Smoothing algorithm for stabilization of the material point method for fluid–solid interaction problems

Phenomena involving general solid–water interactions such as flows with debris are challenging to model numerically because they are not easily represented using solid- or fluid-oriented methods. The material point method (MPM) provides a unified multi-material interaction platform potentially capab...

Full description

Saved in:
Bibliographic Details
Published inComputer methods in applied mechanics and engineering Vol. 342; pp. 177 - 199
Main Authors Yang, Wen-Chia, Arduino, Pedro, Miller, Gregory R., Mackenzie-Helnwein, Peter
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier B.V 01.12.2018
Elsevier BV
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Phenomena involving general solid–water interactions such as flows with debris are challenging to model numerically because they are not easily represented using solid- or fluid-oriented methods. The material point method (MPM) provides a unified multi-material interaction platform potentially capable of modeling complex solid–water flow phenomena. However, it is necessary to address volumetric locking for (nearly) incompressible materials when modeling fluids, while also stabilizing integration errors that arise in standard MPM. This paper examines these challenges in depth, and presents a flux-based smoothing algorithm designed to address integration-error-induced destabilization via controlled strain energy dissipation. The effectiveness of the algorithm is demonstrated with two simple but fundamental fluid/solid problems, and with an application to a complex solid–water dynamic interaction problem. Results show the flux-based smoothing algorithm is capable of stabilizing the side-effects of numerical integration errors, while at the same time remaining inactive if there is no integration-error-induced oscillation. Based on this study, the flux-based smoothing algorithm is suggested as a stabilization scheme for MPM when using constant-interpolated hybrid elements. •This paper presents an approach for enabling MPM to be used for general fluid/solid interaction problems for which both anti-locking and stabilization are required to obtain suitable solutions.•To overcome shortcomings from prior formulations, this paper presents a flux-based algorithm which casts smoothing as a transport problem, and implements an energy dissipation control mechanism by means of controlling flux at cell interfaces.•The behavior of the newly proposed algorithm is demonstrated with basic smoothing examples, 1D and 2D validation examples and an application to a water–solid dynamic interaction problem.•Overall, the results presented in the paper demonstrate that the flux-based algorithm is able to stabilize a complex hydrodynamic analysis involving splashing fluid and complex fluid–solid interaction, and hence is a good candidate for handling tsunami–debris–structure interactions problems.
AbstractList Phenomena involving general solid–water interactions such as flows with debris are challenging to model numerically because they are not easily represented using solid- or fluid-oriented methods. The material point method (MPM) provides a unified multi-material interaction platform potentially capable of modeling complex solid–water flow phenomena. However, it is necessary to address volumetric locking for (nearly) incompressible materials when modeling fluids, while also stabilizing integration errors that arise in standard MPM. This paper examines these challenges in depth, and presents a flux-based smoothing algorithm designed to address integration-error-induced destabilization via controlled strain energy dissipation. The effectiveness of the algorithm is demonstrated with two simple but fundamental fluid/solid problems, and with an application to a complex solid–water dynamic interaction problem. Results show the flux-based smoothing algorithm is capable of stabilizing the side-effects of numerical integration errors, while at the same time remaining inactive if there is no integration-error-induced oscillation. Based on this study, the flux-based smoothing algorithm is suggested as a stabilization scheme for MPM when using constant-interpolated hybrid elements. •This paper presents an approach for enabling MPM to be used for general fluid/solid interaction problems for which both anti-locking and stabilization are required to obtain suitable solutions.•To overcome shortcomings from prior formulations, this paper presents a flux-based algorithm which casts smoothing as a transport problem, and implements an energy dissipation control mechanism by means of controlling flux at cell interfaces.•The behavior of the newly proposed algorithm is demonstrated with basic smoothing examples, 1D and 2D validation examples and an application to a water–solid dynamic interaction problem.•Overall, the results presented in the paper demonstrate that the flux-based algorithm is able to stabilize a complex hydrodynamic analysis involving splashing fluid and complex fluid–solid interaction, and hence is a good candidate for handling tsunami–debris–structure interactions problems.
Phenomena involving general solid–water interactions such as flows with debris are challenging to model numerically because they are not easily represented using solid- or fluid-oriented methods. The material point method (MPM) provides a unified multi-material interaction platform potentially capable of modeling complex solid–water flow phenomena. However, it is necessary to address volumetric locking for (nearly) incompressible materials when modeling fluids, while also stabilizing integration errors that arise in standard MPM. This paper examines these challenges in depth, and presents a flux-based smoothing algorithm designed to address integration-error-induced destabilization via controlled strain energy dissipation. The effectiveness of the algorithm is demonstrated with two simple but fundamental fluid/solid problems, and with an application to a complex solid–water dynamic interaction problem. Results show the flux-based smoothing algorithm is capable of stabilizing the side-effects of numerical integration errors, while at the same time remaining inactive if there is no integration-error-induced oscillation. Based on this study, the flux-based smoothing algorithm is suggested as a stabilization scheme for MPM when using constant-interpolated hybrid elements.
Author Arduino, Pedro
Mackenzie-Helnwein, Peter
Yang, Wen-Chia
Miller, Gregory R.
Author_xml – sequence: 1
  givenname: Wen-Chia
  orcidid: 0000-0003-0419-1038
  surname: Yang
  fullname: Yang, Wen-Chia
  organization: National Center for Research on Earthquake Engineering, 200, Sec. 3, HsinHai Rd., Taipei 106, Taiwan
– sequence: 2
  givenname: Pedro
  surname: Arduino
  fullname: Arduino, Pedro
  email: parduino@uw.edu
  organization: Department of Civil & Environmental Engineering, University of Washington, Box 352700, Seattle, WA 98195, USA
– sequence: 3
  givenname: Gregory R.
  surname: Miller
  fullname: Miller, Gregory R.
  organization: Department of Civil & Environmental Engineering, University of Washington, Box 352700, Seattle, WA 98195, USA
– sequence: 4
  givenname: Peter
  surname: Mackenzie-Helnwein
  fullname: Mackenzie-Helnwein, Peter
  organization: Department of Civil & Environmental Engineering, University of Washington, Box 352700, Seattle, WA 98195, USA
BookMark eNp9kM9q3DAQxkVIIZtNHiA3Qc92NLK9ksmphDYpLPSQ5Cxk_cnOYltbSVtoT3mHvGGfJMpuTz1kGJjDfL_5mO-cnM5hdoRcAauBwep6W5tJ15yBrFlbGk7IAqToKw6NPCULxtquEpJ3Z-Q8pS0rJYEvCD5MIeQNzs9Uj88hYt5M1IdIU9YDjvhHZwwzDZ7mjaOTzi6iHuku4Jzp5PIm2IPcj3u0f19eUxjR0rJ0UZsDuothGN2ULsgnr8fkLv_NJXn69vXx9r5a_7j7fvtlXZmmh1zZFXRgOtZIwa1hXnYtNF4M3Pu-14zxoeug155b7UBr1knTWzu0RgxGr0TbLMnn491i_HPvUlbbsI9zsVQcuGi56HtZVOKoMjGkFJ1XBvPh1xw1jgqYes9VbVXJVb3nqlhbGgoJ_5G7iJOOvz9kbo6MK4__QhdVMuhm4yxGZ7KyAT-g3wB9pJWT
CitedBy_id crossref_primary_10_1016_j_cma_2025_117734
crossref_primary_10_1007_s40571_019_00238_z
crossref_primary_10_1007_s40571_020_00358_x
crossref_primary_10_1016_j_sna_2019_07_039
crossref_primary_10_1016_j_compgeo_2025_107071
crossref_primary_10_1002_nme_7217
crossref_primary_10_1016_j_cma_2023_116644
crossref_primary_10_1016_j_apm_2024_115644
crossref_primary_10_1007_s12239_020_0043_6
crossref_primary_10_1007_s11804_024_00404_7
crossref_primary_10_1016_j_cma_2020_113512
crossref_primary_10_1016_j_enggeo_2024_107733
crossref_primary_10_1016_j_cma_2021_113940
crossref_primary_10_1007_s40571_024_00720_3
crossref_primary_10_1016_j_compgeo_2023_105746
crossref_primary_10_1016_j_engfracmech_2024_109918
crossref_primary_10_1016_j_compgeo_2022_104867
crossref_primary_10_1016_j_compgeo_2023_106049
crossref_primary_10_1007_s40571_020_00365_y
Cites_doi 10.1016/j.cma.2016.10.013
10.1016/0021-9991(92)90323-Q
10.1002/(SICI)1097-0207(19990730)45:9<1203::AID-NME626>3.0.CO;2-C
10.1016/j.jcp.2016.10.064
10.1061/(ASCE)ST.1943-541X.0000948
10.1016/0010-4655(94)00170-7
10.1023/A:1012873910884
10.1142/S1793431110000741
10.7498/aps.10.259
10.1016/j.jcp.2012.04.032
ContentType Journal Article
Copyright 2018 Elsevier B.V.
Copyright Elsevier BV Dec 1, 2018
Copyright_xml – notice: 2018 Elsevier B.V.
– notice: Copyright Elsevier BV Dec 1, 2018
DBID AAYXX
CITATION
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
DOI 10.1016/j.cma.2018.04.041
DatabaseName CrossRef
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Civil Engineering Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
EISSN 1879-2138
EndPage 199
ExternalDocumentID 10_1016_j_cma_2018_04_041
S0045782518302263
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
AAYFN
ABAOU
ABBOA
ABFNM
ABJNI
ABMAC
ABYKQ
ACAZW
ACDAQ
ACGFS
ACIWK
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIGVJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ARUGR
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
IHE
J1W
JJJVA
KOM
LG9
LY7
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SST
SSV
SSW
SSZ
T5K
TN5
WH7
XPP
ZMT
~02
~G-
29F
AAQXK
AATTM
AAXKI
AAYOK
AAYWO
AAYXX
ABEFU
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADIYS
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
R2-
SBC
SET
SEW
SSH
VH1
VOH
WUQ
ZY4
7SC
7TB
8FD
EFKBS
FR3
JQ2
KR7
L7M
L~C
L~D
ID FETCH-LOGICAL-c391t-d6151c503872dc0f85413f7b2ff99a002b5519af2dae1aa058c9ddb4c7bca6743
IEDL.DBID .~1
ISSN 0045-7825
IngestDate Sun Jul 13 05:08:25 EDT 2025
Tue Jul 01 04:06:05 EDT 2025
Thu Apr 24 23:02:30 EDT 2025
Fri Feb 23 02:50:50 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Material point method
Anti-locking and stabilization
Fluid–solid interaction
Meshfree methods
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c391t-d6151c503872dc0f85413f7b2ff99a002b5519af2dae1aa058c9ddb4c7bca6743
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-0419-1038
PQID 2127427998
PQPubID 2045269
PageCount 23
ParticipantIDs proquest_journals_2127427998
crossref_citationtrail_10_1016_j_cma_2018_04_041
crossref_primary_10_1016_j_cma_2018_04_041
elsevier_sciencedirect_doi_10_1016_j_cma_2018_04_041
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-12-01
2018-12-00
20181201
PublicationDateYYYYMMDD 2018-12-01
PublicationDate_xml – month: 12
  year: 2018
  text: 2018-12-01
  day: 01
PublicationDecade 2010
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Computer methods in applied mechanics and engineering
PublicationYear 2018
Publisher Elsevier B.V
Elsevier BV
Publisher_xml – name: Elsevier B.V
– name: Elsevier BV
References Hu (b12) 1954; 10
Piran Aghl, Naito, Riggs (b3) 2014; 140
Sulsky, Zhou, Schreyer (b4) 1995; 87
Cockburn, Shu (b14) 2001; 16
Hiraishi, Haruo, Saitoh (b1) 2010; 04
Lim, Andreykiv, Brinkgreve (b6) 2013
Kularathna, Soga (b8) 2017; 313
Ko, Cox, Riggs, Naito (b2) 2014
Zhang, Zhang, Sze, Lian, Liu (b9) 2017; 330
Washizu (b13) 1982
Belytschko, Liu, Moran (b10) 2000
Mast, Mackenzie-Helnwein, Arduino, Miller, Shin (b7) 2012; 231
Bardenhagen, Kober (b11) 2004; 5
Burgess, Sulsky, Brackbill (b19) 1992; 103
Hesthaven, Warburton (b15) 2008
LeVeque (b17) 2002
Yang (b18) 2016
LeVeque (b16) 1992
Wiȩckowski, Youn, Yeon (b5) 1999; 45
Hu (10.1016/j.cma.2018.04.041_b12) 1954; 10
LeVeque (10.1016/j.cma.2018.04.041_b16) 1992
Belytschko (10.1016/j.cma.2018.04.041_b10) 2000
Ko (10.1016/j.cma.2018.04.041_b2) 2014
Piran Aghl (10.1016/j.cma.2018.04.041_b3) 2014; 140
LeVeque (10.1016/j.cma.2018.04.041_b17) 2002
Hesthaven (10.1016/j.cma.2018.04.041_b15) 2008
Bardenhagen (10.1016/j.cma.2018.04.041_b11) 2004; 5
Burgess (10.1016/j.cma.2018.04.041_b19) 1992; 103
Sulsky (10.1016/j.cma.2018.04.041_b4) 1995; 87
Yang (10.1016/j.cma.2018.04.041_b18) 2016
Zhang (10.1016/j.cma.2018.04.041_b9) 2017; 330
Mast (10.1016/j.cma.2018.04.041_b7) 2012; 231
Kularathna (10.1016/j.cma.2018.04.041_b8) 2017; 313
Washizu (10.1016/j.cma.2018.04.041_b13) 1982
Cockburn (10.1016/j.cma.2018.04.041_b14) 2001; 16
Lim (10.1016/j.cma.2018.04.041_b6) 2013
Hiraishi (10.1016/j.cma.2018.04.041_b1) 2010; 04
Wiȩckowski (10.1016/j.cma.2018.04.041_b5) 1999; 45
References_xml – volume: 5
  start-page: 477
  year: 2004
  end-page: 495
  ident: b11
  article-title: The generalized interpolation material point method
  publication-title: Comput. Model. Eng. Sci.
– year: 1982
  ident: b13
  article-title: Variational Methods in Elasticity and Plasticity
– volume: 16
  start-page: 173
  year: 2001
  end-page: 261
  ident: b14
  article-title: Runge-Kutta discontinuous galerkin methods for convection-dominated problems
  publication-title: J. Sci. Comput.
– start-page: 24
  year: 2013
  end-page: 30
  ident: b6
  article-title: Pile penetration simulation with material point method
  publication-title: Installation Effects in Geotechnical Engineering
– volume: 103
  start-page: 1
  year: 1992
  end-page: 15
  ident: b19
  article-title: Mass matrix formulation of the FLIP particle-in-cell method
  publication-title: J. Comput. Phys.
– volume: 04
  start-page: 127
  year: 2010
  end-page: 133
  ident: b1
  article-title: Experimental study on impulsive force of drift body due to tsunami flow
  publication-title: J. Earthquake Tsunami
– volume: 231
  start-page: 5351
  year: 2012
  end-page: 5373
  ident: b7
  article-title: Mitigating kinematic locking in the material point method
  publication-title: J. Comput. Phys.
– volume: 10
  start-page: 259
  year: 1954
  end-page: 290
  ident: b12
  article-title: On some variational principles in the theory of elasticity and the theory of plasticity
  publication-title: Acta Phys. Sin.
– volume: 87
  start-page: 236
  year: 1995
  end-page: 252
  ident: b4
  article-title: Application of a particle-in-cell method to solid mechanics
  publication-title: Comput. Phys. Comm.
– year: 1992
  ident: b16
  article-title: Numerical Methods for Conservation Laws
– year: 2000
  ident: b10
  article-title: Nonlinear Finite Elements for Continua and Structures
– year: 2002
  ident: b17
  article-title: Finite Volume Methods for Hyperbolic Problems
– start-page: xiv, 500
  year: 2008
  ident: b15
  article-title: Nodal Discontinuous Galerkin Methods Algorithms, Analysis, and Applications
– start-page: 4014043
  year: 2014
  ident: b2
  article-title: Hydraulic experiments on impact forces from tsunami-driven debris
  publication-title: J. Waterway Port Coast. Ocean Eng.
– volume: 313
  start-page: 673
  year: 2017
  end-page: 686
  ident: b8
  article-title: Implicit formulation of material point method for analysis of incompressible materials
  publication-title: Comput. Methods Appl. Mech. Engrg.
– year: 2016
  ident: b18
  article-title: Study of Tsunami-Induced Fluid and Debris Load on Bridges using the Material Point Method
– volume: 140
  start-page: 4014006
  year: 2014
  ident: b3
  article-title: Full-scale experimental study of impact demands resulting from high mass, low velocity debris
  publication-title: J. Struct. Eng.
– volume: 330
  start-page: 92
  year: 2017
  end-page: 110
  ident: b9
  article-title: Incompressible material point method for free surface flow
  publication-title: J. Comput. Phys.
– volume: 45
  start-page: 1203
  year: 1999
  end-page: 1225
  ident: b5
  article-title: A particle-in-cell solution to the silo discharging problem
  publication-title: Internat. J. Numer. Methods Engrg.
– volume: 313
  start-page: 673
  year: 2017
  ident: 10.1016/j.cma.2018.04.041_b8
  article-title: Implicit formulation of material point method for analysis of incompressible materials
  publication-title: Comput. Methods Appl. Mech. Engrg.
  doi: 10.1016/j.cma.2016.10.013
– start-page: xiv, 500
  year: 2008
  ident: 10.1016/j.cma.2018.04.041_b15
– volume: 103
  start-page: 1
  issue: 1
  year: 1992
  ident: 10.1016/j.cma.2018.04.041_b19
  article-title: Mass matrix formulation of the FLIP particle-in-cell method
  publication-title: J. Comput. Phys.
  doi: 10.1016/0021-9991(92)90323-Q
– volume: 45
  start-page: 1203
  issue: 9
  year: 1999
  ident: 10.1016/j.cma.2018.04.041_b5
  article-title: A particle-in-cell solution to the silo discharging problem
  publication-title: Internat. J. Numer. Methods Engrg.
  doi: 10.1002/(SICI)1097-0207(19990730)45:9<1203::AID-NME626>3.0.CO;2-C
– volume: 330
  start-page: 92
  year: 2017
  ident: 10.1016/j.cma.2018.04.041_b9
  article-title: Incompressible material point method for free surface flow
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2016.10.064
– volume: 140
  start-page: 4014006
  issue: 5
  year: 2014
  ident: 10.1016/j.cma.2018.04.041_b3
  article-title: Full-scale experimental study of impact demands resulting from high mass, low velocity debris
  publication-title: J. Struct. Eng.
  doi: 10.1061/(ASCE)ST.1943-541X.0000948
– volume: 87
  start-page: 236
  issue: 1–2
  year: 1995
  ident: 10.1016/j.cma.2018.04.041_b4
  article-title: Application of a particle-in-cell method to solid mechanics
  publication-title: Comput. Phys. Comm.
  doi: 10.1016/0010-4655(94)00170-7
– year: 2000
  ident: 10.1016/j.cma.2018.04.041_b10
– year: 2016
  ident: 10.1016/j.cma.2018.04.041_b18
– year: 1982
  ident: 10.1016/j.cma.2018.04.041_b13
– start-page: 4014043
  year: 2014
  ident: 10.1016/j.cma.2018.04.041_b2
  article-title: Hydraulic experiments on impact forces from tsunami-driven debris
  publication-title: J. Waterway Port Coast. Ocean Eng.
– year: 1992
  ident: 10.1016/j.cma.2018.04.041_b16
– volume: 16
  start-page: 173
  issue: 3
  year: 2001
  ident: 10.1016/j.cma.2018.04.041_b14
  article-title: Runge-Kutta discontinuous galerkin methods for convection-dominated problems
  publication-title: J. Sci. Comput.
  doi: 10.1023/A:1012873910884
– volume: 5
  start-page: 477
  issue: 6
  year: 2004
  ident: 10.1016/j.cma.2018.04.041_b11
  article-title: The generalized interpolation material point method
  publication-title: Comput. Model. Eng. Sci.
– year: 2002
  ident: 10.1016/j.cma.2018.04.041_b17
– volume: 04
  start-page: 127
  issue: 02
  year: 2010
  ident: 10.1016/j.cma.2018.04.041_b1
  article-title: Experimental study on impulsive force of drift body due to tsunami flow
  publication-title: J. Earthquake Tsunami
  doi: 10.1142/S1793431110000741
– start-page: 24
  year: 2013
  ident: 10.1016/j.cma.2018.04.041_b6
  article-title: Pile penetration simulation with material point method
– volume: 10
  start-page: 259
  issue: 3
  year: 1954
  ident: 10.1016/j.cma.2018.04.041_b12
  article-title: On some variational principles in the theory of elasticity and the theory of plasticity
  publication-title: Acta Phys. Sin.
  doi: 10.7498/aps.10.259
– volume: 231
  start-page: 5351
  issue: 16
  year: 2012
  ident: 10.1016/j.cma.2018.04.041_b7
  article-title: Mitigating kinematic locking in the material point method
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2012.04.032
SSID ssj0000812
Score 2.3839667
Snippet Phenomena involving general solid–water interactions such as flows with debris are challenging to model numerically because they are not easily represented...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 177
SubjectTerms Algorithms
Anti-locking and stabilization
Computational fluid dynamics
Destabilization
Energy dissipation
Error analysis
Fluid flow
Fluid mechanics
Fluid-structure interaction
Fluid–solid interaction
Flux
Incompressible flow
Material point method
Mathematical models
Meshfree methods
Numerical integration
Smoothing
Stabilization
Water flow
Title Smoothing algorithm for stabilization of the material point method for fluid–solid interaction problems
URI https://dx.doi.org/10.1016/j.cma.2018.04.041
https://www.proquest.com/docview/2127427998
Volume 342
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA6LXvTgW3wuOXgSqk1NtulxWZRV0Ysu7C20aaKVdbvs1qv4H_yH_hJn0tQX6EHooS1JKZnJzFf6zTeEHOTchsIwE3RCmQRcCxuAK9sgY9juSrNQd7A4-eq60x_wi6EYtkivqYVBWqWP_XVMd9Ha3zn2q3k8KQqs8eWoxS4YSlhFHVT85DxGLz96_qR5QMqrFcO5CHB082fTcby0kx5i0qmdcvZbbvoRpV3qOVshSx4z0m79WqukZcZrZNnjR-p352yNLH4RF1wnxc1jCWaAc5qO7sppUd0_UoCoFPAgMmLr-ktaWgoYkAJwdb5IJ2UxrmjdWNoNt6OnIn97eQUnLXKK8hLTuhiC-mY0sw0yODu97fUD31gh0CcJq4IcYYxGIZg4ynVopYBUZuMssjZJUoiRGeCoJLVRnhqWpqGQOsnzjOs40ylWLWySuXE5NluERtLwjBsptY0wFqQOBIpMJloYK6NtEjZLqrRXHcfmFyPV0MseFFhBoRVUyOFg2-TwY8qkltz4azBv7KS--Y2ClPDXtL3Gpspv2plCsXsexfABuvO_p-6SBbyq2S57ZK6aPpl9wCxV1nZO2Sbz3fPL_vU7t9jszA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NTtwwEB5tt4eWQylQBHRpfeipUkoc7KxzrFastu3CpSBxsxLHblMtm9VuuCLegTfkSTrjOECR4FAphygZR5Hn74sy8w3Ap1K4WFpuozRWWSSMdBGasosKTuOuDI9NSs3Jxyfp5Ex8P5fnPRh1vTBUVhlifxvTfbQOVw7Cbh4sqop6fAVxsUtOFFZJevgCXgp0Xxpj8OXqvs4Dc15LGS5kROLdr01f5GU89xBXnu5U8KeS06Mw7XPP-C28CaCRfW3fawN6dr4J6wFAsuCeq01Ye8AuuAXVz4sa9YDnLJ_9qpdV8_uCIUZlCAipJLZtwGS1YwgCGSJXb4xsUVfzhrWTpb24m11W5e31DVppVTLil1i23RAsTKNZvYOz8dHpaBKFyQqROcx4E5WEYwwxwQyT0sROScxlblgkzmVZjkGyQCCV5S4pc8vzPJbKZGVZCDMsTE5tC9vQn9dzuwMsUVYUwiplXELBIPcoUBYqM9I6lexC3G2pNoF2nKZfzHRXX_ZHoxY0aUHHAg--C5_vlixazo3nhEWnJ_2P4WjMCc8tG3Q61cFrV5rY7kUyxC_Qvf976kd4NTk9nurpt5Mf7-E13WlLXwbQb5aXdh8BTFN88Ab6Fyli7lo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Smoothing+algorithm+for+stabilization+of+the+material+point+method+for+fluid%E2%80%93solid+interaction+problems&rft.jtitle=Computer+methods+in+applied+mechanics+and+engineering&rft.au=Yang%2C+Wen-Chia&rft.au=Arduino%2C+Pedro&rft.au=Miller%2C+Gregory+R&rft.au=Mackenzie-Helnwein%2C+Peter&rft.date=2018-12-01&rft.pub=Elsevier+BV&rft.issn=0045-7825&rft.volume=342&rft.spage=177&rft_id=info:doi/10.1016%2Fj.cma.2018.04.041&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0045-7825&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0045-7825&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0045-7825&client=summon