RTCNet: A novel real-time triple branch network for pavement crack semantic segmentation
•A novel real-time triple-branch network was proposed for pavement crack detection under complex scenarios.•A transformer module for enlarging the global receptive field while preserving local details of cracks.•A boundary refinement module was designed to refine crack boundaries.•A manually annotat...
Saved in:
Published in | International journal of applied earth observation and geoinformation Vol. 136; p. 104347 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.02.2025
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •A novel real-time triple-branch network was proposed for pavement crack detection under complex scenarios.•A transformer module for enlarging the global receptive field while preserving local details of cracks.•A boundary refinement module was designed to refine crack boundaries.•A manually annotated highway pavement crack dataset with complex scenarios was built for pavement crack detection.
Although real-time semantic segmentation of pavement cracks is crucial for road evaluation and maintenance decision-making, it is a challenging task due to low operational efficiency and over-segmentation of existing methods. To address these challenges, in this paper, incorporating Transformers and CNNs, we propose a real-time triple-branch crack semantic segmentation network (RTCNet) using digital camera images. The three branches include a detail branch for capturing local detail features, a context branch for extracting global contextual information, and a boundary branch for obtaining crack boundary information. First, to further enhance crack features, we design a Detail Enhance Transformer (DET) module for enlarging global receptive fields and a Multiscale Aggregation (MSA) module for multiscale learning in the context branch. Second, a Boundary Refinement (BR) module with Sobel operators embedded in the boundary branch is designed to refine the crack boundaries. Last, a Detail-Context Fusion (DCF) module is designed to aggregate the intermediate features extracted from the different branches efficiently Comprehensive quantitative and visual comparisons on four datasets showed that the proposed RTCNet outperforms the comparative models in terms of efficiency and effectiveness with the highest F1-score, mIoU, and Frames Per Second (FPS) of 90.56%, 90.25%, and 87.34 in DeepCrack537 dataset, respectively. We also contribute an extensive dataset of pavement cracks, consisting of 464 manually annotated digital images, which is publicly accessible at https://github.com/NJSkate/BeijingHighway-dataset. |
---|---|
AbstractList | •A novel real-time triple-branch network was proposed for pavement crack detection under complex scenarios.•A transformer module for enlarging the global receptive field while preserving local details of cracks.•A boundary refinement module was designed to refine crack boundaries.•A manually annotated highway pavement crack dataset with complex scenarios was built for pavement crack detection.
Although real-time semantic segmentation of pavement cracks is crucial for road evaluation and maintenance decision-making, it is a challenging task due to low operational efficiency and over-segmentation of existing methods. To address these challenges, in this paper, incorporating Transformers and CNNs, we propose a real-time triple-branch crack semantic segmentation network (RTCNet) using digital camera images. The three branches include a detail branch for capturing local detail features, a context branch for extracting global contextual information, and a boundary branch for obtaining crack boundary information. First, to further enhance crack features, we design a Detail Enhance Transformer (DET) module for enlarging global receptive fields and a Multiscale Aggregation (MSA) module for multiscale learning in the context branch. Second, a Boundary Refinement (BR) module with Sobel operators embedded in the boundary branch is designed to refine the crack boundaries. Last, a Detail-Context Fusion (DCF) module is designed to aggregate the intermediate features extracted from the different branches efficiently Comprehensive quantitative and visual comparisons on four datasets showed that the proposed RTCNet outperforms the comparative models in terms of efficiency and effectiveness with the highest F1-score, mIoU, and Frames Per Second (FPS) of 90.56%, 90.25%, and 87.34 in DeepCrack537 dataset, respectively. We also contribute an extensive dataset of pavement cracks, consisting of 464 manually annotated digital images, which is publicly accessible at https://github.com/NJSkate/BeijingHighway-dataset. Although real-time semantic segmentation of pavement cracks is crucial for road evaluation and maintenance decision-making, it is a challenging task due to low operational efficiency and over-segmentation of existing methods. To address these challenges, in this paper, incorporating Transformers and CNNs, we propose a real-time triple-branch crack semantic segmentation network (RTCNet) using digital camera images. The three branches include a detail branch for capturing local detail features, a context branch for extracting global contextual information, and a boundary branch for obtaining crack boundary information. First, to further enhance crack features, we design a Detail Enhance Transformer (DET) module for enlarging global receptive fields and a Multiscale Aggregation (MSA) module for multiscale learning in the context branch. Second, a Boundary Refinement (BR) module with Sobel operators embedded in the boundary branch is designed to refine the crack boundaries. Last, a Detail-Context Fusion (DCF) module is designed to aggregate the intermediate features extracted from the different branches efficiently Comprehensive quantitative and visual comparisons on four datasets showed that the proposed RTCNet outperforms the comparative models in terms of efficiency and effectiveness with the highest F1-score, mIoU, and Frames Per Second (FPS) of 90.56%, 90.25%, and 87.34 in DeepCrack537 dataset, respectively. We also contribute an extensive dataset of pavement cracks, consisting of 464 manually annotated digital images, which is publicly accessible at https://github.com/NJSkate/BeijingHighway-dataset. Although real-time semantic segmentation of pavement cracks is crucial for road evaluation and maintenance decision-making, it is a challenging task due to low operational efficiency and over-segmentation of existing methods. To address these challenges, in this paper, incorporating Transformers and CNNs, we propose a real-time triple-branch crack semantic segmentation network (RTCNet) using digital camera images. The three branches include a detail branch for capturing local detail features, a context branch for extracting global contextual information, and a boundary branch for obtaining crack boundary information. First, to further enhance crack features, we design a Detail Enhance Transformer (DET) module for enlarging global receptive fields and a Multiscale Aggregation (MSA) module for multiscale learning in the context branch. Second, a Boundary Refinement (BR) module with Sobel operators embedded in the boundary branch is designed to refine the crack boundaries. Last, a Detail-Context Fusion (DCF) module is designed to aggregate the intermediate features extracted from the different branches efficiently Comprehensive quantitative and visual comparisons on four datasets showed that the proposed RTCNet outperforms the comparative models in terms of efficiency and effectiveness with the highest F₁-score, mIoU, and Frames Per Second (FPS) of 90.56%, 90.25%, and 87.34 in DeepCrack537 dataset, respectively. We also contribute an extensive dataset of pavement cracks, consisting of 464 manually annotated digital images, which is publicly accessible at https://github.com/NJSkate/BeijingHighway-dataset. |
ArticleNumber | 104347 |
Author | Wang, Dongchuan Liu, Bin Guan, Haiyan Peng, Daifeng Ma, Lingfei Yu, Yongtao Xu, Linlin Kang, Jian Zhi, Xiaodong |
Author_xml | – sequence: 1 givenname: Bin surname: Liu fullname: Liu, Bin email: liubin@nuist.edu.cn organization: School of Remote Sensing and Geomatics Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China – sequence: 2 givenname: Jian surname: Kang fullname: Kang, Jian email: kangjian_2022@nuist.edu.cn organization: School of Remote Sensing and Geomatics Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China – sequence: 3 givenname: Haiyan surname: Guan fullname: Guan, Haiyan email: guanhy.nj@nuist.edu.cn organization: School of Remote Sensing and Geomatics Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China – sequence: 4 givenname: Xiaodong surname: Zhi fullname: Zhi, Xiaodong email: zhixd@outlook.com organization: Beijing Zhongke Pengyu Technology Co, Beijing 100080, China – sequence: 5 givenname: Yongtao surname: Yu fullname: Yu, Yongtao email: allennessy@hyit.edu.cn organization: Faculty of Computer and Software Engineering, Huaiyin Institute of Technology, Huaian 223003, China – sequence: 6 givenname: Lingfei surname: Ma fullname: Ma, Lingfei email: l53ma@cufe.edu.cn organization: School of Statistics and Mathematics, Central University of Finance and Economics, Beijing 102206, China – sequence: 7 givenname: Daifeng surname: Peng fullname: Peng, Daifeng email: daifeng@nuist.edu.cn organization: School of Remote Sensing and Geomatics Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China – sequence: 8 givenname: Linlin surname: Xu fullname: Xu, Linlin email: l44xu@uwaterloo.ca organization: Department of Geomatics Engineering, University of Calgary, Calgary, AB T2N 1N4, Canada – sequence: 9 givenname: Dongchuan surname: Wang fullname: Wang, Dongchuan email: dongchuan_wang@163.com organization: Beijing Zhongke Pengyu Technology Co, Beijing 100080, China |
BookMark | eNp9UctuFDEQnEOQ8iAfwM1HLrP4NQ_DKVpBiBSBFAWJm9VrtxdPZuzFdhbl7_EyiCOn7i51VZe6LpuzEAM2zRtGN4yy_t20mWC_4ZTLOkshh7PmgnW9akcp-HlzmfNEKRuGfrxovj88br9geU9uSIhHnElCmNviFyQl-cOMZJcgmB8kYPkV0xNxMZEDHHHBUIhJYJ5IxgVC8aY2-xMMxcfwunnlYM54_bdeNd8-fXzcfm7vv97ebW_uWyMUKy06y-morNo55ByA9TAKDmgRqn_uRmEGxy0bHTUDdkIqIw1KSV03qsFScdXcrbo2wqQPyS-QXnQEr_8AMe01pGpuRs16jrIXg1NCSc6ockoB62yHnd2h3VWtt6vWIcWfz5iLXnw2OM8QMD5nLTilXDHaDXWVrasmxZwTun-nGdWnFPSkawr6lIJeU6icDysH6z-OHpPOxmMwaH1CU6ph_x_2b5W1k0Q |
Cites_doi | 10.1016/j.engappai.2024.108416 10.1007/978-3-031-25082-8_12 10.1109/TITS.2023.3307286 10.1016/j.neucom.2019.01.036 10.1016/j.conbuildmat.2019.117367 10.1109/CVPR.2016.90 10.1007/978-3-319-24574-4_28 10.1007/s11263-021-01515-2 10.1109/TITS.2021.3095507 10.1016/j.autcon.2024.105440 10.1002/stc.2991 10.1109/TITS.2022.3228042 10.1016/j.autcon.2021.103786 10.1016/j.autcon.2023.105217 10.1109/TIP.2023.3256763 10.1109/ICCE.2013.6486837 10.1016/j.autcon.2019.102959 10.1109/ICCV.2017.324 10.1109/TITS.2023.3300312 10.3390/jmse9060671 10.1016/j.engstruct.2024.117903 10.1109/ACCESS.2020.2976860 10.1016/j.autcon.2022.104646 10.1109/CVPR52729.2023.01157 10.1080/15732479.2011.593891 10.1016/j.neucom.2019.10.118 10.1016/j.eswa.2024.124950 |
ContentType | Journal Article |
Copyright | 2024 The Author(s) |
Copyright_xml | – notice: 2024 The Author(s) |
DBID | 6I. AAFTH AAYXX CITATION 7S9 L.6 DOA |
DOI | 10.1016/j.jag.2024.104347 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef AGRICOLA AGRICOLA - Academic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Environmental Sciences |
ExternalDocumentID | oai_doaj_org_article_162e4637f93942109f99a15d5e5dbedb 10_1016_j_jag_2024_104347 S1569843224007052 |
GroupedDBID | 29J 4.4 5GY 6I. AAFTH AAHBH AALRI AAQXK AATTM AAXKI AAXUO ABFYP ABJNI ABLST ABQEM ABQYD ABWVN ACLVX ACRLP ACRPL ACSBN ADBBV ADMUD ADNMO ADVLN AEIPS AFJKZ AFXIZ AGYEJ AHEUO AIKHN AITUG AKIFW ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ASPBG ATOGT AVWKF AZFZN BKOJK BLECG BNPGV EBS EFJIC EJD FDB FEDTE FIRID FYGXN GROUPED_DOAJ HVGLF IMUCA KCYFY M41 O-L P-8 P-9 P2P R2- RIG ROL SES SPC SSE SSH SSJ ~02 AAYWO AAYXX AGCQF AGQPQ AGRNS AIIUN APXCP CITATION 7S9 EFKBS L.6 |
ID | FETCH-LOGICAL-c391t-efd2089d9bfe22aa16a832aedea0242f83c7f2d18f0c7e5349c4ce440f5897d03 |
IEDL.DBID | AIKHN |
ISSN | 1569-8432 |
IngestDate | Wed Aug 27 01:31:20 EDT 2025 Fri Aug 22 20:23:51 EDT 2025 Tue Jul 01 05:26:36 EDT 2025 Sun Apr 06 06:54:33 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Deep learning Triple-branch network Transformer Pavement crack detection Real-time semantic segmentation |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c391t-efd2089d9bfe22aa16a832aedea0242f83c7f2d18f0c7e5349c4ce440f5897d03 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S1569843224007052 |
PQID | 3200291057 |
PQPubID | 24069 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_162e4637f93942109f99a15d5e5dbedb proquest_miscellaneous_3200291057 crossref_primary_10_1016_j_jag_2024_104347 elsevier_sciencedirect_doi_10_1016_j_jag_2024_104347 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | February 2025 2025-02-00 20250201 2025-02-01 |
PublicationDateYYYYMMDD | 2025-02-01 |
PublicationDate_xml | – month: 02 year: 2025 text: February 2025 |
PublicationDecade | 2020 |
PublicationTitle | International journal of applied earth observation and geoinformation |
PublicationYear | 2025 |
Publisher | Elsevier B.V Elsevier |
Publisher_xml | – name: Elsevier B.V – name: Elsevier |
References | Li, Zhang, Zhu, Gao, Liang, Yang (b0095) 2024; 307 Lin, T.-Y., Goyal, P., Girshick, R., He, K., Dollár, P., 2018. Focal Loss for Dense Object Detection. In: Proc. ICCV, pp. 2980-2988. Doi: 10.1109/ICCV.2017.324. Sun, Yang, Yang, Zhou, Li (b0145) 2024; 1–14 Ren, Zhang, Chen, Zhou, Feng (b0125) 2023; 120 Ren, Huang, Hong, Lu, Yin, Zou, Shen (b0120) 2020; 234 Guo, Qian, Liu, Yu (b0045) 2023; 145 Chen, J., Kao, S., He, H., Zhuo, W., Wen, S., Lee, C.-H., Chan, S.-H.G., 2023. Run, Don’t Walk: Chasing Higher FLOPS for Faster Neural Networks. In: Proc. CVPR, pp.12021-12031. Doi: 10.1109/CVPR52729.2023.01157. Wang, Su (b0150) 2021; 128 Zhang, He, Xue, Wu, Ren, Zhao (b0180) 2024; 131 Pan, Hong, Sun, Jia (b0115) 2023; 24 Zhang, Wang, Lu (b0185) 2023; 24 Han, Ma, Huyan, Huang, Zhang (b0050) 2022; 23 Song, He, Qian, Du (b0140) 2023; 32 Yang, Li, Yu, Luo, Huang, Yang (b0165) 2018; 33 Li, Yuan, Ren, Luo, Fu, Li (b0090) 2024; 163 Lee, Kim, Yi, Kim (b0075) 2013; 9 Zhang, He, Dong, Zhang, Liu, Zhan, Wang, Lin (b0175) 2024; 133 Li, Liu, Fang, Shen, Ali (b0080) 2022; 29 Simonyan, K., Zisserman, A., 2014. Very Deep Convolutional Networks for Large-Scale Image Recognition. In arXiv preprint arXiv:1409.1556. https://arxiv.org/abs/1409.1556. Ma, Li (b0110) 2022; 111 Liu, Yao, Lu, Xie, Li (b0105) 2019; 338 Fu, Meng, Li, Wang (b0040) 2021; 9 Kalbasi, Nikmehr (b0060) 2020; 8 He, K., Zhang, X., Ren, S., Sun, J., 2016. Deep Residual Learning for Image Recognition, In: Proc. CVPR, pp. 770–778. Doi: 10.1109/CVPR.2016.90. Xu, Guan, Kang, Lei, Ma, Yu, Chen, Li (b0160) 2022; 110 Li, Yang, Ma, Wang, Wang, Tian, Qi (b0085) 2023; 25 Kulkarni, S., Singh, S., Balakrishnan, D., Sharma, S., Devunuri, S., Korlapati, S.C.R., 2022. CrackSeg9k: A Collection and Benchmark for Crack Segmentation Datasets and Frameworks. In arXiv preprint arXiv:2208.13054. Doi: 10.48550/arXiv.2208.13054. Chen, Zhang, Ren, Zhou, Sun, Feng, Chen, Zhi (b0030) 2024; 128 Amato, Palombi, Raimondi (b0010) 2021; 104 Ronneberger, O., Fischer, P., Brox, T., 2015. U-Net: Convolutional Networks for Biomedical Image Segmentation. In: Proc. MICCAI. Springer, pp. 234-241. Doi: 10.1007/978-3-319-24574-4_28. Hyunchan Ahn, Byungjik Keum, Daehoon Kim, Hwang Soo Lee, 2013. Adaptive local tone mapping based on retinex for high dynamic range images, In: Proc. ICCE, pp. 153–156. Doi: 10.1109/ICCE.2013.6486837. Wang, Zeng, Sharma, Alfarraj, Tolba, Zhang, Wang (b0155) 2024; 158 Kouzehgar, Krishnasamy Tamilselvam, Vega Heredia, Rajesh Elara (b0065) 2019; 108 Feng, Ma, Yu, Chen, Li (b0035) 2023; 118 Zhang, Zeng, Sharma, Alfarraj, Tolba, Wang (b0190) 2024; 256 Ashraf, Sophian, Shafie, Gunawan, Ismail, Bawono (b0015) 2022; 2 Cervantes, Garcia-Lamont, Rodríguez-Mazahua, Lopez (b0020) 2020; 408 Yu, Gao, Wang, Yu, Shen, Sang (b0170) 2020; 129 Cervantes (10.1016/j.jag.2024.104347_b0020) 2020; 408 Lee (10.1016/j.jag.2024.104347_b0075) 2013; 9 Han (10.1016/j.jag.2024.104347_b0050) 2022; 23 Li (10.1016/j.jag.2024.104347_b0095) 2024; 307 Sun (10.1016/j.jag.2024.104347_b0145) 2024; 1–14 Feng (10.1016/j.jag.2024.104347_b0035) 2023; 118 Ren (10.1016/j.jag.2024.104347_b0125) 2023; 120 Xu (10.1016/j.jag.2024.104347_b0160) 2022; 110 Fu (10.1016/j.jag.2024.104347_b0040) 2021; 9 10.1016/j.jag.2024.104347_b0070 Yu (10.1016/j.jag.2024.104347_b0170) 2020; 129 Zhang (10.1016/j.jag.2024.104347_b0190) 2024; 256 10.1016/j.jag.2024.104347_b0130 10.1016/j.jag.2024.104347_b0135 Amato (10.1016/j.jag.2024.104347_b0010) 2021; 104 10.1016/j.jag.2024.104347_b0055 Zhang (10.1016/j.jag.2024.104347_b0180) 2024; 131 Kalbasi (10.1016/j.jag.2024.104347_b0060) 2020; 8 Ma (10.1016/j.jag.2024.104347_b0110) 2022; 111 Pan (10.1016/j.jag.2024.104347_b0115) 2023; 24 Zhang (10.1016/j.jag.2024.104347_b0185) 2023; 24 Yang (10.1016/j.jag.2024.104347_b0165) 2018; 33 Ashraf (10.1016/j.jag.2024.104347_b0015) 2022; 2 Wang (10.1016/j.jag.2024.104347_b0155) 2024; 158 Wang (10.1016/j.jag.2024.104347_b0150) 2021; 128 Liu (10.1016/j.jag.2024.104347_b0105) 2019; 338 Kouzehgar (10.1016/j.jag.2024.104347_b0065) 2019; 108 Li (10.1016/j.jag.2024.104347_b0085) 2023; 25 10.1016/j.jag.2024.104347_b0025 Li (10.1016/j.jag.2024.104347_b0090) 2024; 163 Zhang (10.1016/j.jag.2024.104347_b0175) 2024; 133 Ren (10.1016/j.jag.2024.104347_b0120) 2020; 234 10.1016/j.jag.2024.104347_b0100 10.1016/j.jag.2024.104347_b0005 Li (10.1016/j.jag.2024.104347_b0080) 2022; 29 Guo (10.1016/j.jag.2024.104347_b0045) 2023; 145 Chen (10.1016/j.jag.2024.104347_b0030) 2024; 128 Song (10.1016/j.jag.2024.104347_b0140) 2023; 32 |
References_xml | – volume: 120 year: 2023 ident: b0125 article-title: YOLOv5s-M: A deep learning network model for road pavement damage detection from urban street-view imagery publication-title: Int. J. Appl. Earth Obs. Geoinf – volume: 307 year: 2024 ident: b0095 article-title: Automatic crack detection on concrete and asphalt surfaces using semantic segmentation network with hierarchical Transformer publication-title: Eng. Struct. – volume: 9 start-page: 671 year: 2021 ident: b0040 article-title: Bridge Crack Semantic Segmentation Based on Improved Deeplabv3+ publication-title: J. Mar. Sci. Eng. – volume: 234 year: 2020 ident: b0120 article-title: Image-based concrete crack detection in tunnels using deep fully convolutional networks publication-title: Constr. Build. Mater. – reference: Simonyan, K., Zisserman, A., 2014. Very Deep Convolutional Networks for Large-Scale Image Recognition. In arXiv preprint arXiv:1409.1556. https://arxiv.org/abs/1409.1556. – volume: 145 year: 2023 ident: b0045 article-title: Pavement crack detection based on transformer network publication-title: Autom. Constr. – volume: 24 start-page: 3448 year: 2023 end-page: 3460 ident: b0115 article-title: Deep Dual-Resolution Networks for Real-Time and Accurate Semantic Segmentation of Traffic Scenes publication-title: IEEE Trans. Intell. Transp. Syst. – volume: 1–14 year: 2024 ident: b0145 article-title: DUCTNet: An Effective Road Crack Segmentation Method in UAV Remote Sensing Images Under Complex Scenes publication-title: IEEE Trans. Intell. Transp. Syst. – reference: He, K., Zhang, X., Ren, S., Sun, J., 2016. Deep Residual Learning for Image Recognition, In: Proc. CVPR, pp. 770–778. Doi: 10.1109/CVPR.2016.90. – volume: 32 start-page: 1927 year: 2023 end-page: 1941 ident: b0140 article-title: Vision Transformers for Single Image Dehazing publication-title: IEEE Trans. Image Process. – volume: 118 year: 2023 ident: b0035 article-title: SCL-GCN: Stratified Contrastive Learning Graph Convolution Network for pavement crack detection from mobile LiDAR point clouds publication-title: Int. J. Appl. Earth Obs. Geoinf. – volume: 24 start-page: 15105 year: 2023 end-page: 15112 ident: b0185 article-title: ECSNet: An Accelerated Real-Time Image Segmentation CNN Architecture for Pavement Crack Detection publication-title: IEEE Trans. Intell. Transp. Syst. – volume: 8 start-page: 39934 year: 2020 end-page: 39945 ident: b0060 article-title: Noise-Robust, Reconfigurable Canny Edge Detection and its Hardware Realization publication-title: IEEE Access – volume: 128 year: 2024 ident: b0030 article-title: A multiscale enhanced pavement crack segmentation network coupling spectral and spatial information of UAV hyperspectral imagery publication-title: Int. J. Appl. Earth Obs. Geoinf – volume: 110 year: 2022 ident: b0160 article-title: Pavement crack detection from CCD images with a locally enhanced transformer network publication-title: Int. J. Appl. Earth Obs. Geoinf – reference: Chen, J., Kao, S., He, H., Zhuo, W., Wen, S., Lee, C.-H., Chan, S.-H.G., 2023. Run, Don’t Walk: Chasing Higher FLOPS for Faster Neural Networks. In: Proc. CVPR, pp.12021-12031. Doi: 10.1109/CVPR52729.2023.01157. – volume: 33 start-page: 1090 year: 2018 end-page: 1109 ident: b0165 article-title: Automatic Pixel‐Level Crack Detection and Measurement Using Fully Convolutional Network. Comput.-Aided Civ publication-title: Infrast. Eng. – volume: 23 start-page: 22135 year: 2022 end-page: 22144 ident: b0050 article-title: CrackW-Net: A Novel Pavement Crack Image Segmentation Convolutional Neural Network publication-title: IEEE Trans. Intell. Transp. Syst. – volume: 104 year: 2021 ident: b0010 article-title: Data–driven classification of landslide types at a national scale by using Artificial Neural Networks publication-title: Int. J. Appl. Earth Obs. Geoinf – volume: 256 year: 2024 ident: b0190 article-title: A dual encoder crack segmentation network with Haar wavelet-based high–low frequency attention publication-title: Expert Syst. Appl. – reference: Lin, T.-Y., Goyal, P., Girshick, R., He, K., Dollár, P., 2018. Focal Loss for Dense Object Detection. In: Proc. ICCV, pp. 2980-2988. Doi: 10.1109/ICCV.2017.324. – volume: 131 year: 2024 ident: b0180 article-title: Segment-anything embedding for pixel-level road damage extraction using high-resolution satellite images publication-title: Int. J. Appl. Earth Obs. Geoinf – volume: 108 year: 2019 ident: b0065 article-title: Self-reconfigurable façade-cleaning robot equipped with deep-learning-based crack detection based on convolutional neural networks publication-title: Autom. Constr. – volume: 133 year: 2024 ident: b0175 article-title: Automated pixel-level pavement marking detection based on a convolutional transformer publication-title: Eng. Appl. Artif. Intell. – volume: 128 year: 2021 ident: b0150 article-title: Semi-supervised semantic segmentation network for surface crack detection publication-title: Autom. Constr. – volume: 408 start-page: 189 year: 2020 end-page: 215 ident: b0020 article-title: A comprehensive survey on support vector machine classification: Applications, challenges and trends publication-title: Neurocomputing – volume: 29 year: 2022 ident: b0080 article-title: Automatic bridge crack detection using boundary refinement based on real‐time segmentation network publication-title: Struct. Control Health Monit. – reference: Ronneberger, O., Fischer, P., Brox, T., 2015. U-Net: Convolutional Networks for Biomedical Image Segmentation. In: Proc. MICCAI. Springer, pp. 234-241. Doi: 10.1007/978-3-319-24574-4_28. – volume: 25 start-page: 237 year: 2023 end-page: 250 ident: b0085 article-title: Rethinking Lightweight Convolutional Neural Networks for Efficient and High-quality Pavement Crack Detection publication-title: IEEE Trans. Intell. Transp. Syst. – reference: Hyunchan Ahn, Byungjik Keum, Daehoon Kim, Hwang Soo Lee, 2013. Adaptive local tone mapping based on retinex for high dynamic range images, In: Proc. ICCE, pp. 153–156. Doi: 10.1109/ICCE.2013.6486837. – volume: 9 start-page: 567 year: 2013 end-page: 577 ident: b0075 article-title: Automated image processing technique for detecting and analysing concrete surface cracks publication-title: Struct. Infrastruct. Eng. – volume: 163 year: 2024 ident: b0090 article-title: CNN-Transformer hybrid network for concrete dam crack patrol inspection publication-title: Autom. Constr. – reference: Kulkarni, S., Singh, S., Balakrishnan, D., Sharma, S., Devunuri, S., Korlapati, S.C.R., 2022. CrackSeg9k: A Collection and Benchmark for Crack Segmentation Datasets and Frameworks. In arXiv preprint arXiv:2208.13054. Doi: 10.48550/arXiv.2208.13054. – volume: 111 year: 2022 ident: b0110 article-title: SD-GCN: Saliency-based dilated graph convolution network for pavement crack extraction from 3D point clouds publication-title: Int. J. Appl. Earth Obs. Geoinf – volume: 129 start-page: 3051 year: 2020 end-page: 3068 ident: b0170 article-title: BiSeNet V2: Bilateral Network with Guided Aggregation for Real-time Semantic Segmentation publication-title: Int J Comput vis – volume: 338 start-page: 139 year: 2019 end-page: 153 ident: b0105 article-title: DeepCrack: A deep hierarchical feature learning architecture for crack segmentation publication-title: Neurocomputing – volume: 158 year: 2024 ident: b0155 article-title: Dual-path network combining CNN and transformer for pavement crack segmentation publication-title: Autom. Constr. – volume: 2 start-page: 123 year: 2022 end-page: 134 ident: b0015 article-title: Detection of Road Cracks Using Convolutional Neural Networks and Threshold Segmentation publication-title: J. Integr. Adv. Eng. JIAE – volume: 133 year: 2024 ident: 10.1016/j.jag.2024.104347_b0175 article-title: Automated pixel-level pavement marking detection based on a convolutional transformer publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2024.108416 – volume: 131 year: 2024 ident: 10.1016/j.jag.2024.104347_b0180 article-title: Segment-anything embedding for pixel-level road damage extraction using high-resolution satellite images publication-title: Int. J. Appl. Earth Obs. Geoinf – ident: 10.1016/j.jag.2024.104347_b0070 doi: 10.1007/978-3-031-25082-8_12 – volume: 25 start-page: 237 issue: 1 year: 2023 ident: 10.1016/j.jag.2024.104347_b0085 article-title: Rethinking Lightweight Convolutional Neural Networks for Efficient and High-quality Pavement Crack Detection publication-title: IEEE Trans. Intell. Transp. Syst. doi: 10.1109/TITS.2023.3307286 – volume: 2 start-page: 123 year: 2022 ident: 10.1016/j.jag.2024.104347_b0015 article-title: Detection of Road Cracks Using Convolutional Neural Networks and Threshold Segmentation publication-title: J. Integr. Adv. Eng. JIAE – volume: 338 start-page: 139 year: 2019 ident: 10.1016/j.jag.2024.104347_b0105 article-title: DeepCrack: A deep hierarchical feature learning architecture for crack segmentation publication-title: Neurocomputing doi: 10.1016/j.neucom.2019.01.036 – volume: 234 year: 2020 ident: 10.1016/j.jag.2024.104347_b0120 article-title: Image-based concrete crack detection in tunnels using deep fully convolutional networks publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2019.117367 – ident: 10.1016/j.jag.2024.104347_b0055 doi: 10.1109/CVPR.2016.90 – ident: 10.1016/j.jag.2024.104347_b0130 doi: 10.1007/978-3-319-24574-4_28 – volume: 104 year: 2021 ident: 10.1016/j.jag.2024.104347_b0010 article-title: Data–driven classification of landslide types at a national scale by using Artificial Neural Networks publication-title: Int. J. Appl. Earth Obs. Geoinf – volume: 129 start-page: 3051 year: 2020 ident: 10.1016/j.jag.2024.104347_b0170 article-title: BiSeNet V2: Bilateral Network with Guided Aggregation for Real-time Semantic Segmentation publication-title: Int J Comput vis doi: 10.1007/s11263-021-01515-2 – volume: 23 start-page: 22135 year: 2022 ident: 10.1016/j.jag.2024.104347_b0050 article-title: CrackW-Net: A Novel Pavement Crack Image Segmentation Convolutional Neural Network publication-title: IEEE Trans. Intell. Transp. Syst. doi: 10.1109/TITS.2021.3095507 – volume: 163 year: 2024 ident: 10.1016/j.jag.2024.104347_b0090 article-title: CNN-Transformer hybrid network for concrete dam crack patrol inspection publication-title: Autom. Constr. doi: 10.1016/j.autcon.2024.105440 – volume: 29 year: 2022 ident: 10.1016/j.jag.2024.104347_b0080 article-title: Automatic bridge crack detection using boundary refinement based on real‐time segmentation network publication-title: Struct. Control Health Monit. doi: 10.1002/stc.2991 – volume: 1–14 year: 2024 ident: 10.1016/j.jag.2024.104347_b0145 article-title: DUCTNet: An Effective Road Crack Segmentation Method in UAV Remote Sensing Images Under Complex Scenes publication-title: IEEE Trans. Intell. Transp. Syst. – volume: 24 start-page: 3448 year: 2023 ident: 10.1016/j.jag.2024.104347_b0115 article-title: Deep Dual-Resolution Networks for Real-Time and Accurate Semantic Segmentation of Traffic Scenes publication-title: IEEE Trans. Intell. Transp. Syst. doi: 10.1109/TITS.2022.3228042 – volume: 118 year: 2023 ident: 10.1016/j.jag.2024.104347_b0035 article-title: SCL-GCN: Stratified Contrastive Learning Graph Convolution Network for pavement crack detection from mobile LiDAR point clouds publication-title: Int. J. Appl. Earth Obs. Geoinf. – volume: 120 year: 2023 ident: 10.1016/j.jag.2024.104347_b0125 article-title: YOLOv5s-M: A deep learning network model for road pavement damage detection from urban street-view imagery publication-title: Int. J. Appl. Earth Obs. Geoinf – volume: 128 year: 2021 ident: 10.1016/j.jag.2024.104347_b0150 article-title: Semi-supervised semantic segmentation network for surface crack detection publication-title: Autom. Constr. doi: 10.1016/j.autcon.2021.103786 – volume: 158 year: 2024 ident: 10.1016/j.jag.2024.104347_b0155 article-title: Dual-path network combining CNN and transformer for pavement crack segmentation publication-title: Autom. Constr. doi: 10.1016/j.autcon.2023.105217 – volume: 32 start-page: 1927 year: 2023 ident: 10.1016/j.jag.2024.104347_b0140 article-title: Vision Transformers for Single Image Dehazing publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2023.3256763 – ident: 10.1016/j.jag.2024.104347_b0005 doi: 10.1109/ICCE.2013.6486837 – volume: 108 year: 2019 ident: 10.1016/j.jag.2024.104347_b0065 article-title: Self-reconfigurable façade-cleaning robot equipped with deep-learning-based crack detection based on convolutional neural networks publication-title: Autom. Constr. doi: 10.1016/j.autcon.2019.102959 – ident: 10.1016/j.jag.2024.104347_b0100 doi: 10.1109/ICCV.2017.324 – volume: 24 start-page: 15105 year: 2023 ident: 10.1016/j.jag.2024.104347_b0185 article-title: ECSNet: An Accelerated Real-Time Image Segmentation CNN Architecture for Pavement Crack Detection publication-title: IEEE Trans. Intell. Transp. Syst. doi: 10.1109/TITS.2023.3300312 – volume: 111 year: 2022 ident: 10.1016/j.jag.2024.104347_b0110 article-title: SD-GCN: Saliency-based dilated graph convolution network for pavement crack extraction from 3D point clouds publication-title: Int. J. Appl. Earth Obs. Geoinf – volume: 33 start-page: 1090 year: 2018 ident: 10.1016/j.jag.2024.104347_b0165 article-title: Automatic Pixel‐Level Crack Detection and Measurement Using Fully Convolutional Network. Comput.-Aided Civ publication-title: Infrast. Eng. – volume: 9 start-page: 671 year: 2021 ident: 10.1016/j.jag.2024.104347_b0040 article-title: Bridge Crack Semantic Segmentation Based on Improved Deeplabv3+ publication-title: J. Mar. Sci. Eng. doi: 10.3390/jmse9060671 – volume: 307 year: 2024 ident: 10.1016/j.jag.2024.104347_b0095 article-title: Automatic crack detection on concrete and asphalt surfaces using semantic segmentation network with hierarchical Transformer publication-title: Eng. Struct. doi: 10.1016/j.engstruct.2024.117903 – volume: 8 start-page: 39934 year: 2020 ident: 10.1016/j.jag.2024.104347_b0060 article-title: Noise-Robust, Reconfigurable Canny Edge Detection and its Hardware Realization publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2976860 – volume: 128 year: 2024 ident: 10.1016/j.jag.2024.104347_b0030 article-title: A multiscale enhanced pavement crack segmentation network coupling spectral and spatial information of UAV hyperspectral imagery publication-title: Int. J. Appl. Earth Obs. Geoinf – volume: 145 year: 2023 ident: 10.1016/j.jag.2024.104347_b0045 article-title: Pavement crack detection based on transformer network publication-title: Autom. Constr. doi: 10.1016/j.autcon.2022.104646 – ident: 10.1016/j.jag.2024.104347_b0135 – ident: 10.1016/j.jag.2024.104347_b0025 doi: 10.1109/CVPR52729.2023.01157 – volume: 9 start-page: 567 year: 2013 ident: 10.1016/j.jag.2024.104347_b0075 article-title: Automated image processing technique for detecting and analysing concrete surface cracks publication-title: Struct. Infrastruct. Eng. doi: 10.1080/15732479.2011.593891 – volume: 408 start-page: 189 year: 2020 ident: 10.1016/j.jag.2024.104347_b0020 article-title: A comprehensive survey on support vector machine classification: Applications, challenges and trends publication-title: Neurocomputing doi: 10.1016/j.neucom.2019.10.118 – volume: 110 year: 2022 ident: 10.1016/j.jag.2024.104347_b0160 article-title: Pavement crack detection from CCD images with a locally enhanced transformer network publication-title: Int. J. Appl. Earth Obs. Geoinf – volume: 256 year: 2024 ident: 10.1016/j.jag.2024.104347_b0190 article-title: A dual encoder crack segmentation network with Haar wavelet-based high–low frequency attention publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2024.124950 |
SSID | ssj0017768 |
Score | 2.3994198 |
Snippet | •A novel real-time triple-branch network was proposed for pavement crack detection under complex scenarios.•A transformer module for enlarging the global... Although real-time semantic segmentation of pavement cracks is crucial for road evaluation and maintenance decision-making, it is a challenging task due to low... |
SourceID | doaj proquest crossref elsevier |
SourceType | Open Website Aggregation Database Index Database Publisher |
StartPage | 104347 |
SubjectTerms | cameras data collection decision making Deep learning Pavement crack detection pavements Real-time semantic segmentation spatial data Transformer Triple-branch network |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwELYQp_ZQtVDU7UtG6qmSRfxKbG4UgVClcqhA2pvlx5hHIYt2Q38_4zzahQO99BZFlmN9M_bMZMbzEfIFQwA0g41n2vLIlImSeZMNU3WQMdhski-B4o_T-uRcfZ_r-RrVV6kJG9oDD8Dt8VqAqmWTrbQK4xObrfVcJw06BUihnL5o86ZgaswfNM1wCU7XlhklxZTP7Cu7rv0FBoZClfymLLwqaxapb9z_yDA9OaJ7u3P8mrwaHUZ6MCz0DdmAdou8XGsjuEV2jv7eVsOh43ZdbZP5z7PDU-j26QFtF7_hhqKHeMMKnTztluUPOw2FV-OStkMxOEUPlt75voV4R-PSx190BbcI_lXEh4vb8aJS-5acHx-dHZ6wkUqBRWl5xyAnURmbbMgghPe89riVPSTwxUhnI2OTReImV7EBLZWNKoJSVdYoyVTJHbLZLlp4R2jUPGaQyQQdFPc21JaLLKIIwVShDjPydYLT3Q0dM9xUSnbtEHtXsHcD9jPyrQD-Z2Bpdt2_QBVwowq4f6nAjKhJXG70GwZ_AKe6eu7bu5NoHe6pkijxLSzuV06WyhVbGJDf_4_1fSAvRGEN7mu9P5LNbnkPn9CV6cLnXmsfADmY7_Q priority: 102 providerName: Directory of Open Access Journals |
Title | RTCNet: A novel real-time triple branch network for pavement crack semantic segmentation |
URI | https://dx.doi.org/10.1016/j.jag.2024.104347 https://www.proquest.com/docview/3200291057 https://doaj.org/article/162e4637f93942109f99a15d5e5dbedb |
Volume | 136 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07b9swECYCZ2mHok0bNI8aLNCpgGCJD4ns5hgJ3JdRpAngjeDTdZrIhq3k9-coUWnSoUM3gaAo4Y68B--7O4Q-gAsAarDSGZeFzZiwNNMiiIyVhlojg3A6OorfZ-X0kn2Z8_kOmvS5MBFWmWR_J9NbaZ1GRomao_VyOfoJnocUjLYoyCrnIId3CWjXfIB2x5-_TmcPwYSq6jLiYH4WX-iDmy3M60ovwEskLAY7aWyy8kg9tVX8n2ipv-R1q4TOXqIXyXrE4-4HX6EdX--h549qCu6h_dM_qWswNZ3d7Ws0P7-YzHzzCY9xvbrz1xjMxess9pbHzSZet2MTm2z8wnWHDMdgzuK1buuJN9hutP2Nt_4GOLG08LC4SVlL9Rt0eXZ6MZlmqa9CZqksmswHR3IhnTTBE6J1UWo419o7r6PGDoLaKhBXiJDbynPKpGXWM5YHDmx1Od1Hg3pV-7cIW17Y4KkThhtWaGlKWZBALDFG5KY0B-hjT0617spnqB5XdqWA9irSXnW0P0AnkeAPE2Pl63ZgtVmoxHpVlMSzklZBUsnAX5VBSl1wxz13xjv4IuvZpZ5sJFhq-a9vv-9Zq-CAxaiJrv3qdqtohLHI2A758P-WPkLPSGwa3EK9j9Gg2dz6d2DJNGYIO3Vy_u3HMO3YYXsjcA8MAvO3 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKewAOCApVy9NIcEGKNvEjiZE4LKXVLtvuAbbS3oyfy5Y2u9pNQfwu_iDjxCktBw5IvUVWZDsz4xlP5psZhF6BCwBmsFAJF5lJWGlookpfJizX1GjhS6uCo3g8zgcn7OOUTzfQry4XJsAqo-5vdXqjreNIL1Kzt5zPe5_B8xAlow0Kskg5icjKkfv5A_y29bvhB2Dya0IODyb7gyS2FkgMFVmdOG9JWgortHeEKJXlCkRbOetUMFq-pKbwxGalT03hOGXCMOMYSz2HL7MphXlvoa1QDQuO1VZ_OBqML4MXRdFm4MH-krDBLpjawMpO1Qy8UsJCcJWGpi5XzGHTNeCaVfzLPjRG7_A-uhdvq7jfEuQB2nDVNrp7pYbhNto5-JMqB69GXbF-iKafJvtjV7_FfVwtvrszDNfTsyT0ssf1Kvzexzo09fiKqxaJjuH6jJeqqV9eY7NS5hteu3Pg_NzAw-w8ZklVj9DJjRB7B21Wi8rtImx4ZryjttRcs0wJnYuMeGKI1mWqc72H3nTklMu2XIfscGynEmgvA-1lS_s99D4Q_PLFUGm7GVisZjKKmsxy4lhOCy-oYOAfCy-EyrjljlvtLKzIOnbJa4ILU83_tfbLjrUSDnSI0qjKLS7WkgbYjAjtlx__39Qv0O3B5PhIHg3HoyfoDgkNixuY-VO0Wa8u3DO4RdX6eZRajL7c9EH5Df9nLyk |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=RTCNet%3A+A+novel+real-time+triple+branch+network+for+pavement+crack+semantic+segmentation&rft.jtitle=International+journal+of+applied+earth+observation+and+geoinformation&rft.au=Liu%2C+Bin&rft.au=Kang%2C+Jian&rft.au=Guan%2C+Haiyan&rft.au=Zhi%2C+Xiaodong&rft.date=2025-02-01&rft.issn=1569-8432&rft.volume=136&rft.spage=104347&rft_id=info:doi/10.1016%2Fj.jag.2024.104347&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jag_2024_104347 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1569-8432&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1569-8432&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1569-8432&client=summon |