RTCNet: A novel real-time triple branch network for pavement crack semantic segmentation

•A novel real-time triple-branch network was proposed for pavement crack detection under complex scenarios.•A transformer module for enlarging the global receptive field while preserving local details of cracks.•A boundary refinement module was designed to refine crack boundaries.•A manually annotat...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of applied earth observation and geoinformation Vol. 136; p. 104347
Main Authors Liu, Bin, Kang, Jian, Guan, Haiyan, Zhi, Xiaodong, Yu, Yongtao, Ma, Lingfei, Peng, Daifeng, Xu, Linlin, Wang, Dongchuan
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.02.2025
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •A novel real-time triple-branch network was proposed for pavement crack detection under complex scenarios.•A transformer module for enlarging the global receptive field while preserving local details of cracks.•A boundary refinement module was designed to refine crack boundaries.•A manually annotated highway pavement crack dataset with complex scenarios was built for pavement crack detection. Although real-time semantic segmentation of pavement cracks is crucial for road evaluation and maintenance decision-making, it is a challenging task due to low operational efficiency and over-segmentation of existing methods. To address these challenges, in this paper, incorporating Transformers and CNNs, we propose a real-time triple-branch crack semantic segmentation network (RTCNet) using digital camera images. The three branches include a detail branch for capturing local detail features, a context branch for extracting global contextual information, and a boundary branch for obtaining crack boundary information. First, to further enhance crack features, we design a Detail Enhance Transformer (DET) module for enlarging global receptive fields and a Multiscale Aggregation (MSA) module for multiscale learning in the context branch. Second, a Boundary Refinement (BR) module with Sobel operators embedded in the boundary branch is designed to refine the crack boundaries. Last, a Detail-Context Fusion (DCF) module is designed to aggregate the intermediate features extracted from the different branches efficiently Comprehensive quantitative and visual comparisons on four datasets showed that the proposed RTCNet outperforms the comparative models in terms of efficiency and effectiveness with the highest F1-score, mIoU, and Frames Per Second (FPS) of 90.56%, 90.25%, and 87.34 in DeepCrack537 dataset, respectively. We also contribute an extensive dataset of pavement cracks, consisting of 464 manually annotated digital images, which is publicly accessible at https://github.com/NJSkate/BeijingHighway-dataset.
AbstractList •A novel real-time triple-branch network was proposed for pavement crack detection under complex scenarios.•A transformer module for enlarging the global receptive field while preserving local details of cracks.•A boundary refinement module was designed to refine crack boundaries.•A manually annotated highway pavement crack dataset with complex scenarios was built for pavement crack detection. Although real-time semantic segmentation of pavement cracks is crucial for road evaluation and maintenance decision-making, it is a challenging task due to low operational efficiency and over-segmentation of existing methods. To address these challenges, in this paper, incorporating Transformers and CNNs, we propose a real-time triple-branch crack semantic segmentation network (RTCNet) using digital camera images. The three branches include a detail branch for capturing local detail features, a context branch for extracting global contextual information, and a boundary branch for obtaining crack boundary information. First, to further enhance crack features, we design a Detail Enhance Transformer (DET) module for enlarging global receptive fields and a Multiscale Aggregation (MSA) module for multiscale learning in the context branch. Second, a Boundary Refinement (BR) module with Sobel operators embedded in the boundary branch is designed to refine the crack boundaries. Last, a Detail-Context Fusion (DCF) module is designed to aggregate the intermediate features extracted from the different branches efficiently Comprehensive quantitative and visual comparisons on four datasets showed that the proposed RTCNet outperforms the comparative models in terms of efficiency and effectiveness with the highest F1-score, mIoU, and Frames Per Second (FPS) of 90.56%, 90.25%, and 87.34 in DeepCrack537 dataset, respectively. We also contribute an extensive dataset of pavement cracks, consisting of 464 manually annotated digital images, which is publicly accessible at https://github.com/NJSkate/BeijingHighway-dataset.
Although real-time semantic segmentation of pavement cracks is crucial for road evaluation and maintenance decision-making, it is a challenging task due to low operational efficiency and over-segmentation of existing methods. To address these challenges, in this paper, incorporating Transformers and CNNs, we propose a real-time triple-branch crack semantic segmentation network (RTCNet) using digital camera images. The three branches include a detail branch for capturing local detail features, a context branch for extracting global contextual information, and a boundary branch for obtaining crack boundary information. First, to further enhance crack features, we design a Detail Enhance Transformer (DET) module for enlarging global receptive fields and a Multiscale Aggregation (MSA) module for multiscale learning in the context branch. Second, a Boundary Refinement (BR) module with Sobel operators embedded in the boundary branch is designed to refine the crack boundaries. Last, a Detail-Context Fusion (DCF) module is designed to aggregate the intermediate features extracted from the different branches efficiently Comprehensive quantitative and visual comparisons on four datasets showed that the proposed RTCNet outperforms the comparative models in terms of efficiency and effectiveness with the highest F1-score, mIoU, and Frames Per Second (FPS) of 90.56%, 90.25%, and 87.34 in DeepCrack537 dataset, respectively. We also contribute an extensive dataset of pavement cracks, consisting of 464 manually annotated digital images, which is publicly accessible at https://github.com/NJSkate/BeijingHighway-dataset.
Although real-time semantic segmentation of pavement cracks is crucial for road evaluation and maintenance decision-making, it is a challenging task due to low operational efficiency and over-segmentation of existing methods. To address these challenges, in this paper, incorporating Transformers and CNNs, we propose a real-time triple-branch crack semantic segmentation network (RTCNet) using digital camera images. The three branches include a detail branch for capturing local detail features, a context branch for extracting global contextual information, and a boundary branch for obtaining crack boundary information. First, to further enhance crack features, we design a Detail Enhance Transformer (DET) module for enlarging global receptive fields and a Multiscale Aggregation (MSA) module for multiscale learning in the context branch. Second, a Boundary Refinement (BR) module with Sobel operators embedded in the boundary branch is designed to refine the crack boundaries. Last, a Detail-Context Fusion (DCF) module is designed to aggregate the intermediate features extracted from the different branches efficiently Comprehensive quantitative and visual comparisons on four datasets showed that the proposed RTCNet outperforms the comparative models in terms of efficiency and effectiveness with the highest F₁-score, mIoU, and Frames Per Second (FPS) of 90.56%, 90.25%, and 87.34 in DeepCrack537 dataset, respectively. We also contribute an extensive dataset of pavement cracks, consisting of 464 manually annotated digital images, which is publicly accessible at https://github.com/NJSkate/BeijingHighway-dataset.
ArticleNumber 104347
Author Wang, Dongchuan
Liu, Bin
Guan, Haiyan
Peng, Daifeng
Ma, Lingfei
Yu, Yongtao
Xu, Linlin
Kang, Jian
Zhi, Xiaodong
Author_xml – sequence: 1
  givenname: Bin
  surname: Liu
  fullname: Liu, Bin
  email: liubin@nuist.edu.cn
  organization: School of Remote Sensing and Geomatics Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China
– sequence: 2
  givenname: Jian
  surname: Kang
  fullname: Kang, Jian
  email: kangjian_2022@nuist.edu.cn
  organization: School of Remote Sensing and Geomatics Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China
– sequence: 3
  givenname: Haiyan
  surname: Guan
  fullname: Guan, Haiyan
  email: guanhy.nj@nuist.edu.cn
  organization: School of Remote Sensing and Geomatics Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China
– sequence: 4
  givenname: Xiaodong
  surname: Zhi
  fullname: Zhi, Xiaodong
  email: zhixd@outlook.com
  organization: Beijing Zhongke Pengyu Technology Co, Beijing 100080, China
– sequence: 5
  givenname: Yongtao
  surname: Yu
  fullname: Yu, Yongtao
  email: allennessy@hyit.edu.cn
  organization: Faculty of Computer and Software Engineering, Huaiyin Institute of Technology, Huaian 223003, China
– sequence: 6
  givenname: Lingfei
  surname: Ma
  fullname: Ma, Lingfei
  email: l53ma@cufe.edu.cn
  organization: School of Statistics and Mathematics, Central University of Finance and Economics, Beijing 102206, China
– sequence: 7
  givenname: Daifeng
  surname: Peng
  fullname: Peng, Daifeng
  email: daifeng@nuist.edu.cn
  organization: School of Remote Sensing and Geomatics Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China
– sequence: 8
  givenname: Linlin
  surname: Xu
  fullname: Xu, Linlin
  email: l44xu@uwaterloo.ca
  organization: Department of Geomatics Engineering, University of Calgary, Calgary, AB T2N 1N4, Canada
– sequence: 9
  givenname: Dongchuan
  surname: Wang
  fullname: Wang, Dongchuan
  email: dongchuan_wang@163.com
  organization: Beijing Zhongke Pengyu Technology Co, Beijing 100080, China
BookMark eNp9UctuFDEQnEOQ8iAfwM1HLrP4NQ_DKVpBiBSBFAWJm9VrtxdPZuzFdhbl7_EyiCOn7i51VZe6LpuzEAM2zRtGN4yy_t20mWC_4ZTLOkshh7PmgnW9akcp-HlzmfNEKRuGfrxovj88br9geU9uSIhHnElCmNviFyQl-cOMZJcgmB8kYPkV0xNxMZEDHHHBUIhJYJ5IxgVC8aY2-xMMxcfwunnlYM54_bdeNd8-fXzcfm7vv97ebW_uWyMUKy06y-morNo55ByA9TAKDmgRqn_uRmEGxy0bHTUDdkIqIw1KSV03qsFScdXcrbo2wqQPyS-QXnQEr_8AMe01pGpuRs16jrIXg1NCSc6ockoB62yHnd2h3VWtt6vWIcWfz5iLXnw2OM8QMD5nLTilXDHaDXWVrasmxZwTun-nGdWnFPSkawr6lIJeU6icDysH6z-OHpPOxmMwaH1CU6ph_x_2b5W1k0Q
Cites_doi 10.1016/j.engappai.2024.108416
10.1007/978-3-031-25082-8_12
10.1109/TITS.2023.3307286
10.1016/j.neucom.2019.01.036
10.1016/j.conbuildmat.2019.117367
10.1109/CVPR.2016.90
10.1007/978-3-319-24574-4_28
10.1007/s11263-021-01515-2
10.1109/TITS.2021.3095507
10.1016/j.autcon.2024.105440
10.1002/stc.2991
10.1109/TITS.2022.3228042
10.1016/j.autcon.2021.103786
10.1016/j.autcon.2023.105217
10.1109/TIP.2023.3256763
10.1109/ICCE.2013.6486837
10.1016/j.autcon.2019.102959
10.1109/ICCV.2017.324
10.1109/TITS.2023.3300312
10.3390/jmse9060671
10.1016/j.engstruct.2024.117903
10.1109/ACCESS.2020.2976860
10.1016/j.autcon.2022.104646
10.1109/CVPR52729.2023.01157
10.1080/15732479.2011.593891
10.1016/j.neucom.2019.10.118
10.1016/j.eswa.2024.124950
ContentType Journal Article
Copyright 2024 The Author(s)
Copyright_xml – notice: 2024 The Author(s)
DBID 6I.
AAFTH
AAYXX
CITATION
7S9
L.6
DOA
DOI 10.1016/j.jag.2024.104347
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
AGRICOLA
AGRICOLA - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList

AGRICOLA
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Environmental Sciences
ExternalDocumentID oai_doaj_org_article_162e4637f93942109f99a15d5e5dbedb
10_1016_j_jag_2024_104347
S1569843224007052
GroupedDBID 29J
4.4
5GY
6I.
AAFTH
AAHBH
AALRI
AAQXK
AATTM
AAXKI
AAXUO
ABFYP
ABJNI
ABLST
ABQEM
ABQYD
ABWVN
ACLVX
ACRLP
ACRPL
ACSBN
ADBBV
ADMUD
ADNMO
ADVLN
AEIPS
AFJKZ
AFXIZ
AGYEJ
AHEUO
AIKHN
AITUG
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ASPBG
ATOGT
AVWKF
AZFZN
BKOJK
BLECG
BNPGV
EBS
EFJIC
EJD
FDB
FEDTE
FIRID
FYGXN
GROUPED_DOAJ
HVGLF
IMUCA
KCYFY
M41
O-L
P-8
P-9
P2P
R2-
RIG
ROL
SES
SPC
SSE
SSH
SSJ
~02
AAYWO
AAYXX
AGCQF
AGQPQ
AGRNS
AIIUN
APXCP
CITATION
7S9
EFKBS
L.6
ID FETCH-LOGICAL-c391t-efd2089d9bfe22aa16a832aedea0242f83c7f2d18f0c7e5349c4ce440f5897d03
IEDL.DBID AIKHN
ISSN 1569-8432
IngestDate Wed Aug 27 01:31:20 EDT 2025
Fri Aug 22 20:23:51 EDT 2025
Tue Jul 01 05:26:36 EDT 2025
Sun Apr 06 06:54:33 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Deep learning
Triple-branch network
Transformer
Pavement crack detection
Real-time semantic segmentation
Language English
License This is an open access article under the CC BY-NC-ND license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c391t-efd2089d9bfe22aa16a832aedea0242f83c7f2d18f0c7e5349c4ce440f5897d03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S1569843224007052
PQID 3200291057
PQPubID 24069
ParticipantIDs doaj_primary_oai_doaj_org_article_162e4637f93942109f99a15d5e5dbedb
proquest_miscellaneous_3200291057
crossref_primary_10_1016_j_jag_2024_104347
elsevier_sciencedirect_doi_10_1016_j_jag_2024_104347
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate February 2025
2025-02-00
20250201
2025-02-01
PublicationDateYYYYMMDD 2025-02-01
PublicationDate_xml – month: 02
  year: 2025
  text: February 2025
PublicationDecade 2020
PublicationTitle International journal of applied earth observation and geoinformation
PublicationYear 2025
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Li, Zhang, Zhu, Gao, Liang, Yang (b0095) 2024; 307
Lin, T.-Y., Goyal, P., Girshick, R., He, K., Dollár, P., 2018. Focal Loss for Dense Object Detection. In: Proc. ICCV, pp. 2980-2988. Doi: 10.1109/ICCV.2017.324.
Sun, Yang, Yang, Zhou, Li (b0145) 2024; 1–14
Ren, Zhang, Chen, Zhou, Feng (b0125) 2023; 120
Ren, Huang, Hong, Lu, Yin, Zou, Shen (b0120) 2020; 234
Guo, Qian, Liu, Yu (b0045) 2023; 145
Chen, J., Kao, S., He, H., Zhuo, W., Wen, S., Lee, C.-H., Chan, S.-H.G., 2023. Run, Don’t Walk: Chasing Higher FLOPS for Faster Neural Networks. In: Proc. CVPR, pp.12021-12031. Doi: 10.1109/CVPR52729.2023.01157.
Wang, Su (b0150) 2021; 128
Zhang, He, Xue, Wu, Ren, Zhao (b0180) 2024; 131
Pan, Hong, Sun, Jia (b0115) 2023; 24
Zhang, Wang, Lu (b0185) 2023; 24
Han, Ma, Huyan, Huang, Zhang (b0050) 2022; 23
Song, He, Qian, Du (b0140) 2023; 32
Yang, Li, Yu, Luo, Huang, Yang (b0165) 2018; 33
Li, Yuan, Ren, Luo, Fu, Li (b0090) 2024; 163
Lee, Kim, Yi, Kim (b0075) 2013; 9
Zhang, He, Dong, Zhang, Liu, Zhan, Wang, Lin (b0175) 2024; 133
Li, Liu, Fang, Shen, Ali (b0080) 2022; 29
Simonyan, K., Zisserman, A., 2014. Very Deep Convolutional Networks for Large-Scale Image Recognition. In arXiv preprint arXiv:1409.1556. https://arxiv.org/abs/1409.1556.
Ma, Li (b0110) 2022; 111
Liu, Yao, Lu, Xie, Li (b0105) 2019; 338
Fu, Meng, Li, Wang (b0040) 2021; 9
Kalbasi, Nikmehr (b0060) 2020; 8
He, K., Zhang, X., Ren, S., Sun, J., 2016. Deep Residual Learning for Image Recognition, In: Proc. CVPR, pp. 770–778. Doi: 10.1109/CVPR.2016.90.
Xu, Guan, Kang, Lei, Ma, Yu, Chen, Li (b0160) 2022; 110
Li, Yang, Ma, Wang, Wang, Tian, Qi (b0085) 2023; 25
Kulkarni, S., Singh, S., Balakrishnan, D., Sharma, S., Devunuri, S., Korlapati, S.C.R., 2022. CrackSeg9k: A Collection and Benchmark for Crack Segmentation Datasets and Frameworks. In arXiv preprint arXiv:2208.13054. Doi: 10.48550/arXiv.2208.13054.
Chen, Zhang, Ren, Zhou, Sun, Feng, Chen, Zhi (b0030) 2024; 128
Amato, Palombi, Raimondi (b0010) 2021; 104
Ronneberger, O., Fischer, P., Brox, T., 2015. U-Net: Convolutional Networks for Biomedical Image Segmentation. In: Proc. MICCAI. Springer, pp. 234-241. Doi: 10.1007/978-3-319-24574-4_28.
Hyunchan Ahn, Byungjik Keum, Daehoon Kim, Hwang Soo Lee, 2013. Adaptive local tone mapping based on retinex for high dynamic range images, In: Proc. ICCE, pp. 153–156. Doi: 10.1109/ICCE.2013.6486837.
Wang, Zeng, Sharma, Alfarraj, Tolba, Zhang, Wang (b0155) 2024; 158
Kouzehgar, Krishnasamy Tamilselvam, Vega Heredia, Rajesh Elara (b0065) 2019; 108
Feng, Ma, Yu, Chen, Li (b0035) 2023; 118
Zhang, Zeng, Sharma, Alfarraj, Tolba, Wang (b0190) 2024; 256
Ashraf, Sophian, Shafie, Gunawan, Ismail, Bawono (b0015) 2022; 2
Cervantes, Garcia-Lamont, Rodríguez-Mazahua, Lopez (b0020) 2020; 408
Yu, Gao, Wang, Yu, Shen, Sang (b0170) 2020; 129
Cervantes (10.1016/j.jag.2024.104347_b0020) 2020; 408
Lee (10.1016/j.jag.2024.104347_b0075) 2013; 9
Han (10.1016/j.jag.2024.104347_b0050) 2022; 23
Li (10.1016/j.jag.2024.104347_b0095) 2024; 307
Sun (10.1016/j.jag.2024.104347_b0145) 2024; 1–14
Feng (10.1016/j.jag.2024.104347_b0035) 2023; 118
Ren (10.1016/j.jag.2024.104347_b0125) 2023; 120
Xu (10.1016/j.jag.2024.104347_b0160) 2022; 110
Fu (10.1016/j.jag.2024.104347_b0040) 2021; 9
10.1016/j.jag.2024.104347_b0070
Yu (10.1016/j.jag.2024.104347_b0170) 2020; 129
Zhang (10.1016/j.jag.2024.104347_b0190) 2024; 256
10.1016/j.jag.2024.104347_b0130
10.1016/j.jag.2024.104347_b0135
Amato (10.1016/j.jag.2024.104347_b0010) 2021; 104
10.1016/j.jag.2024.104347_b0055
Zhang (10.1016/j.jag.2024.104347_b0180) 2024; 131
Kalbasi (10.1016/j.jag.2024.104347_b0060) 2020; 8
Ma (10.1016/j.jag.2024.104347_b0110) 2022; 111
Pan (10.1016/j.jag.2024.104347_b0115) 2023; 24
Zhang (10.1016/j.jag.2024.104347_b0185) 2023; 24
Yang (10.1016/j.jag.2024.104347_b0165) 2018; 33
Ashraf (10.1016/j.jag.2024.104347_b0015) 2022; 2
Wang (10.1016/j.jag.2024.104347_b0155) 2024; 158
Wang (10.1016/j.jag.2024.104347_b0150) 2021; 128
Liu (10.1016/j.jag.2024.104347_b0105) 2019; 338
Kouzehgar (10.1016/j.jag.2024.104347_b0065) 2019; 108
Li (10.1016/j.jag.2024.104347_b0085) 2023; 25
10.1016/j.jag.2024.104347_b0025
Li (10.1016/j.jag.2024.104347_b0090) 2024; 163
Zhang (10.1016/j.jag.2024.104347_b0175) 2024; 133
Ren (10.1016/j.jag.2024.104347_b0120) 2020; 234
10.1016/j.jag.2024.104347_b0100
10.1016/j.jag.2024.104347_b0005
Li (10.1016/j.jag.2024.104347_b0080) 2022; 29
Guo (10.1016/j.jag.2024.104347_b0045) 2023; 145
Chen (10.1016/j.jag.2024.104347_b0030) 2024; 128
Song (10.1016/j.jag.2024.104347_b0140) 2023; 32
References_xml – volume: 120
  year: 2023
  ident: b0125
  article-title: YOLOv5s-M: A deep learning network model for road pavement damage detection from urban street-view imagery
  publication-title: Int. J. Appl. Earth Obs. Geoinf
– volume: 307
  year: 2024
  ident: b0095
  article-title: Automatic crack detection on concrete and asphalt surfaces using semantic segmentation network with hierarchical Transformer
  publication-title: Eng. Struct.
– volume: 9
  start-page: 671
  year: 2021
  ident: b0040
  article-title: Bridge Crack Semantic Segmentation Based on Improved Deeplabv3+
  publication-title: J. Mar. Sci. Eng.
– volume: 234
  year: 2020
  ident: b0120
  article-title: Image-based concrete crack detection in tunnels using deep fully convolutional networks
  publication-title: Constr. Build. Mater.
– reference: Simonyan, K., Zisserman, A., 2014. Very Deep Convolutional Networks for Large-Scale Image Recognition. In arXiv preprint arXiv:1409.1556. https://arxiv.org/abs/1409.1556.
– volume: 145
  year: 2023
  ident: b0045
  article-title: Pavement crack detection based on transformer network
  publication-title: Autom. Constr.
– volume: 24
  start-page: 3448
  year: 2023
  end-page: 3460
  ident: b0115
  article-title: Deep Dual-Resolution Networks for Real-Time and Accurate Semantic Segmentation of Traffic Scenes
  publication-title: IEEE Trans. Intell. Transp. Syst.
– volume: 1–14
  year: 2024
  ident: b0145
  article-title: DUCTNet: An Effective Road Crack Segmentation Method in UAV Remote Sensing Images Under Complex Scenes
  publication-title: IEEE Trans. Intell. Transp. Syst.
– reference: He, K., Zhang, X., Ren, S., Sun, J., 2016. Deep Residual Learning for Image Recognition, In: Proc. CVPR, pp. 770–778. Doi: 10.1109/CVPR.2016.90.
– volume: 32
  start-page: 1927
  year: 2023
  end-page: 1941
  ident: b0140
  article-title: Vision Transformers for Single Image Dehazing
  publication-title: IEEE Trans. Image Process.
– volume: 118
  year: 2023
  ident: b0035
  article-title: SCL-GCN: Stratified Contrastive Learning Graph Convolution Network for pavement crack detection from mobile LiDAR point clouds
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 24
  start-page: 15105
  year: 2023
  end-page: 15112
  ident: b0185
  article-title: ECSNet: An Accelerated Real-Time Image Segmentation CNN Architecture for Pavement Crack Detection
  publication-title: IEEE Trans. Intell. Transp. Syst.
– volume: 8
  start-page: 39934
  year: 2020
  end-page: 39945
  ident: b0060
  article-title: Noise-Robust, Reconfigurable Canny Edge Detection and its Hardware Realization
  publication-title: IEEE Access
– volume: 128
  year: 2024
  ident: b0030
  article-title: A multiscale enhanced pavement crack segmentation network coupling spectral and spatial information of UAV hyperspectral imagery
  publication-title: Int. J. Appl. Earth Obs. Geoinf
– volume: 110
  year: 2022
  ident: b0160
  article-title: Pavement crack detection from CCD images with a locally enhanced transformer network
  publication-title: Int. J. Appl. Earth Obs. Geoinf
– reference: Chen, J., Kao, S., He, H., Zhuo, W., Wen, S., Lee, C.-H., Chan, S.-H.G., 2023. Run, Don’t Walk: Chasing Higher FLOPS for Faster Neural Networks. In: Proc. CVPR, pp.12021-12031. Doi: 10.1109/CVPR52729.2023.01157.
– volume: 33
  start-page: 1090
  year: 2018
  end-page: 1109
  ident: b0165
  article-title: Automatic Pixel‐Level Crack Detection and Measurement Using Fully Convolutional Network. Comput.-Aided Civ
  publication-title: Infrast. Eng.
– volume: 23
  start-page: 22135
  year: 2022
  end-page: 22144
  ident: b0050
  article-title: CrackW-Net: A Novel Pavement Crack Image Segmentation Convolutional Neural Network
  publication-title: IEEE Trans. Intell. Transp. Syst.
– volume: 104
  year: 2021
  ident: b0010
  article-title: Data–driven classification of landslide types at a national scale by using Artificial Neural Networks
  publication-title: Int. J. Appl. Earth Obs. Geoinf
– volume: 256
  year: 2024
  ident: b0190
  article-title: A dual encoder crack segmentation network with Haar wavelet-based high–low frequency attention
  publication-title: Expert Syst. Appl.
– reference: Lin, T.-Y., Goyal, P., Girshick, R., He, K., Dollár, P., 2018. Focal Loss for Dense Object Detection. In: Proc. ICCV, pp. 2980-2988. Doi: 10.1109/ICCV.2017.324.
– volume: 131
  year: 2024
  ident: b0180
  article-title: Segment-anything embedding for pixel-level road damage extraction using high-resolution satellite images
  publication-title: Int. J. Appl. Earth Obs. Geoinf
– volume: 108
  year: 2019
  ident: b0065
  article-title: Self-reconfigurable façade-cleaning robot equipped with deep-learning-based crack detection based on convolutional neural networks
  publication-title: Autom. Constr.
– volume: 133
  year: 2024
  ident: b0175
  article-title: Automated pixel-level pavement marking detection based on a convolutional transformer
  publication-title: Eng. Appl. Artif. Intell.
– volume: 128
  year: 2021
  ident: b0150
  article-title: Semi-supervised semantic segmentation network for surface crack detection
  publication-title: Autom. Constr.
– volume: 408
  start-page: 189
  year: 2020
  end-page: 215
  ident: b0020
  article-title: A comprehensive survey on support vector machine classification: Applications, challenges and trends
  publication-title: Neurocomputing
– volume: 29
  year: 2022
  ident: b0080
  article-title: Automatic bridge crack detection using boundary refinement based on real‐time segmentation network
  publication-title: Struct. Control Health Monit.
– reference: Ronneberger, O., Fischer, P., Brox, T., 2015. U-Net: Convolutional Networks for Biomedical Image Segmentation. In: Proc. MICCAI. Springer, pp. 234-241. Doi: 10.1007/978-3-319-24574-4_28.
– volume: 25
  start-page: 237
  year: 2023
  end-page: 250
  ident: b0085
  article-title: Rethinking Lightweight Convolutional Neural Networks for Efficient and High-quality Pavement Crack Detection
  publication-title: IEEE Trans. Intell. Transp. Syst.
– reference: Hyunchan Ahn, Byungjik Keum, Daehoon Kim, Hwang Soo Lee, 2013. Adaptive local tone mapping based on retinex for high dynamic range images, In: Proc. ICCE, pp. 153–156. Doi: 10.1109/ICCE.2013.6486837.
– volume: 9
  start-page: 567
  year: 2013
  end-page: 577
  ident: b0075
  article-title: Automated image processing technique for detecting and analysing concrete surface cracks
  publication-title: Struct. Infrastruct. Eng.
– volume: 163
  year: 2024
  ident: b0090
  article-title: CNN-Transformer hybrid network for concrete dam crack patrol inspection
  publication-title: Autom. Constr.
– reference: Kulkarni, S., Singh, S., Balakrishnan, D., Sharma, S., Devunuri, S., Korlapati, S.C.R., 2022. CrackSeg9k: A Collection and Benchmark for Crack Segmentation Datasets and Frameworks. In arXiv preprint arXiv:2208.13054. Doi: 10.48550/arXiv.2208.13054.
– volume: 111
  year: 2022
  ident: b0110
  article-title: SD-GCN: Saliency-based dilated graph convolution network for pavement crack extraction from 3D point clouds
  publication-title: Int. J. Appl. Earth Obs. Geoinf
– volume: 129
  start-page: 3051
  year: 2020
  end-page: 3068
  ident: b0170
  article-title: BiSeNet V2: Bilateral Network with Guided Aggregation for Real-time Semantic Segmentation
  publication-title: Int J Comput vis
– volume: 338
  start-page: 139
  year: 2019
  end-page: 153
  ident: b0105
  article-title: DeepCrack: A deep hierarchical feature learning architecture for crack segmentation
  publication-title: Neurocomputing
– volume: 158
  year: 2024
  ident: b0155
  article-title: Dual-path network combining CNN and transformer for pavement crack segmentation
  publication-title: Autom. Constr.
– volume: 2
  start-page: 123
  year: 2022
  end-page: 134
  ident: b0015
  article-title: Detection of Road Cracks Using Convolutional Neural Networks and Threshold Segmentation
  publication-title: J. Integr. Adv. Eng. JIAE
– volume: 133
  year: 2024
  ident: 10.1016/j.jag.2024.104347_b0175
  article-title: Automated pixel-level pavement marking detection based on a convolutional transformer
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2024.108416
– volume: 131
  year: 2024
  ident: 10.1016/j.jag.2024.104347_b0180
  article-title: Segment-anything embedding for pixel-level road damage extraction using high-resolution satellite images
  publication-title: Int. J. Appl. Earth Obs. Geoinf
– ident: 10.1016/j.jag.2024.104347_b0070
  doi: 10.1007/978-3-031-25082-8_12
– volume: 25
  start-page: 237
  issue: 1
  year: 2023
  ident: 10.1016/j.jag.2024.104347_b0085
  article-title: Rethinking Lightweight Convolutional Neural Networks for Efficient and High-quality Pavement Crack Detection
  publication-title: IEEE Trans. Intell. Transp. Syst.
  doi: 10.1109/TITS.2023.3307286
– volume: 2
  start-page: 123
  year: 2022
  ident: 10.1016/j.jag.2024.104347_b0015
  article-title: Detection of Road Cracks Using Convolutional Neural Networks and Threshold Segmentation
  publication-title: J. Integr. Adv. Eng. JIAE
– volume: 338
  start-page: 139
  year: 2019
  ident: 10.1016/j.jag.2024.104347_b0105
  article-title: DeepCrack: A deep hierarchical feature learning architecture for crack segmentation
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2019.01.036
– volume: 234
  year: 2020
  ident: 10.1016/j.jag.2024.104347_b0120
  article-title: Image-based concrete crack detection in tunnels using deep fully convolutional networks
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2019.117367
– ident: 10.1016/j.jag.2024.104347_b0055
  doi: 10.1109/CVPR.2016.90
– ident: 10.1016/j.jag.2024.104347_b0130
  doi: 10.1007/978-3-319-24574-4_28
– volume: 104
  year: 2021
  ident: 10.1016/j.jag.2024.104347_b0010
  article-title: Data–driven classification of landslide types at a national scale by using Artificial Neural Networks
  publication-title: Int. J. Appl. Earth Obs. Geoinf
– volume: 129
  start-page: 3051
  year: 2020
  ident: 10.1016/j.jag.2024.104347_b0170
  article-title: BiSeNet V2: Bilateral Network with Guided Aggregation for Real-time Semantic Segmentation
  publication-title: Int J Comput vis
  doi: 10.1007/s11263-021-01515-2
– volume: 23
  start-page: 22135
  year: 2022
  ident: 10.1016/j.jag.2024.104347_b0050
  article-title: CrackW-Net: A Novel Pavement Crack Image Segmentation Convolutional Neural Network
  publication-title: IEEE Trans. Intell. Transp. Syst.
  doi: 10.1109/TITS.2021.3095507
– volume: 163
  year: 2024
  ident: 10.1016/j.jag.2024.104347_b0090
  article-title: CNN-Transformer hybrid network for concrete dam crack patrol inspection
  publication-title: Autom. Constr.
  doi: 10.1016/j.autcon.2024.105440
– volume: 29
  year: 2022
  ident: 10.1016/j.jag.2024.104347_b0080
  article-title: Automatic bridge crack detection using boundary refinement based on real‐time segmentation network
  publication-title: Struct. Control Health Monit.
  doi: 10.1002/stc.2991
– volume: 1–14
  year: 2024
  ident: 10.1016/j.jag.2024.104347_b0145
  article-title: DUCTNet: An Effective Road Crack Segmentation Method in UAV Remote Sensing Images Under Complex Scenes
  publication-title: IEEE Trans. Intell. Transp. Syst.
– volume: 24
  start-page: 3448
  year: 2023
  ident: 10.1016/j.jag.2024.104347_b0115
  article-title: Deep Dual-Resolution Networks for Real-Time and Accurate Semantic Segmentation of Traffic Scenes
  publication-title: IEEE Trans. Intell. Transp. Syst.
  doi: 10.1109/TITS.2022.3228042
– volume: 118
  year: 2023
  ident: 10.1016/j.jag.2024.104347_b0035
  article-title: SCL-GCN: Stratified Contrastive Learning Graph Convolution Network for pavement crack detection from mobile LiDAR point clouds
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 120
  year: 2023
  ident: 10.1016/j.jag.2024.104347_b0125
  article-title: YOLOv5s-M: A deep learning network model for road pavement damage detection from urban street-view imagery
  publication-title: Int. J. Appl. Earth Obs. Geoinf
– volume: 128
  year: 2021
  ident: 10.1016/j.jag.2024.104347_b0150
  article-title: Semi-supervised semantic segmentation network for surface crack detection
  publication-title: Autom. Constr.
  doi: 10.1016/j.autcon.2021.103786
– volume: 158
  year: 2024
  ident: 10.1016/j.jag.2024.104347_b0155
  article-title: Dual-path network combining CNN and transformer for pavement crack segmentation
  publication-title: Autom. Constr.
  doi: 10.1016/j.autcon.2023.105217
– volume: 32
  start-page: 1927
  year: 2023
  ident: 10.1016/j.jag.2024.104347_b0140
  article-title: Vision Transformers for Single Image Dehazing
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2023.3256763
– ident: 10.1016/j.jag.2024.104347_b0005
  doi: 10.1109/ICCE.2013.6486837
– volume: 108
  year: 2019
  ident: 10.1016/j.jag.2024.104347_b0065
  article-title: Self-reconfigurable façade-cleaning robot equipped with deep-learning-based crack detection based on convolutional neural networks
  publication-title: Autom. Constr.
  doi: 10.1016/j.autcon.2019.102959
– ident: 10.1016/j.jag.2024.104347_b0100
  doi: 10.1109/ICCV.2017.324
– volume: 24
  start-page: 15105
  year: 2023
  ident: 10.1016/j.jag.2024.104347_b0185
  article-title: ECSNet: An Accelerated Real-Time Image Segmentation CNN Architecture for Pavement Crack Detection
  publication-title: IEEE Trans. Intell. Transp. Syst.
  doi: 10.1109/TITS.2023.3300312
– volume: 111
  year: 2022
  ident: 10.1016/j.jag.2024.104347_b0110
  article-title: SD-GCN: Saliency-based dilated graph convolution network for pavement crack extraction from 3D point clouds
  publication-title: Int. J. Appl. Earth Obs. Geoinf
– volume: 33
  start-page: 1090
  year: 2018
  ident: 10.1016/j.jag.2024.104347_b0165
  article-title: Automatic Pixel‐Level Crack Detection and Measurement Using Fully Convolutional Network. Comput.-Aided Civ
  publication-title: Infrast. Eng.
– volume: 9
  start-page: 671
  year: 2021
  ident: 10.1016/j.jag.2024.104347_b0040
  article-title: Bridge Crack Semantic Segmentation Based on Improved Deeplabv3+
  publication-title: J. Mar. Sci. Eng.
  doi: 10.3390/jmse9060671
– volume: 307
  year: 2024
  ident: 10.1016/j.jag.2024.104347_b0095
  article-title: Automatic crack detection on concrete and asphalt surfaces using semantic segmentation network with hierarchical Transformer
  publication-title: Eng. Struct.
  doi: 10.1016/j.engstruct.2024.117903
– volume: 8
  start-page: 39934
  year: 2020
  ident: 10.1016/j.jag.2024.104347_b0060
  article-title: Noise-Robust, Reconfigurable Canny Edge Detection and its Hardware Realization
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2976860
– volume: 128
  year: 2024
  ident: 10.1016/j.jag.2024.104347_b0030
  article-title: A multiscale enhanced pavement crack segmentation network coupling spectral and spatial information of UAV hyperspectral imagery
  publication-title: Int. J. Appl. Earth Obs. Geoinf
– volume: 145
  year: 2023
  ident: 10.1016/j.jag.2024.104347_b0045
  article-title: Pavement crack detection based on transformer network
  publication-title: Autom. Constr.
  doi: 10.1016/j.autcon.2022.104646
– ident: 10.1016/j.jag.2024.104347_b0135
– ident: 10.1016/j.jag.2024.104347_b0025
  doi: 10.1109/CVPR52729.2023.01157
– volume: 9
  start-page: 567
  year: 2013
  ident: 10.1016/j.jag.2024.104347_b0075
  article-title: Automated image processing technique for detecting and analysing concrete surface cracks
  publication-title: Struct. Infrastruct. Eng.
  doi: 10.1080/15732479.2011.593891
– volume: 408
  start-page: 189
  year: 2020
  ident: 10.1016/j.jag.2024.104347_b0020
  article-title: A comprehensive survey on support vector machine classification: Applications, challenges and trends
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2019.10.118
– volume: 110
  year: 2022
  ident: 10.1016/j.jag.2024.104347_b0160
  article-title: Pavement crack detection from CCD images with a locally enhanced transformer network
  publication-title: Int. J. Appl. Earth Obs. Geoinf
– volume: 256
  year: 2024
  ident: 10.1016/j.jag.2024.104347_b0190
  article-title: A dual encoder crack segmentation network with Haar wavelet-based high–low frequency attention
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2024.124950
SSID ssj0017768
Score 2.3994198
Snippet •A novel real-time triple-branch network was proposed for pavement crack detection under complex scenarios.•A transformer module for enlarging the global...
Although real-time semantic segmentation of pavement cracks is crucial for road evaluation and maintenance decision-making, it is a challenging task due to low...
SourceID doaj
proquest
crossref
elsevier
SourceType Open Website
Aggregation Database
Index Database
Publisher
StartPage 104347
SubjectTerms cameras
data collection
decision making
Deep learning
Pavement crack detection
pavements
Real-time semantic segmentation
spatial data
Transformer
Triple-branch network
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwELYQp_ZQtVDU7UtG6qmSRfxKbG4UgVClcqhA2pvlx5hHIYt2Q38_4zzahQO99BZFlmN9M_bMZMbzEfIFQwA0g41n2vLIlImSeZMNU3WQMdhski-B4o_T-uRcfZ_r-RrVV6kJG9oDD8Dt8VqAqmWTrbQK4xObrfVcJw06BUihnL5o86ZgaswfNM1wCU7XlhklxZTP7Cu7rv0FBoZClfymLLwqaxapb9z_yDA9OaJ7u3P8mrwaHUZ6MCz0DdmAdou8XGsjuEV2jv7eVsOh43ZdbZP5z7PDU-j26QFtF7_hhqKHeMMKnTztluUPOw2FV-OStkMxOEUPlt75voV4R-PSx190BbcI_lXEh4vb8aJS-5acHx-dHZ6wkUqBRWl5xyAnURmbbMgghPe89riVPSTwxUhnI2OTReImV7EBLZWNKoJSVdYoyVTJHbLZLlp4R2jUPGaQyQQdFPc21JaLLKIIwVShDjPydYLT3Q0dM9xUSnbtEHtXsHcD9jPyrQD-Z2Bpdt2_QBVwowq4f6nAjKhJXG70GwZ_AKe6eu7bu5NoHe6pkijxLSzuV06WyhVbGJDf_4_1fSAvRGEN7mu9P5LNbnkPn9CV6cLnXmsfADmY7_Q
  priority: 102
  providerName: Directory of Open Access Journals
Title RTCNet: A novel real-time triple branch network for pavement crack semantic segmentation
URI https://dx.doi.org/10.1016/j.jag.2024.104347
https://www.proquest.com/docview/3200291057
https://doaj.org/article/162e4637f93942109f99a15d5e5dbedb
Volume 136
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07b9swECYCZ2mHok0bNI8aLNCpgGCJD4ns5hgJ3JdRpAngjeDTdZrIhq3k9-coUWnSoUM3gaAo4Y68B--7O4Q-gAsAarDSGZeFzZiwNNMiiIyVhlojg3A6OorfZ-X0kn2Z8_kOmvS5MBFWmWR_J9NbaZ1GRomao_VyOfoJnocUjLYoyCrnIId3CWjXfIB2x5-_TmcPwYSq6jLiYH4WX-iDmy3M60ovwEskLAY7aWyy8kg9tVX8n2ipv-R1q4TOXqIXyXrE4-4HX6EdX--h549qCu6h_dM_qWswNZ3d7Ws0P7-YzHzzCY9xvbrz1xjMxess9pbHzSZet2MTm2z8wnWHDMdgzuK1buuJN9hutP2Nt_4GOLG08LC4SVlL9Rt0eXZ6MZlmqa9CZqksmswHR3IhnTTBE6J1UWo419o7r6PGDoLaKhBXiJDbynPKpGXWM5YHDmx1Od1Hg3pV-7cIW17Y4KkThhtWaGlKWZBALDFG5KY0B-hjT0617spnqB5XdqWA9irSXnW0P0AnkeAPE2Pl63ZgtVmoxHpVlMSzklZBUsnAX5VBSl1wxz13xjv4IuvZpZ5sJFhq-a9vv-9Zq-CAxaiJrv3qdqtohLHI2A758P-WPkLPSGwa3EK9j9Gg2dz6d2DJNGYIO3Vy_u3HMO3YYXsjcA8MAvO3
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKewAOCApVy9NIcEGKNvEjiZE4LKXVLtvuAbbS3oyfy5Y2u9pNQfwu_iDjxCktBw5IvUVWZDsz4xlP5psZhF6BCwBmsFAJF5lJWGlookpfJizX1GjhS6uCo3g8zgcn7OOUTzfQry4XJsAqo-5vdXqjreNIL1Kzt5zPe5_B8xAlow0Kskg5icjKkfv5A_y29bvhB2Dya0IODyb7gyS2FkgMFVmdOG9JWgortHeEKJXlCkRbOetUMFq-pKbwxGalT03hOGXCMOMYSz2HL7MphXlvoa1QDQuO1VZ_OBqML4MXRdFm4MH-krDBLpjawMpO1Qy8UsJCcJWGpi5XzGHTNeCaVfzLPjRG7_A-uhdvq7jfEuQB2nDVNrp7pYbhNto5-JMqB69GXbF-iKafJvtjV7_FfVwtvrszDNfTsyT0ssf1Kvzexzo09fiKqxaJjuH6jJeqqV9eY7NS5hteu3Pg_NzAw-w8ZklVj9DJjRB7B21Wi8rtImx4ZryjttRcs0wJnYuMeGKI1mWqc72H3nTklMu2XIfscGynEmgvA-1lS_s99D4Q_PLFUGm7GVisZjKKmsxy4lhOCy-oYOAfCy-EyrjljlvtLKzIOnbJa4ILU83_tfbLjrUSDnSI0qjKLS7WkgbYjAjtlx__39Qv0O3B5PhIHg3HoyfoDgkNixuY-VO0Wa8u3DO4RdX6eZRajL7c9EH5Df9nLyk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=RTCNet%3A+A+novel+real-time+triple+branch+network+for+pavement+crack+semantic+segmentation&rft.jtitle=International+journal+of+applied+earth+observation+and+geoinformation&rft.au=Liu%2C+Bin&rft.au=Kang%2C+Jian&rft.au=Guan%2C+Haiyan&rft.au=Zhi%2C+Xiaodong&rft.date=2025-02-01&rft.issn=1569-8432&rft.volume=136&rft.spage=104347&rft_id=info:doi/10.1016%2Fj.jag.2024.104347&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jag_2024_104347
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1569-8432&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1569-8432&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1569-8432&client=summon