Edge reconstruction in fractional quantum Hall states

The nature of edge reconstruction in the quantum Hall effect (QHE) and the issue of where the current flows have been debated for years. Moreover, the recent observation of proliferation of ‘upstream’ neutral modes in the fractional QHE has raised doubts about the present models of edge channels. He...

Full description

Saved in:
Bibliographic Details
Published inNature physics Vol. 13; no. 5; pp. 491 - 496
Main Authors Sabo, Ron, Gurman, Itamar, Rosenblatt, Amir, Lafont, Fabien, Banitt, Daniel, Park, Jinhong, Heiblum, Moty, Gefen, Yuval, Umansky, Vladimir, Mahalu, Diana
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 01.05.2017
Nature Publishing Group
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The nature of edge reconstruction in the quantum Hall effect (QHE) and the issue of where the current flows have been debated for years. Moreover, the recent observation of proliferation of ‘upstream’ neutral modes in the fractional QHE has raised doubts about the present models of edge channels. Here, we present a new picture of the edge reconstruction in two of the hole-conjugate states. For example, while the present model for ν = (2/3) consists of a single downstream chiral charge channel with conductance (2/3)( e 2 / h ) and an upstream neutral mode, we show that the current is carried by two separate downstream chiral edge channels, each with conductance (1/3)( e 2 / h ). We uncover a novel mechanism of fragmentation of upstream neutral modes into downstream propagating charge modes that induces current fluctuations with zero net current. Our unexpected results underline the need for better understanding of edge reconstruction and energy transport in all fractional QHE states. Two challenging questions related to the quantum Hall effect (QHE) are how edge reconstruction works and where the current flows. A new model now gives the answer for two types of QHE states — two separate downstream chiral edge channels are involved.
AbstractList The nature of edge reconstruction in the quantum Hall effect (QHE) and the issue of where the current flows have been debated for years. Moreover, the recent observation of proliferation of 'upstream' neutral modes in the fractional QHE has raised doubts about the present models of edge channels. Here, we present a new picture of the edge reconstruction in two of the hole-conjugate states. For example, while the present model for nu = (2/3) consists of a single downstream chiral charge channel with conductance (2/3)(e super(2)/h) and an upstream neutral mode, we show that the current is carried by two separate downstream chiral edge channels, each with conductance (1/3)(e super(2)/h). We uncover a novel mechanism of fragmentation of upstream neutral modes into downstream propagating charge modes that induces current fluctuations with zero net current. Our unexpected results underline the need for better understanding of edge reconstruction and energy transport in all fractional QHE states.
The nature of edge reconstruction in the quantum Hall effect (QHE) and the issue of where the current flows have been debated for years. Moreover, the recent observation of proliferation of upstream neutral modes in the fractional QHE has raised doubts about the present models of edge channels. Here, we present a new picture of the edge reconstruction in two of the hole-conjugate states. For example, while the present model for =(2/3) consists of a single downstream chiral charge channel with conductance (2/3)(e2/h) and an upstream neutral mode, we show that the current is carried by two separate downstream chiral edge channels, each with conductance (1/3)(e2/h).
The nature of edge reconstruction in the quantum Hall effect (QHE) and the issue of where the current flows have been debated for years. Moreover, the recent observation of proliferation of ‘upstream’ neutral modes in the fractional QHE has raised doubts about the present models of edge channels. Here, we present a new picture of the edge reconstruction in two of the hole-conjugate states. For example, while the present model for ν = (2/3) consists of a single downstream chiral charge channel with conductance (2/3)( e 2 / h ) and an upstream neutral mode, we show that the current is carried by two separate downstream chiral edge channels, each with conductance (1/3)( e 2 / h ). We uncover a novel mechanism of fragmentation of upstream neutral modes into downstream propagating charge modes that induces current fluctuations with zero net current. Our unexpected results underline the need for better understanding of edge reconstruction and energy transport in all fractional QHE states. Two challenging questions related to the quantum Hall effect (QHE) are how edge reconstruction works and where the current flows. A new model now gives the answer for two types of QHE states — two separate downstream chiral edge channels are involved.
Author Lafont, Fabien
Banitt, Daniel
Umansky, Vladimir
Sabo, Ron
Gurman, Itamar
Rosenblatt, Amir
Park, Jinhong
Gefen, Yuval
Heiblum, Moty
Mahalu, Diana
Author_xml – sequence: 1
  givenname: Ron
  surname: Sabo
  fullname: Sabo, Ron
  organization: Department of Condensed Matter Physics, Braun Center for Submicron Research, Weizmann Institute of Science
– sequence: 2
  givenname: Itamar
  surname: Gurman
  fullname: Gurman, Itamar
  organization: Department of Condensed Matter Physics, Braun Center for Submicron Research, Weizmann Institute of Science
– sequence: 3
  givenname: Amir
  surname: Rosenblatt
  fullname: Rosenblatt, Amir
  organization: Department of Condensed Matter Physics, Braun Center for Submicron Research, Weizmann Institute of Science
– sequence: 4
  givenname: Fabien
  surname: Lafont
  fullname: Lafont, Fabien
  organization: Department of Condensed Matter Physics, Braun Center for Submicron Research, Weizmann Institute of Science
– sequence: 5
  givenname: Daniel
  surname: Banitt
  fullname: Banitt, Daniel
  organization: Department of Condensed Matter Physics, Braun Center for Submicron Research, Weizmann Institute of Science
– sequence: 6
  givenname: Jinhong
  surname: Park
  fullname: Park, Jinhong
  organization: Department of Condensed Matter Physics, Weizmann Institute of Science
– sequence: 7
  givenname: Moty
  surname: Heiblum
  fullname: Heiblum, Moty
  email: moty.heiblum@weizmann.ac.il
  organization: Department of Condensed Matter Physics, Braun Center for Submicron Research, Weizmann Institute of Science
– sequence: 8
  givenname: Yuval
  surname: Gefen
  fullname: Gefen, Yuval
  organization: Department of Condensed Matter Physics, Weizmann Institute of Science
– sequence: 9
  givenname: Vladimir
  surname: Umansky
  fullname: Umansky, Vladimir
  organization: Department of Condensed Matter Physics, Braun Center for Submicron Research, Weizmann Institute of Science
– sequence: 10
  givenname: Diana
  surname: Mahalu
  fullname: Mahalu, Diana
  organization: Department of Condensed Matter Physics, Braun Center for Submicron Research, Weizmann Institute of Science
BookMark eNpt0MFOAjEQBuDGYCKgB99gEy9qstJuy257NATFhMQL981smeKSpQtt98Db-Cw-mVUMMehp5vDNZP4ZkJ5tLRJyzegDo1yO7PZt7wVl9Iz0WSHGaSYk6x37gl-QgfdrSkWWM94n-XS5wsShbq0PrtOhbm1S28Q4-O6hSXYd2NBtkhk0zce7DxDQX5JzA43Hq586JIun6WIyS-evzy-Tx3mquWIhRVAKxkWlcpUj5VqApJSZMWVSA4JWpsKMLlm1rDTPOEVt2FhXKKoCwRg-JLeHtVvX7jr0odzUXmPTgMW28yVTMYcQuZCR3pzQddu5eH9UUglRyEyyqEYHpV3rvUNT6joGikGDg7opGS2_3lge3xgn7k4mtq7egNv_a-8P1kdjV-h-3fAHfwIoKoX4
CitedBy_id crossref_primary_10_1038_s42005_024_01800_9
crossref_primary_10_1038_s41467_020_20395_7
crossref_primary_10_1103_PhysRevLett_128_056802
crossref_primary_10_1103_PhysRevLett_119_186804
crossref_primary_10_1126_sciadv_aaw5798
crossref_primary_10_1103_PhysRevB_103_L121302
crossref_primary_10_1103_PhysRevB_99_195304
crossref_primary_10_1103_PhysRevB_107_115426
crossref_primary_10_1063_5_0138332
crossref_primary_10_1088_2053_1583_ab3500
crossref_primary_10_1103_PhysRevLett_129_146801
crossref_primary_10_7566_JPSJ_90_102001
crossref_primary_10_1103_PhysRevX_13_031024
crossref_primary_10_1103_PhysRevResearch_3_023083
crossref_primary_10_1021_acs_nanolett_3c02253
crossref_primary_10_22331_q_2022_06_14_736
crossref_primary_10_1038_s41467_023_37495_9
crossref_primary_10_1103_PhysRevLett_122_236802
crossref_primary_10_1103_PhysRevLett_133_186603
crossref_primary_10_1038_s41467_019_09920_5
crossref_primary_10_1038_s41567_019_0441_8
crossref_primary_10_1103_PhysRevB_95_205129
crossref_primary_10_1103_PhysRevB_110_L041402
crossref_primary_10_1103_PhysRevB_106_155132
crossref_primary_10_1103_PhysRevLett_122_086803
crossref_primary_10_1103_PhysRevLett_134_076302
crossref_primary_10_1103_PhysRevB_97_245304
crossref_primary_10_1103_PhysRevB_98_115408
crossref_primary_10_1103_PhysRevLett_122_246801
crossref_primary_10_1103_PhysRevB_110_L201406
crossref_primary_10_1088_1361_648X_aad220
crossref_primary_10_1103_PhysRevB_104_085304
crossref_primary_10_1038_s41567_020_1019_1
crossref_primary_10_1103_PhysRevB_105_165145
crossref_primary_10_1038_s41467_022_27958_w
crossref_primary_10_1103_PhysRevB_103_165302
crossref_primary_10_1063_1_5128906
crossref_primary_10_1038_nature22052
crossref_primary_10_1103_PhysRevB_108_235432
crossref_primary_10_1038_s42254_021_00351_0
crossref_primary_10_1038_s41567_017_0035_2
crossref_primary_10_1063_10_0034344
crossref_primary_10_1126_sciadv_abf5547
crossref_primary_10_1142_S0217751X20300094
crossref_primary_10_1063_10_0010207
crossref_primary_10_1103_PhysRevB_99_041302
crossref_primary_10_1002_andp_202100354
crossref_primary_10_1038_s41467_019_12245_y
crossref_primary_10_1088_1674_1056_28_6_067303
crossref_primary_10_1126_science_aar3766
crossref_primary_10_1103_PhysRevB_102_165313
crossref_primary_10_1038_s41567_022_01758_x
crossref_primary_10_1038_s41467_017_02433_z
crossref_primary_10_1103_PhysRevLett_122_137701
crossref_primary_10_1103_PhysRevB_104_115416
crossref_primary_10_1103_PhysRevResearch_4_L012040
crossref_primary_10_1038_s41567_023_02114_3
crossref_primary_10_1038_s41586_024_08092_7
crossref_primary_10_1103_PhysRevB_101_075308
crossref_primary_10_1103_PhysRevLett_130_076205
crossref_primary_10_1103_PhysRevB_99_195446
crossref_primary_10_1103_PhysRevB_110_245309
crossref_primary_10_1103_PhysRevLett_125_076802
crossref_primary_10_1103_PhysRevLett_125_256803
crossref_primary_10_1103_PhysRevLett_133_076503
crossref_primary_10_1021_acs_nanolett_2c05004
Cites_doi 10.1103/PhysRevLett.64.220
10.1103/PhysRevLett.111.246803
10.1103/PhysRevB.45.3894
10.1016/0038-1098(90)90447-J
10.1038/nature06855
10.1103/PhysRevLett.108.256804
10.1103/PhysRevLett.79.2526
10.1103/PhysRevLett.72.2624
10.1103/PhysRevLett.72.4129
10.1073/pnas.0912624107
10.1103/PhysRevB.29.6012
10.1103/PhysRevB.83.155440
10.1103/PhysRevLett.109.026803
10.1038/nature09277
10.1103/PhysRevLett.98.106801
10.1142/S0217979292000840
10.1103/PhysRevLett.103.236802
10.1103/PhysRevLett.64.216
10.1038/38241
10.1038/nphys2384
10.1038/ncomms5067
10.1103/PhysRevB.45.1742
10.1103/PhysRevLett.108.226801
10.1017/CBO9780511607561
10.1103/PhysRevB.51.13449
10.1038/ncomms2305
ContentType Journal Article
Copyright Springer Nature Limited 2017
Copyright Nature Publishing Group May 2017
Copyright_xml – notice: Springer Nature Limited 2017
– notice: Copyright Nature Publishing Group May 2017
DBID AAYXX
CITATION
3V.
7U5
7XB
88I
8FD
8FE
8FG
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
DWQXO
GNUQQ
HCIFZ
L7M
M2P
P5Z
P62
PCBAR
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
Q9U
DOI 10.1038/nphys4010
DatabaseName CrossRef
ProQuest Central (Corporate)
Solid State and Superconductivity Abstracts
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest SciTech Premium Collection Technology Collection Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
ProQuest One
ProQuest Central Korea
ProQuest Central Student
SciTech Collection (ProQuest)
Advanced Technologies Database with Aerospace
Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central Basic
DatabaseTitle CrossRef
ProQuest Central Student
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Natural Science Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Collection
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Solid State and Superconductivity Abstracts
ProQuest One Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
DatabaseTitleList Technology Research Database
ProQuest Central Student

Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1745-2481
EndPage 496
ExternalDocumentID 4322150043
10_1038_nphys4010
GroupedDBID 0R~
123
29M
39C
3V.
4.4
5BI
5M7
6OB
70F
88I
8FE
8FG
8FH
8R4
8R5
AAEEF
AARCD
AAYZH
AAZLF
ABAWZ
ABDBF
ABJNI
ABLJU
ABUWG
ABZEH
ACBWK
ACGFO
ACGFS
ACGOD
ACMJI
ACUHS
ADBBV
ADFRT
AENEX
AEUYN
AFBBN
AFKRA
AFSHS
AFWHJ
AGAYW
AGHTU
AHBCP
AHOSX
AHSBF
AIBTJ
ALFFA
ALMA_UNASSIGNED_HOLDINGS
AMTXH
ARAPS
ARMCB
ASPBG
AVWKF
AXYYD
AZFZN
AZQEC
BENPR
BGLVJ
BHPHI
BKKNO
BKSAR
BPHCQ
CCPQU
DB5
DU5
DWQXO
EBS
EE.
EJD
ESX
EXGXG
F5P
FEDTE
FQGFK
FSGXE
GNUQQ
HCIFZ
HVGLF
HZ~
I-F
LGEZI
LK5
LOTEE
M2P
M7R
N9A
NADUK
NNMJJ
NXXTH
O9-
ODYON
P2P
P62
PCBAR
PQQKQ
PROAC
Q2X
RNS
RNT
RNTTT
SHXYY
SIXXV
SJN
SNYQT
SOJ
TAOOD
TBHMF
TDRGL
TSG
TUS
~8M
AAYXX
ACMFV
ACSTC
AFANA
ALPWD
ATHPR
CITATION
PHGZM
PHGZT
7U5
7XB
8FD
8FK
L7M
PKEHL
PQEST
PQGLB
PQUKI
Q9U
ID FETCH-LOGICAL-c391t-ea99a57b9696e03c4a8001f5018caeac9fbe20d1bdbc3230ecf15cbe4b7eaff3
IEDL.DBID BENPR
ISSN 1745-2473
IngestDate Fri Jul 11 01:22:37 EDT 2025
Sat Aug 23 12:43:54 EDT 2025
Tue Jul 01 00:25:38 EDT 2025
Thu Apr 24 23:10:57 EDT 2025
Fri Feb 21 02:38:28 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c391t-ea99a57b9696e03c4a8001f5018caeac9fbe20d1bdbc3230ecf15cbe4b7eaff3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PQID 1894478281
PQPubID 27545
PageCount 6
ParticipantIDs proquest_miscellaneous_1904244648
proquest_journals_1894478281
crossref_citationtrail_10_1038_nphys4010
crossref_primary_10_1038_nphys4010
springer_journals_10_1038_nphys4010
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-05-01
PublicationDateYYYYMMDD 2017-05-01
PublicationDate_xml – month: 05
  year: 2017
  text: 2017-05-01
  day: 01
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle Nature physics
PublicationTitleAbbrev Nature Phys
PublicationYear 2017
Publisher Nature Publishing Group UK
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
References Rosenow, Halperin (CR21) 2007; 98
Beenakker (CR2) 1990; 64
Venkatachalamy, Hart, Pfeiffer, West, Yacoby (CR16) 2012; 8
Halperin, Stern, Neder, Rosenow (CR22) 2011; 83
Bid, Ofek, Heiblum, Umansky, Mahalu (CR17) 2009; 103
Meir (CR12) 1994; 72
Ofek (CR19) 2010; 107
de-Picciotto (CR24) 1997; 389
Kane, Fisher (CR5) 1995; 51
Gross, Dolev, Heiblum, Umansky, Mahalu (CR14) 2012; 108
Kane, Fisher, Polchinski (CR4) 1994; 72
Altimiras (CR8) 2012; 109
Gurman, Sabo, Heiblum, Umansky, Mahalu (CR15) 2012; 3
Jain (CR18) 2007
Chang (CR11) 1990; 74
Wen (CR1) 1992; 06
McClure, Chang, Marcus, Pfeiffer, West (CR20) 2012; 108
MacDonald (CR3) 1990; 64
Martin, Landauer (CR23) 1992; 45
Ashoori, Stormer, Pfeiffer, Baldwin, West (CR10) 1992; 45
Saminadayar, Glattli, Jin, Etienne (CR25) 1997; 79
Grivin (CR9) 1984; 29
Wang, Meir, Gefen (CR13) 2013; 111
Bid (CR6) 2010; 466
Inoue (CR7) 2014; 5
Dolev, Heiblum, Umansky, Stern, Mahalu (CR26) 2008; 452
CL Kane (BFnphys4010_CR4) 1994; 72
M Dolev (BFnphys4010_CR26) 2008; 452
I Gurman (BFnphys4010_CR15) 2012; 3
X-G Wen (BFnphys4010_CR1) 1992; 06
H Inoue (BFnphys4010_CR7) 2014; 5
CL Kane (BFnphys4010_CR5) 1995; 51
Y Meir (BFnphys4010_CR12) 1994; 72
B Rosenow (BFnphys4010_CR21) 2007; 98
C Altimiras (BFnphys4010_CR8) 2012; 109
A Chang (BFnphys4010_CR11) 1990; 74
N Ofek (BFnphys4010_CR19) 2010; 107
T Martin (BFnphys4010_CR23) 1992; 45
AH MacDonald (BFnphys4010_CR3) 1990; 64
L Saminadayar (BFnphys4010_CR25) 1997; 79
B Halperin (BFnphys4010_CR22) 2011; 83
R Ashoori (BFnphys4010_CR10) 1992; 45
Y Gross (BFnphys4010_CR14) 2012; 108
CWJ Beenakker (BFnphys4010_CR2) 1990; 64
V Venkatachalamy (BFnphys4010_CR16) 2012; 8
R de-Picciotto (BFnphys4010_CR24) 1997; 389
DT McClure (BFnphys4010_CR20) 2012; 108
J Wang (BFnphys4010_CR13) 2013; 111
A Bid (BFnphys4010_CR17) 2009; 103
JK Jain (BFnphys4010_CR18) 2007
SM Grivin (BFnphys4010_CR9) 1984; 29
A Bid (BFnphys4010_CR6) 2010; 466
References_xml – volume: 64
  start-page: 220
  year: 1990
  end-page: 223
  ident: CR3
  article-title: Edge states in the fractional quantum Hall effect regime
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.64.220
– volume: 111
  start-page: 246803
  year: 2013
  ident: CR13
  article-title: Edge reconstruction in the = 2/3 fractional quantum Hall state
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.111.246803
– volume: 45
  start-page: 3894
  year: 1992
  end-page: 3897
  ident: CR10
  article-title: Edge magnetoplasmons in the time domain
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.45.3894
– volume: 74
  start-page: 871
  year: 1990
  end-page: 876
  ident: CR11
  article-title: A unified transport theory for the integral and fractional quantum Hall effects: phase boundaries, edge currents, and transmission/reflection probabilities
  publication-title: Solid State Commun.
  doi: 10.1016/0038-1098(90)90447-J
– volume: 452
  start-page: 829
  year: 2008
  end-page: 834
  ident: CR26
  article-title: Observation of a quarter of an electron charge at the: = 5/2 quantum Hall state
  publication-title: Nature
  doi: 10.1038/nature06855
– volume: 108
  start-page: 256804
  year: 2012
  ident: CR20
  article-title: Fabry–Perot interferometry with fractional charges
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.108.256804
– volume: 79
  start-page: 2526
  year: 1997
  end-page: 2529
  ident: CR25
  article-title: Observation of the /3 fractionally charged Laughlin quasiparticle
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.79.2526
– volume: 72
  start-page: 2624
  year: 1994
  end-page: 2627
  ident: CR12
  article-title: Composite edge states in the = 2/3 fractional quantum Hall regime
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.72.2624
– volume: 72
  start-page: 4129
  year: 1994
  end-page: 4132
  ident: CR4
  article-title: Randomness at the edge: theory of quantum Hall transport at filling = 2/3
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.72.4129
– volume: 107
  start-page: 5276
  year: 2010
  end-page: 5281
  ident: CR19
  article-title: The role of interactions in an electronic Fabry–Perot interferometer operating in the quantum Hall effect regime
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.0912624107
– volume: 29
  start-page: 6012
  year: 1984
  end-page: 6014
  ident: CR9
  article-title: Particle–hole symmetry in the anomalous quantum Hall effect
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.29.6012
– volume: 83
  start-page: 155440
  year: 2011
  ident: CR22
  article-title: Theory of the Fabry–Pérot quantum Hall interferometer
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.83.155440
– volume: 109
  start-page: 026803
  year: 2012
  ident: CR8
  article-title: Chargeless heat transport in the fractional quantum Hall regime
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.109.026803
– volume: 466
  start-page: 585
  year: 2010
  end-page: 590
  ident: CR6
  article-title: Observation of neutral modes in the fractional quantum Hall regime
  publication-title: Nature
  doi: 10.1038/nature09277
– volume: 98
  start-page: 106801
  year: 2007
  ident: CR21
  article-title: Influence of interactions on flux and back-gate period of quantum Hall interferometers
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.98.106801
– volume: 06
  start-page: 1711
  year: 1992
  end-page: 1762
  ident: CR1
  article-title: Theory of the edge states in fractional quantum Hall effects
  publication-title: Int. J. Mod. Phys. B
  doi: 10.1142/S0217979292000840
– volume: 103
  start-page: 236802
  year: 2009
  ident: CR17
  article-title: Shot noise and charge at the 2/3 composite fractional quantum Hall state
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.103.236802
– volume: 64
  start-page: 216
  year: 1990
  end-page: 219
  ident: CR2
  article-title: Edge channels for the fractional quantum Hall effect
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.64.216
– volume: 389
  start-page: 162
  year: 1997
  end-page: 164
  ident: CR24
  article-title: Direct observation of a fractional charge
  publication-title: Nature
  doi: 10.1038/38241
– volume: 8
  start-page: 676
  year: 2012
  end-page: 681
  ident: CR16
  article-title: Local thermometry of neutral modes on the quantum Hall edge
  publication-title: Nat. Phys.
  doi: 10.1038/nphys2384
– volume: 5
  start-page: 4067
  year: 2014
  ident: CR7
  article-title: Proliferation of neutral modes in fractional quantum Hall states
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms5067
– volume: 45
  start-page: 1742
  year: 1992
  end-page: 1755
  ident: CR23
  article-title: Wave-packet approach to noise in multichannel mesoscopic systems
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.45.1742
– volume: 108
  start-page: 226801
  year: 2012
  ident: CR14
  article-title: Upstream neutral modes in the fractional quantum Hall effect regime: heat waves or coherent dipoles?
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.108.226801
– year: 2007
  ident: CR18
  publication-title: Composite Fermions
  doi: 10.1017/CBO9780511607561
– volume: 51
  start-page: 13449
  year: 1995
  end-page: 13466
  ident: CR5
  article-title: Impurity scattering and transport of fractional quantum Hall edge states
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.51.13449
– volume: 3
  start-page: 1289
  year: 2012
  ident: CR15
  article-title: Extracting net current from an upstream neutral mode in the fractional quantum Hall regime
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms2305
– volume: 5
  start-page: 4067
  year: 2014
  ident: BFnphys4010_CR7
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms5067
– volume: 29
  start-page: 6012
  year: 1984
  ident: BFnphys4010_CR9
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.29.6012
– volume: 3
  start-page: 1289
  year: 2012
  ident: BFnphys4010_CR15
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms2305
– volume: 45
  start-page: 1742
  year: 1992
  ident: BFnphys4010_CR23
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.45.1742
– volume: 83
  start-page: 155440
  year: 2011
  ident: BFnphys4010_CR22
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.83.155440
– volume: 111
  start-page: 246803
  year: 2013
  ident: BFnphys4010_CR13
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.111.246803
– volume: 72
  start-page: 4129
  year: 1994
  ident: BFnphys4010_CR4
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.72.4129
– volume-title: Composite Fermions
  year: 2007
  ident: BFnphys4010_CR18
  doi: 10.1017/CBO9780511607561
– volume: 466
  start-page: 585
  year: 2010
  ident: BFnphys4010_CR6
  publication-title: Nature
  doi: 10.1038/nature09277
– volume: 64
  start-page: 216
  year: 1990
  ident: BFnphys4010_CR2
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.64.216
– volume: 8
  start-page: 676
  year: 2012
  ident: BFnphys4010_CR16
  publication-title: Nat. Phys.
  doi: 10.1038/nphys2384
– volume: 452
  start-page: 829
  year: 2008
  ident: BFnphys4010_CR26
  publication-title: Nature
  doi: 10.1038/nature06855
– volume: 98
  start-page: 106801
  year: 2007
  ident: BFnphys4010_CR21
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.98.106801
– volume: 72
  start-page: 2624
  year: 1994
  ident: BFnphys4010_CR12
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.72.2624
– volume: 109
  start-page: 026803
  year: 2012
  ident: BFnphys4010_CR8
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.109.026803
– volume: 107
  start-page: 5276
  year: 2010
  ident: BFnphys4010_CR19
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.0912624107
– volume: 51
  start-page: 13449
  year: 1995
  ident: BFnphys4010_CR5
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.51.13449
– volume: 108
  start-page: 226801
  year: 2012
  ident: BFnphys4010_CR14
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.108.226801
– volume: 06
  start-page: 1711
  year: 1992
  ident: BFnphys4010_CR1
  publication-title: Int. J. Mod. Phys. B
  doi: 10.1142/S0217979292000840
– volume: 103
  start-page: 236802
  year: 2009
  ident: BFnphys4010_CR17
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.103.236802
– volume: 64
  start-page: 220
  year: 1990
  ident: BFnphys4010_CR3
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.64.220
– volume: 108
  start-page: 256804
  year: 2012
  ident: BFnphys4010_CR20
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.108.256804
– volume: 45
  start-page: 3894
  year: 1992
  ident: BFnphys4010_CR10
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.45.3894
– volume: 389
  start-page: 162
  year: 1997
  ident: BFnphys4010_CR24
  publication-title: Nature
  doi: 10.1038/38241
– volume: 74
  start-page: 871
  year: 1990
  ident: BFnphys4010_CR11
  publication-title: Solid State Commun.
  doi: 10.1016/0038-1098(90)90447-J
– volume: 79
  start-page: 2526
  year: 1997
  ident: BFnphys4010_CR25
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.79.2526
SSID ssj0042613
Score 2.5556195
Snippet The nature of edge reconstruction in the quantum Hall effect (QHE) and the issue of where the current flows have been debated for years. Moreover, the recent...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 491
SubjectTerms 639/766/119/1000/1018
639/766/119/2794
Atomic
Channels
Classical and Continuum Physics
Complex Systems
Condensed Matter Physics
Conductance
Electric currents
Electromagnetism
Energy transfer
Fluctuation
Graph theory
Mathematical and Computational Physics
Molecular
Optical and Plasma Physics
Physics
Propagation modes
Quantum Hall effect
Quantum physics
Reconstruction
Theoretical
Upstream
Title Edge reconstruction in fractional quantum Hall states
URI https://link.springer.com/article/10.1038/nphys4010
https://www.proquest.com/docview/1894478281
https://www.proquest.com/docview/1904244648
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LSwMxEB5si-BFfGK1lvVx8BLabLLd5CQqrUWwiFTobUmyWRHqtrXt_3eyj1aLeN7JBmaSeecbgGuOQYKDeSLoLGjChbJEO8Qh3eGaK0ulMS418Dzo9N_40ygYFQm3edFWWerETFHHE-Ny5C0qJOdozgS9nc6ImxrlqqvFCI0K1FAFC1GF2n138PJa6mIXH7D8SWRAfB6yEluIiVbqUgcYXbR_W6S1m7lRGc0MTm8PdgtP0bvLRbsPWzY9gO2sY9PMDyHoxu_Wy-LZFQas95F6yVf-VAGXzpbItuWn11fjsZe9HJofwbDXHT70STEDgRgm6YJYJaUKQu1AbGybGa7Qw6OJg-EzCpWmTLT12zHVsTYMwwlrEhoYbbkOrUoSdgzVdJLaE_CUFVShd6BCqnib-RopQ2lxbRx3JA3qcFOyITIFPrgbUzGOsjo1E9GKY3W4XJFOc1CMv4gaJS-j4l7Mo7UU63Cx-own2pUpVGonS6SRrhzLO1zU4aqUwY9fbG50-v9GZ7DjO1OcNSk2oIoisefoSCx0Eyqi99gszsw3aIfLBg
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT8MwDLZgCMEF8RSDAeUlcam2NOnaHBBCsLGxx2lI3KokTRHS6Da2CfGj-I847brBhLjtXDeRbMf-HMc2wAXDIMG0ebIRLEib-ULb0nQckmUmmdCEK2WuBlrtcu2JPT67z0vwldXCmGeVmU1MDHXYU-aOvEh8zhi6M5_c9Ae2mRplsqvZCI1ULRr68wNDtuF1_R7le-k41UrnrmZPpgrYinIysrXgXLieNG1hdIkqJhAzkcg0tlMCzRCPpHZKIZGhVBQBulYRcZXUTHpaRBHFZZdhhVF05KYwvfqQGX4TjNC0_tK1HebRrJER9YuxuafAUKb02_3NMO1cGjbxbtVN2JjAUus21aMtWNLxNqwmz0PVcAfcSviirSR4njactV5jK3pP6yLw18EYZTR-s2qi27WSMqXhLnQWwZo9yMW9WO-DJbRPBEIR4RHBStSRSOlxjf-GYZkTNw9XGRsCNWlGbmZidIMkKU79YMqxPJxNSftpB46_iAoZL4PJIRwGM5XJw-n0Mx4fkxMRse6NkYab3C8rMz8P55kMfiwxv9HB_xudwFqt02oGzXq7cQjrjsEAyevIAuRQPPoIEcxIHid6Y0GwYD39BniOB-M
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT8MwDLZgE4gL4inGs7wkLtWWJl2bA0LANo3XNKEhcauSNEVIowPKhPhp_DucPjaYEDfOdRPJdmI7tj8DHDAMEgzMk43OgrSZL7QtDeKQrDPJhCZcKfM0cNOpt-_Y5b17PwWfRS-MKass7sT0og4HyryRV4nPGUNz5pNqlJdFdButk-cX20yQMpnWYpxGpiJX-uMdw7fk-KKBsj50nFazd9628wkDtqKcvNlacC5cTxqIGF2jign0n0hkQO6UwCuJR1I7tZDIUCqKzrpWEXGV1Ex6WkQRxWWnoeyZoKgE5bNmp3tbmAETmtCsG9O1HebRAtaI-tXYvFpgYFP7aQzHHu5EUja1da0FmM-dVOs006pFmNLxEsykxaIqWQa3GT5oKw2lR_Cz1mNsRa9ZlwT--jJEiQ2frLbo9620aSlZgd5_MGcVSvEg1mtgCe0TgY6J8IhgNepIpPS4xn_DsM6JW4Gjgg2ByqHJzYSMfpCmyKkfjDhWgb0R6XOGx_Eb0WbByyA_kkkwVqAK7I4-42EyGRIR68EQabjJBLM68yuwX8jg2xKTG63_vdEOzKKOBtcXnasNmHOMQ5CWSm5CCaWjt9CdeZPbueJYEPyzqn4BsFENdQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Edge+reconstruction+in+fractional+quantum+Hall+states&rft.jtitle=Nature+physics&rft.au=Sabo%2C+Ron&rft.au=Gurman%2C+Itamar&rft.au=Rosenblatt%2C+Amir&rft.au=Lafont%2C+Fabien&rft.date=2017-05-01&rft.pub=Nature+Publishing+Group&rft.issn=1745-2473&rft.eissn=1745-2481&rft.volume=13&rft.issue=5&rft.spage=491&rft_id=info:doi/10.1038%2Fnphys4010&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=4322150043
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1745-2473&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1745-2473&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1745-2473&client=summon