A Two-Species Occupancy Model with a Continuous-Time Detection Process Reveals Spatial and Temporal Interactions

Detection/non-detection data are increasingly collected in continuous time, e.g., via camera traps or acoustic sensors. Application of occupancy modeling approaches to these datasets typically requires discretizing the dataset to detections over individual days or weeks, which precludes analysis of...

Full description

Saved in:
Bibliographic Details
Published inJournal of agricultural, biological, and environmental statistics Vol. 27; no. 2; pp. 321 - 338
Main Authors Kellner, Kenneth F., Parsons, Arielle W., Kays, Roland, Millspaugh, Joshua J., Rota, Christopher T.
Format Journal Article
LanguageEnglish
Published New York Springer US 01.06.2022
Springer
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Detection/non-detection data are increasingly collected in continuous time, e.g., via camera traps or acoustic sensors. Application of occupancy modeling approaches to these datasets typically requires discretizing the dataset to detections over individual days or weeks, which precludes analysis of temporal interactions between species or covariate relationships that change over fine temporal scales. To address this limitation, we developed a two-species occupancy model that assumes a temporal point process detection model. This model permits simultaneous analysis of species interactions in space (i.e., site occupancy) and time (i.e., activity patterns). The model is also capable of estimating the amount of time animals are available for detection, i.e., availability. We applied the model to detections of white-tailed deer ( Odocoileus virginianus ) and coyote ( Canis latrans ) collected via camera trapping. We found evidence of both temporal and spatial interactions between deer and coyote. Detection intensity of deer was greater and proportionally more diurnal where coyotes were present. At hunted sites, coyotes were more likely to occur at sites where deer were also present (and vice versa). These results highlight how two-species occupancy models with a continuous-time detection process can be used to infer temporal interactions between species. Our approach broadens the set of questions ecologists can ask regarding both spatial and temporal interactions between species, as well as fine-scale temporal covariates (e.g., weather). Our model should be increasingly applicable given the increasing availability of ecological data collected in continuous time. Supplementary materials accompanying this paper appear on-line
AbstractList Detection/non-detection data are increasingly collected in continuous time, e.g., via camera traps or acoustic sensors. Application of occupancy modeling approaches to these datasets typically requires discretizing the dataset to detections over individual days or weeks, which precludes analysis of temporal interactions between species or covariate relationships that change over fine temporal scales. To address this limitation, we developed a two-species occupancy model that assumes a temporal point process detection model. This model permits simultaneous analysis of species interactions in space (i.e., site occupancy) and time (i.e., activity patterns). The model is also capable of estimating the amount of time animals are available for detection, i.e., availability. We applied the model to detections of white-tailed deer (Odocoileus virginianus) and coyote (Canis latrans) collected via camera trapping. We found evidence of both temporal and spatial interactions between deer and coyote. Detection intensity of deer was greater and proportionally more diurnal where coyotes were present. At hunted sites, coyotes were more likely to occur at sites where deer were also present (and vice versa). These results highlight how two-species occupancy models with a continuous-time detection process can be used to infer temporal interactions between species. Our approach broadens the set of questions ecologists can ask regarding both spatial and temporal interactions between species, as well as fine-scale temporal covariates (e.g., weather). Our model should be increasingly applicable given the increasing availability of ecological data collected in continuous time. Supplementary materials accompanying this paper appear on-line
Detection/non-detection data are increasingly collected in continuous time, e.g., via camera traps or acoustic sensors. Application of occupancy modeling approaches to these datasets typically requires discretizing the dataset to detections over individual days or weeks, which precludes analysis of temporal interactions between species or covariate relationships that change over fine temporal scales. To address this limitation, we developed a two-species occupancy model that assumes a temporal point process detection model. This model permits simultaneous analysis of species interactions in space (i.e., site occupancy) and time (i.e., activity patterns). The model is also capable of estimating the amount of time animals are available for detection, i.e., availability. We applied the model to detections of white-tailed deer ( Odocoileus virginianus ) and coyote ( Canis latrans ) collected via camera trapping. We found evidence of both temporal and spatial interactions between deer and coyote. Detection intensity of deer was greater and proportionally more diurnal where coyotes were present. At hunted sites, coyotes were more likely to occur at sites where deer were also present (and vice versa). These results highlight how two-species occupancy models with a continuous-time detection process can be used to infer temporal interactions between species. Our approach broadens the set of questions ecologists can ask regarding both spatial and temporal interactions between species, as well as fine-scale temporal covariates (e.g., weather). Our model should be increasingly applicable given the increasing availability of ecological data collected in continuous time. Supplementary materials accompanying this paper appear on-line
Audience Academic
Author Kays, Roland
Parsons, Arielle W.
Kellner, Kenneth F.
Rota, Christopher T.
Millspaugh, Joshua J.
Author_xml – sequence: 1
  givenname: Kenneth F.
  orcidid: 0000-0002-6755-0555
  surname: Kellner
  fullname: Kellner, Kenneth F.
  email: kfkellner@esf.edu
  organization: Division of Forestry and Natural Resources, West Virginia University, Camp Fire Program in Wildlife Conservation, SUNY College of Environmental Science and Forestry
– sequence: 2
  givenname: Arielle W.
  surname: Parsons
  fullname: Parsons, Arielle W.
  organization: North Carolina Museum of Natural Sciences, Department of Forestry and Environmental Resources, North Carolina State University
– sequence: 3
  givenname: Roland
  surname: Kays
  fullname: Kays, Roland
  organization: North Carolina Museum of Natural Sciences, Department of Forestry and Environmental Resources, North Carolina State University
– sequence: 4
  givenname: Joshua J.
  surname: Millspaugh
  fullname: Millspaugh, Joshua J.
  organization: W.A. Franke College of Forestry and Conservation, Wildlife Biology Program, University of Montana
– sequence: 5
  givenname: Christopher T.
  surname: Rota
  fullname: Rota, Christopher T.
  organization: Division of Forestry and Natural Resources, West Virginia University
BookMark eNp9kU9v3CAQxa0qlZqk_QI9IfXSi9MBDMbH1fZfpFSpmu0ZERinRDa4wDbab182rlQph4jDAHq_GR7vrDkJMWDTvKVwQQH6D5lyJngLjLYAnWLt4UVzSgXvWyYHflL3oETbU9q_as5yvgegXAI7bZYN2T3E9mZB6zGTa2v3iwn2QL5FhxN58OUXMWQbQ_FhH_e53fkZyUcsaIuPgXxP0WLO5Af-QTNlcrOY4s1ETHBkh_MSUz1choLJPAL5dfNyrEJ886-eNz8_f9ptv7ZX118ut5ur1vKBlhYFZQwMdnKwQ9c5oCDc4Mytk8pJAWqUOBrBHTUSnKplFOMIDAY53HIO_Lx5v_ZdUvy9x1z07LPFaTIBqw_NZC9E3ykpqvTdE-l93KdQX1dVYpCq45JW1cWqujMTah_GWKqnuhzO3tY4Rl_vNz0woYCpY1u2AjbFnBOOekl-NumgKehjanpNTdfU9GNq-lAh9QSyvpjjz9Vpfnoe5Sua65xwh-m_jWeov5K3rnk
CitedBy_id crossref_primary_10_7717_peerj_14159
crossref_primary_10_1007_s13253_023_00533_6
crossref_primary_10_1111_jzo_13002
crossref_primary_10_1002_ecs2_4913
crossref_primary_10_3897_natureconservation_57_108950
crossref_primary_10_1111_1365_2656_13892
crossref_primary_10_1002_ece3_11150
crossref_primary_10_1111_1365_2656_14236
crossref_primary_10_1002_ecy_4237
crossref_primary_10_7717_peerj_17390
crossref_primary_10_1111_oik_09849
crossref_primary_10_1002_ecs2_3993
crossref_primary_10_1002_ecs2_4500
crossref_primary_10_12688_f1000research_124810_1
crossref_primary_10_1016_j_ecolmodel_2024_110868
crossref_primary_10_1111_gcb_16434
crossref_primary_10_1016_j_anbehav_2023_02_002
crossref_primary_10_1098_rstb_2022_0232
crossref_primary_10_1007_s00265_024_03532_w
crossref_primary_10_1016_j_ijppaw_2023_01_002
crossref_primary_10_1111_ddi_70011
Cites_doi 10.1111/ecog.05411
10.1556/ComEc.9.2008.2.10
10.1890/02-5078
10.2193/2009-263
10.1890/12-0500.1
10.1007/978-4-431-99495-4
10.1080/01621459.2013.797356
10.1371/journal.pone.0176966
10.1002/ece3.1296
10.1007/s00442-001-0858-4
10.1198/jabes.2009.08038
10.1890/0012-9658(2002)083[2248:ESORWD]2.0.CO;2
10.1111/1365-2664.12432
10.2307/3802645
10.1007/s10980-015-0262-9
10.18637/jss.v076.i01
10.3150/12-BEJSP10
10.1890/09-0850.1
10.1016/j.prevetmed.2013.08.008
10.1007/s10164-019-00599-1
10.18637/jss.v040.i08
10.1111/2041-210X.12196
10.1111/1365-2664.12399
10.7554/eLife.38012
10.1198/108571101750524670
10.1046/j.1439-0310.2001.00647.x
10.1155/2010/459610
10.1111/2041-210X.12180
10.1111/j.2041-210X.2010.00050.x
10.1890/07-0298.1
10.1111/1365-2664.12076
10.1002/wmon.1015
10.1007/s13253-010-0053-3
10.1007/s10651-005-0006-0
10.1016/j.biocon.2012.12.016
10.1016/j.biocon.2016.09.001
10.1007/s13253-018-0327-8
10.1111/j.1442-9993.2008.01869.x
10.1016/j.biocon.2015.05.007
10.1111/biom.12763
10.2193/0091-7648(2006)34[211:UADRSA]2.0.CO;2
10.1111/j.1365-2664.2008.01509.x
10.1111/jzo.12416
10.1111/1365-2664.12700
10.1093/beheco/arv054
10.1890/09-0470.1
10.1007/BF00994199
10.1656/1092-6194(2004)011[0237:MAAPOE]2.0.CO;2
10.1890/12-2088.1
10.2193/0091-7648(2004)32[542:SRMCAH]2.0.CO;2
10.2307/3801296
10.1111/j.1469-7998.2012.00908.x
10.1111/2041-210X.12961
10.1111/2041-210X.12587
ContentType Journal Article
Copyright International Biometric Society 2021
COPYRIGHT 2022 Springer
International Biometric Society 2021.
Copyright_xml – notice: International Biometric Society 2021
– notice: COPYRIGHT 2022 Springer
– notice: International Biometric Society 2021.
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1007/s13253-021-00482-y
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA


DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Agriculture
Biology
Statistics
Environmental Sciences
EISSN 1537-2693
EndPage 338
ExternalDocumentID A702580285
10_1007_s13253_021_00482_y
GrantInformation_xml – fundername: Smithsonian Institution
  funderid: http://dx.doi.org/10.13039/100000014
– fundername: Missouri Department of Conservation
– fundername: West Virginia University Davis College of Agriculture, Natural Resources, and Design
– fundername: VWR Foundation
  funderid: http://dx.doi.org/10.13039/100011237
– fundername: U.S. Forest Service
  funderid: http://dx.doi.org/10.13039/100006959
– fundername: North Carolina Museum of Natural Sciences
  funderid: http://dx.doi.org/10.13039/100011483
– fundername: National Institute of Food and Agriculture, US Department of Agriculture, McIntire Stennis Project
  grantid: WVA00124
– fundername: University of Missouri
– fundername: National Science Foundation
  grantid: 1232442; 1319293
  funderid: http://dx.doi.org/10.13039/501100008982
GroupedDBID -5D
-5G
-BR
-EM
-~C
06D
0R~
0VX
0VY
199
1N0
203
2AX
2JN
2KG
2LR
2VQ
2XV
3-Y
30V
4.4
406
408
40D
40E
5GY
8UJ
95.
96X
A8Z
AABHQ
AACDK
AAHBH
AAHNG
AAIAL
AAJBT
AAJKR
AAKYL
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
AAZMS
ABAKF
ABBHK
ABDBF
ABDZT
ABECU
ABFAN
ABFTV
ABHLI
ABJNI
ABJOX
ABKCH
ABMNI
ABMQK
ABNWP
ABQBU
ABQDR
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABXPI
ABXSQ
ABYWD
ACAOD
ACBXY
ACDIW
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACMTB
ACOKC
ACPIV
ACPRK
ACTMH
ACUHS
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADODI
ADRFC
ADTPH
ADULT
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGNC
AEJHL
AEJRE
AEKMD
AELLO
AELPN
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETCA
AEUPB
AEVLU
AEXYK
AFBBN
AFLOW
AFQWF
AFRAH
AFVYC
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AI.
AIAKS
AIGIU
AIHAF
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKBRZ
ALMA_UNASSIGNED_HOLDINGS
ALRMG
AMKLP
AMXSW
AMYLF
AMYQR
ANMIH
AOCGG
ARMRJ
ASPBG
AS~
AVWKF
AXYYD
AYJHY
AZFZN
BAPOH
BGNMA
BHOJU
CAG
COF
CSCUP
D0L
DDRTE
DNIVK
DPUIP
DQDLB
DSRWC
DU5
EBD
EBLON
EBS
ECEWR
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
GGCAI
GGRSB
GIFXF
GJIRD
GNWQR
GQ6
GQ7
GXS
H13
HF~
HGD
HMJXF
HQ6
HRMNR
HVGLF
HZ~
IAO
IEP
IFM
IGS
IKXTQ
IPSME
ISR
ITM
IWAJR
I~Z
J-C
J0Z
JAA
JAAYA
JBMMH
JBSCW
JBZCM
JENOY
JHFFW
JKQEH
JLEZI
JLXEF
JMS
JPL
JSODD
JST
JZLTJ
KOV
LLZTM
M4Y
ML.
NPVJJ
NQJWS
NU0
O9-
O93
O9J
P2P
P9R
PKN
PT4
R9I
RNS
ROL
RSV
S1Z
S27
S3B
SA0
SHX
SISQX
SJN
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TN5
TSG
U2A
UG4
UOJIU
UQL
UTJUX
UZXMN
VC2
VFIZW
VH1
W48
WK8
Z45
Z7U
Z7W
Z7Y
Z7Z
Z81
ZMTXR
~KM
AAPKM
AAWIL
AAYXX
ABAWQ
ABBRH
ABDBE
ABFSG
ACHJO
ACSTC
ADXHL
AEZWR
AFDZB
AFHIU
AFOHR
AGLNM
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
AEIIB
ABRTQ
7S9
L.6
ID FETCH-LOGICAL-c391t-e51220ae469c944d0105d9dabd68d6508f6efa53d1a60d8d1af5ff020969b3303
IEDL.DBID U2A
ISSN 1085-7117
IngestDate Thu Aug 07 15:06:59 EDT 2025
Fri Jul 25 11:03:42 EDT 2025
Tue Jun 10 20:53:51 EDT 2025
Thu Apr 24 23:08:07 EDT 2025
Tue Jul 01 01:51:34 EDT 2025
Fri Feb 21 02:45:51 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Camera traps
Activity patterns
Point process
Occupancy
Temporal interactions
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c391t-e51220ae469c944d0105d9dabd68d6508f6efa53d1a60d8d1af5ff020969b3303
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-6755-0555
PQID 2659684361
PQPubID 2044458
PageCount 18
ParticipantIDs proquest_miscellaneous_2675574865
proquest_journals_2659684361
gale_infotracacademiconefile_A702580285
crossref_primary_10_1007_s13253_021_00482_y
crossref_citationtrail_10_1007_s13253_021_00482_y
springer_journals_10_1007_s13253_021_00482_y
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-06-01
PublicationDateYYYYMMDD 2022-06-01
PublicationDate_xml – month: 06
  year: 2022
  text: 2022-06-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Journal of agricultural, biological, and environmental statistics
PublicationTitleAbbrev JABES
PublicationYear 2022
Publisher Springer US
Springer
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer
– name: Springer Nature B.V
References O’Connell AF, Nichols JD, Karanth KU (2011) Camera traps in animal ecology: methods and analyses. Springer, Tokyo
BorchersDLDistillerGFosterRHarmsenBMilazzoLContinuous-time spatially explicit capture-recapture models, with an application to a jaguar camera-trap surveyMethods Ecol Evol2014565666510.1111/2041-210X.12196
HigdonSDDigginsCACherryMJFordWMActivity patterns and temporal predator avoidance of white-tailed deer (Odocoileus virginianus) during the fawning seasonJ Ethol20193728329010.1007/s10164-019-00599-1
CressieNWikleCKStatistics for spatio-temporal data2011Hoboken, NJWiley1273.62017
WangYAllenMLWilmersCCMesopredator spatial and temporal responses to large predators and human development in the Santa Cruz mountains of CaliforniaBoil Conserv2015190233310.1016/j.biocon.2015.05.007
GarrardGEBekessySAMcCarthyMAWintleBAWhen have we looked hard enough? A novel method for setting minimum survey effort protocols for flora surveysAustral Ecol2008339869810.1111/j.1442-9993.2008.01869.x
LingleSWilsonWFDetection and avoidance of predators in white-tailed deer (Odocoileus virginianus) and mule deer (Ohemionus)Ethology200110712514710.1046/j.1439-0310.2001.00647.x
BeierPMcCulloughDRFactors influencing white-tailed deer activity patterns and habitat useWildl Monogr1990109351
WaddleJHDorazioRMWallsSCRiceKGBeauchampJSchumanMJMazzottiFJA new parameterization for estimating co-occurrence of interacting speciesEcol Appl2010201467147510.1890/09-0850.1
RotaCTFerreiraMARKaysRForresterTDKaliesELMcSheaWJParsonsAWMillspaughJJA multi-species occupancy model for two or more interacting speciesMethods Ecol Evol2016101164117310.1111/2041-210X.12587
WilliamsonSJHirthDHAn evaluation of edge use by white-tailed deerWildl Soc B198513252257
Lahoz-MonfortJJMorganBJTHarrisMPDauntFWanlessSFreemanSNBreeding together: modeling synchrony in productivity in a seabird communityEcology20139431010.1890/12-0500.1
KaysRParsonsAWBakerMCKaliesELForresterTCostelloRRotaCTMillspaughJJMcSheaWJData from: does hunting or hiking affect wildlife communities in protected areas?J Appl Ecol20175424225210.1111/1365-2664.12700
Guillera-ArroitaGMorganBJTRidoutMSLinkieMSpecies occupancy modeling for detection data collected along a transectJ Agr Biol Envir St20111630131728431271306.6228210.1007/s13253-010-0053-3
PollockKHWintersteinSRBunckCMCurtisPDSurvival analysis in telemetry studies: the staggered entry designJ Wildlife Manag19895371510.2307/3801296
KéryMRoyleJAApplied Hierarchical Modeling in Ecology: Analysis of Distribution, Abundance, and Species Richness in R and BUGS2016Elsevier, AmsterdamPrelude and Static Models1370.92004
DaiBDingSWahbaGMultivariate Bernoulli distributionBernoulli2013191465148331025591440.6222710.3150/12-BEJSP10
FroidevauxJSPZellwegerFBollmannKObristMKOptimizing passive acoustic sampling of bats in forestsEcol Evol2014244690470010.1002/ece3.1296
CherryMJConnerLMWarrenRJEffects of predation risk and group dynamics on white-tailed deer foraging behavior in a longleaf pine savannaBehav Ecol2015261091109910.1093/beheco/arv054
LesmeisterDBNielsonCKSchauberEMHellgrenECSpatial and temporal structure of a mesocarnivore guild in midwestern North AmericaWildl Monogr201519116110.1002/wmon.1015
KukielkaEBarasonaJACowieCEDreweJAGortazarCCotareloIVicenteJSpatial and temporal interactions between livestock and wildlife in south central Spain assessed by camera trapsPrevent Vet Med201311221322110.1016/j.prevetmed.2013.08.008
LingleSPellisSFight or flight? Antipredator behavior and the escalation of coyote encounters with deerOecologia200213115416410.1007/s00442-001-0858-4
RameshTKalleRSankarKQureshiQSpatio-temporal partitioning among large carnivores in relation to major prey species in western GhatsJ Zool201228726927510.1111/j.1469-7998.2012.00908.x
RichmondOMWHinesJEBeissingerSRTwo-species occupancy models: a new parameterization applied to co-occurrence of secretive railsEcol Appl2010202036204610.1890/09-0470.1
CarpenterBGelmanAHoffmanMDLeeDGoodrichBBetancourtMBrubakerMGuoJLiPRiddellAStan: a probabilistic programming languageJ Stat Soft20177613210.18637/jss.v076.i01
WayJGOrtegaIMStraussEGMovement and activity patterns of eastern coyotes in a coastal, suburban environmentNortheast Nat20041123725410.1656/1092-6194(2004)011[0237:MAAPOE]2.0.CO;2
KaysRParsonsAWBakerMCKaliesELForresterTCostelloRRotaCTMillspaughJJMcSheaWJDoes hunting or hiking affect wildlife communities in protected areas?J Appl Ecol20165424225210.1111/1365-2664.12700
KaysRWGompperMERayJCLandscape ecology of eastern coyotes based on large-scale estimates of abundanceEcol Appl2008181014102710.1890/07-0298.1
MacKenzieDINicholsJDLachmanGBDroegeSAndrew RoyleJLangtimmCAEstimating site occupancy rates when detection probabilities are less than oneEcology20028322485510.1890/0012-9658(2002)083[2248:ESORWD]2.0.CO;2
Pollock LJ, Tingley R, Morris WK, Golding N, O’Hara RB, Parris KM, Vesk PA, McCarthy MA (2014) Understanding co-occurrence by modelling species simultaneously with a Joint Species Distribution Model. Methods Ecol Evol 5:397–406
AcevedoMAVillaneuva-RiveraLJFrom the field: Using automated digital recording systems as effective tools for the monitoring of birds and amphibiansWildl Soc B20063421121410.2193/0091-7648(2006)34[211:UADRSA]2.0.CO;2
RydénTConsistent and asymptotically normal parameter estimates for Markov modulated Poisson processesScand J Stat19952229530313632140838.62078
SchofieldMRBarkerRJGellingNContinuous-time capture-recapture in closed populationsBiometrics20187462663538253491414.6247310.1111/biom.12763
WimmerJTowseyMRoePWilliamsonISampling environmental acoustic recordings to determine bird species richnessEcol Appl2013231419142810.1890/12-2088.1
ChaoAAn overview of closed capture-recapture modelsJ Agr Biol Envir St2001615817510.1198/108571101750524670
RidoutMSLinkieMEstimating overlap of daily activity patterns from camera trap dataJ Agr Biol Envir St20091432233727508431306.6232710.1198/jabes.2009.08038
DorazioRMKaranthKUA hierarchical model for estimating the spatial distribution and abundance of animals detected by continuous-time recordersPLoS ONE201712e017696610.1371/journal.pone.0176966
SkaugHJMarkov-modulated Poisson processes for clustered line transect dataEnviron Ecol Stat200613199211222738610.1007/s10651-005-0006-0
SwihartRKPignatelloJJMattinaMJAversive responses of white-tailed deer, Odocoileus virginianus, to predator urinesJ Chem Ecol19911776777710.1007/BF00994199
MacKenzieDNicholsJRoyleJAPollockKBaileyLHinesJOccupancy estimation and modeling: inferring patterns and dynamic of species occurrence20172LondonAcademic Press1377.62016
Plummer M (2003) JAGS: A program for analysis of Bayesian graphical models using Gibbs sampling. Proc 3rd Int Workshop Distrib Stat Comput 124:1–10
BurtonACNeilsonEMoreiraDLadleASteenwegRFisherJTBayneEBoutinSWildlife camera trapping: a review and recommendations for linking surveys to ecological processesJ Appl Ecol2015567568510.1111/1365-2664.12432
KilgoJCRayHSRuthCMillerKVCan coyotes affect deer populations in southeastern North America?J Wildl Manag20107492993310.2193/2009-263
LangrockRBorchersDSkaugHJMarkov-modulated nonhomogeneous Poisson processes for modeling detections in surveys of marine mammal abundanceJ Am Stat Assoc201310884085131746670622497010.1080/01621459.2013.797356
BallardWBWhitlawHAYoungSJJenkinsRAForbesGJPredation and survival of white-tailed deer fawns in Northcentral New BrunswickJ Wildl Manag19996357457910.2307/3802645
Lahoz-MonfortJJMorganBJHarrisMPWanlessSFreemanSNA capture-recapture model for exploring multi-species synchrony in survivalMethods Ecol Evol201121162410.1111/j.2041-210X.2010.00050.x
WebbSLGeeKLStricklandBKDemaraisSDeYoungRWMeasuring fine-scale white-tailed deer movements and environmental influences using GPS collarsInt J Ecol2010201011210.1155/2010/459610
TyreAJTenhumbergBFieldSANiejalkeDParrisKPossinghamHPImproving precision and reducing bias in biological surveys by estimating false negative error rates in presence-absence dataEcol Appl2003131790180110.1890/02-5078
R Core Team (2020) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. https://www.R-project.org
EddelbuettelDFrançoisRAllaireJUsheyKKouQRusselNChambersJBatesDRcpp: seamless R and C++\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$++$$\end{document} integrationJ Stat Soft20114018
Parsons AW, Forrester T, Baker-Whatton MC, McShea WJ, Rota CT, Schuttler SG, Millspaugh JJ, Kays R (2018) Mammal communities are larger and more diverse in moderately developed areas. eLife 7:e38012
SteinmetzRSeuaturienNChutipongWTigers, leopards, and dholes in a half-empty forest: assessing species interactions in a guild of threatened carnivoresBiol Conserv2013163687810.1016/j.biocon.2012.12.016
ChoquetRMarkov-modulated Poisson processes as a new framework for analysing capture-recapture dataMethods Ecol Evol2018992993510.1111/2041-210X.12961
CromsigtJPKuijperDPAdamMBeschtaRLChurskiMEycottAKerleyGIMysterudASchmidtKWestKHunting for fear: innovating management of human-wildlife conflictsJ Appl Ecol20135054454910.1111/1365-2664.12076
McSheaWJForresterTCostelloRHeZKaysRVolunteer-run cameras as distributed sensors for macrosystem mammal researchLandscape Ecol201531556610.1007/s10980-015-0262-9
Nichols JD, Bailey LL, O’Connell AF Jr, Talancy NW, Campbell Grant EH, Gilbert AT, Annand EM, Husband TP, Hines JE (2008) Multi-scale occupancy estimation and modelling using multiple detection methods. J Appl Ecol 45:1321–1329
ParsonsAWBlandCForresterTBaker-WhattonMCSchuttlerSGMcSheaWJCostelloRKaysRThe ecological impact of humans and dogs on wildlife in protected areas in eastern North AmericaBiol Conserv2016203758810.1016/j.biocon.2016.09.001
ToblerMWZúñiga HartleyACarrillo-PercasteguiSEPowellGVSpatiotemporal hierarchical modelling of species richness and occupancy using camera trap dataJ Ap
DL Borchers (482_CR5) 2014; 5
KH Pollock (482_CR41) 1989; 53
SD Higdon (482_CR19) 2019; 37
M Kéry (482_CR24) 2016
T Ramesh (482_CR44) 2012; 287
JJ Lahoz-Monfort (482_CR28) 2013; 94
MW Tobler (482_CR55) 2015; 52
JP Cromsigt (482_CR12) 2013; 50
A Chao (482_CR8) 2001; 6
DB Lesmeister (482_CR30) 2015; 191
JK Vreeland (482_CR57) 2004; 32
SG Schuttler (482_CR51) 2017; 301
AJ Tyre (482_CR56) 2003; 13
JSP Froidevaux (482_CR16) 2014; 24
MR Schofield (482_CR50) 2018; 74
B Dai (482_CR13) 2013; 19
DI MacKenzie (482_CR34) 2002; 83
MJ Cherry (482_CR9) 2015; 26
T Rydén (482_CR48) 1995; 22
G Guillera-Arroita (482_CR18) 2011; 16
JJ Lahoz-Monfort (482_CR27) 2011; 2
EM Schliep (482_CR49) 2018; 23
HJ Skaug (482_CR52) 2006; 13
Y Wang (482_CR59) 2015; 190
WB Ballard (482_CR3) 1999; 63
482_CR39
482_CR37
MS Ridout (482_CR46) 2009; 14
P Beier (482_CR4) 1990; 109
482_CR36
RW Kays (482_CR20) 2008; 18
B Carpenter (482_CR7) 2017; 76
JG Way (482_CR60) 2004; 11
J Wimmer (482_CR63) 2013; 23
RK Swihart (482_CR54) 1991; 17
N Cressie (482_CR11) 2011
482_CR1
R Kays (482_CR22) 2017; 54
S Lingle (482_CR32) 2001; 107
WJ McShea (482_CR35) 2015; 31
GE Garrard (482_CR17) 2008; 33
AC Burton (482_CR6) 2015; 5
482_CR42
482_CR43
482_CR40
AW Parsons (482_CR38) 2016; 203
OMW Richmond (482_CR45) 2010; 20
SJ Williamson (482_CR62) 1985; 13
MA Acevedo (482_CR2) 2006; 34
R Choquet (482_CR10) 2018; 9
M Kéry (482_CR23) 2008; 9
D Eddelbuettel (482_CR15) 2011; 40
JC Kilgo (482_CR25) 2010; 74
R Kays (482_CR21) 2016; 54
JH Waddle (482_CR58) 2010; 20
RM Dorazio (482_CR14) 2017; 12
D MacKenzie (482_CR33) 2017
R Steinmetz (482_CR53) 2013; 163
R Langrock (482_CR29) 2013; 108
CT Rota (482_CR47) 2016; 10
SL Webb (482_CR61) 2010; 2010
E Kukielka (482_CR26) 2013; 112
S Lingle (482_CR31) 2002; 131
References_xml – reference: DaiBDingSWahbaGMultivariate Bernoulli distributionBernoulli2013191465148331025591440.6222710.3150/12-BEJSP10
– reference: VreelandJKDiefenbachDRWallingfordBDSurvival rates, mortality causes, and habitats of Pennsylvania white-tailed deer fawnsWildl Soc B20043254255310.2193/0091-7648(2004)32[542:SRMCAH]2.0.CO;2
– reference: Ait Kaci Azzou S, Singer L, Aebischer T, Caduff M, Wolf B, Wegmann D (2021) A sparse observation model to quantify species distributions and their overlap in space and time. Ecography. https://doi.org/10.1111/ecog.05411
– reference: BeierPMcCulloughDRFactors influencing white-tailed deer activity patterns and habitat useWildl Monogr1990109351
– reference: R Core Team (2020) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. https://www.R-project.org/
– reference: RidoutMSLinkieMEstimating overlap of daily activity patterns from camera trap dataJ Agr Biol Envir St20091432233727508431306.6232710.1198/jabes.2009.08038
– reference: DorazioRMKaranthKUA hierarchical model for estimating the spatial distribution and abundance of animals detected by continuous-time recordersPLoS ONE201712e017696610.1371/journal.pone.0176966
– reference: RameshTKalleRSankarKQureshiQSpatio-temporal partitioning among large carnivores in relation to major prey species in western GhatsJ Zool201228726927510.1111/j.1469-7998.2012.00908.x
– reference: MacKenzieDINicholsJDLachmanGBDroegeSAndrew RoyleJLangtimmCAEstimating site occupancy rates when detection probabilities are less than oneEcology20028322485510.1890/0012-9658(2002)083[2248:ESORWD]2.0.CO;2
– reference: LesmeisterDBNielsonCKSchauberEMHellgrenECSpatial and temporal structure of a mesocarnivore guild in midwestern North AmericaWildl Monogr201519116110.1002/wmon.1015
– reference: FroidevauxJSPZellwegerFBollmannKObristMKOptimizing passive acoustic sampling of bats in forestsEcol Evol2014244690470010.1002/ece3.1296
– reference: BallardWBWhitlawHAYoungSJJenkinsRAForbesGJPredation and survival of white-tailed deer fawns in Northcentral New BrunswickJ Wildl Manag19996357457910.2307/3802645
– reference: SchuttlerSGParsonsAWForresterTDBakerMCMcSheaWJCostelloRKaysRDeer on the lookout: how hunting, hiking and coyotes affect white-tailed deer vigilanceJ Zool201730132032710.1111/jzo.12416
– reference: Nichols JD, Bailey LL, O’Connell AF Jr, Talancy NW, Campbell Grant EH, Gilbert AT, Annand EM, Husband TP, Hines JE (2008) Multi-scale occupancy estimation and modelling using multiple detection methods. J Appl Ecol 45:1321–1329
– reference: AcevedoMAVillaneuva-RiveraLJFrom the field: Using automated digital recording systems as effective tools for the monitoring of birds and amphibiansWildl Soc B20063421121410.2193/0091-7648(2006)34[211:UADRSA]2.0.CO;2
– reference: KaysRWGompperMERayJCLandscape ecology of eastern coyotes based on large-scale estimates of abundanceEcol Appl2008181014102710.1890/07-0298.1
– reference: CromsigtJPKuijperDPAdamMBeschtaRLChurskiMEycottAKerleyGIMysterudASchmidtKWestKHunting for fear: innovating management of human-wildlife conflictsJ Appl Ecol20135054454910.1111/1365-2664.12076
– reference: ChoquetRMarkov-modulated Poisson processes as a new framework for analysing capture-recapture dataMethods Ecol Evol2018992993510.1111/2041-210X.12961
– reference: LangrockRBorchersDSkaugHJMarkov-modulated nonhomogeneous Poisson processes for modeling detections in surveys of marine mammal abundanceJ Am Stat Assoc201310884085131746670622497010.1080/01621459.2013.797356
– reference: KilgoJCRayHSRuthCMillerKVCan coyotes affect deer populations in southeastern North America?J Wildl Manag20107492993310.2193/2009-263
– reference: CressieNWikleCKStatistics for spatio-temporal data2011Hoboken, NJWiley1273.62017
– reference: ToblerMWZúñiga HartleyACarrillo-PercasteguiSEPowellGVSpatiotemporal hierarchical modelling of species richness and occupancy using camera trap dataJ Appl Ecol20155241342110.1111/1365-2664.12399
– reference: WangYAllenMLWilmersCCMesopredator spatial and temporal responses to large predators and human development in the Santa Cruz mountains of CaliforniaBoil Conserv2015190233310.1016/j.biocon.2015.05.007
– reference: KéryMRoyleJAApplied Hierarchical Modeling in Ecology: Analysis of Distribution, Abundance, and Species Richness in R and BUGS2016Elsevier, AmsterdamPrelude and Static Models1370.92004
– reference: RotaCTFerreiraMARKaysRForresterTDKaliesELMcSheaWJParsonsAWMillspaughJJA multi-species occupancy model for two or more interacting speciesMethods Ecol Evol2016101164117310.1111/2041-210X.12587
– reference: WaddleJHDorazioRMWallsSCRiceKGBeauchampJSchumanMJMazzottiFJA new parameterization for estimating co-occurrence of interacting speciesEcol Appl2010201467147510.1890/09-0850.1
– reference: SchliepEMGelfandAEClarkJSKaysRJoint temporal point pattern models for proximate species occurrence in a fixed area using camera trap dataJ Agr Biol Envir St20182333435738409751426.6235710.1007/s13253-018-0327-8
– reference: Lahoz-MonfortJJMorganBJTHarrisMPDauntFWanlessSFreemanSNBreeding together: modeling synchrony in productivity in a seabird communityEcology20139431010.1890/12-0500.1
– reference: KéryMSchmidtBImperfect detection and its consequences for monitoring for conservationCommun Ecol2008920721610.1556/ComEc.9.2008.2.10
– reference: ParsonsAWBlandCForresterTBaker-WhattonMCSchuttlerSGMcSheaWJCostelloRKaysRThe ecological impact of humans and dogs on wildlife in protected areas in eastern North AmericaBiol Conserv2016203758810.1016/j.biocon.2016.09.001
– reference: KukielkaEBarasonaJACowieCEDreweJAGortazarCCotareloIVicenteJSpatial and temporal interactions between livestock and wildlife in south central Spain assessed by camera trapsPrevent Vet Med201311221322110.1016/j.prevetmed.2013.08.008
– reference: McSheaWJForresterTCostelloRHeZKaysRVolunteer-run cameras as distributed sensors for macrosystem mammal researchLandscape Ecol201531556610.1007/s10980-015-0262-9
– reference: KaysRParsonsAWBakerMCKaliesELForresterTCostelloRRotaCTMillspaughJJMcSheaWJData from: does hunting or hiking affect wildlife communities in protected areas?J Appl Ecol20175424225210.1111/1365-2664.12700
– reference: TyreAJTenhumbergBFieldSANiejalkeDParrisKPossinghamHPImproving precision and reducing bias in biological surveys by estimating false negative error rates in presence-absence dataEcol Appl2003131790180110.1890/02-5078
– reference: RydénTConsistent and asymptotically normal parameter estimates for Markov modulated Poisson processesScand J Stat19952229530313632140838.62078
– reference: BurtonACNeilsonEMoreiraDLadleASteenwegRFisherJTBayneEBoutinSWildlife camera trapping: a review and recommendations for linking surveys to ecological processesJ Appl Ecol2015567568510.1111/1365-2664.12432
– reference: Lahoz-MonfortJJMorganBJHarrisMPWanlessSFreemanSNA capture-recapture model for exploring multi-species synchrony in survivalMethods Ecol Evol201121162410.1111/j.2041-210X.2010.00050.x
– reference: Pollock LJ, Tingley R, Morris WK, Golding N, O’Hara RB, Parris KM, Vesk PA, McCarthy MA (2014) Understanding co-occurrence by modelling species simultaneously with a Joint Species Distribution Model. Methods Ecol Evol 5:397–406
– reference: RichmondOMWHinesJEBeissingerSRTwo-species occupancy models: a new parameterization applied to co-occurrence of secretive railsEcol Appl2010202036204610.1890/09-0470.1
– reference: WayJGOrtegaIMStraussEGMovement and activity patterns of eastern coyotes in a coastal, suburban environmentNortheast Nat20041123725410.1656/1092-6194(2004)011[0237:MAAPOE]2.0.CO;2
– reference: LingleSPellisSFight or flight? Antipredator behavior and the escalation of coyote encounters with deerOecologia200213115416410.1007/s00442-001-0858-4
– reference: Plummer M (2003) JAGS: A program for analysis of Bayesian graphical models using Gibbs sampling. Proc 3rd Int Workshop Distrib Stat Comput 124:1–10
– reference: SchofieldMRBarkerRJGellingNContinuous-time capture-recapture in closed populationsBiometrics20187462663538253491414.6247310.1111/biom.12763
– reference: SteinmetzRSeuaturienNChutipongWTigers, leopards, and dholes in a half-empty forest: assessing species interactions in a guild of threatened carnivoresBiol Conserv2013163687810.1016/j.biocon.2012.12.016
– reference: WimmerJTowseyMRoePWilliamsonISampling environmental acoustic recordings to determine bird species richnessEcol Appl2013231419142810.1890/12-2088.1
– reference: ChaoAAn overview of closed capture-recapture modelsJ Agr Biol Envir St2001615817510.1198/108571101750524670
– reference: WilliamsonSJHirthDHAn evaluation of edge use by white-tailed deerWildl Soc B198513252257
– reference: GarrardGEBekessySAMcCarthyMAWintleBAWhen have we looked hard enough? A novel method for setting minimum survey effort protocols for flora surveysAustral Ecol2008339869810.1111/j.1442-9993.2008.01869.x
– reference: MacKenzieDNicholsJRoyleJAPollockKBaileyLHinesJOccupancy estimation and modeling: inferring patterns and dynamic of species occurrence20172LondonAcademic Press1377.62016
– reference: EddelbuettelDFrançoisRAllaireJUsheyKKouQRusselNChambersJBatesDRcpp: seamless R and C++\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$++$$\end{document} integrationJ Stat Soft20114018
– reference: KaysRParsonsAWBakerMCKaliesELForresterTCostelloRRotaCTMillspaughJJMcSheaWJDoes hunting or hiking affect wildlife communities in protected areas?J Appl Ecol20165424225210.1111/1365-2664.12700
– reference: Parsons AW, Forrester T, Baker-Whatton MC, McShea WJ, Rota CT, Schuttler SG, Millspaugh JJ, Kays R (2018) Mammal communities are larger and more diverse in moderately developed areas. eLife 7:e38012
– reference: BorchersDLDistillerGFosterRHarmsenBMilazzoLContinuous-time spatially explicit capture-recapture models, with an application to a jaguar camera-trap surveyMethods Ecol Evol2014565666510.1111/2041-210X.12196
– reference: O’Connell AF, Nichols JD, Karanth KU (2011) Camera traps in animal ecology: methods and analyses. Springer, Tokyo
– reference: HigdonSDDigginsCACherryMJFordWMActivity patterns and temporal predator avoidance of white-tailed deer (Odocoileus virginianus) during the fawning seasonJ Ethol20193728329010.1007/s10164-019-00599-1
– reference: WebbSLGeeKLStricklandBKDemaraisSDeYoungRWMeasuring fine-scale white-tailed deer movements and environmental influences using GPS collarsInt J Ecol2010201011210.1155/2010/459610
– reference: SwihartRKPignatelloJJMattinaMJAversive responses of white-tailed deer, Odocoileus virginianus, to predator urinesJ Chem Ecol19911776777710.1007/BF00994199
– reference: LingleSWilsonWFDetection and avoidance of predators in white-tailed deer (Odocoileus virginianus) and mule deer (Ohemionus)Ethology200110712514710.1046/j.1439-0310.2001.00647.x
– reference: Guillera-ArroitaGMorganBJTRidoutMSLinkieMSpecies occupancy modeling for detection data collected along a transectJ Agr Biol Envir St20111630131728431271306.6228210.1007/s13253-010-0053-3
– reference: SkaugHJMarkov-modulated Poisson processes for clustered line transect dataEnviron Ecol Stat200613199211222738610.1007/s10651-005-0006-0
– reference: CarpenterBGelmanAHoffmanMDLeeDGoodrichBBetancourtMBrubakerMGuoJLiPRiddellAStan: a probabilistic programming languageJ Stat Soft20177613210.18637/jss.v076.i01
– reference: PollockKHWintersteinSRBunckCMCurtisPDSurvival analysis in telemetry studies: the staggered entry designJ Wildlife Manag19895371510.2307/3801296
– reference: CherryMJConnerLMWarrenRJEffects of predation risk and group dynamics on white-tailed deer foraging behavior in a longleaf pine savannaBehav Ecol2015261091109910.1093/beheco/arv054
– ident: 482_CR1
  doi: 10.1111/ecog.05411
– volume-title: Occupancy estimation and modeling: inferring patterns and dynamic of species occurrence
  year: 2017
  ident: 482_CR33
– volume: 9
  start-page: 207
  year: 2008
  ident: 482_CR23
  publication-title: Commun Ecol
  doi: 10.1556/ComEc.9.2008.2.10
– volume: 13
  start-page: 1790
  year: 2003
  ident: 482_CR56
  publication-title: Ecol Appl
  doi: 10.1890/02-5078
– volume: 74
  start-page: 929
  year: 2010
  ident: 482_CR25
  publication-title: J Wildl Manag
  doi: 10.2193/2009-263
– volume-title: Statistics for spatio-temporal data
  year: 2011
  ident: 482_CR11
– volume: 94
  start-page: 3
  year: 2013
  ident: 482_CR28
  publication-title: Ecology
  doi: 10.1890/12-0500.1
– ident: 482_CR37
  doi: 10.1007/978-4-431-99495-4
– volume: 108
  start-page: 840
  year: 2013
  ident: 482_CR29
  publication-title: J Am Stat Assoc
  doi: 10.1080/01621459.2013.797356
– volume: 12
  start-page: e0176966
  year: 2017
  ident: 482_CR14
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0176966
– volume: 24
  start-page: 4690
  year: 2014
  ident: 482_CR16
  publication-title: Ecol Evol
  doi: 10.1002/ece3.1296
– volume: 131
  start-page: 154
  year: 2002
  ident: 482_CR31
  publication-title: Oecologia
  doi: 10.1007/s00442-001-0858-4
– volume: 14
  start-page: 322
  year: 2009
  ident: 482_CR46
  publication-title: J Agr Biol Envir St
  doi: 10.1198/jabes.2009.08038
– volume-title: Applied Hierarchical Modeling in Ecology: Analysis of Distribution, Abundance, and Species Richness in R and BUGS
  year: 2016
  ident: 482_CR24
– volume: 83
  start-page: 2248
  year: 2002
  ident: 482_CR34
  publication-title: Ecology
  doi: 10.1890/0012-9658(2002)083[2248:ESORWD]2.0.CO;2
– volume: 5
  start-page: 675
  year: 2015
  ident: 482_CR6
  publication-title: J Appl Ecol
  doi: 10.1111/1365-2664.12432
– volume: 63
  start-page: 574
  year: 1999
  ident: 482_CR3
  publication-title: J Wildl Manag
  doi: 10.2307/3802645
– volume: 31
  start-page: 55
  year: 2015
  ident: 482_CR35
  publication-title: Landscape Ecol
  doi: 10.1007/s10980-015-0262-9
– volume: 76
  start-page: 1
  year: 2017
  ident: 482_CR7
  publication-title: J Stat Soft
  doi: 10.18637/jss.v076.i01
– volume: 19
  start-page: 1465
  year: 2013
  ident: 482_CR13
  publication-title: Bernoulli
  doi: 10.3150/12-BEJSP10
– volume: 22
  start-page: 295
  year: 1995
  ident: 482_CR48
  publication-title: Scand J Stat
– volume: 20
  start-page: 1467
  year: 2010
  ident: 482_CR58
  publication-title: Ecol Appl
  doi: 10.1890/09-0850.1
– volume: 112
  start-page: 213
  year: 2013
  ident: 482_CR26
  publication-title: Prevent Vet Med
  doi: 10.1016/j.prevetmed.2013.08.008
– volume: 37
  start-page: 283
  year: 2019
  ident: 482_CR19
  publication-title: J Ethol
  doi: 10.1007/s10164-019-00599-1
– volume: 40
  start-page: 1
  year: 2011
  ident: 482_CR15
  publication-title: J Stat Soft
  doi: 10.18637/jss.v040.i08
– volume: 13
  start-page: 252
  year: 1985
  ident: 482_CR62
  publication-title: Wildl Soc B
– volume: 5
  start-page: 656
  year: 2014
  ident: 482_CR5
  publication-title: Methods Ecol Evol
  doi: 10.1111/2041-210X.12196
– volume: 52
  start-page: 413
  year: 2015
  ident: 482_CR55
  publication-title: J Appl Ecol
  doi: 10.1111/1365-2664.12399
– ident: 482_CR39
  doi: 10.7554/eLife.38012
– volume: 6
  start-page: 158
  year: 2001
  ident: 482_CR8
  publication-title: J Agr Biol Envir St
  doi: 10.1198/108571101750524670
– volume: 107
  start-page: 125
  year: 2001
  ident: 482_CR32
  publication-title: Ethology
  doi: 10.1046/j.1439-0310.2001.00647.x
– ident: 482_CR43
– volume: 2010
  start-page: 1
  year: 2010
  ident: 482_CR61
  publication-title: Int J Ecol
  doi: 10.1155/2010/459610
– ident: 482_CR40
– ident: 482_CR42
  doi: 10.1111/2041-210X.12180
– volume: 2
  start-page: 116
  year: 2011
  ident: 482_CR27
  publication-title: Methods Ecol Evol
  doi: 10.1111/j.2041-210X.2010.00050.x
– volume: 18
  start-page: 1014
  year: 2008
  ident: 482_CR20
  publication-title: Ecol Appl
  doi: 10.1890/07-0298.1
– volume: 50
  start-page: 544
  year: 2013
  ident: 482_CR12
  publication-title: J Appl Ecol
  doi: 10.1111/1365-2664.12076
– volume: 191
  start-page: 1
  year: 2015
  ident: 482_CR30
  publication-title: Wildl Monogr
  doi: 10.1002/wmon.1015
– volume: 16
  start-page: 301
  year: 2011
  ident: 482_CR18
  publication-title: J Agr Biol Envir St
  doi: 10.1007/s13253-010-0053-3
– volume: 13
  start-page: 199
  year: 2006
  ident: 482_CR52
  publication-title: Environ Ecol Stat
  doi: 10.1007/s10651-005-0006-0
– volume: 163
  start-page: 68
  year: 2013
  ident: 482_CR53
  publication-title: Biol Conserv
  doi: 10.1016/j.biocon.2012.12.016
– volume: 203
  start-page: 75
  year: 2016
  ident: 482_CR38
  publication-title: Biol Conserv
  doi: 10.1016/j.biocon.2016.09.001
– volume: 23
  start-page: 334
  year: 2018
  ident: 482_CR49
  publication-title: J Agr Biol Envir St
  doi: 10.1007/s13253-018-0327-8
– volume: 33
  start-page: 986
  year: 2008
  ident: 482_CR17
  publication-title: Austral Ecol
  doi: 10.1111/j.1442-9993.2008.01869.x
– volume: 190
  start-page: 23
  year: 2015
  ident: 482_CR59
  publication-title: Boil Conserv
  doi: 10.1016/j.biocon.2015.05.007
– volume: 74
  start-page: 626
  year: 2018
  ident: 482_CR50
  publication-title: Biometrics
  doi: 10.1111/biom.12763
– volume: 34
  start-page: 211
  year: 2006
  ident: 482_CR2
  publication-title: Wildl Soc B
  doi: 10.2193/0091-7648(2006)34[211:UADRSA]2.0.CO;2
– ident: 482_CR36
  doi: 10.1111/j.1365-2664.2008.01509.x
– volume: 109
  start-page: 3
  year: 1990
  ident: 482_CR4
  publication-title: Wildl Monogr
– volume: 301
  start-page: 320
  year: 2017
  ident: 482_CR51
  publication-title: J Zool
  doi: 10.1111/jzo.12416
– volume: 54
  start-page: 242
  year: 2017
  ident: 482_CR22
  publication-title: J Appl Ecol
  doi: 10.1111/1365-2664.12700
– volume: 26
  start-page: 1091
  year: 2015
  ident: 482_CR9
  publication-title: Behav Ecol
  doi: 10.1093/beheco/arv054
– volume: 54
  start-page: 242
  year: 2016
  ident: 482_CR21
  publication-title: J Appl Ecol
  doi: 10.1111/1365-2664.12700
– volume: 20
  start-page: 2036
  year: 2010
  ident: 482_CR45
  publication-title: Ecol Appl
  doi: 10.1890/09-0470.1
– volume: 17
  start-page: 767
  year: 1991
  ident: 482_CR54
  publication-title: J Chem Ecol
  doi: 10.1007/BF00994199
– volume: 11
  start-page: 237
  year: 2004
  ident: 482_CR60
  publication-title: Northeast Nat
  doi: 10.1656/1092-6194(2004)011[0237:MAAPOE]2.0.CO;2
– volume: 23
  start-page: 1419
  year: 2013
  ident: 482_CR63
  publication-title: Ecol Appl
  doi: 10.1890/12-2088.1
– volume: 32
  start-page: 542
  year: 2004
  ident: 482_CR57
  publication-title: Wildl Soc B
  doi: 10.2193/0091-7648(2004)32[542:SRMCAH]2.0.CO;2
– volume: 53
  start-page: 7
  year: 1989
  ident: 482_CR41
  publication-title: J Wildlife Manag
  doi: 10.2307/3801296
– volume: 287
  start-page: 269
  year: 2012
  ident: 482_CR44
  publication-title: J Zool
  doi: 10.1111/j.1469-7998.2012.00908.x
– volume: 9
  start-page: 929
  year: 2018
  ident: 482_CR10
  publication-title: Methods Ecol Evol
  doi: 10.1111/2041-210X.12961
– volume: 10
  start-page: 1164
  year: 2016
  ident: 482_CR47
  publication-title: Methods Ecol Evol
  doi: 10.1111/2041-210X.12587
SSID ssj0013602
Score 2.4365501
Snippet Detection/non-detection data are increasingly collected in continuous time, e.g., via camera traps or acoustic sensors. Application of occupancy modeling...
SourceID proquest
gale
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 321
SubjectTerms acoustics
Activity patterns
Agriculture
Availability
Biostatistics
Cameras
Canis latrans
data collection
Datasets
Deer
Health Sciences
Mathematics and Statistics
Medicine
Monitoring/Environmental Analysis
Odocoileus virginianus
Sensors
Species
Statistics
Statistics for Life Sciences
weather
White-tailed deer
Title A Two-Species Occupancy Model with a Continuous-Time Detection Process Reveals Spatial and Temporal Interactions
URI https://link.springer.com/article/10.1007/s13253-021-00482-y
https://www.proquest.com/docview/2659684361
https://www.proquest.com/docview/2675574865
Volume 27
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PaxQxFH5oi1IPoqPFrbVEEDxoYDObZJLjoFuLUg-yC_UUMpOkCMts6ewq-9_3ZSbTwZ_gaQ6ThMB7L_mSl-97AK-81l55rmle1IFyNCy1FuNK4eaHaDlYGyI5-fyzPFvyjxfiIpHC2uG1-5CS7Fbqkew2y0XMOeLxF90up7u7sC_w7B4fci3zcswdyPTSUAlaMFYkqsyfx_hpO_p1Uf4tO9ptOqeP4GFCi6TszfsY7vgmgwfl5XVSzPAZ3OurSe4yOJyPpDXslKK2zeD-eUqgZ3AQwWWvzfwErkqy-LGmXQl635JecBgXWxILpK1IvKIllkT9qm_Ndr1taeSLkPd-0z3fakgiGZAv_jvCzZbE8sbozsQ2jix6yasV6a4ce_ZE-xSWp_PFuzOaKjDQeqbZhnqEA_nUejxD15pzF8tpOu1s5aRyEdsF6YMVM8esnDqFnyBCQASqpa5muDsewl6zbvwzINoxn1chVKpiPBTccu91pViNEHJaCTkBNhjC1EmePFbJWJlRWDkaz6DxTGc8s5vAm9s-V704xz9bv472NTFyceTaJgICzi9qYJmyQPyn0J_EBI4HFzAppFuTS6ElurBkE3h5-xuDMWZYbOPRDNimEKLgSuIQbwfXGYf4-9yO_q_5czjIIw2juw06hr3N9da_QHC0qU5gv_zw9dP8pIuJG3ETB08
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Bb9MwFH4aQ8B2QBCYKBtgJBAHsNS4sWMfOERsU8fWHVAr7WacxEZIVTotLVP_Dz-U58RZBBtIHHbqoY5l6fm999nP3_cA3lilrLSJoiwtHE3QsNQY9CuJyQ_RsjPGeXLy5FSMZ8nnM362AT87Lkzz2r0rSTaRuie7jRj3NUc8_uK2Y3QdnlIe2_UlHtTqj0f7aNW3jB0eTD-NaeglQIuRipfUYmJjQ2PxNFioJCl9Y8hSlSYvhSw9SnHCOsNHZWzEsJT447hziKWUUDme-Uc47x24i-BDet-ZsayvVYjwslFymsZxGqg5N6_5t_T3ZxK4Vo1tktzhI3gY0CnJ2u30GDZsFcF29u0iKHTYCO613SvXEewc9CQ5_ChEiTqC-5NQsI9gy4PZVgv6CZxnZHq5oE3Le1uTVuAYgzvxDdnmxF8JE0O8Xtb3arVY1dTzU8i-XTbPxSoSSA3ki_2B8LYmvp0yug8xVUmmrcTWnDRXnC1bo34Ks1ux0g5sVovKPgOiytiy3Llc5nHi0sQk1qpcxgVC1mHOxQDizhC6CHLovivHXPdCzt54Go2nG-Pp9QDeX31z3oqB_HP0O29f7SMFzlyYQHjA9XnNLZ2liDcl4js-gL1uC-gQQmrNBFcCXUbEA3h99Tc6v6_omMqiGXBMynmaSIFTfOi2Tj_F39f2_P-Gv4IH4-nkRJ8cnR7vwhbzFJDmJmoPNpcXK_sCgdkyf9n4BYGvt-2IvwAcH0Jy
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwEB2VIqr2gCBQsVDASCAOEHWTtZ34wCFiu2oprRDsSr25TmwjpFV21WRb7b_iJzJOnEZ8Shx62sM6lqXxzDx7_N4AvDRCmNRQEcZJYUOKhg2VQr9KMfkhWrZKWUdOPjnlhzP64YydbcD3jgvTvHbvSpItp8GpNJX1_lLb_Z74NoqZqz_iURi3YByu_bPKY7O-wkNb9e5ojBZ-FceTg-n7w9D3FQiLkYjq0GCSi4fK4MmwEJRq1yRSC61yzVPtEIvlxio20pHiQ53ij2XWIq4SXOR4_h_hvLfgNnXsY_SgWZz1dQvuXzmmLEyiKPE0nT-v-adU-GtC-K0y2yS8yT2465EqydqtdR82TBnATvb1wqt1mADutJ0s1wHsHvSEOfzIR4wqgK0TX7wPYNsB21YX-gEsMzK9WoRflgaHVqQVO8ZAT1xztjlx18NEEaed9a1cLVZV6LgqZGzq5ulYSTzBgXw2lwh1K-JaK6MrEVVqMm3ltuakue5smRvVQ5jdiJV2YbNclOYREKEjE-fW5mkeUZtQRY0ReRoVCF-HOeMDiDpDyMJLo7sOHXPZizo740k0nmyMJ9cDeHP9zbIVBvnn6NfOvtJFDZy5UJ78gOtz-lsySxB7poj12AD2ui0gfTipZMyZ4Og-PBrAi-u_MRC46o4qDZoBxySMJTTlOMXbbuv0U_x9bY__b_hz2Po0nsiPR6fHT2A7dmyQ5lJqDzbri5V5ihitzp81bkHg_Kb98AeYd0al
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Two-Species+Occupancy+Model+with+a+Continuous-Time+Detection+Process+Reveals+Spatial+and+Temporal+Interactions&rft.jtitle=Journal+of+agricultural%2C+biological%2C+and+environmental+statistics&rft.au=Kellner%2C+Kenneth+F.&rft.au=Parsons%2C+Arielle+W.&rft.au=Kays%2C+Roland&rft.au=Millspaugh%2C+Joshua+J.&rft.date=2022-06-01&rft.issn=1085-7117&rft.eissn=1537-2693&rft.volume=27&rft.issue=2&rft.spage=321&rft.epage=338&rft_id=info:doi/10.1007%2Fs13253-021-00482-y&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s13253_021_00482_y
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1085-7117&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1085-7117&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1085-7117&client=summon