Organo-Mineral Interactions Are More Important for Organic Matter Retention in Subsoil Than Topsoil

Decomposing crop residues contribute to soil organic matter (SOM) accrual; however, the factors driving the fate of carbon (C) and nitrogen (N) in soil fractions are still largely unknown, especially the influence of soil mineralogy and autochthonous organic matter concentration. The objectives of t...

Full description

Saved in:
Bibliographic Details
Published inSoil systems Vol. 4; no. 1; p. 4
Main Authors Poirier, Vincent, Basile-Doelsch, Isabelle, Balesdent, Jérôme, Borschneck, Daniel, Whalen, Joann K., Angers, Denis A.
Format Journal Article
LanguageEnglish
Published MDPI 01.03.2020
MDPI AG
Subjects
Online AccessGet full text
ISSN2571-8789
2571-8789
DOI10.3390/soilsystems4010004

Cover

Loading…
Abstract Decomposing crop residues contribute to soil organic matter (SOM) accrual; however, the factors driving the fate of carbon (C) and nitrogen (N) in soil fractions are still largely unknown, especially the influence of soil mineralogy and autochthonous organic matter concentration. The objectives of this work were (1) to evaluate the retention of C and N from crop residue in the form of occluded and mineral-associated SOM in topsoil (0–20 cm) and subsoil (30–70 cm) previously incubated for 51 days with 13C-15N-labelled corn residues, and (2) to explore if specific minerals preferentially control the retention of residue-derived C and N in topsoil and subsoil. We used topsoil and subsoil having similar texture and mineralogy as proxies for soils being rich (i.e., topsoil) and poor (i.e., subsoil) in autochthonous organic matter. We performed a sequential density fractionation procedure and measured residue-derived C and N in occluded and mineral-associated SOM fractions, and used X-ray diffraction analysis of soil density fractions to investigate their mineralogy. In accordance with our hypothesis, the retention of C and N from crop residue through organo-mineral interactions was greater in subsoil than topsoil. The same minerals were involved in the retention of residue-derived organic matter in topsoil and subsoil, but the residue-derived organic matter was associated with a denser fraction in the subsoil (i.e., 2.5–2.6 g cm−3) than in the topsoil (i.e., 2.3–2.5 g cm−3). In soils and soil horizons with high clay content and reactive minerals, we find that a low SOM concentration leads to the rapid stabilization of C and N from newly added crop residues.
AbstractList Decomposing crop residues contribute to soil organic matter (SOM) accrual; however, the factors driving the fate of carbon (C) and nitrogen (N) in soil fractions is still largely unknown, especially the influence of soil mineralogy and autochthonous organic matter concentration. The objectives of this work were (1) to evaluate the retention of C and N from crop residue in the form of occluded and mineral-associated SOM in topsoil (0-20 cm) and subsoil (30-70 cm) previously incubated for 51 days with 13 C-15 N-labelled corn residues, and (2) to explore if specific minerals preferentially control the retention of residue-derived C and N in topsoil and subsoil. We used topsoil and subsoil having similar texture and mineralogy as proxies for soils being rich (i.e., topsoil) and poor (i.e., subsoil) in autochthonous organic matter. We performed a sequential density fractionation procedure and measured residue-derived C and N in occluded and mineral-associated SOM fractions, and used X-ray diffraction analysis of soil density fractions to investigate their mineralogy. In accordance with our hypothesis, the retention of C and N from crop residue through organo-mineral interactions was greater in subsoil than topsoil. The same minerals were involved in the retention of residue-derived organic matter in topsoil and subsoil, but the residue-derived organic matter was associated with a denser fraction in the subsoil (i.e., 2.5-2.6. g cm −3) than in the topsoil (i.e., 2.3-2.5 g cm −3). In soils and soil horizons with high clay content and reactive minerals, we find that a low SOM concentration leads to the rapid stabilization of C and N from newly added crop residues.
Decomposing crop residues contribute to soil organic matter (SOM) accrual; however, the factors driving the fate of carbon (C) and nitrogen (N) in soil fractions are still largely unknown, especially the influence of soil mineralogy and autochthonous organic matter concentration. The objectives of this work were (1) to evaluate the retention of C and N from crop residue in the form of occluded and mineral-associated SOM in topsoil (0−20 cm) and subsoil (30−70 cm) previously incubated for 51 days with 13C-15N-labelled corn residues, and (2) to explore if specific minerals preferentially control the retention of residue-derived C and N in topsoil and subsoil. We used topsoil and subsoil having similar texture and mineralogy as proxies for soils being rich (i.e., topsoil) and poor (i.e., subsoil) in autochthonous organic matter. We performed a sequential density fractionation procedure and measured residue-derived C and N in occluded and mineral-associated SOM fractions, and used X-ray diffraction analysis of soil density fractions to investigate their mineralogy. In accordance with our hypothesis, the retention of C and N from crop residue through organo-mineral interactions was greater in subsoil than topsoil. The same minerals were involved in the retention of residue-derived organic matter in topsoil and subsoil, but the residue-derived organic matter was associated with a denser fraction in the subsoil (i.e., 2.5−2.6 g cm−3) than in the topsoil (i.e., 2.3−2.5 g cm−3). In soils and soil horizons with high clay content and reactive minerals, we find that a low SOM concentration leads to the rapid stabilization of C and N from newly added crop residues.
Decomposing crop residues contribute to soil organic matter (SOM) accrual; however, the factors driving the fate of carbon (C) and nitrogen (N) in soil fractions are still largely unknown, especially the influence of soil mineralogy and autochthonous organic matter concentration. The objectives of this work were (1) to evaluate the retention of C and N from crop residue in the form of occluded and mineral-associated SOM in topsoil (0–20 cm) and subsoil (30–70 cm) previously incubated for 51 days with 13C-15N-labelled corn residues, and (2) to explore if specific minerals preferentially control the retention of residue-derived C and N in topsoil and subsoil. We used topsoil and subsoil having similar texture and mineralogy as proxies for soils being rich (i.e., topsoil) and poor (i.e., subsoil) in autochthonous organic matter. We performed a sequential density fractionation procedure and measured residue-derived C and N in occluded and mineral-associated SOM fractions, and used X-ray diffraction analysis of soil density fractions to investigate their mineralogy. In accordance with our hypothesis, the retention of C and N from crop residue through organo-mineral interactions was greater in subsoil than topsoil. The same minerals were involved in the retention of residue-derived organic matter in topsoil and subsoil, but the residue-derived organic matter was associated with a denser fraction in the subsoil (i.e., 2.5–2.6 g cm−3) than in the topsoil (i.e., 2.3–2.5 g cm−3). In soils and soil horizons with high clay content and reactive minerals, we find that a low SOM concentration leads to the rapid stabilization of C and N from newly added crop residues.
Author Basile-Doelsch, Isabelle
Angers, Denis A.
Balesdent, Jérôme
Borschneck, Daniel
Poirier, Vincent
Whalen, Joann K.
Author_xml – sequence: 1
  givenname: Vincent
  surname: Poirier
  fullname: Poirier, Vincent
– sequence: 2
  givenname: Isabelle
  orcidid: 0000-0002-0587-8141
  surname: Basile-Doelsch
  fullname: Basile-Doelsch, Isabelle
– sequence: 3
  givenname: Jérôme
  surname: Balesdent
  fullname: Balesdent, Jérôme
– sequence: 4
  givenname: Daniel
  orcidid: 0000-0003-1655-1977
  surname: Borschneck
  fullname: Borschneck, Daniel
– sequence: 5
  givenname: Joann K.
  surname: Whalen
  fullname: Whalen, Joann K.
– sequence: 6
  givenname: Denis A.
  surname: Angers
  fullname: Angers, Denis A.
BackLink https://hal.science/hal-02987611$$DView record in HAL
BookMark eNp9kU1rGzEQhkVJoanjP5CTrj1so9Fqd6WjCW1ssDEk7nkZabWOwloyklrwv8-uHUo_IJf54n1ehpnP5MoHbwm5Bfa1LBW7S8EN6ZSyPSTBgDEmPpBrXjVQyEaqqz_qT2Se0suo4CBYI-prYrZxjz4UG-dtxIGufB6zyS74RBfR0k0Yw-pwDDGjz7QPkZ4RZ-gG8yimjzZbPwHUefr0U0_r0N0zeroLx6m5IR97HJKdv-UZ-fH92-5-Way3D6v7xbowpYJcdL1mdV0Jrhul-r7XsipL0AiKcaGZEh0qaTuowCghRWkbqTvLe1t3E8DKGVldfLuAL-0xugPGUxvQtedBiPsWY3ZmsC0YaQAlSKhKYTig4FXFpRHMaC0BR68vF69nHP6yWi7W7TRjXMmmBvgFo5ZftCaGlKLtfwPA2ulD7f8fGiH5D2RcxumMOaIb3kNfAdLnnHA
CitedBy_id crossref_primary_10_1016_j_agee_2021_107590
crossref_primary_10_2478_ffp_2021_0029
crossref_primary_10_3390_app10072571
crossref_primary_10_32604_jrm_2022_019608
crossref_primary_10_3390_d15080888
crossref_primary_10_1007_s10533_021_00793_9
crossref_primary_10_1007_s11368_021_03012_y
crossref_primary_10_1007_s10163_024_02013_6
crossref_primary_10_1016_j_pedsph_2022_06_042
crossref_primary_10_1080_02571862_2022_2092659
crossref_primary_10_1007_s42729_023_01209_3
crossref_primary_10_1139_er_2022_0129
crossref_primary_10_5194_soil_9_443_2023
crossref_primary_10_1021_acs_jpca_0c08244
crossref_primary_10_1111_1365_2745_70011
crossref_primary_10_1029_2023EF003982
crossref_primary_10_1016_j_soilbio_2021_108347
crossref_primary_10_3390_rs13112223
crossref_primary_10_1002_ece3_10276
crossref_primary_10_1016_j_soilbio_2020_107935
crossref_primary_10_1080_01932691_2024_2307578
crossref_primary_10_1016_j_soilbio_2021_108244
crossref_primary_10_1016_j_catena_2022_106590
crossref_primary_10_1002_ldr_4151
crossref_primary_10_1007_s42729_022_00822_y
Cites_doi 10.1111/j.1365-2389.2012.01485.x
10.1046/j.1365-2389.2003.00544.x
10.1016/j.soilbio.2014.09.013
10.1016/j.geoderma.2009.03.008
10.4141/CJSS08034
10.1007/s10021-011-9501-3
10.1071/SR9941043
10.1007/s10533-009-9359-z
10.1016/S0146-6380(00)00049-8
10.5194/bg-9-5181-2012
10.1180/000985599545957
10.1007/s10533-007-9103-5
10.4141/S01-087
10.1016/j.soilbio.2007.03.007
10.1016/j.soilbio.2008.02.014
10.4141/cjss79-005
10.1023/A:1004213929699
10.2136/sssaj1978.03615995004200050023x
10.1007/s10533-015-0138-8
10.1016/j.scitotenv.2018.02.209
10.1016/j.soilbio.2006.04.014
10.1016/S0065-2113(05)88002-2
10.2134/jeq2009.0138
10.4141/CJSS09052
10.1007/s00374-013-0794-6
10.1038/nature17174
10.1007/s00374-014-0987-7
10.1016/j.geoderma.2012.12.003
10.1007/s11104-004-0907-y
10.1016/j.clay.2015.01.021
10.1016/j.soilbio.2014.01.011
10.1016/j.soilbio.2014.12.002
10.1111/j.1365-2389.2006.00834.x
10.2136/sssaj2005.0116
10.1016/j.orggeochem.2005.06.008
10.1016/j.pce.2010.05.009
10.1346/CCMN.1994.0420612
10.4141/cjss79-039
10.1016/j.geoderma.2006.10.006
10.1111/j.1365-2389.2006.00809.x
10.1016/j.soilbio.2014.03.020
10.1016/j.geoderma.2004.12.015
10.4141/S95-064
ContentType Journal Article
Copyright Attribution
Copyright_xml – notice: Attribution
DBID AAYXX
CITATION
1XC
VOOES
DOA
DOI 10.3390/soilsystems4010004
DatabaseName CrossRef
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList

CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
EISSN 2571-8789
ExternalDocumentID oai_doaj_org_article_1c8c1a8181534c21a425528c40cbb81a
oai_HAL_hal_02987611v1
10_3390_soilsystems4010004
GroupedDBID 7X2
AADQD
AAFWJ
AAHBH
AAYXX
ADBBV
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ATCPS
BCNDV
BENPR
BHPHI
CCPQU
CITATION
GROUPED_DOAJ
HCIFZ
IAO
M0K
MODMG
M~E
OK1
OZF
PHGZM
PHGZT
PIMPY
1XC
ABDBF
IAG
ITC
VOOES
PUEGO
ID FETCH-LOGICAL-c391t-dfb066542b799fffb85331ba19024b094da98ed151c94843e78bde2fe6d799f03
IEDL.DBID DOA
ISSN 2571-8789
IngestDate Wed Aug 27 01:21:07 EDT 2025
Fri May 09 12:18:59 EDT 2025
Thu Apr 24 22:57:59 EDT 2025
Tue Jul 01 02:33:34 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords soil mineralogy
subsoil
topsoil
mineral-associated soil organic matter
soil organic matter
crop residue
Language English
License https://creativecommons.org/licenses/by/4.0
Attribution: http://creativecommons.org/licenses/by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c391t-dfb066542b799fffb85331ba19024b094da98ed151c94843e78bde2fe6d799f03
ORCID 0000-0002-0587-8141
0000-0003-1655-1977
0000-0002-4947-5221
OpenAccessLink https://doaj.org/article/1c8c1a8181534c21a425528c40cbb81a
ParticipantIDs doaj_primary_oai_doaj_org_article_1c8c1a8181534c21a425528c40cbb81a
hal_primary_oai_HAL_hal_02987611v1
crossref_primary_10_3390_soilsystems4010004
crossref_citationtrail_10_3390_soilsystems4010004
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-03-01
PublicationDateYYYYMMDD 2020-03-01
PublicationDate_xml – month: 03
  year: 2020
  text: 2020-03-01
  day: 01
PublicationDecade 2020
PublicationTitle Soil systems
PublicationYear 2020
Publisher MDPI
MDPI AG
Publisher_xml – name: MDPI
– name: MDPI AG
References Kaiser (ref_22) 2003; 54
Gregorich (ref_30) 2006; 70
Gregorich (ref_18) 2009; 89
ref_58
ref_57
ref_56
ref_55
Hatton (ref_50) 2015; 125
ref_54
ref_52
Plante (ref_35) 2010; 90
ref_59
Churchman (ref_44) 2010; 35
Stewart (ref_20) 2008; 40
ref_60
Hassink (ref_12) 1997; 191
ref_25
Martel (ref_36) 1978; 42
ref_24
Feng (ref_45) 2005; 36
Sollins (ref_32) 2009; 96
ref_29
Swanston (ref_34) 2005; 128
ref_28
Derrien (ref_1) 2016; 23
Carter (ref_13) 2003; 83
ref_27
ref_26
Bonnard (ref_33) 2012; 63
Ekschmitt (ref_6) 2006; 57
Jindaluang (ref_47) 2013; 195–196
Singh (ref_48) 2010; 39
Rasse (ref_37) 2005; 269
Hatton (ref_51) 2014; 79
Wilson (ref_43) 1999; 34
Ekschmitt (ref_7) 2007; 39
Ludwig (ref_31) 2015; 81
Amundson (ref_16) 2007; 137
Golchin (ref_4) 1994; 32
Castellano (ref_38) 2012; 15
Block (ref_46) 2015; 107
Moni (ref_9) 2012; 9
Baldock (ref_5) 2000; 31
Kleber (ref_8) 2007; 85
Monreal (ref_11) 1997; 77
Poirier (ref_21) 2013; 49
Poirier (ref_19) 2014; 75
Kodama (ref_40) 1994; 42
Brun (ref_17) 2009; 151
ref_42
ref_41
Paustian (ref_2) 2016; 532
Chen (ref_3) 2018; 630
Martel (ref_10) 1979; 59
Kodama (ref_39) 1979; 59
Vogel (ref_49) 2015; 51
Lorenz (ref_23) 2005; 88
Gunina (ref_15) 2014; 71
Chenu (ref_53) 2006; 57
Sollins (ref_14) 2006; 38
References_xml – volume: 63
  start-page: 625
  year: 2012
  ident: ref_33
  article-title: Organic matter content and features related to associated mineral fractions in an acid, loamy soil
  publication-title: Eur. J. Soil Sci.
  doi: 10.1111/j.1365-2389.2012.01485.x
– ident: ref_55
– volume: 54
  start-page: 219
  year: 2003
  ident: ref_22
  article-title: Mineral surfaces and soil organic matter
  publication-title: Eur. J. Soil Sci.
  doi: 10.1046/j.1365-2389.2003.00544.x
– volume: 79
  start-page: 132
  year: 2014
  ident: ref_51
  article-title: Assimilation and accumulation of C by fungi and bacteria attached to soil density fractions
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2014.09.013
– volume: 151
  start-page: 77
  year: 2009
  ident: ref_17
  article-title: Effect of landuse on organic matter stabilized in organomineral complexes: A study combining density fractionation, mineralogy and δ 13 C
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2009.03.008
– volume: 89
  start-page: 255
  year: 2009
  ident: ref_18
  article-title: Using a sequential density and particle-size fractionation to evaluate carbon and nitrogen storage in the profile of tilled and no-till soils in eastern Canada
  publication-title: Can. J. Soil Sci.
  doi: 10.4141/CJSS08034
– ident: ref_26
– volume: 15
  start-page: 175
  year: 2012
  ident: ref_38
  article-title: Linking carbon saturation concepts to nitrogen saturation and retention
  publication-title: Ecosystems
  doi: 10.1007/s10021-011-9501-3
– volume: 32
  start-page: 1043
  year: 1994
  ident: ref_4
  article-title: Soil structure and carbon cycling
  publication-title: Aust. J. Soil Res.
  doi: 10.1071/SR9941043
– volume: 96
  start-page: 209
  year: 2009
  ident: ref_32
  article-title: Sequential density fractionation across soils of contrasting mineralogy: Evidence for both microbial- and mineral-controlled soil organic matter stabilization
  publication-title: Biogeochemistry
  doi: 10.1007/s10533-009-9359-z
– volume: 31
  start-page: 697
  year: 2000
  ident: ref_5
  article-title: Role of the soil matrix and minerals in protecting natural organic materials against biological attack
  publication-title: Org. Geochem.
  doi: 10.1016/S0146-6380(00)00049-8
– ident: ref_42
– volume: 9
  start-page: 5181
  year: 2012
  ident: ref_9
  article-title: Density fractions versus size separates: Does physical fractionation isolate functional soil compartments?
  publication-title: Biogeosciences
  doi: 10.5194/bg-9-5181-2012
– volume: 34
  start-page: 7
  year: 1999
  ident: ref_43
  article-title: The origin and formation of clay minerals in soils: Past, present and future perspectives
  publication-title: Clay Miner.
  doi: 10.1180/000985599545957
– volume: 85
  start-page: 9
  year: 2007
  ident: ref_8
  article-title: A conceptual model of organo-mineral interactions in soils: Self-assembly of organic molecular fragments into zonal structures on mineral surfaces
  publication-title: Biogeochemistry
  doi: 10.1007/s10533-007-9103-5
– volume: 83
  start-page: 11
  year: 2003
  ident: ref_13
  article-title: Characterizing organic matter retention for surface soils in eastern Canada using density and particle size fractions
  publication-title: Can. J. Soil Sci.
  doi: 10.4141/S01-087
– volume: 39
  start-page: 2183
  year: 2007
  ident: ref_7
  article-title: SOM fractionation methods: Relevance to functional pools and to stabilization mechanisms
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2007.03.007
– ident: ref_58
– volume: 40
  start-page: 1741
  year: 2008
  ident: ref_20
  article-title: Soil carbon saturation: Evaluation and corroboration by long-term incubations
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2008.02.014
– volume: 59
  start-page: 37
  year: 1979
  ident: ref_39
  article-title: Clay minerals in Canadian soils: Their origin, distribution and alteration
  publication-title: Can. J. Soil Sci.
  doi: 10.4141/cjss79-005
– ident: ref_56
– ident: ref_27
– ident: ref_52
– volume: 191
  start-page: 77
  year: 1997
  ident: ref_12
  article-title: The capacity of soils to preserve organic C and N by their association with clay and silt particles
  publication-title: Plant Soil
  doi: 10.1023/A:1004213929699
– volume: 42
  start-page: 764
  year: 1978
  ident: ref_36
  article-title: Cation-exchange capacity of clay-rich soils in relation to organic matter, mineral composition and surface area
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj1978.03615995004200050023x
– volume: 125
  start-page: 303
  year: 2015
  ident: ref_50
  article-title: NanoSIMS investigation of glycine-derived C and N retention with soil organo-mineral associations
  publication-title: Biogeochemistry
  doi: 10.1007/s10533-015-0138-8
– ident: ref_41
– volume: 630
  start-page: 389
  year: 2018
  ident: ref_3
  article-title: Fine resolution map of top- and subsoil carbon sequestration potential in France
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2018.02.209
– volume: 38
  start-page: 3313
  year: 2006
  ident: ref_14
  article-title: Organic C and N stabilization in a forest soil: Evidence from sequential density fractionation
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2006.04.014
– volume: 88
  start-page: 35
  year: 2005
  ident: ref_23
  article-title: The depth distribution of soil organic carbon in relation to land use and management and the potential of carbon sequestration in subsoil horizons
  publication-title: Adv. Agron.
  doi: 10.1016/S0065-2113(05)88002-2
– volume: 39
  start-page: 1224
  year: 2010
  ident: ref_48
  article-title: Influence of Biochars on Nitrous Oxide Emission and Nitrogen Leaching from Two Contrasting Soils
  publication-title: J. Environ. Qual.
  doi: 10.2134/jeq2009.0138
– ident: ref_59
– volume: 90
  start-page: 15
  year: 2010
  ident: ref_35
  article-title: Pedogenic, mineralogical and land-use controls on organic carbon stabilization in two contrasting soils
  publication-title: Can. J. Soil Sci.
  doi: 10.4141/CJSS09052
– ident: ref_28
– volume: 49
  start-page: 527
  year: 2013
  ident: ref_21
  article-title: Initial soil organic carbon concentration influences the short-term retention of crop-residue carbon in the fine fraction of a heavy clay soil
  publication-title: Biol. Fertil. Soils
  doi: 10.1007/s00374-013-0794-6
– volume: 23
  start-page: 193
  year: 2016
  ident: ref_1
  article-title: Stocker du C dans les sols: Quels mécanismes, quelles pratiques agricoles, quels indicateurs?
  publication-title: Étude Gest. des sols
– volume: 532
  start-page: 49
  year: 2016
  ident: ref_2
  article-title: Climate-smart soils
  publication-title: Nature
  doi: 10.1038/nature17174
– volume: 51
  start-page: 427
  year: 2015
  ident: ref_49
  article-title: Clay mineral composition modifies decomposition and sequestration of organic carbon and nitrogen in fine soil fractions
  publication-title: Biol. Fertil. Soils
  doi: 10.1007/s00374-014-0987-7
– ident: ref_24
– volume: 195–196
  start-page: 207
  year: 2013
  ident: ref_47
  article-title: Influence of soil texture and mineralogy on organic matter content and composition in physically separated fractions soils of Thailand
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2012.12.003
– volume: 269
  start-page: 341
  year: 2005
  ident: ref_37
  article-title: Is soil carbon mostly root carbon? Mechanisms for a specific stabilisation
  publication-title: Plant Soil
  doi: 10.1007/s11104-004-0907-y
– volume: 107
  start-page: 173
  year: 2015
  ident: ref_46
  article-title: Applied Clay Science Exfoliation and intercalation of montmorillonite by small peptides
  publication-title: Appl. Clay Sci.
  doi: 10.1016/j.clay.2015.01.021
– volume: 71
  start-page: 95
  year: 2014
  ident: ref_15
  article-title: Pathways of litter C by formation of aggregates and SOM density fractions: Implications from 13C natural abundance
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2014.01.011
– volume: 81
  start-page: 311
  year: 2015
  ident: ref_31
  article-title: Microbial contribution to SOM quantity and quality in density fractions of temperate arable soils
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2014.12.002
– volume: 57
  start-page: 596
  year: 2006
  ident: ref_53
  article-title: Clay-sized organo-mineral complexes in a cultivation chronosequence: Revisiting the concept of the “primary organo-mineral complex”
  publication-title: Eur. J. Soil Sci.
  doi: 10.1111/j.1365-2389.2006.00834.x
– volume: 70
  start-page: 975
  year: 2006
  ident: ref_30
  article-title: Chemical and biological characteristics of physically uncomplexed organic matter
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj2005.0116
– volume: 36
  start-page: 1553
  year: 2005
  ident: ref_45
  article-title: Chemical and mineralogical controls on humic acid sorption to clay mineral surfaces
  publication-title: Org. Geochem.
  doi: 10.1016/j.orggeochem.2005.06.008
– volume: 35
  start-page: 927
  year: 2010
  ident: ref_44
  article-title: Is the geological concept of clay minerals appropriate for soil science? A literature-based and philosophical analysis
  publication-title: Phys. Chem. Earth
  doi: 10.1016/j.pce.2010.05.009
– volume: 42
  start-page: 755
  year: 1994
  ident: ref_40
  article-title: Mineralogy of rhizospheric and non-rhizospheric soils in corn fields
  publication-title: Clays Clay Miner.
  doi: 10.1346/CCMN.1994.0420612
– ident: ref_25
– ident: ref_29
– ident: ref_54
– volume: 59
  start-page: 341
  year: 1979
  ident: ref_10
  article-title: Surface area and exchange capacity of clay in relation to the mineralogical composition of gleysolic soils
  publication-title: Can. J. Soil Sci.
  doi: 10.4141/cjss79-039
– volume: 137
  start-page: 477
  year: 2007
  ident: ref_16
  article-title: Mineral control of carbon pools in a volcanic soil horizon
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2006.10.006
– volume: 57
  start-page: 426
  year: 2006
  ident: ref_6
  article-title: Stabilization of organic matter in temperate soils: Mechanisms and their relevance under different soil conditions—A review
  publication-title: Eur. J. Soil Sci.
  doi: 10.1111/j.1365-2389.2006.00809.x
– volume: 75
  start-page: 45
  year: 2014
  ident: ref_19
  article-title: Formation of millimetric-scale aggregates and associated retention of 13C-15N-labelled residues are greater in subsoil than topsoil
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2014.03.020
– volume: 128
  start-page: 52
  year: 2005
  ident: ref_34
  article-title: Initial characterization of processes of soil carbon stabilization using forest stand-level radiocarbon enrichment
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2004.12.015
– volume: 77
  start-page: 379
  year: 1997
  ident: ref_11
  article-title: Age, turnover and molecular diversity of soil organic matter in aggregates of a Gleysol
  publication-title: Can. J. Soil Sci.
  doi: 10.4141/S95-064
– ident: ref_60
– ident: ref_57
SSID ssj0002140746
Score 2.2580485
Snippet Decomposing crop residues contribute to soil organic matter (SOM) accrual; however, the factors driving the fate of carbon (C) and nitrogen (N) in soil...
SourceID doaj
hal
crossref
SourceType Open Website
Open Access Repository
Enrichment Source
Index Database
StartPage 4
SubjectTerms Agricultural sciences
crop residue
Life Sciences
mineral-associated soil organic matter
soil mineralogy
soil organic matter
Soil study
subsoil
topsoil
Title Organo-Mineral Interactions Are More Important for Organic Matter Retention in Subsoil Than Topsoil
URI https://hal.science/hal-02987611
https://doaj.org/article/1c8c1a8181534c21a425528c40cbb81a
Volume 4
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bS8MwFA6yJ30QrzhvBPFNypY0vT1OcUyxPsgGeyu51Q1mO7bq7_ectBsbgr74UkhI2nBymu98IecLIbc2xGxNrrzYyNwTkeVeEubGC3wAXyUCYBC435G-hoOReB4H442rvvBMWC0PXBuuw3SsmQRYgV9TaM4kOFnAYy26WqmYudAIMG-DTOEazIE3RCKss2R84PWdZTmd1eLIS6AUGMpsIZET7Ad8maz2Ux2-9A_IfhMY0l49oEOyY4sjstd7XzTiGPaYaJc4WXrp1ElFU7ebVycmLKGjpWkJj6cPF1IXFYV4lNa5lpqmTkeTvmGMjB3otKC4aMB46XAiCzos51g4IaP-4_Bh4DWXJHjaT1jlmVy5G4S5ipIkz3MF-OszJQHouVBA3oxMYmsA2HUiYuHbKFbG8tyGBjt0_VPSKsrCnhEaMgBMiLgjpoBkmK4UFtiRYJwZKBnZJmxlsEw3CuJ4kcUsAyaBRs5-GrlN7tZ95rV-xq-t73Ee1i1R-9pVgEdkjUdkf3lEm9zALG69Y9B7ybAO9eajkLEvdv4fX7oguxzptzuSdkla1eLTXkGMUqlr547fCVjlBw
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Organo-Mineral+Interactions+Are+More+Important+for+Organic+Matter+Retention+in+Subsoil+Than+Topsoil&rft.jtitle=Soil+systems&rft.au=Vincent+Poirier&rft.au=Isabelle+Basile-Doelsch&rft.au=J%C3%A9r%C3%B4me+Balesdent&rft.au=Daniel+Borschneck&rft.date=2020-03-01&rft.pub=MDPI+AG&rft.eissn=2571-8789&rft.volume=4&rft.issue=1&rft.spage=4&rft_id=info:doi/10.3390%2Fsoilsystems4010004&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_1c8c1a8181534c21a425528c40cbb81a
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2571-8789&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2571-8789&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2571-8789&client=summon