Analytical solutions for the spin-1 Bose-Einstein condensate in a harmonic trap

The homotopy analysis method and Galerkin spectral method are applied to find the analytical solutions for the Gross-Pitaevskii equations, a set of nonlinear Schrödinger equation used in simulation of spin-1 Bose-Einstein condensates trapped in a harmonic potential. We investigate the one-dimensiona...

Full description

Saved in:
Bibliographic Details
Published inFrontiers of physics Vol. 8; no. 3; pp. 319 - 327
Main Author 石玉仁 王雪玲 王光辉 刘丛波 周志刚 杨红娟
Format Journal Article
LanguageEnglish
Published Heidelberg Higher Education Press 01.06.2013
SP Higher Education Press
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN2095-0462
2095-0470
DOI10.1007/s11467-013-0332-x

Cover

Abstract The homotopy analysis method and Galerkin spectral method are applied to find the analytical solutions for the Gross-Pitaevskii equations, a set of nonlinear Schrödinger equation used in simulation of spin-1 Bose-Einstein condensates trapped in a harmonic potential. We investigate the one-dimensional case and get the approximate analytical solutions successfully. Comparisons between the analytical solutions and the numerical solutions have been made. The results indicate that they are in agreement well with each other when the atomic interaction is weakly. We also find a class of exact solutions for the stationary states of the spin-1 system with harmonic potential for a special case.
AbstractList The homotopy analysis method and Galerkin spectral method are applied to find the analytical solutions for the Gross-Pitaevskii equations, a set of nonlinear Schrödinger equation used in simulation of spin-1 Bose-Einstein condensates trapped in a harmonic potential. We investigate the one-dimensional case and get the approximate analytical solutions successfully. Comparisons between the analytical solutions and the numerical solutions have been made. The results indicate that they are in agreement well with each other when the atomic interaction is weakly. We also find a class of exact solutions for the stationary states of the spin-1 system with harmonic potential for a special case.
The homotopy analysis method and Galerkin spectral method are applied to find the analytical solutions for the Gross-Pitaevskii equations, a set of nonlinear SchrSdinger equation used in simulation of spin-1 Bose-Einstein condensates trapped in a harmonic potential. We investigate the one-dimensional case and get the approximate analytical solutions successfully. Comparisons between the analytical solutions and the numerical solutions have been made. The results indicate that they are in agreement well with each other when the atomic interaction is weakly. We also find a class of exact solutions for the stationary states of the spin-1 system with harmonic potential for a special case.
Author 石玉仁 王雪玲 王光辉 刘丛波 周志刚 杨红娟
AuthorAffiliation College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou 730070, China
Author_xml – sequence: 1
  fullname: 石玉仁 王雪玲 王光辉 刘丛波 周志刚 杨红娟
BookMark eNp9kctqHDEQRUVwII4zH5CdgteKVVI_l7ZxHjDgjbMWak31tExbaqs0YP99NLRxIItZlQrq1K179ZmdhRiQsa8gv4OU7RUBVE0rJGghtVbi5QM7V7Kvhaxaefb-btQntiF6lFICtFXpz9n9dbDza_bOzpzifMg-BuJjTDxPyGnxQQC_iYTizgfK6AN3MewwkM3IS2f5ZNNTDN7xnOzyhX0c7Uy4easX7M-Pu4fbX2J7__P37fVWON1DFjj0HYy60q5Dp7sRtKprdMPgallZRLCdAqWGatBdXTd9Yys3ds7JUfdtDUpfsMt175Li8wEpm8d4SMULGdVD16hGN1CmYJ1yKRIlHM2S_JNNrwakOUZn1uhMic4cozMvhWn_Y5zP9phL8efnk6RaSSoqYY_p302noG6FJr-fMOFuSUhkxlT0PKbT6Le3S6cY9s9F8t1e-dtKt6rWfwHl0KHv
CitedBy_id crossref_primary_10_1007_s11467_021_1134_1
Cites_doi 10.1103/PhysRevA.82.023612
10.1143/JPSJ.67.1822
10.1016/j.cnsns.2008.04.013
10.1016/j.cnsns.2009.09.002
10.1103/PhysRevA.72.023610
10.1103/PhysRevA.60.4857
10.1103/PhysRevA.77.033612
10.1103/PhysRevA.69.033606
10.1103/PhysRevLett.88.093201
10.1137/070698488
10.1108/09615531211188766
10.1016/j.cnsns.2012.01.030
10.1007/978-3-642-25132-0
10.1016/j.ijmecsci.2010.09.007
10.1007/s11467-011-0213-0
10.1103/PhysRevA.81.025604
10.1016/j.amc.2012.02.004
10.1016/j.cpc.2007.04.007
10.1201/9780203491164
10.1016/j.aml.2010.06.003
10.7498/aps.59.67
10.1134/S1054660X06040220
10.1103/PhysRevA.84.053607
10.1103/PhysRevLett.92.140403
10.1103/PhysRevA.83.013626
10.1103/PhysRevLett.80.2027
10.1103/PhysRevLett.101.040402
10.1103/PhysRevA.64.053602
10.1038/24567
10.1515/ijnsns.2011.020
10.1103/PhysRevLett.90.230401
10.1016/S0020-7462(02)00174-9
10.1103/PhysRevLett.81.742
10.1103/PhysRevA.75.023617
10.1016/j.compfluid.2009.12.007
10.1007/s11467-011-0219-7
10.1103/PhysRevLett.97.180412
10.4310/MAA.2010.v17.n1.a2
10.1016/j.cnsns.2009.09.019
10.1103/PhysRevE.67.046706
10.1016/j.ijthermalsci.2010.12.014
10.7498/aps.55.1555
ContentType Journal Article
Copyright Copyright reserved, 2014, Higher Education Press and Springer-Verlag Berlin Heidelberg
Higher Education Press and Springer-Verlag Berlin Heidelberg 2013
Higher Education Press and Springer-Verlag Berlin Heidelberg 2013.
Copyright_xml – notice: Copyright reserved, 2014, Higher Education Press and Springer-Verlag Berlin Heidelberg
– notice: Higher Education Press and Springer-Verlag Berlin Heidelberg 2013
– notice: Higher Education Press and Springer-Verlag Berlin Heidelberg 2013.
DBID 2RA
92L
CQIGP
~WA
AAYXX
CITATION
3V.
7XB
88I
8FE
8FG
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
DWQXO
GNUQQ
HCIFZ
M2P
P5Z
P62
PCBAR
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
Q9U
DOI 10.1007/s11467-013-0332-x
DatabaseName 维普_期刊
中文科技期刊数据库-CALIS站点
中文科技期刊数据库-7.0平台
中文科技期刊数据库- 镜像站点
CrossRef
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability (subscription)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central Basic
DatabaseTitle CrossRef
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Natural Science Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies & Aerospace Collection
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
DatabaseTitleList ProQuest Central Student



Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
DocumentTitleAlternate Analytical solutions for the spin-1 Bose-Einstein condensate in a harmonic trap
EISSN 2095-0470
EndPage 327
ExternalDocumentID 10_1007_s11467_013_0332_x
10.1007/s11467-013-0332-x
46243725
GroupedDBID -5F
-5G
-BR
-EM
-~C
.VR
06D
0R~
0VY
1-T
29~
2J2
2JN
2JY
2KG
2KM
2LR
2RA
2~H
30V
4.4
406
408
40E
5VS
88I
92L
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABDZT
ABECU
ABFTV
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACSNA
ACZOJ
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEUYN
AEVLU
AEXYK
AFBBN
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AZFZN
AZQEC
B-.
BDATZ
BENPR
BGLVJ
BGNMA
BHPHI
BKSAR
BSONS
CCPQU
CQIGP
CSCUP
DDRTE
DNIVK
DPUIP
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
H13
HCIFZ
HF~
HG6
HMJXF
HRMNR
HVGLF
HZ~
IAO
IEA
IJ-
IKXTQ
IWAJR
IXD
I~Z
J-C
JBSCW
JZLTJ
KOV
LLZTM
M2P
M4Y
MA-
N2Q
NPVJJ
NQJWS
NU0
O9-
O9J
P4S
P9T
PCBAR
PF0
PT4
R89
R9I
ROL
RSV
S16
S3B
SAP
SCL
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPH
SPISZ
SRMVM
SSLCW
STPWE
SZN
TSG
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z88
ZMTXR
~A9
~WA
AAFGU
AAYFA
ABFGW
ABKAS
ACBMV
ACBRV
ACIPQ
ACTTH
ACVWB
ACWMK
ADMDM
ADOXG
AEFTE
AESTI
AEVTX
AFNRJ
AGGBP
AIMYW
AJDOV
UNUBA
ACPIV
-SA
-S~
AAPKM
AAXDM
AAYXX
ABFSG
ACSTC
ADHKG
AEZWR
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CAJEA
CITATION
PHGZM
PHGZT
Q--
TGP
U1G
U5K
3V.
7XB
8FE
8FG
8FK
P62
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PUEGO
Q9U
ID FETCH-LOGICAL-c391t-eb981f343c8ec38f13255ecbbc504aee1a82122b4b3855696a4cf8cc0f3975123
IEDL.DBID 8FG
ISSN 2095-0462
IngestDate Sat Aug 23 13:16:18 EDT 2025
Thu Apr 24 23:13:02 EDT 2025
Tue Jul 01 03:04:51 EDT 2025
Fri Feb 21 02:38:02 EST 2025
Tue Feb 27 04:42:59 EST 2024
Tue Dec 31 07:00:26 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords analytical solution
homotopy analysis method
Gross-Pitaevskii equation
spin-1 Bose-Einstein condensate
Language English
License This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
http://www.springer.com/tdm
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c391t-eb981f343c8ec38f13255ecbbc504aee1a82122b4b3855696a4cf8cc0f3975123
Notes spin-1 Bose-Einstein condensate, Gross-Pitaevskii equation, homotopy analysis method, analytical solution
Yu-Ren Shi ,Xue-Ling Wang , Guang-Hui Wang, Cong-Bo Liu , Zhi-Gang Zhou, Hong-Juan Yang (College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou 730070, China)
11-5994/O4
The homotopy analysis method and Galerkin spectral method are applied to find the analytical solutions for the Gross-Pitaevskii equations, a set of nonlinear SchrSdinger equation used in simulation of spin-1 Bose-Einstein condensates trapped in a harmonic potential. We investigate the one-dimensional case and get the approximate analytical solutions successfully. Comparisons between the analytical solutions and the numerical solutions have been made. The results indicate that they are in agreement well with each other when the atomic interaction is weakly. We also find a class of exact solutions for the stationary states of the spin-1 system with harmonic potential for a special case.
analytical solution
Document accepted on :2013-03-24
homotopy analysis method
Document received on :2012-12-05
Gross-Pitaevskii equation
spin-1 Bose-Einstein condensate
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://journal.hep.com.cn/fop/EN/10.1007/s11467-013-0332-x
PQID 2918626361
PQPubID 2044425
PageCount 9
ParticipantIDs proquest_journals_2918626361
crossref_primary_10_1007_s11467_013_0332_x
crossref_citationtrail_10_1007_s11467_013_0332_x
springer_journals_10_1007_s11467_013_0332_x
higheredpress_frontiers_10_1007_s11467_013_0332_x
chongqing_primary_46243725
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2013-06-01
PublicationDateYYYYMMDD 2013-06-01
PublicationDate_xml – month: 06
  year: 2013
  text: 2013-06-01
  day: 01
PublicationDecade 2010
PublicationPlace Heidelberg
PublicationPlace_xml – name: Heidelberg
PublicationSubtitle Selected Publications from Chinese Universities
PublicationTitle Frontiers of physics
PublicationTitleAbbrev Front. Phys
PublicationTitleAlternate Frontiers of Physics in China
PublicationYear 2013
Publisher Higher Education Press
SP Higher Education Press
Springer Nature B.V
Publisher_xml – name: Higher Education Press
– name: SP Higher Education Press
– name: Springer Nature B.V
References BarnettRTurnerADemlerEPhys. Rev. Lett.200697181804122006PhRvL..97r0412B10.1103/PhysRevLett.97.180412
ChengYLiaoS JCommun. Nonlinear Sci. Numer. Simul.20064775
GuanX WFront. Phys.201271810.1007/s11467-011-0213-0
KlausenN NBohnJ LGreeneC HPhys. Rev. A20016450536022001PhRvA..64e3602K10.1103/PhysRevA.64.053602
TurkyilmazogluMCommun. Nonlinear Sci. Numer. Simul.20121711409729303092012CNSNS..17.4097T0608193410.1016/j.cnsns.2012.01.030
OhmiTMachidaKJ. Phys. Soc. Jpn.199867618221998JPSJ...67.1822O10.1143/JPSJ.67.1822
IsoshimaTMachidaKOhmiTPhys. Rev. A199960648571999PhRvA..60.4857I10.1103/PhysRevA.60.4857
SinatraADornstetterJ CCastinYFront. Phys.2012718610.1007/s11467-011-0219-7
HoT LPhys. Rev. Lett.19988147421998PhRvL..81..742H10.1103/PhysRevLett.81.742
KempenE G M vKokkelmansS J J M FHeinzenD JVerhaarB JPhys. Rev. Lett.20028890932012002PhRvL..88i3201V10.1103/PhysRevLett.88.093201
NistazakisH EFrantzeskakisD JKevrekidisP GMalomedB ACarretero-GonzlezRPhys. Rev. A20087730336122008PhRvA..77c3612N10.1103/PhysRevA.77.033612
MuellerE JPhys. Rev. A200469303360621119142004PhRvA..69c3606M10.1103/PhysRevA.69.033606
LiaoS JCommun. Nonlinear Sci. Numer. Simul.2010158200325926132010CNSNS..15.2003L1222.6508810.1016/j.cnsns.2009.09.002
WangD SHuX HHuJ PLiuW MPhys. Rev. A201081202560426066892010PhRvA..81b5604W10.1103/PhysRevA.81.025604
BaoW ZZhangY ZMethods Appl. Anal.2010174927351001206.35225
WangD SSongS WXiongBLiuW MPhys. Rev. A20118450536072011PhRvA..84e3607W10.1103/PhysRevA.84.053607
SzańkowskiPTrippenbachMInfeldERowlandsGPhys. Rev. A2011830136262011PhRvA..83a3626S10.1103/PhysRevA.83.013626
DionCMCancèsEPhys. Rev. E20036740467062003PhRvE..67d6706D10.1103/PhysRevE.67.046706
ChangM SHamleyC DBarrettM DSauerJ AFortierK MZhangWYouLChapmanM SPhys. Rev. Lett.200492141404032004PhRvL..92n0403C10.1103/PhysRevLett.92.140403
LiaoS JHomotopy Analysis Method in Nonlinear Differential Equations2012BeijingSpringer & Higher Education Press1253.3500110.1007/978-3-642-25132-0
KevrekidisP GTheocharisGFrantzeskakisD JMalomedB APhys. Rev. Lett.200390232304012003PhRvL..90w0401K10.1103/PhysRevLett.90.230401
LiaoS JBeyond Perturbation: Introduction to Homotopy Analysis Method2003Boca RatonChapman & Hall/CRC Press10.1201/9780203491164
TurkyilmazogluMComput. Fluids20103957931242.7636810.1016/j.compfluid.2009.12.007
ShiY RYangH JActa Phys. Sin.2010596726626771224.35374
Stamper-KurnD MAndrewsM RChikkaturA PInouyeSMiesnerH JStengerJKetterleWPhys. Rev. Lett.1998801020271998PhRvL..80.2027S10.1103/PhysRevLett.80.2027
DionC MCancèsEComput. Phys. Commun.2007177107872007CoPhC.177..787D1196.8101710.1016/j.cpc.2007.04.007
TurkyilmazogluMInt. J. Mech. Sci.20105212173510.1016/j.ijmecsci.2010.09.007
Dabrowska-WüsterB JOstrovskayaE AAlexanderT JKivsharY SPhys. Rev. A20077520236172007PhRvA..75b3617D10.1103/PhysRevA.75.023617
SaitoHUedaMPhys. Rev. A20057220236102005PhRvA..72b3610S10.1103/PhysRevA.72.023610
LiaoS JCommun. Nonlinear Sci. Numer. Simul.200914498324689312009CNSNS..14..983L1221.6512610.1016/j.cnsns.2008.04.013
MotsaS SSibandaPShateyiSCommun. Nonl. Sci. Numer. Simulat.2010159229326027131222.6509010.1016/j.cnsns.2009.09.019
SibandaPMotsaS SMakukulaZInt. J. Numer. Method. H.20122214291967910.1108/09615531211188766
ShiY RXuX JWuZ XWangY HYangH JDuanW SLüK PActa Phys. Sin.20065515551202.65130
IedaJMiyakawaTWadatiMLaser Phys.20051646782006LaPhy..16..678I10.1134/S1054660X06040220
BaoW ZLimF YSIAM J. Sci. Comput.20083041925240714710.1137/070698488
WangD SHuX HLiuW MPhys. Rev. A201082202361226066892010PhRvA..82b3612W10.1103/PhysRevA.82.023612
ZhaoY LLinZ LLiuZLiaoS JAppl. Math. Comput.201221817836329213311245.6509910.1016/j.amc.2012.02.004
TurkyilmazogluMInt. J. Therm. Sci.201150583110.1016/j.ijthermalsci.2010.12.014
PappS BPinoJ MWiemanC EPhys. Rev. Lett.200810140404022008PhRvL.101d0402P10.1103/PhysRevLett.101.040402
LiaoS JInt. J. Non-linear Mech.20043922712004IJNLM..39..271L0513845010.1016/S0020-7462(02)00174-9
StengerJInouyeSStamper-KurnD MMiesnerH JChikkaturA PKetterleWNature199839667093451998Natur.396..345S10.1038/24567
TurkyilmazogluMInt. J. Nonlinear Sci. Numer. Simul.2011121–89
S. J. Liao, PhD Thesis, Shanghai Jiao Tong University, 1992
TurkyilmazogluMAppl. Math. Lett.20102310122626656011195.6510410.1016/j.aml.2010.06.003
X W Guan (332_CR5) 2012; 7
T L Ho (332_CR6) 1998; 81
A Sinatra (332_CR4) 2012; 7
S J Liao (332_CR25) 2012
S J Liao (332_CR24) 2003
S J Liao (332_CR28) 2009; 14
S S Motsa (332_CR41) 2010; 15
M Turkyilmazoglu (332_CR33) 2010; 23
Y Cheng (332_CR29) 2006; 47
S J Liao (332_CR27) 2010; 15
P Szańkowski (332_CR16) 2011; 83
H Saito (332_CR18) 2005; 72
M Turkyilmazoglu (332_CR34) 2010; 52
M Turkyilmazoglu (332_CR38) 2012; 17
P G Kevrekidis (332_CR9) 2003; 90
W Z Bao (332_CR20) 2008; 30
M Turkyilmazoglu (332_CR37) 2011; 12
T Ohmi (332_CR7) 1998; 67
T Isoshima (332_CR8) 1999; 60
M S Chang (332_CR3) 2004; 92
J Ieda (332_CR14) 2005; 16
D S Wang (332_CR21) 2011; 84
D S Wang (332_CR23) 2010; 81
B J Dabrowska-Wüster (332_CR15) 2007; 75
332_CR26
R Barnett (332_CR17) 2006; 97
S J Liao (332_CR30) 2004; 39
CM Dion (332_CR43) 2003; 67
M Turkyilmazoglu (332_CR35) 2010; 39
H E Nistazakis (332_CR12) 2008; 77
N N Klausen (332_CR10) 2001; 64
S B Papp (332_CR45) 2008; 101
J Stenger (332_CR1) 1998; 396
S J Liao (332_CR31) 2010; 15
Y R Shi (332_CR39) 2006; 55
D M Stamper-Kurn (332_CR2) 1998; 80
M Turkyilmazoglu (332_CR36) 2011; 50
W Z Bao (332_CR19) 2010; 17
D S Wang (332_CR22) 2010; 82
C M Dion (332_CR44) 2007; 177
E G M v Kempen (332_CR11) 2002; 88
P Sibanda (332_CR42) 2012; 22
E J Mueller (332_CR13) 2004; 69
Y L Zhao (332_CR32) 2012; 218
Y R Shi (332_CR40) 2010; 59
References_xml – reference: TurkyilmazogluMInt. J. Therm. Sci.201150583110.1016/j.ijthermalsci.2010.12.014
– reference: ShiY RYangH JActa Phys. Sin.2010596726626771224.35374
– reference: BaoW ZZhangY ZMethods Appl. Anal.2010174927351001206.35225
– reference: HoT LPhys. Rev. Lett.19988147421998PhRvL..81..742H10.1103/PhysRevLett.81.742
– reference: SzańkowskiPTrippenbachMInfeldERowlandsGPhys. Rev. A2011830136262011PhRvA..83a3626S10.1103/PhysRevA.83.013626
– reference: GuanX WFront. Phys.201271810.1007/s11467-011-0213-0
– reference: MuellerE JPhys. Rev. A200469303360621119142004PhRvA..69c3606M10.1103/PhysRevA.69.033606
– reference: S. J. Liao, PhD Thesis, Shanghai Jiao Tong University, 1992
– reference: TurkyilmazogluMCommun. Nonlinear Sci. Numer. Simul.20121711409729303092012CNSNS..17.4097T0608193410.1016/j.cnsns.2012.01.030
– reference: Stamper-KurnD MAndrewsM RChikkaturA PInouyeSMiesnerH JStengerJKetterleWPhys. Rev. Lett.1998801020271998PhRvL..80.2027S10.1103/PhysRevLett.80.2027
– reference: ZhaoY LLinZ LLiuZLiaoS JAppl. Math. Comput.201221817836329213311245.6509910.1016/j.amc.2012.02.004
– reference: TurkyilmazogluMAppl. Math. Lett.20102310122626656011195.6510410.1016/j.aml.2010.06.003
– reference: KevrekidisP GTheocharisGFrantzeskakisD JMalomedB APhys. Rev. Lett.200390232304012003PhRvL..90w0401K10.1103/PhysRevLett.90.230401
– reference: SinatraADornstetterJ CCastinYFront. Phys.2012718610.1007/s11467-011-0219-7
– reference: TurkyilmazogluMComput. Fluids20103957931242.7636810.1016/j.compfluid.2009.12.007
– reference: TurkyilmazogluMInt. J. Mech. Sci.20105212173510.1016/j.ijmecsci.2010.09.007
– reference: WangD SSongS WXiongBLiuW MPhys. Rev. A20118450536072011PhRvA..84e3607W10.1103/PhysRevA.84.053607
– reference: KlausenN NBohnJ LGreeneC HPhys. Rev. A20016450536022001PhRvA..64e3602K10.1103/PhysRevA.64.053602
– reference: LiaoS JBeyond Perturbation: Introduction to Homotopy Analysis Method2003Boca RatonChapman & Hall/CRC Press10.1201/9780203491164
– reference: MotsaS SSibandaPShateyiSCommun. Nonl. Sci. Numer. Simulat.2010159229326027131222.6509010.1016/j.cnsns.2009.09.019
– reference: LiaoS JHomotopy Analysis Method in Nonlinear Differential Equations2012BeijingSpringer & Higher Education Press1253.3500110.1007/978-3-642-25132-0
– reference: LiaoS JCommun. Nonlinear Sci. Numer. Simul.2010158200325926132010CNSNS..15.2003L1222.6508810.1016/j.cnsns.2009.09.002
– reference: NistazakisH EFrantzeskakisD JKevrekidisP GMalomedB ACarretero-GonzlezRPhys. Rev. A20087730336122008PhRvA..77c3612N10.1103/PhysRevA.77.033612
– reference: IsoshimaTMachidaKOhmiTPhys. Rev. A199960648571999PhRvA..60.4857I10.1103/PhysRevA.60.4857
– reference: ShiY RXuX JWuZ XWangY HYangH JDuanW SLüK PActa Phys. Sin.20065515551202.65130
– reference: IedaJMiyakawaTWadatiMLaser Phys.20051646782006LaPhy..16..678I10.1134/S1054660X06040220
– reference: PappS BPinoJ MWiemanC EPhys. Rev. Lett.200810140404022008PhRvL.101d0402P10.1103/PhysRevLett.101.040402
– reference: SibandaPMotsaS SMakukulaZInt. J. Numer. Method. H.20122214291967910.1108/09615531211188766
– reference: DionCMCancèsEPhys. Rev. E20036740467062003PhRvE..67d6706D10.1103/PhysRevE.67.046706
– reference: BaoW ZLimF YSIAM J. Sci. Comput.20083041925240714710.1137/070698488
– reference: Dabrowska-WüsterB JOstrovskayaE AAlexanderT JKivsharY SPhys. Rev. A20077520236172007PhRvA..75b3617D10.1103/PhysRevA.75.023617
– reference: StengerJInouyeSStamper-KurnD MMiesnerH JChikkaturA PKetterleWNature199839667093451998Natur.396..345S10.1038/24567
– reference: KempenE G M vKokkelmansS J J M FHeinzenD JVerhaarB JPhys. Rev. Lett.20028890932012002PhRvL..88i3201V10.1103/PhysRevLett.88.093201
– reference: TurkyilmazogluMInt. J. Nonlinear Sci. Numer. Simul.2011121–89
– reference: ChangM SHamleyC DBarrettM DSauerJ AFortierK MZhangWYouLChapmanM SPhys. Rev. Lett.200492141404032004PhRvL..92n0403C10.1103/PhysRevLett.92.140403
– reference: OhmiTMachidaKJ. Phys. Soc. Jpn.199867618221998JPSJ...67.1822O10.1143/JPSJ.67.1822
– reference: BarnettRTurnerADemlerEPhys. Rev. Lett.200697181804122006PhRvL..97r0412B10.1103/PhysRevLett.97.180412
– reference: WangD SHuX HHuJ PLiuW MPhys. Rev. A201081202560426066892010PhRvA..81b5604W10.1103/PhysRevA.81.025604
– reference: ChengYLiaoS JCommun. Nonlinear Sci. Numer. Simul.20064775
– reference: LiaoS JCommun. Nonlinear Sci. Numer. Simul.200914498324689312009CNSNS..14..983L1221.6512610.1016/j.cnsns.2008.04.013
– reference: DionC MCancèsEComput. Phys. Commun.2007177107872007CoPhC.177..787D1196.8101710.1016/j.cpc.2007.04.007
– reference: WangD SHuX HLiuW MPhys. Rev. A201082202361226066892010PhRvA..82b3612W10.1103/PhysRevA.82.023612
– reference: LiaoS JInt. J. Non-linear Mech.20043922712004IJNLM..39..271L0513845010.1016/S0020-7462(02)00174-9
– reference: SaitoHUedaMPhys. Rev. A20057220236102005PhRvA..72b3610S10.1103/PhysRevA.72.023610
– volume: 82
  start-page: 023612
  issue: 2
  year: 2010
  ident: 332_CR22
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.82.023612
– volume: 67
  start-page: 1822
  issue: 6
  year: 1998
  ident: 332_CR7
  publication-title: J. Phys. Soc. Jpn.
  doi: 10.1143/JPSJ.67.1822
– volume: 14
  start-page: 983
  issue: 4
  year: 2009
  ident: 332_CR28
  publication-title: Commun. Nonlinear Sci. Numer. Simul.
  doi: 10.1016/j.cnsns.2008.04.013
– volume: 15
  start-page: 2003
  issue: 8
  year: 2010
  ident: 332_CR27
  publication-title: Commun. Nonlinear Sci. Numer. Simul.
  doi: 10.1016/j.cnsns.2009.09.002
– volume: 72
  start-page: 023610
  issue: 2
  year: 2005
  ident: 332_CR18
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.72.023610
– volume: 47
  start-page: 75
  year: 2006
  ident: 332_CR29
  publication-title: Commun. Nonlinear Sci. Numer. Simul.
– volume: 60
  start-page: 4857
  issue: 6
  year: 1999
  ident: 332_CR8
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.60.4857
– volume: 77
  start-page: 033612
  issue: 3
  year: 2008
  ident: 332_CR12
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.77.033612
– volume: 15
  start-page: 2003
  issue: 8
  year: 2010
  ident: 332_CR31
  publication-title: Commun. Nonlinear Sci. Numer. Simul.
  doi: 10.1016/j.cnsns.2009.09.002
– volume: 69
  start-page: 033606
  issue: 3
  year: 2004
  ident: 332_CR13
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.69.033606
– volume: 88
  start-page: 093201
  issue: 9
  year: 2002
  ident: 332_CR11
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.88.093201
– volume: 30
  start-page: 1925
  issue: 4
  year: 2008
  ident: 332_CR20
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/070698488
– volume: 22
  start-page: 4
  issue: 1
  year: 2012
  ident: 332_CR42
  publication-title: Int. J. Numer. Method. H.
  doi: 10.1108/09615531211188766
– volume: 17
  start-page: 4097
  issue: 11
  year: 2012
  ident: 332_CR38
  publication-title: Commun. Nonlinear Sci. Numer. Simul.
  doi: 10.1016/j.cnsns.2012.01.030
– volume-title: Homotopy Analysis Method in Nonlinear Differential Equations
  year: 2012
  ident: 332_CR25
  doi: 10.1007/978-3-642-25132-0
– volume: 52
  start-page: 1735
  issue: 12
  year: 2010
  ident: 332_CR34
  publication-title: Int. J. Mech. Sci.
  doi: 10.1016/j.ijmecsci.2010.09.007
– volume: 7
  start-page: 8
  issue: 1
  year: 2012
  ident: 332_CR5
  publication-title: Front. Phys.
  doi: 10.1007/s11467-011-0213-0
– volume: 81
  start-page: 025604
  issue: 2
  year: 2010
  ident: 332_CR23
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.81.025604
– volume: 218
  start-page: 8363
  issue: 17
  year: 2012
  ident: 332_CR32
  publication-title: Appl. Math. Comput.
  doi: 10.1016/j.amc.2012.02.004
– volume: 177
  start-page: 787
  issue: 10
  year: 2007
  ident: 332_CR44
  publication-title: Comput. Phys. Commun.
  doi: 10.1016/j.cpc.2007.04.007
– volume-title: Beyond Perturbation: Introduction to Homotopy Analysis Method
  year: 2003
  ident: 332_CR24
  doi: 10.1201/9780203491164
– volume: 23
  start-page: 1226
  issue: 10
  year: 2010
  ident: 332_CR33
  publication-title: Appl. Math. Lett.
  doi: 10.1016/j.aml.2010.06.003
– ident: 332_CR26
– volume: 59
  start-page: 67
  year: 2010
  ident: 332_CR40
  publication-title: Acta Phys. Sin.
  doi: 10.7498/aps.59.67
– volume: 16
  start-page: 678
  issue: 4
  year: 2005
  ident: 332_CR14
  publication-title: Laser Phys.
  doi: 10.1134/S1054660X06040220
– volume: 84
  start-page: 053607
  issue: 5
  year: 2011
  ident: 332_CR21
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.84.053607
– volume: 92
  start-page: 140403
  issue: 14
  year: 2004
  ident: 332_CR3
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.92.140403
– volume: 83
  start-page: 013626
  year: 2011
  ident: 332_CR16
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.83.013626
– volume: 80
  start-page: 2027
  issue: 10
  year: 1998
  ident: 332_CR2
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.80.2027
– volume: 101
  start-page: 040402
  issue: 4
  year: 2008
  ident: 332_CR45
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.101.040402
– volume: 64
  start-page: 053602
  issue: 5
  year: 2001
  ident: 332_CR10
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.64.053602
– volume: 396
  start-page: 345
  issue: 6709
  year: 1998
  ident: 332_CR1
  publication-title: Nature
  doi: 10.1038/24567
– volume: 12
  start-page: 9
  issue: 1–8
  year: 2011
  ident: 332_CR37
  publication-title: Int. J. Nonlinear Sci. Numer. Simul.
  doi: 10.1515/ijnsns.2011.020
– volume: 90
  start-page: 230401
  issue: 23
  year: 2003
  ident: 332_CR9
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.90.230401
– volume: 39
  start-page: 271
  issue: 2
  year: 2004
  ident: 332_CR30
  publication-title: Int. J. Non-linear Mech.
  doi: 10.1016/S0020-7462(02)00174-9
– volume: 81
  start-page: 742
  issue: 4
  year: 1998
  ident: 332_CR6
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.81.742
– volume: 75
  start-page: 023617
  issue: 2
  year: 2007
  ident: 332_CR15
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.75.023617
– volume: 39
  start-page: 793
  issue: 5
  year: 2010
  ident: 332_CR35
  publication-title: Comput. Fluids
  doi: 10.1016/j.compfluid.2009.12.007
– volume: 7
  start-page: 86
  issue: 1
  year: 2012
  ident: 332_CR4
  publication-title: Front. Phys.
  doi: 10.1007/s11467-011-0219-7
– volume: 97
  start-page: 180412
  issue: 18
  year: 2006
  ident: 332_CR17
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.97.180412
– volume: 17
  start-page: 49
  year: 2010
  ident: 332_CR19
  publication-title: Methods Appl. Anal.
  doi: 10.4310/MAA.2010.v17.n1.a2
– volume: 15
  start-page: 2293
  issue: 9
  year: 2010
  ident: 332_CR41
  publication-title: Commun. Nonl. Sci. Numer. Simulat.
  doi: 10.1016/j.cnsns.2009.09.019
– volume: 67
  start-page: 046706
  issue: 4
  year: 2003
  ident: 332_CR43
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.67.046706
– volume: 50
  start-page: 831
  issue: 5
  year: 2011
  ident: 332_CR36
  publication-title: Int. J. Therm. Sci.
  doi: 10.1016/j.ijthermalsci.2010.12.014
– volume: 55
  start-page: 1555
  year: 2006
  ident: 332_CR39
  publication-title: Acta Phys. Sin.
  doi: 10.7498/aps.55.1555
SSID ssj0001174462
Score 1.902121
Snippet The homotopy analysis method and Galerkin spectral method are applied to find the analytical solutions for the Gross-Pitaevskii equations, a set of nonlinear...
SourceID proquest
crossref
springer
higheredpress
chongqing
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 319
SubjectTerms analytical solution
Astronomy
Astrophysics and Cosmology
Atomic
Atomic interactions
Bose-Einstein condensates
Condensed Matter Physics
Exact solutions
Galerkin谱方法
Gross-Pitaevskii equation
homotopy analysis method
Homotopy theory
Molecular
Optical and Plasma Physics
Particle and Nuclear Physics
Physics
Physics and Astronomy
Research Article
Schrodinger equation
Spectral methods
spin-1 Bose-Einstein condensate
势阱
同伦分析
爱因斯坦凝聚
玻色
自旋
谐振
近似解析解
SummonAdditionalLinks – databaseName: SpringerLINK - Czech Republic Consortium
  dbid: AGYKE
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB5kRRDEt7i-yMGTUmmapKZHFR8o6kVBTyHJproo3dVWEH-9k2y764oK3lqapCQzmXyTTL4B2LZM61zyPNp3PPUOio2kRmNojeEZdT523F8UvrxKz275-Z24q-9xl020e3MkGSz16LJbmNQhGwFjSYTAcVJQmckWTB6c3l982VpBlM1DKtEk9veP8bk5z_ypHc-q8NgrHl7wn2Or08xjCLVwnRCSOgZBv52ahsXoZA5umm4MYlCe9t4qs2c_vjE8_rOf8zBbg1NyMNCmBZhwxSJMhSBRWy7BdWAwCZvfZKiyBFEvQRRJyn63iCg57JUuOu4i6nTdgqC3jYatREBL8E0TT5TtyXhJ9ar7y3B7cnxzdBbVCRkiyzJaRc5kkuaMMyudZTJHT1YIh2K1IubaOaolroSJ4YZJIdIs1dzm0to4R9SDyIKtQKvoFW4ViHSsk_J9zUTGuKYxlvRMg6npZLER1rZhbSgU1R8QbygUpD9mFG2IGykpW1OZ-4waz2pEwuwHUeEgKj-I6r0NO8MqTXN_FKZjole5J5Pwqcn_qrPRqIeqzUCpkox6j5GltA27jbRHn39tbO1fpddhOhkk6UCt2YBW9frmNhEqVWarnhqfvLUH4w
  priority: 102
  providerName: Springer Nature
Title Analytical solutions for the spin-1 Bose-Einstein condensate in a harmonic trap
URI http://lib.cqvip.com/qk/71009X/201303/46243725.html
https://journal.hep.com.cn/fop/EN/10.1007/s11467-013-0332-x
https://link.springer.com/article/10.1007/s11467-013-0332-x
https://www.proquest.com/docview/2918626361
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LSwMxEA4-LoKIomK1Sg6elOBmk6zZk1RpFcUHYkFPIZtmtSDb2q3gz3cm3W2pYE_7SnLIzM58yUy-IeTYCWtzLXN27mWCCxTHtAVj6LJMptxj7jgeFL5_SG668vZVvVYbbmWVVlnbxGCoewOHe-RnccoRfIuEXwy_GFaNwuhqVUJjmaxy8DSo57pzPdtjAbgtQ03ROMKDyHBfBzbD6blgJUJ5AyFi9oP0Ch-D4v0LnMacm1r_CDkXvhdyU-ew6J_wafBKnU2yUcFJ2prIf4ss-WKbPAamkbBJTaeqRQGdUkB7tBz2C8bp5aD0rN0HdOj7BYVVMRigEoAnhSdLkdAaSXPpeGSHO6Tbab9c3bCqcAJzIuVj5rNU81xI4bR3Quew4lTKw_Q7FUnrPbcaPFacyUxopZI0sdLl2rkoB3QCCEDskpViUPg9QrUXvUSeW6FSIS2PoCUyAiZZL40y5VyD7E_nzAwnBBkG5hnDgapBonoSjasox7HyxaeZkSWjDAzIwKAMzE-DnEy71MMtaMznJGNyJH3AEuKL-jRr6Znqdy3NTLka5LSW6Ozzv4PtLx7sgKzFk-oZoGVNsjIefftDwDDj7Cgo6hFZbV2_3bXhetl-eHqGt9249QvhTO7j
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fT9swED6x8rBJCA1t08qPzQ_sZZO1OHaC84DQ2IrKgG6aQOLNc1wHKqG0kE6Df4q_kTs3aVUk-sZbojhWdHe5--zzfQew7aS1hVYF3_EqpQWK49qiM3R5rjLh6ew4FQqf9NLumfp5npwvwX1TC0PHKhufGBx1f-hoj_xrnAkC3zIVe6NrTl2jKLvatNCYmMWRv_uPS7Zq9_AH6vdTHB90Tr93ed1VgDuZiTH3eaZFIZV02jupC1yOJYnHb3NJpKz3wmp053GucqmTJM1Sq1yhnYsKDN0YHiXO-wKWFVW0tmB5v9P7_We2q4MAX4UupnFEpc943aRSQ71e8EuhoYKUMb8lQofLYXlxjWFqLjCuXIZTHr4fTsPOod9HCdsQBw9ew2oNYNm3icWtwZIv38CvwG0StsXZ1JgZ4mGG-JJVo0HJBdsfVp53BohH_aBkuA5Hl1ch1GV4ZxlRaBNNLxvf2NFbOHsWob6DVjks_Xtg2st-qnYsylcqKyIcSRyEad7Pojxxrg3rU5mZ0YSSw6CcKQGZtCFqhGhcTXJOvTauzIyemXRgUAeGdGBu2_B5-koz3YLBYk4zpiCaCWpavuidzUZ7pnYQlZmZcxu-NBqdPX5ysvXFk32El93Tk2NzfNg72oBX8aR3B1rcJrTGN__8FiKocf6hNlsGf5_7T3kAWFEo7A
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwEA-iKIKInzg_8-CTUmyapEsf58fwWx8c-BbSLHUD6aat4J_vXdZuTFTwraVJCneX5Jfc3e8IObTcmEyJLGg6EeMBxQbKwGJo01QkzGHsOCYK393Hlx1x_SyfqzqnRR3tXrskRzkNyNKUlyfDbnYySXzzE9xXJuA8CgBEzsFqzNDQO1FrcskCeFv4oqJRiJnI8Fx7Nn8aBfkVeoP85Q3-PrVPLfV80IXr-uDUKTD6zX_qt6X2Clmu8CRtjQxglcy4fI3M-7hOW6yTB0864u-r6djKKABVCsCPFsN-HjB6OihccNEHoOj6OQVJwFpUAAal8GYoclsjfy4t381wg3TaF09nl0FVQyGwPGFl4NJEsYwLbpWzXGVw-JTSgSasDIVxjhkFm1eUipQrKeMkNsJmytowA6ACYIBvktl8kLstQpXj3Vg0DZcJF4aF0BLJAeO0m4SptLZBtsfS08MRV4YGiaNnUDZIWItT24p9HItgvOoJbzJqQ4M2NGpDfzbI0bhLPdwfjdmUjnSG_A9YTfyvPru1HnU1cwsdJQwPeTxmDXJc63by-dfBtv_V-oAsPJ639e3V_c0OWYxGJTbAEnfJbPn-4fYA6JTpvjfmL--e8e8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Analytical+solutions+for+the+spin-1+Bose-Einstein+condensate+in+a+harmonic+trap&rft.jtitle=Frontiers+of+physics&rft.au=Shi%2C+Yu-Ren&rft.au=Wang%2C+Xue-Ling&rft.au=Wang%2C+Guang-Hui&rft.au=Liu%2C+Cong-Bo&rft.date=2013-06-01&rft.pub=Springer+Nature+B.V&rft.issn=2095-0462&rft.eissn=2095-0470&rft.volume=8&rft.issue=3&rft.spage=319&rft.epage=327&rft_id=info:doi/10.1007%2Fs11467-013-0332-x
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F71009X%2F71009X.jpg