Smoothing algorithm for stabilization of the material point method for fluid–solid interaction problems
Phenomena involving general solid–water interactions such as flows with debris are challenging to model numerically because they are not easily represented using solid- or fluid-oriented methods. The material point method (MPM) provides a unified multi-material interaction platform potentially capab...
Saved in:
Published in | Computer methods in applied mechanics and engineering Vol. 342; pp. 177 - 199 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Amsterdam
Elsevier B.V
01.12.2018
Elsevier BV |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Phenomena involving general solid–water interactions such as flows with debris are challenging to model numerically because they are not easily represented using solid- or fluid-oriented methods. The material point method (MPM) provides a unified multi-material interaction platform potentially capable of modeling complex solid–water flow phenomena. However, it is necessary to address volumetric locking for (nearly) incompressible materials when modeling fluids, while also stabilizing integration errors that arise in standard MPM. This paper examines these challenges in depth, and presents a flux-based smoothing algorithm designed to address integration-error-induced destabilization via controlled strain energy dissipation. The effectiveness of the algorithm is demonstrated with two simple but fundamental fluid/solid problems, and with an application to a complex solid–water dynamic interaction problem. Results show the flux-based smoothing algorithm is capable of stabilizing the side-effects of numerical integration errors, while at the same time remaining inactive if there is no integration-error-induced oscillation. Based on this study, the flux-based smoothing algorithm is suggested as a stabilization scheme for MPM when using constant-interpolated hybrid elements.
•This paper presents an approach for enabling MPM to be used for general fluid/solid interaction problems for which both anti-locking and stabilization are required to obtain suitable solutions.•To overcome shortcomings from prior formulations, this paper presents a flux-based algorithm which casts smoothing as a transport problem, and implements an energy dissipation control mechanism by means of controlling flux at cell interfaces.•The behavior of the newly proposed algorithm is demonstrated with basic smoothing examples, 1D and 2D validation examples and an application to a water–solid dynamic interaction problem.•Overall, the results presented in the paper demonstrate that the flux-based algorithm is able to stabilize a complex hydrodynamic analysis involving splashing fluid and complex fluid–solid interaction, and hence is a good candidate for handling tsunami–debris–structure interactions problems. |
---|---|
AbstractList | Phenomena involving general solid–water interactions such as flows with debris are challenging to model numerically because they are not easily represented using solid- or fluid-oriented methods. The material point method (MPM) provides a unified multi-material interaction platform potentially capable of modeling complex solid–water flow phenomena. However, it is necessary to address volumetric locking for (nearly) incompressible materials when modeling fluids, while also stabilizing integration errors that arise in standard MPM. This paper examines these challenges in depth, and presents a flux-based smoothing algorithm designed to address integration-error-induced destabilization via controlled strain energy dissipation. The effectiveness of the algorithm is demonstrated with two simple but fundamental fluid/solid problems, and with an application to a complex solid–water dynamic interaction problem. Results show the flux-based smoothing algorithm is capable of stabilizing the side-effects of numerical integration errors, while at the same time remaining inactive if there is no integration-error-induced oscillation. Based on this study, the flux-based smoothing algorithm is suggested as a stabilization scheme for MPM when using constant-interpolated hybrid elements.
•This paper presents an approach for enabling MPM to be used for general fluid/solid interaction problems for which both anti-locking and stabilization are required to obtain suitable solutions.•To overcome shortcomings from prior formulations, this paper presents a flux-based algorithm which casts smoothing as a transport problem, and implements an energy dissipation control mechanism by means of controlling flux at cell interfaces.•The behavior of the newly proposed algorithm is demonstrated with basic smoothing examples, 1D and 2D validation examples and an application to a water–solid dynamic interaction problem.•Overall, the results presented in the paper demonstrate that the flux-based algorithm is able to stabilize a complex hydrodynamic analysis involving splashing fluid and complex fluid–solid interaction, and hence is a good candidate for handling tsunami–debris–structure interactions problems. Phenomena involving general solid–water interactions such as flows with debris are challenging to model numerically because they are not easily represented using solid- or fluid-oriented methods. The material point method (MPM) provides a unified multi-material interaction platform potentially capable of modeling complex solid–water flow phenomena. However, it is necessary to address volumetric locking for (nearly) incompressible materials when modeling fluids, while also stabilizing integration errors that arise in standard MPM. This paper examines these challenges in depth, and presents a flux-based smoothing algorithm designed to address integration-error-induced destabilization via controlled strain energy dissipation. The effectiveness of the algorithm is demonstrated with two simple but fundamental fluid/solid problems, and with an application to a complex solid–water dynamic interaction problem. Results show the flux-based smoothing algorithm is capable of stabilizing the side-effects of numerical integration errors, while at the same time remaining inactive if there is no integration-error-induced oscillation. Based on this study, the flux-based smoothing algorithm is suggested as a stabilization scheme for MPM when using constant-interpolated hybrid elements. |
Author | Arduino, Pedro Mackenzie-Helnwein, Peter Yang, Wen-Chia Miller, Gregory R. |
Author_xml | – sequence: 1 givenname: Wen-Chia orcidid: 0000-0003-0419-1038 surname: Yang fullname: Yang, Wen-Chia organization: National Center for Research on Earthquake Engineering, 200, Sec. 3, HsinHai Rd., Taipei 106, Taiwan – sequence: 2 givenname: Pedro surname: Arduino fullname: Arduino, Pedro email: parduino@uw.edu organization: Department of Civil & Environmental Engineering, University of Washington, Box 352700, Seattle, WA 98195, USA – sequence: 3 givenname: Gregory R. surname: Miller fullname: Miller, Gregory R. organization: Department of Civil & Environmental Engineering, University of Washington, Box 352700, Seattle, WA 98195, USA – sequence: 4 givenname: Peter surname: Mackenzie-Helnwein fullname: Mackenzie-Helnwein, Peter organization: Department of Civil & Environmental Engineering, University of Washington, Box 352700, Seattle, WA 98195, USA |
BookMark | eNp9kM9q3DAQxkVIIZtNHiA3Qc92NLK9ksmphDYpLPSQ5Cxk_cnOYltbSVtoT3mHvGGfJMpuTz1kGJjDfL_5mO-cnM5hdoRcAauBwep6W5tJ15yBrFlbGk7IAqToKw6NPCULxtquEpJ3Z-Q8pS0rJYEvCD5MIeQNzs9Uj88hYt5M1IdIU9YDjvhHZwwzDZ7mjaOTzi6iHuku4Jzp5PIm2IPcj3u0f19eUxjR0rJ0UZsDuothGN2ULsgnr8fkLv_NJXn69vXx9r5a_7j7fvtlXZmmh1zZFXRgOtZIwa1hXnYtNF4M3Pu-14zxoeug155b7UBr1knTWzu0RgxGr0TbLMnn491i_HPvUlbbsI9zsVQcuGi56HtZVOKoMjGkFJ1XBvPh1xw1jgqYes9VbVXJVb3nqlhbGgoJ_5G7iJOOvz9kbo6MK4__QhdVMuhm4yxGZ7KyAT-g3wB9pJWT |
CitedBy_id | crossref_primary_10_1016_j_cma_2025_117734 crossref_primary_10_1007_s40571_019_00238_z crossref_primary_10_1007_s40571_020_00358_x crossref_primary_10_1016_j_sna_2019_07_039 crossref_primary_10_1016_j_compgeo_2025_107071 crossref_primary_10_1002_nme_7217 crossref_primary_10_1016_j_cma_2023_116644 crossref_primary_10_1016_j_apm_2024_115644 crossref_primary_10_1007_s12239_020_0043_6 crossref_primary_10_1007_s11804_024_00404_7 crossref_primary_10_1016_j_cma_2020_113512 crossref_primary_10_1016_j_enggeo_2024_107733 crossref_primary_10_1016_j_cma_2021_113940 crossref_primary_10_1007_s40571_024_00720_3 crossref_primary_10_1016_j_compgeo_2023_105746 crossref_primary_10_1016_j_engfracmech_2024_109918 crossref_primary_10_1016_j_compgeo_2022_104867 crossref_primary_10_1016_j_compgeo_2023_106049 crossref_primary_10_1007_s40571_020_00365_y |
Cites_doi | 10.1016/j.cma.2016.10.013 10.1016/0021-9991(92)90323-Q 10.1002/(SICI)1097-0207(19990730)45:9<1203::AID-NME626>3.0.CO;2-C 10.1016/j.jcp.2016.10.064 10.1061/(ASCE)ST.1943-541X.0000948 10.1016/0010-4655(94)00170-7 10.1023/A:1012873910884 10.1142/S1793431110000741 10.7498/aps.10.259 10.1016/j.jcp.2012.04.032 |
ContentType | Journal Article |
Copyright | 2018 Elsevier B.V. Copyright Elsevier BV Dec 1, 2018 |
Copyright_xml | – notice: 2018 Elsevier B.V. – notice: Copyright Elsevier BV Dec 1, 2018 |
DBID | AAYXX CITATION 7SC 7TB 8FD FR3 JQ2 KR7 L7M L~C L~D |
DOI | 10.1016/j.cma.2018.04.041 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Civil Engineering Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Civil Engineering Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Engineering |
EISSN | 1879-2138 |
EndPage | 199 |
ExternalDocumentID | 10_1016_j_cma_2018_04_041 S0045782518302263 |
GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO AAYFN ABAOU ABBOA ABFNM ABJNI ABMAC ABYKQ ACAZW ACDAQ ACGFS ACIWK ACRLP ACZNC ADBBV ADEZE ADGUI ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIGVJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ARUGR AXJTR BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ IHE J1W JJJVA KOM LG9 LY7 M41 MHUIS MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 RIG RNS ROL RPZ SDF SDG SDP SES SPC SPCBC SST SSV SSW SSZ T5K TN5 WH7 XPP ZMT ~02 ~G- 29F AAQXK AATTM AAXKI AAYOK AAYWO AAYXX ABEFU ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADIYS ADJOM ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION FEDTE FGOYB G-2 HLZ HVGLF HZ~ R2- SBC SET SEW SSH VH1 VOH WUQ ZY4 7SC 7TB 8FD EFKBS FR3 JQ2 KR7 L7M L~C L~D |
ID | FETCH-LOGICAL-c391t-d6151c503872dc0f85413f7b2ff99a002b5519af2dae1aa058c9ddb4c7bca6743 |
IEDL.DBID | .~1 |
ISSN | 0045-7825 |
IngestDate | Sun Jul 13 05:08:25 EDT 2025 Tue Jul 01 04:06:05 EDT 2025 Thu Apr 24 23:02:30 EDT 2025 Fri Feb 23 02:50:50 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Material point method Anti-locking and stabilization Fluid–solid interaction Meshfree methods |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c391t-d6151c503872dc0f85413f7b2ff99a002b5519af2dae1aa058c9ddb4c7bca6743 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-0419-1038 |
PQID | 2127427998 |
PQPubID | 2045269 |
PageCount | 23 |
ParticipantIDs | proquest_journals_2127427998 crossref_citationtrail_10_1016_j_cma_2018_04_041 crossref_primary_10_1016_j_cma_2018_04_041 elsevier_sciencedirect_doi_10_1016_j_cma_2018_04_041 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-12-01 2018-12-00 20181201 |
PublicationDateYYYYMMDD | 2018-12-01 |
PublicationDate_xml | – month: 12 year: 2018 text: 2018-12-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Amsterdam |
PublicationPlace_xml | – name: Amsterdam |
PublicationTitle | Computer methods in applied mechanics and engineering |
PublicationYear | 2018 |
Publisher | Elsevier B.V Elsevier BV |
Publisher_xml | – name: Elsevier B.V – name: Elsevier BV |
References | Hu (b12) 1954; 10 Piran Aghl, Naito, Riggs (b3) 2014; 140 Sulsky, Zhou, Schreyer (b4) 1995; 87 Cockburn, Shu (b14) 2001; 16 Hiraishi, Haruo, Saitoh (b1) 2010; 04 Lim, Andreykiv, Brinkgreve (b6) 2013 Kularathna, Soga (b8) 2017; 313 Ko, Cox, Riggs, Naito (b2) 2014 Zhang, Zhang, Sze, Lian, Liu (b9) 2017; 330 Washizu (b13) 1982 Belytschko, Liu, Moran (b10) 2000 Mast, Mackenzie-Helnwein, Arduino, Miller, Shin (b7) 2012; 231 Bardenhagen, Kober (b11) 2004; 5 Burgess, Sulsky, Brackbill (b19) 1992; 103 Hesthaven, Warburton (b15) 2008 LeVeque (b17) 2002 Yang (b18) 2016 LeVeque (b16) 1992 Wiȩckowski, Youn, Yeon (b5) 1999; 45 Hu (10.1016/j.cma.2018.04.041_b12) 1954; 10 LeVeque (10.1016/j.cma.2018.04.041_b16) 1992 Belytschko (10.1016/j.cma.2018.04.041_b10) 2000 Ko (10.1016/j.cma.2018.04.041_b2) 2014 Piran Aghl (10.1016/j.cma.2018.04.041_b3) 2014; 140 LeVeque (10.1016/j.cma.2018.04.041_b17) 2002 Hesthaven (10.1016/j.cma.2018.04.041_b15) 2008 Bardenhagen (10.1016/j.cma.2018.04.041_b11) 2004; 5 Burgess (10.1016/j.cma.2018.04.041_b19) 1992; 103 Sulsky (10.1016/j.cma.2018.04.041_b4) 1995; 87 Yang (10.1016/j.cma.2018.04.041_b18) 2016 Zhang (10.1016/j.cma.2018.04.041_b9) 2017; 330 Mast (10.1016/j.cma.2018.04.041_b7) 2012; 231 Kularathna (10.1016/j.cma.2018.04.041_b8) 2017; 313 Washizu (10.1016/j.cma.2018.04.041_b13) 1982 Cockburn (10.1016/j.cma.2018.04.041_b14) 2001; 16 Lim (10.1016/j.cma.2018.04.041_b6) 2013 Hiraishi (10.1016/j.cma.2018.04.041_b1) 2010; 04 Wiȩckowski (10.1016/j.cma.2018.04.041_b5) 1999; 45 |
References_xml | – volume: 5 start-page: 477 year: 2004 end-page: 495 ident: b11 article-title: The generalized interpolation material point method publication-title: Comput. Model. Eng. Sci. – year: 1982 ident: b13 article-title: Variational Methods in Elasticity and Plasticity – volume: 16 start-page: 173 year: 2001 end-page: 261 ident: b14 article-title: Runge-Kutta discontinuous galerkin methods for convection-dominated problems publication-title: J. Sci. Comput. – start-page: 24 year: 2013 end-page: 30 ident: b6 article-title: Pile penetration simulation with material point method publication-title: Installation Effects in Geotechnical Engineering – volume: 103 start-page: 1 year: 1992 end-page: 15 ident: b19 article-title: Mass matrix formulation of the FLIP particle-in-cell method publication-title: J. Comput. Phys. – volume: 04 start-page: 127 year: 2010 end-page: 133 ident: b1 article-title: Experimental study on impulsive force of drift body due to tsunami flow publication-title: J. Earthquake Tsunami – volume: 231 start-page: 5351 year: 2012 end-page: 5373 ident: b7 article-title: Mitigating kinematic locking in the material point method publication-title: J. Comput. Phys. – volume: 10 start-page: 259 year: 1954 end-page: 290 ident: b12 article-title: On some variational principles in the theory of elasticity and the theory of plasticity publication-title: Acta Phys. Sin. – volume: 87 start-page: 236 year: 1995 end-page: 252 ident: b4 article-title: Application of a particle-in-cell method to solid mechanics publication-title: Comput. Phys. Comm. – year: 1992 ident: b16 article-title: Numerical Methods for Conservation Laws – year: 2000 ident: b10 article-title: Nonlinear Finite Elements for Continua and Structures – year: 2002 ident: b17 article-title: Finite Volume Methods for Hyperbolic Problems – start-page: xiv, 500 year: 2008 ident: b15 article-title: Nodal Discontinuous Galerkin Methods Algorithms, Analysis, and Applications – start-page: 4014043 year: 2014 ident: b2 article-title: Hydraulic experiments on impact forces from tsunami-driven debris publication-title: J. Waterway Port Coast. Ocean Eng. – volume: 313 start-page: 673 year: 2017 end-page: 686 ident: b8 article-title: Implicit formulation of material point method for analysis of incompressible materials publication-title: Comput. Methods Appl. Mech. Engrg. – year: 2016 ident: b18 article-title: Study of Tsunami-Induced Fluid and Debris Load on Bridges using the Material Point Method – volume: 140 start-page: 4014006 year: 2014 ident: b3 article-title: Full-scale experimental study of impact demands resulting from high mass, low velocity debris publication-title: J. Struct. Eng. – volume: 330 start-page: 92 year: 2017 end-page: 110 ident: b9 article-title: Incompressible material point method for free surface flow publication-title: J. Comput. Phys. – volume: 45 start-page: 1203 year: 1999 end-page: 1225 ident: b5 article-title: A particle-in-cell solution to the silo discharging problem publication-title: Internat. J. Numer. Methods Engrg. – volume: 313 start-page: 673 year: 2017 ident: 10.1016/j.cma.2018.04.041_b8 article-title: Implicit formulation of material point method for analysis of incompressible materials publication-title: Comput. Methods Appl. Mech. Engrg. doi: 10.1016/j.cma.2016.10.013 – start-page: xiv, 500 year: 2008 ident: 10.1016/j.cma.2018.04.041_b15 – volume: 103 start-page: 1 issue: 1 year: 1992 ident: 10.1016/j.cma.2018.04.041_b19 article-title: Mass matrix formulation of the FLIP particle-in-cell method publication-title: J. Comput. Phys. doi: 10.1016/0021-9991(92)90323-Q – volume: 45 start-page: 1203 issue: 9 year: 1999 ident: 10.1016/j.cma.2018.04.041_b5 article-title: A particle-in-cell solution to the silo discharging problem publication-title: Internat. J. Numer. Methods Engrg. doi: 10.1002/(SICI)1097-0207(19990730)45:9<1203::AID-NME626>3.0.CO;2-C – volume: 330 start-page: 92 year: 2017 ident: 10.1016/j.cma.2018.04.041_b9 article-title: Incompressible material point method for free surface flow publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2016.10.064 – volume: 140 start-page: 4014006 issue: 5 year: 2014 ident: 10.1016/j.cma.2018.04.041_b3 article-title: Full-scale experimental study of impact demands resulting from high mass, low velocity debris publication-title: J. Struct. Eng. doi: 10.1061/(ASCE)ST.1943-541X.0000948 – volume: 87 start-page: 236 issue: 1–2 year: 1995 ident: 10.1016/j.cma.2018.04.041_b4 article-title: Application of a particle-in-cell method to solid mechanics publication-title: Comput. Phys. Comm. doi: 10.1016/0010-4655(94)00170-7 – year: 2000 ident: 10.1016/j.cma.2018.04.041_b10 – year: 2016 ident: 10.1016/j.cma.2018.04.041_b18 – year: 1982 ident: 10.1016/j.cma.2018.04.041_b13 – start-page: 4014043 year: 2014 ident: 10.1016/j.cma.2018.04.041_b2 article-title: Hydraulic experiments on impact forces from tsunami-driven debris publication-title: J. Waterway Port Coast. Ocean Eng. – year: 1992 ident: 10.1016/j.cma.2018.04.041_b16 – volume: 16 start-page: 173 issue: 3 year: 2001 ident: 10.1016/j.cma.2018.04.041_b14 article-title: Runge-Kutta discontinuous galerkin methods for convection-dominated problems publication-title: J. Sci. Comput. doi: 10.1023/A:1012873910884 – volume: 5 start-page: 477 issue: 6 year: 2004 ident: 10.1016/j.cma.2018.04.041_b11 article-title: The generalized interpolation material point method publication-title: Comput. Model. Eng. Sci. – year: 2002 ident: 10.1016/j.cma.2018.04.041_b17 – volume: 04 start-page: 127 issue: 02 year: 2010 ident: 10.1016/j.cma.2018.04.041_b1 article-title: Experimental study on impulsive force of drift body due to tsunami flow publication-title: J. Earthquake Tsunami doi: 10.1142/S1793431110000741 – start-page: 24 year: 2013 ident: 10.1016/j.cma.2018.04.041_b6 article-title: Pile penetration simulation with material point method – volume: 10 start-page: 259 issue: 3 year: 1954 ident: 10.1016/j.cma.2018.04.041_b12 article-title: On some variational principles in the theory of elasticity and the theory of plasticity publication-title: Acta Phys. Sin. doi: 10.7498/aps.10.259 – volume: 231 start-page: 5351 issue: 16 year: 2012 ident: 10.1016/j.cma.2018.04.041_b7 article-title: Mitigating kinematic locking in the material point method publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2012.04.032 |
SSID | ssj0000812 |
Score | 2.3839667 |
Snippet | Phenomena involving general solid–water interactions such as flows with debris are challenging to model numerically because they are not easily represented... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 177 |
SubjectTerms | Algorithms Anti-locking and stabilization Computational fluid dynamics Destabilization Energy dissipation Error analysis Fluid flow Fluid mechanics Fluid-structure interaction Fluid–solid interaction Flux Incompressible flow Material point method Mathematical models Meshfree methods Numerical integration Smoothing Stabilization Water flow |
Title | Smoothing algorithm for stabilization of the material point method for fluid–solid interaction problems |
URI | https://dx.doi.org/10.1016/j.cma.2018.04.041 https://www.proquest.com/docview/2127427998 |
Volume | 342 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA6LXvTgW3wuOXgSqk1NtulxWZRV0Ysu7C20aaKVdbvs1qv4H_yH_hJn0tQX6EHooS1JKZnJzFf6zTeEHOTchsIwE3RCmQRcCxuAK9sgY9juSrNQd7A4-eq60x_wi6EYtkivqYVBWqWP_XVMd9Ha3zn2q3k8KQqs8eWoxS4YSlhFHVT85DxGLz96_qR5QMqrFcO5CHB082fTcby0kx5i0qmdcvZbbvoRpV3qOVshSx4z0m79WqukZcZrZNnjR-p352yNLH4RF1wnxc1jCWaAc5qO7sppUd0_UoCoFPAgMmLr-ktaWgoYkAJwdb5IJ2UxrmjdWNoNt6OnIn97eQUnLXKK8hLTuhiC-mY0sw0yODu97fUD31gh0CcJq4IcYYxGIZg4ynVopYBUZuMssjZJUoiRGeCoJLVRnhqWpqGQOsnzjOs40ylWLWySuXE5NluERtLwjBsptY0wFqQOBIpMJloYK6NtEjZLqrRXHcfmFyPV0MseFFhBoRVUyOFg2-TwY8qkltz4azBv7KS--Y2ClPDXtL3Gpspv2plCsXsexfABuvO_p-6SBbyq2S57ZK6aPpl9wCxV1nZO2Sbz3fPL_vU7t9jszA |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NTtwwEB5tt4eWQylQBHRpfeipUkoc7KxzrFastu3CpSBxsxLHblMtm9VuuCLegTfkSTrjOECR4FAphygZR5Hn74sy8w3Ap1K4WFpuozRWWSSMdBGasosKTuOuDI9NSs3Jxyfp5Ex8P5fnPRh1vTBUVhlifxvTfbQOVw7Cbh4sqop6fAVxsUtOFFZJevgCXgp0Xxpj8OXqvs4Dc15LGS5kROLdr01f5GU89xBXnu5U8KeS06Mw7XPP-C28CaCRfW3fawN6dr4J6wFAsuCeq01Ye8AuuAXVz4sa9YDnLJ_9qpdV8_uCIUZlCAipJLZtwGS1YwgCGSJXb4xsUVfzhrWTpb24m11W5e31DVppVTLil1i23RAsTKNZvYOz8dHpaBKFyQqROcx4E5WEYwwxwQyT0sROScxlblgkzmVZjkGyQCCV5S4pc8vzPJbKZGVZCDMsTE5tC9vQn9dzuwMsUVYUwiplXELBIPcoUBYqM9I6lexC3G2pNoF2nKZfzHRXX_ZHoxY0aUHHAg--C5_vlixazo3nhEWnJ_2P4WjMCc8tG3Q61cFrV5rY7kUyxC_Qvf976kd4NTk9nurpt5Mf7-E13WlLXwbQb5aXdh8BTFN88Ab6Fyli7lo |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Smoothing+algorithm+for+stabilization+of+the+material+point+method+for+fluid%E2%80%93solid+interaction+problems&rft.jtitle=Computer+methods+in+applied+mechanics+and+engineering&rft.au=Yang%2C+Wen-Chia&rft.au=Arduino%2C+Pedro&rft.au=Miller%2C+Gregory+R&rft.au=Mackenzie-Helnwein%2C+Peter&rft.date=2018-12-01&rft.pub=Elsevier+BV&rft.issn=0045-7825&rft.volume=342&rft.spage=177&rft_id=info:doi/10.1016%2Fj.cma.2018.04.041&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0045-7825&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0045-7825&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0045-7825&client=summon |