEHerEt-SXPzM5jZ_19AB_SEFMeTUxKy1UiscBIHLd5wnnIpRTcxNCutliqxU_5dZ2t-wm3pl9WOfjE1lGH2tMc-SeioNYCE2DxefM7IdYo6q72FBoPYUTQZWTVeq2PoLu8JUtLBfUv0RyGrmbagYhiGUb-IBVEZ_ZvXPpPstkGnflTeNxni2zWqfcUHsTqGTwZmBhYPzCfw6z9j7bBkrTe7lm5oykwZqvAML1jmN75W0t4zKxDi91tI6tLtqmbFnSDNX_s_gWs5peri0XSkyMkXuTTu6RUzgbMJ7yelnggnBHGBeuDMibT06iUtiXH8J7LINCVRKesyHJpjdUev_glnFR1FV8Dc5nk3jjvQzTSU8jXYaoyHUuC9wtuDOkgmcL3wOHEX_GrOEAet8IsUJgFCbPgY_h4uGXToWbcd_FkEHfRD6CmOKp7DO8Pp9H0qZ9hq1jvmgKLV6OlScfwqlPS8V2YiCgs-t_c_-i38Kgjd6G1eRM4QR3Ed5hj3Lmz1pBwa-ZXZzCafbm5_oH788vlt-9_AUQ00Kg
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB5V5QAXoDwXCvUBLkgRWduxnUNVVZRlS0tPi9Sb5VfUA0qWpqtqfxT_kZk8dsWB3nqLlJc0Hs9847G_D-BDHlPOk0lZ5bjKJBYYmeeuzDiPpZSCmxS73RYXav5Tfr8sLnfgz3gWhrZVjjGxC9SxCbRG_pkkqLVAACyOlr8zUo2i7uooodG7xVla32LJ1h6enuD4fuR89nXxZZ4NqgJZEOX0JquUdxETcdDTCi-EN8L46EJUxhR6mpTSruKYF0sZBc7B5JUTRSmdcToIWv_EiP9ACkzkdDB99m3L8cs7bbZcULsUvW9souY9ZylWfRR-ckHqaf-mwf9g2y7HzZ7C4wGcsuPem_ZgJ9XP4Mko_MCGOPAcjrtjuy1WwM31mlUrWnFjro4M0SRDNBmuHNE_s56cdnWdWFOxZdN2HB-svXXrF7C4D6u9hN26qdNrYL6QPBgfQkxGBkIYOk5VoVNFbILRTyAfLWPDwFNOchm_7IZhuTOmRWNaMqblE_i0eWXZk3Tc9fD-aG47zNfWbr1rAgeb2zjTqH3i6tSsWou1stHS5BN41Q_S9l-Ie5SW_M3dnz6Ah_PFj3N7fnpx9hYe9boytC1wH3ZxPNI7hDc3_n3nVAzsPTvxXxojCOM
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1La9wwEB7CBkovfT-2TRsd2kvBxCvJknwoJW2yJE1ZQkkhN6GX6aHY2zhL2J_Wf9cZP3bpobnlZvALRqOZbzTS9wG8y2PKeTIpqxxXmcQCI_PclRnnsZRScJNit9tioU5-yK-XxeUO_BnPwtC2yjEmdoE6NoHWyA9IgloLBMDioBq2RZwfzT8tf2ekIEWd1lFOo3eRs7S-wfKt_Xh6hGP9nvP58cWXk2xQGMiCKGfXWaW8i5iUg55VeCG8EcZHF6IyptCzpJR2FcccWcoocD4mr5woSumM00HQWihG_11NRdEEdj8fL86_bxl_eafUlgtqnqIvji3VvGcwxRqQglEuSEvt36T4H6TbZbz5I3gwQFV22PvWY9hJ9RN4OMpAsCEqPIXD7hBvi_Vwc7Vm1YrW35irI0NsyRBbhp-OyKBZT1W7ukqsqdiyaTvGD9beuPUzuLgLuz2HSd3U6SUwX0gejA8hJiMD4Q0dZ6rQqSJuweinkI-WsWFgLSfxjF92w7fcGdOiMS0Z0_IpfNi8suwpO257eG80tx1mb2u3vjaF_c1tnHfUTHF1alatxcrZaGnyKbzoB2n7L0RBSkv-6vZP78M9dGD77XRx9hru9yIztEdwDyY4HOkNYp1r_3bwKgb2jv34L-k7DnU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multisensory+fusion+and+the+stochastic+structure+of+postural+sway&rft.jtitle=Biological+cybernetics&rft.au=Kiemel%2C+Tim&rft.au=Oie%2C+Kelvin+S.&rft.au=Jeka%2C+John+J.&rft.date=2002-10-01&rft.issn=0340-1200&rft.volume=87&rft.issue=4&rft.spage=262&rft.epage=277&rft_id=info:doi/10.1007%2Fs00422-002-0333-2&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s00422_002_0333_2
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0340-1200&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0340-1200&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0340-1200&client=summon