CellTalkDB: a manually curated database of ligand–receptor interactions in humans and mice

Abstract Cell–cell communications in multicellular organisms generally involve secreted ligand–receptor (LR) interactions, which is vital for various biological phenomena. Recent advancements in single-cell RNA sequencing (scRNA-seq) have effectively resolved cellular phenotypic heterogeneity and th...

Full description

Saved in:
Bibliographic Details
Published inBriefings in bioinformatics Vol. 22; no. 4
Main Authors Shao, Xin, Liao, Jie, Li, Chengyu, Lu, Xiaoyan, Cheng, Junyun, Fan, Xiaohui
Format Journal Article
LanguageEnglish
Published Oxford Oxford University Press 01.07.2021
Oxford Publishing Limited (England)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Abstract Cell–cell communications in multicellular organisms generally involve secreted ligand–receptor (LR) interactions, which is vital for various biological phenomena. Recent advancements in single-cell RNA sequencing (scRNA-seq) have effectively resolved cellular phenotypic heterogeneity and the cell-type composition of complex tissues, facilitating the systematic investigation of cell–cell communications at single-cell resolution. However, assessment of chemical-signal-dependent cell–cell communication through scRNA-seq relies heavily on prior knowledge of LR interaction pairs. We constructed CellTalkDB (http://tcm.zju.edu.cn/celltalkdb), a manually curated comprehensive database of LR interaction pairs in humans and mice comprising 3398 human LR pairs and 2033 mouse LR pairs, through text mining and manual verification of known protein–protein interactions using the STRING database, with literature-supported evidence for each pair. Compared with SingleCellSignalR, the largest LR-pair resource, CellTalkDB includes not only 2033 mouse LR pairs but also 377 additional human LR pairs. In conclusion, the data on human and mouse LR pairs contained in CellTalkDB could help to further the inference and understanding of the LR-interaction-based cell–cell communications, which might provide new insights into the mechanism underlying biological processes.
AbstractList Cell-cell communications in multicellular organisms generally involve secreted ligand-receptor (LR) interactions, which is vital for various biological phenomena. Recent advancements in single-cell RNA sequencing (scRNA-seq) have effectively resolved cellular phenotypic heterogeneity and the cell-type composition of complex tissues, facilitating the systematic investigation of cell-cell communications at single-cell resolution. However, assessment of chemical-signal-dependent cell-cell communication through scRNA-seq relies heavily on prior knowledge of LR interaction pairs. We constructed CellTalkDB (http://tcm.zju.edu.cn/celltalkdb), a manually curated comprehensive database of LR interaction pairs in humans and mice comprising 3398 human LR pairs and 2033 mouse LR pairs, through text mining and manual verification of known protein-protein interactions using the STRING database, with literature-supported evidence for each pair. Compared with SingleCellSignalR, the largest LR-pair resource, CellTalkDB includes not only 2033 mouse LR pairs but also 377 additional human LR pairs. In conclusion, the data on human and mouse LR pairs contained in CellTalkDB could help to further the inference and understanding of the LR-interaction-based cell-cell communications, which might provide new insights into the mechanism underlying biological processes.Cell-cell communications in multicellular organisms generally involve secreted ligand-receptor (LR) interactions, which is vital for various biological phenomena. Recent advancements in single-cell RNA sequencing (scRNA-seq) have effectively resolved cellular phenotypic heterogeneity and the cell-type composition of complex tissues, facilitating the systematic investigation of cell-cell communications at single-cell resolution. However, assessment of chemical-signal-dependent cell-cell communication through scRNA-seq relies heavily on prior knowledge of LR interaction pairs. We constructed CellTalkDB (http://tcm.zju.edu.cn/celltalkdb), a manually curated comprehensive database of LR interaction pairs in humans and mice comprising 3398 human LR pairs and 2033 mouse LR pairs, through text mining and manual verification of known protein-protein interactions using the STRING database, with literature-supported evidence for each pair. Compared with SingleCellSignalR, the largest LR-pair resource, CellTalkDB includes not only 2033 mouse LR pairs but also 377 additional human LR pairs. In conclusion, the data on human and mouse LR pairs contained in CellTalkDB could help to further the inference and understanding of the LR-interaction-based cell-cell communications, which might provide new insights into the mechanism underlying biological processes.
Abstract Cell–cell communications in multicellular organisms generally involve secreted ligand–receptor (LR) interactions, which is vital for various biological phenomena. Recent advancements in single-cell RNA sequencing (scRNA-seq) have effectively resolved cellular phenotypic heterogeneity and the cell-type composition of complex tissues, facilitating the systematic investigation of cell–cell communications at single-cell resolution. However, assessment of chemical-signal-dependent cell–cell communication through scRNA-seq relies heavily on prior knowledge of LR interaction pairs. We constructed CellTalkDB (http://tcm.zju.edu.cn/celltalkdb), a manually curated comprehensive database of LR interaction pairs in humans and mice comprising 3398 human LR pairs and 2033 mouse LR pairs, through text mining and manual verification of known protein–protein interactions using the STRING database, with literature-supported evidence for each pair. Compared with SingleCellSignalR, the largest LR-pair resource, CellTalkDB includes not only 2033 mouse LR pairs but also 377 additional human LR pairs. In conclusion, the data on human and mouse LR pairs contained in CellTalkDB could help to further the inference and understanding of the LR-interaction-based cell–cell communications, which might provide new insights into the mechanism underlying biological processes.
Cell–cell communications in multicellular organisms generally involve secreted ligand–receptor (LR) interactions, which is vital for various biological phenomena. Recent advancements in single-cell RNA sequencing (scRNA-seq) have effectively resolved cellular phenotypic heterogeneity and the cell-type composition of complex tissues, facilitating the systematic investigation of cell–cell communications at single-cell resolution. However, assessment of chemical-signal-dependent cell–cell communication through scRNA-seq relies heavily on prior knowledge of LR interaction pairs. We constructed CellTalkDB (http://tcm.zju.edu.cn/celltalkdb), a manually curated comprehensive database of LR interaction pairs in humans and mice comprising 3398 human LR pairs and 2033 mouse LR pairs, through text mining and manual verification of known protein–protein interactions using the STRING database, with literature-supported evidence for each pair. Compared with SingleCellSignalR, the largest LR-pair resource, CellTalkDB includes not only 2033 mouse LR pairs but also 377 additional human LR pairs. In conclusion, the data on human and mouse LR pairs contained in CellTalkDB could help to further the inference and understanding of the LR-interaction-based cell–cell communications, which might provide new insights into the mechanism underlying biological processes.
Author Lu, Xiaoyan
Fan, Xiaohui
Cheng, Junyun
Liao, Jie
Shao, Xin
Li, Chengyu
Author_xml – sequence: 1
  givenname: Xin
  surname: Shao
  fullname: Shao, Xin
  email: xin_shao@zju.edu.cn
– sequence: 2
  givenname: Jie
  surname: Liao
  fullname: Liao, Jie
  email: liaojie@zju.edu.cn
– sequence: 3
  givenname: Chengyu
  surname: Li
  fullname: Li, Chengyu
  email: lichengyu3830@qq.com
– sequence: 4
  givenname: Xiaoyan
  surname: Lu
  fullname: Lu, Xiaoyan
  email: luxy@zju.edu.cn
– sequence: 5
  givenname: Junyun
  surname: Cheng
  fullname: Cheng, Junyun
  email: 21819061@zju.edu.cn
– sequence: 6
  givenname: Xiaohui
  orcidid: 0000-0002-6336-3007
  surname: Fan
  fullname: Fan, Xiaohui
  email: fanxh@zju.edu.cn
BookMark eNp90EtKBDEQBuAgCj5XXiAgiCCtSToP407HJwhudCc0lXRaoz2dMUkvZucdvKEnMcO4EnSVCnxVVP2baHUIg0Nol5IjSnR9bLw5NgaASb2CNihXquJE8NVFLVUluKzX0WZKr4Qwok7oBnqauL5_gP7t4vwUA57CMELfz7EdI2TX4hYyGEgOhw73_hmG9uvjMzrrZjlE7IfsItjsw5DKB7-MZUDCReGpt24brXXQJ7fz826hx6vLh8lNdXd_fTs5u6tsrWmuWs6At4w6bpjgXAijXKeYqQWjmklurZStdFyLE8KBaGJo2xphF9AK2dVb6GA5dxbD--hSbqY-2XIYDC6MqWFcKK1qIlWhe7_oaxjjULZrmNCEcKEpK4oulY0hpei6xvoMizNzBN83lDSLvJuSd_OTd-k5_NUzi34Kcf6H3l_qMM7-hd8CpJIj
CitedBy_id crossref_primary_10_1093_nar_gkad914
crossref_primary_10_1016_j_isci_2024_109386
crossref_primary_10_3389_fimmu_2022_884561
crossref_primary_10_1186_s40779_022_00434_8
crossref_primary_10_1016_j_ccell_2023_02_004
crossref_primary_10_1186_s13059_024_03385_6
crossref_primary_10_1109_JBHI_2023_3333828
crossref_primary_10_1093_bib_bbab130
crossref_primary_10_1093_bioinformatics_btac654
crossref_primary_10_1109_TNB_2023_3278685
crossref_primary_10_1038_s41590_021_00920_6
crossref_primary_10_1016_j_mbplus_2022_100122
crossref_primary_10_1016_j_cell_2024_01_021
crossref_primary_10_1038_s41593_023_01334_3
crossref_primary_10_3390_cells12121645
crossref_primary_10_3389_fmicb_2022_846555
crossref_primary_10_7554_eLife_86493
crossref_primary_10_1016_j_celrep_2023_112412
crossref_primary_10_1002_adtp_202300283
crossref_primary_10_1038_s41598_024_78954_7
crossref_primary_10_3390_cancers14194957
crossref_primary_10_3390_cells12151970
crossref_primary_10_1093_bioinformatics_btad596
crossref_primary_10_3389_fgene_2024_1322886
crossref_primary_10_1093_nar_gkab905
crossref_primary_10_3389_fimmu_2022_766852
crossref_primary_10_1038_s42003_023_05283_2
crossref_primary_10_1186_s12964_023_01184_3
crossref_primary_10_3390_cells11213405
crossref_primary_10_1038_s41467_022_32111_8
crossref_primary_10_3389_fcell_2021_703489
crossref_primary_10_1016_j_eng_2023_12_004
crossref_primary_10_1002_alz_13790
crossref_primary_10_1016_j_crmeth_2025_100985
crossref_primary_10_1007_s10142_024_01524_7
crossref_primary_10_1038_s41421_022_00415_0
crossref_primary_10_1016_j_stem_2023_03_016
crossref_primary_10_1186_s13287_024_03982_z
crossref_primary_10_1016_j_bbrep_2024_101802
crossref_primary_10_1093_bfgp_elac019
crossref_primary_10_1016_j_csbj_2024_06_020
crossref_primary_10_3389_fmicb_2023_1126896
crossref_primary_10_1093_bioinformatics_btaf027
crossref_primary_10_1186_s13578_021_00635_z
crossref_primary_10_1038_s43018_023_00527_w
crossref_primary_10_7554_eLife_79585
crossref_primary_10_3390_ijms23137452
crossref_primary_10_1007_s11427_023_2561_0
crossref_primary_10_1093_nargab_lqac069
crossref_primary_10_3390_antiox11122376
crossref_primary_10_1016_j_compbiolchem_2025_108353
crossref_primary_10_1038_s41467_022_33365_y
crossref_primary_10_1016_j_asoc_2025_112839
crossref_primary_10_3390_genes14071368
crossref_primary_10_1093_database_baae098
crossref_primary_10_1093_bioinformatics_btac447
crossref_primary_10_1016_j_cels_2023_07_007
crossref_primary_10_1016_j_csbj_2023_06_016
crossref_primary_10_1016_j_cels_2024_10_004
crossref_primary_10_1016_j_isci_2023_106025
crossref_primary_10_1038_s41467_021_21246_9
crossref_primary_10_1016_j_jgg_2023_07_011
crossref_primary_10_1038_s41540_024_00391_z
crossref_primary_10_1093_bib_bbac234
crossref_primary_10_3390_ijms26010275
crossref_primary_10_1042_BST20210863
crossref_primary_10_1038_s41467_021_27276_7
crossref_primary_10_18632_aging_205538
crossref_primary_10_1038_s41467_022_34271_z
crossref_primary_10_1038_s44161_023_00223_z
crossref_primary_10_1126_science_abp9444
crossref_primary_10_1186_s13040_024_00421_w
crossref_primary_10_1038_s43856_024_00530_x
crossref_primary_10_1186_s13059_024_03435_z
crossref_primary_10_1371_journal_ppat_1012565
crossref_primary_10_1038_s41586_024_07746_w
crossref_primary_10_1186_s12915_024_01950_w
crossref_primary_10_1158_2326_6066_CIR_23_0211
crossref_primary_10_1093_bioinformatics_btad269
crossref_primary_10_1038_s43587_023_00514_x
crossref_primary_10_1016_j_cell_2024_10_023
crossref_primary_10_1093_gigascience_giae078
crossref_primary_10_3390_ijms23020946
crossref_primary_10_3390_cancers15010176
crossref_primary_10_1093_gpbjnl_qzae058
crossref_primary_10_1016_j_ebiom_2024_105102
crossref_primary_10_1038_s41588_024_01709_7
crossref_primary_10_1038_s41596_024_01045_4
crossref_primary_10_1093_bib_bbae716
crossref_primary_10_1172_jci_insight_147413
crossref_primary_10_1084_jem_20221437
crossref_primary_10_1016_j_compbiomed_2024_108110
crossref_primary_10_1186_s12864_022_08811_2
crossref_primary_10_1126_sciadv_adj9173
crossref_primary_10_1016_j_ajt_2024_04_015
crossref_primary_10_3389_fphar_2024_1442752
crossref_primary_10_1016_j_crmeth_2024_100758
crossref_primary_10_1038_s41698_025_00841_9
crossref_primary_10_1186_s12964_024_01640_8
crossref_primary_10_1016_j_compbiomed_2023_107137
crossref_primary_10_1093_bioadv_vbae101
crossref_primary_10_3390_cells13110945
crossref_primary_10_3389_fimmu_2023_1123652
crossref_primary_10_1016_j_celrep_2024_114900
crossref_primary_10_1186_s12859_023_05490_y
crossref_primary_10_1038_s41586_023_06464_z
crossref_primary_10_1038_s41698_024_00660_4
crossref_primary_10_3390_cancers15164188
crossref_primary_10_1002_advs_202310266
crossref_primary_10_1111_jcmm_18372
crossref_primary_10_1016_j_isci_2023_107309
crossref_primary_10_1126_sciadv_adq5842
crossref_primary_10_1093_bioinformatics_btad175
crossref_primary_10_1007_s11427_023_2557_x
crossref_primary_10_1093_nar_gkac333
crossref_primary_10_1038_s41597_023_02342_5
crossref_primary_10_1016_j_bsheal_2022_03_001
crossref_primary_10_1093_bib_bbae619
crossref_primary_10_3389_fgene_2021_667382
crossref_primary_10_1038_s41556_024_01403_0
crossref_primary_10_1016_j_xfss_2024_02_001
crossref_primary_10_1038_s41586_024_07715_3
crossref_primary_10_1093_nar_gkad820
crossref_primary_10_1111_pbi_13893
crossref_primary_10_1038_s44320_023_00006_5
crossref_primary_10_1186_s12974_024_03161_0
crossref_primary_10_1002_alz_14419
crossref_primary_10_1038_s41467_022_30755_0
crossref_primary_10_1093_bioinformatics_btab036
crossref_primary_10_3389_fgene_2022_851719
crossref_primary_10_7554_eLife_93326
crossref_primary_10_3389_fimmu_2021_724855
crossref_primary_10_1016_j_phrs_2022_106308
crossref_primary_10_1007_s13238_022_00915_5
crossref_primary_10_1038_s43018_022_00447_1
crossref_primary_10_1186_s12958_021_00818_w
crossref_primary_10_1038_s41421_021_00260_7
crossref_primary_10_1016_j_jpha_2023_06_011
Cites_doi 10.1093/nar/gkaa183
10.1093/nar/gky1131
10.1007/s13238-019-0637-9
10.1016/j.celrep.2018.10.047
10.1016/j.cell.2018.09.009
10.1083/jcb.201804101
10.1016/j.neuron.2017.09.026
10.1016/j.cell.2015.04.044
10.1038/s41591-019-0468-5
10.1038/ncomms8866
10.1038/nchembio.2391
10.1074/jbc.M100097200
10.1038/s41592-019-0540-6
10.1183/09031936.93.03060653
10.1016/j.cels.2018.01.014
10.1016/j.celrep.2019.01.112
10.1016/j.isci.2019.10.026
10.1093/nar/gks960
10.1038/ng755
10.1084/jem.181.1.411
10.1038/ni.1984
10.1007/s13238-020-00727-5
10.3389/fimmu.2018.01553
10.1158/0008-5472.CAN-20-1049
10.1126/stke.2003.187.re9
10.1038/s41596-020-0292-x
10.1016/j.isci.2020.100882
10.1016/j.molcel.2019.07.028
10.1016/j.cell.2015.05.002
ContentType Journal Article
Copyright The Author(s) 2020. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com 2020
The Author(s) 2020. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com
The Author(s) 2020. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Copyright_xml – notice: The Author(s) 2020. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com 2020
– notice: The Author(s) 2020. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com
– notice: The Author(s) 2020. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
DBID AAYXX
CITATION
7QO
7SC
8FD
FR3
JQ2
K9.
L7M
L~C
L~D
P64
RC3
7X8
DOI 10.1093/bib/bbaa269
DatabaseName CrossRef
Biotechnology Research Abstracts
Computer and Information Systems Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
Genetics Abstracts
Biotechnology Research Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Advanced Technologies Database with Aerospace
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

Genetics Abstracts
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1477-4054
ExternalDocumentID 10_1093_bib_bbaa269
10.1093/bib/bbaa269
GroupedDBID ---
-E4
.2P
.I3
0R~
1TH
23N
2WC
36B
4.4
48X
53G
5GY
5VS
6J9
70D
8VB
AAHBH
AAIJN
AAIMJ
AAJKP
AAJQQ
AAMDB
AAMVS
AAOGV
AAPQZ
AAPXW
AARHZ
AASNB
AAUQX
AAVAP
AAVLN
ABDBF
ABEUO
ABIXL
ABJNI
ABNKS
ABPTD
ABQLI
ABQTQ
ABWST
ABXVV
ABZBJ
ACGFO
ACGFS
ACGOD
ACIWK
ACPRK
ACUFI
ACYTK
ADBBV
ADEYI
ADFTL
ADGKP
ADGZP
ADHKW
ADHZD
ADOCK
ADPDF
ADQBN
ADRDM
ADRIX
ADRTK
ADVEK
ADYVW
ADZTZ
ADZXQ
AECKG
AEGPL
AEGXH
AEJOX
AEKKA
AEKSI
AELWJ
AEMDU
AEMOZ
AENEX
AENZO
AEPUE
AETBJ
AEWNT
AFFZL
AFGWE
AFIYH
AFOFC
AFRAH
AFXEN
AGINJ
AGKEF
AGQXC
AGSYK
AHMBA
AHXPO
AIAGR
AIJHB
AJEEA
AJEUX
AKHUL
AKVCP
AKWXX
ALMA_UNASSIGNED_HOLDINGS
ALTZX
ALUQC
APIBT
APWMN
ARIXL
AXUDD
AYOIW
AZVOD
BAWUL
BAYMD
BCRHZ
BEYMZ
BHONS
BQDIO
BQUQU
BSWAC
BTQHN
C1A
C45
CAG
CDBKE
COF
CS3
CZ4
DAKXR
DIK
DILTD
DU5
D~K
E3Z
EAD
EAP
EAS
EBA
EBC
EBD
EBR
EBS
EBU
EE~
EJD
EMB
EMK
EMOBN
EST
ESX
F5P
F9B
FHSFR
FLIZI
FLUFQ
FOEOM
FQBLK
GAUVT
GJXCC
GX1
H13
H5~
HAR
HW0
HZ~
IOX
J21
K1G
KBUDW
KOP
KSI
KSN
M-Z
M49
MK~
ML0
N9A
NGC
NLBLG
NMDNZ
NOMLY
NU-
O0~
O9-
OAWHX
ODMLO
OJQWA
OK1
OVD
OVEED
P2P
PAFKI
PEELM
PQQKQ
Q1.
Q5Y
QWB
RD5
ROX
RPM
RUSNO
RW1
RXO
SV3
TEORI
TH9
TJP
TLC
TOX
TR2
TUS
W8F
WOQ
X7H
YAYTL
YKOAZ
YXANX
ZKX
ZL0
~91
AAYXX
ABEJV
ABGNP
ABPQP
ABXZS
ACUHS
ACUXJ
AHGBF
AHQJS
ALXQX
AMNDL
ANAKG
CITATION
JXSIZ
7QO
7SC
8FD
FR3
JQ2
K9.
L7M
L~C
L~D
P64
RC3
7X8
ID FETCH-LOGICAL-c391t-d42a4d21e4b254455b7ef72b35219264cc66d6e495804a090b1ddb5c55b7c56f3
IEDL.DBID TOX
ISSN 1467-5463
1477-4054
IngestDate Thu Jul 10 16:39:31 EDT 2025
Mon Jun 30 08:58:37 EDT 2025
Tue Jul 01 03:39:31 EDT 2025
Thu Apr 24 23:06:37 EDT 2025
Wed Aug 28 03:20:06 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords cell–cell-communication
ligand–receptor interaction
mouse
single-cell transcriptomics
scRNA-seq
human
Language English
License This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model)
https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c391t-d42a4d21e4b254455b7ef72b35219264cc66d6e495804a090b1ddb5c55b7c56f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-6336-3007
PQID 2590045912
PQPubID 26846
ParticipantIDs proquest_miscellaneous_2457973067
proquest_journals_2590045912
crossref_citationtrail_10_1093_bib_bbaa269
crossref_primary_10_1093_bib_bbaa269
oup_primary_10_1093_bib_bbaa269
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-07-01
PublicationDateYYYYMMDD 2021-07-01
PublicationDate_xml – month: 07
  year: 2021
  text: 2021-07-01
  day: 01
PublicationDecade 2020
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Briefings in bioinformatics
PublicationYear 2021
Publisher Oxford University Press
Oxford Publishing Limited (England)
Publisher_xml – name: Oxford University Press
– name: Oxford Publishing Limited (England)
References Shao (2021072112311563600_ref8) 2020; 23
Rochemonteix-Galve (2021072112311563600_ref23) 1990; 3
Macosko (2021072112311563600_ref25) 2015; 161
Marx (2021072112311563600_ref29) 2019; 16
Nguyen (2021072112311563600_ref27) 2018; 9
Torre (2021072112311563600_ref28) 2018; 6
Liu (2021072112311563600_ref17) 2019; 26
Sharman (2021072112311563600_ref13) 2013; 41
Cabello-Aguilar (2021072112311563600_ref10) 2020; 48
Klein (2021072112311563600_ref26) 2015; 161
Graeber (2021072112311563600_ref12) 2001; 29
Islam (2021072112311563600_ref20) 2011; 12
Szklarczyk (2021072112311563600_ref21) 2019; 47
Xiong (2021072112311563600_ref6) 2019; 75
Sheikh (2021072112311563600_ref4) 2019; 21
Ben-Shlomo (2021072112311563600_ref14) 2003; 2003
Zheng (2021072112311563600_ref18) 2019; 218
Wang (2021072112311563600_ref16) 2020; 80
Efremova (2021072112311563600_ref9) 2020
Ramilowski (2021072112311563600_ref11) 2015; 6
Shao (2021072112311563600_ref2) 2020
Kumar (2021072112311563600_ref5) 2018; 25
Gartner (2021072112311563600_ref1) 2017; 13
Cohen (2021072112311563600_ref7) 2018; 175
Yu (2021072112311563600_ref15) 2019; 10
Wu (2021072112311563600_ref24) 2017; 96
Sadahira (2021072112311563600_ref3) 1995; 181
Baldwin (2021072112311563600_ref19) 2001; 276
Liao (2021072112311563600_ref30) 2020; S0167-7799
Vieira Braga (2021072112311563600_ref22) 2019; 25
References_xml – volume: 48
  start-page: e55
  issue: 10
  year: 2020
  ident: 2021072112311563600_ref10
  article-title: SingleCellSignalR: inference of intercellular networks from single-cell transcriptomics
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkaa183
– volume: 47
  start-page: D607
  issue: D1
  year: 2019
  ident: 2021072112311563600_ref21
  article-title: STRING v11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gky1131
– volume: 10
  start-page: 668
  issue: 9
  year: 2019
  ident: 2021072112311563600_ref15
  article-title: Core pluripotency factors promote glycolysis of human embryonic stem cells by activating GLUT1 enhancer
  publication-title: Protein Cell
  doi: 10.1007/s13238-019-0637-9
– volume: 25
  start-page: 1458
  issue: 6
  year: 2018
  ident: 2021072112311563600_ref5
  article-title: Analysis of single-cell RNA-Seq identifies cell-cell communication associated with tumor characteristics
  publication-title: Cell Rep
  doi: 10.1016/j.celrep.2018.10.047
– volume: 175
  start-page: 1031
  issue: 4
  year: 2018
  ident: 2021072112311563600_ref7
  article-title: Lung single-cell signaling interaction map reveals basophil role in macrophage imprinting
  publication-title: Cell
  doi: 10.1016/j.cell.2018.09.009
– volume: 218
  start-page: 1891
  issue: 6
  year: 2019
  ident: 2021072112311563600_ref18
  article-title: Somatic autophagy of axonal mitochondria in ischemic neurons
  publication-title: J Cell Biol
  doi: 10.1083/jcb.201804101
– volume: 96
  start-page: 313
  issue: 2
  year: 2017
  ident: 2021072112311563600_ref24
  article-title: Detecting activated cell populations using single-cell RNA-Seq
  publication-title: Neuron
  doi: 10.1016/j.neuron.2017.09.026
– volume: 161
  start-page: 1187
  issue: 5
  year: 2015
  ident: 2021072112311563600_ref26
  article-title: Droplet barcoding for single-cell transcriptomics applied to embryonic stem cells
  publication-title: Cell
  doi: 10.1016/j.cell.2015.04.044
– volume: 25
  start-page: 1153
  issue: 7
  year: 2019
  ident: 2021072112311563600_ref22
  article-title: A cellular census of human lungs identifies novel cell states in health and in asthma
  publication-title: Nat Med
  doi: 10.1038/s41591-019-0468-5
– volume: 6
  year: 2015
  ident: 2021072112311563600_ref11
  article-title: A draft network of ligand-receptor-mediated multicellular signalling in human
  publication-title: Nat Commun
  doi: 10.1038/ncomms8866
– volume: 13
  start-page: 564
  issue: 6
  year: 2017
  ident: 2021072112311563600_ref1
  article-title: Unraveling cell-to-cell signaling networks with chemical biology
  publication-title: Nat Chem Biol
  doi: 10.1038/nchembio.2391
– volume: 276
  start-page: 19166
  issue: 22
  year: 2001
  ident: 2021072112311563600_ref19
  article-title: The specificity of receptor binding by vascular endothelial growth factor-d is different in mouse and man
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M100097200
– volume: 16
  start-page: 809
  issue: 9
  year: 2019
  ident: 2021072112311563600_ref29
  article-title: A dream of single-cell proteomics
  publication-title: Nat Methods
  doi: 10.1038/s41592-019-0540-6
– volume: 3
  start-page: 653
  issue: 6
  year: 1990
  ident: 2021072112311563600_ref23
  article-title: Fibroblast-alveolar cell interactions in sarcoidosis and idiopathic pulmonary fibrosis: evidence for stimulatory and inhibitory cytokine production by alveolar cells
  publication-title: Eur Respir J
  doi: 10.1183/09031936.93.03060653
– volume: 6
  start-page: 171
  issue: 2
  year: 2018
  ident: 2021072112311563600_ref28
  article-title: Rare cell detection by single-cell RNA sequencing as guided by single-molecule RNA FISH
  publication-title: Cell Syst
  doi: 10.1016/j.cels.2018.01.014
– volume: 26
  start-page: 2540
  issue: 10
  year: 2019
  ident: 2021072112311563600_ref17
  article-title: The F-BAR domain of Rga7 relies on a cooperative mechanism of membrane binding with a partner protein during fission yeast cytokinesis
  publication-title: Cell Rep
  doi: 10.1016/j.celrep.2019.01.112
– volume: 21
  start-page: 273
  year: 2019
  ident: 2021072112311563600_ref4
  article-title: Systematic identification of cell-cell communication networks in the developing brain
  publication-title: iScience
  doi: 10.1016/j.isci.2019.10.026
– volume: 41
  start-page: D1083
  issue: Database issue
  year: 2013
  ident: 2021072112311563600_ref13
  article-title: IUPHAR-DB: updated database content and new features
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gks960
– volume: 29
  start-page: 295
  issue: 3
  year: 2001
  ident: 2021072112311563600_ref12
  article-title: Bioinformatic identification of potential autocrine signaling loops in cancers from gene expression profiles
  publication-title: Nat Genet
  doi: 10.1038/ng755
– volume: 181
  start-page: 411
  issue: 1
  year: 1995
  ident: 2021072112311563600_ref3
  article-title: Very late activation antigen 4-vascular cell adhesion molecule 1 interaction is involved in the formation of erythroblastic islands
  publication-title: J Exp Med
  doi: 10.1084/jem.181.1.411
– volume: 12
  start-page: 167
  issue: 2
  year: 2011
  ident: 2021072112311563600_ref20
  article-title: Mouse CCL8, a CCR8 agonist, promotes atopic dermatitis by recruiting IL-5+ T(H)2 cells
  publication-title: Nat Immunol
  doi: 10.1038/ni.1984
– year: 2020
  ident: 2021072112311563600_ref2
  article-title: New avenues for systematically inferring cell-cell communication: through single-cell transcriptomics data
  publication-title: Protein Cell
  doi: 10.1007/s13238-020-00727-5
– volume: 9
  start-page: 1553
  year: 2018
  ident: 2021072112311563600_ref27
  article-title: Single cell RNA sequencing of rare immune cell populations
  publication-title: Front Immunol
  doi: 10.3389/fimmu.2018.01553
– volume: 80
  start-page: 3880
  issue: 18
  year: 2020
  ident: 2021072112311563600_ref16
  article-title: CHD4 promotes breast cancer progression as a coactivator of hypoxia-inducible factors
  publication-title: Cancer Res
  doi: 10.1158/0008-5472.CAN-20-1049
– volume: 2003
  start-page: RE9
  issue: 187
  year: 2003
  ident: 2021072112311563600_ref14
  article-title: Signaling receptome: a genomic and evolutionary perspective of plasma membrane receptors involved in signal transduction
  publication-title: Sci STKE
  doi: 10.1126/stke.2003.187.re9
– year: 2020
  ident: 2021072112311563600_ref9
  article-title: CellPhoneDB: inferring cell-cell communication from combined expression of multi-subunit ligand-receptor complexes
  publication-title: Nat Protoc
  doi: 10.1038/s41596-020-0292-x
– volume: S0167-7799
  start-page: 30140
  issue: 20
  year: 2020
  ident: 2021072112311563600_ref30
  article-title: Uncovering an Organ's molecular architecture at single-cell resolution by spatially resolved Transcriptomics
  publication-title: Trends Biotechnol
– volume: 23
  issue: 3
  year: 2020
  ident: 2021072112311563600_ref8
  article-title: scCATCH: automatic annotation on cell types of clusters from single-cell RNA sequencing data
  publication-title: iScience
  doi: 10.1016/j.isci.2020.100882
– volume: 75
  start-page: 644
  issue: 3
  year: 2019
  ident: 2021072112311563600_ref6
  article-title: Landscape of intercellular crosstalk in healthy and NASH liver revealed by single-cell secretome gene analysis
  publication-title: Mol Cell
  doi: 10.1016/j.molcel.2019.07.028
– volume: 161
  start-page: 1202
  issue: 5
  year: 2015
  ident: 2021072112311563600_ref25
  article-title: Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets
  publication-title: Cell
  doi: 10.1016/j.cell.2015.05.002
SSID ssj0020781
Score 2.6333032
Snippet Abstract Cell–cell communications in multicellular organisms generally involve secreted ligand–receptor (LR) interactions, which is vital for various...
Cell–cell communications in multicellular organisms generally involve secreted ligand–receptor (LR) interactions, which is vital for various biological...
Cell-cell communications in multicellular organisms generally involve secreted ligand-receptor (LR) interactions, which is vital for various biological...
SourceID proquest
crossref
oup
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Biological activity
Cell interactions
Communications
Data mining
Gene sequencing
Heterogeneity
Ligands
Protein interaction
Proteins
Receptors
Title CellTalkDB: a manually curated database of ligand–receptor interactions in humans and mice
URI https://www.proquest.com/docview/2590045912
https://www.proquest.com/docview/2457973067
Volume 22
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3NSsNAEF6kIHgRf7FadYWehNBku7tpvGlVige9tNCDEHZ2N1KMaWnaQ2--g2_ok7iTpIVK0WPYL2SZ_ZmZzMw3hDSN4gkY55aIEP9WKZF4IMLIs6HxQWvAckjMtniWvQF_GophlSCbbwjhR-0WjKAFoBSTWKfn1C9S5Pdfhiu_CvlqyiKi0EN296oM79e7a4pnrZhtefsWKuVxj-xWtiC9LRdvn2zZ7IBsl90hF4fktWvTtK_S9_u7G6roh0L20HRB9RzpHQzF5E5UQnSc0HT0pjLz_fnlLjA7cX40RR6IaVm1kLsHWjTjy6lDUexAf0QGjw_9bs-rmiF4uh0FM89wprhhgeVQsIoJCG0SMnAGlDPSJNdaSiOt83c6Pld-5ENgDAiNQC1k0j4mtWyc2RNCkeWroyHBICQXEYCwVvtRJ2FIlyeDOrleSirWFVM4NqxI4zJi3Y6dWONKrHXSXIEnJUHGZtilE_nfiMZyOeLqHOUxw6ambo4Bq5Or1bA7ARjWUJkdzx2Gu80Voutz-u9HzsgOw6SUIt-2QWqz6dyeO6tiBhfFnvoBpoPK0Q
linkProvider Oxford University Press
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=CellTalkDB%3A+a+manually+curated+database+of+ligand-receptor+interactions+in+humans+and+mice&rft.jtitle=Briefings+in+bioinformatics&rft.au=Shao%2C+Xin&rft.au=Liao%2C+Jie&rft.au=Li%2C+Chengyu&rft.au=Lu%2C+Xiaoyan&rft.date=2021-07-01&rft.issn=1477-4054&rft.eissn=1477-4054&rft.volume=22&rft.issue=4&rft_id=info:doi/10.1093%2Fbib%2Fbbaa269&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1467-5463&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1467-5463&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1467-5463&client=summon