Golden ratio algorithms for variational inequalities

The paper presents a fully adaptive algorithm for monotone variational inequalities. In each iteration the method uses two previous iterates for an approximation of the local Lipschitz constant without running a linesearch. Thus, every iteration of the method requires only one evaluation of a monoto...

Full description

Saved in:
Bibliographic Details
Published inMathematical programming Vol. 184; no. 1-2; pp. 383 - 410
Main Author Malitsky, Yura
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.11.2020
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The paper presents a fully adaptive algorithm for monotone variational inequalities. In each iteration the method uses two previous iterates for an approximation of the local Lipschitz constant without running a linesearch. Thus, every iteration of the method requires only one evaluation of a monotone operator F and a proximal mapping g . The operator F need not be Lipschitz continuous, which also makes the algorithm interesting in the area of composite minimization. The method exhibits an ergodic O (1 /  k ) convergence rate and R -linear rate under an error bound condition. We discuss possible applications of the method to fixed point problems as well as its different generalizations.
AbstractList The paper presents a fully adaptive algorithm for monotone variational inequalities. In each iteration the method uses two previous iterates for an approximation of the local Lipschitz constant without running a linesearch. Thus, every iteration of the method requires only one evaluation of a monotone operator F and a proximal mapping g . The operator F need not be Lipschitz continuous, which also makes the algorithm interesting in the area of composite minimization. The method exhibits an ergodic O (1 /  k ) convergence rate and R -linear rate under an error bound condition. We discuss possible applications of the method to fixed point problems as well as its different generalizations.
The paper presents a fully adaptive algorithm for monotone variational inequalities. In each iteration the method uses two previous iterates for an approximation of the local Lipschitz constant without running a linesearch. Thus, every iteration of the method requires only one evaluation of a monotone operator F and a proximal mapping g. The operator F need not be Lipschitz continuous, which also makes the algorithm interesting in the area of composite minimization. The method exhibits an ergodic O(1 / k) convergence rate and R-linear rate under an error bound condition. We discuss possible applications of the method to fixed point problems as well as its different generalizations.
Author Malitsky, Yura
Author_xml – sequence: 1
  givenname: Yura
  orcidid: 0000-0001-7325-5766
  surname: Malitsky
  fullname: Malitsky, Yura
  email: y.malitsky@gmail.com
  organization: Institute for Numerical and Applied Mathematics, University of Göttingen
BookMark eNp9kE9Lw0AQxRepYFv9Ap4CnqO72f9HKVqFghc9L5NkU7ek2XY3tfjt3TaC4CGHYWB4v8ebN0OTzncWoVuC7wnG8iESTLDMMdFpGBH58QJNCaMiZ4KJCZpiXPCcC4Kv0CzGDcaYUKWmiC19W9suC9A7n0G79sH1n9uYNT5kXxDc6d5Bm7nO7g_Qut7ZeI0uG2ijvfndc_Tx_PS-eMlXb8vXxeMqr6gmfV5ZS5RuGq4klAVoXosSbElLywVjtay5ZEUtqCp1CVDJihIOIIRolLQcJJ2ju8F3F_z-YGNvNv4QUppoCsYJ1VoxNqoqkpvGjBZJpQZVFXyMwTamcv35uT6Aaw3B5tSkGZo0qUlzbtIcE1r8Q3fBbSF8j0N0gGISd2sb_lKNUD-kwYhU
CitedBy_id crossref_primary_10_1007_s10957_023_02375_1
crossref_primary_10_1016_j_ins_2023_120078
crossref_primary_10_1080_10556788_2021_1924714
crossref_primary_10_1016_j_arcontrol_2022_01_003
crossref_primary_10_1007_s10957_021_01882_3
crossref_primary_10_1016_j_cam_2024_116420
crossref_primary_10_3390_math12233773
crossref_primary_10_1080_10556788_2021_1910946
crossref_primary_10_2298_FIL2212969Y
crossref_primary_10_1137_22M1504597
crossref_primary_10_1109_TAC_2022_3204543
crossref_primary_10_1007_s10898_022_01152_0
crossref_primary_10_1016_j_apnum_2024_03_009
crossref_primary_10_1007_s10957_024_02555_7
crossref_primary_10_1016_j_cam_2024_116381
crossref_primary_10_1016_j_compeleceng_2024_109471
crossref_primary_10_1007_s11075_022_01457_x
crossref_primary_10_1007_s10898_022_01154_y
crossref_primary_10_1109_TCSI_2024_3488858
crossref_primary_10_1080_00036811_2020_1757078
crossref_primary_10_1016_j_cam_2022_114517
crossref_primary_10_1080_00036811_2024_2432527
crossref_primary_10_1109_TCYB_2021_3093076
crossref_primary_10_1007_s10915_022_02033_0
crossref_primary_10_1007_s12559_024_10252_w
crossref_primary_10_1007_s10473_024_0210_3
crossref_primary_10_1007_s40840_023_01522_1
crossref_primary_10_1016_j_cnsns_2024_108010
crossref_primary_10_1007_s11075_025_02034_8
crossref_primary_10_3934_math_20231184
crossref_primary_10_1007_s10589_025_00647_2
crossref_primary_10_1137_21M1420319
crossref_primary_10_1007_s40840_024_01664_w
crossref_primary_10_1007_s42250_024_00971_w
crossref_primary_10_1016_j_ejor_2020_04_035
crossref_primary_10_1007_s11228_022_00651_2
crossref_primary_10_1007_s11075_024_01974_x
crossref_primary_10_1109_LCSYS_2024_3368008
crossref_primary_10_3390_sym13030489
crossref_primary_10_3934_math_2025279
crossref_primary_10_1007_s10898_024_01419_8
crossref_primary_10_1007_s11081_022_09713_8
crossref_primary_10_1007_s10898_023_01346_0
crossref_primary_10_1080_02331934_2020_1836634
crossref_primary_10_1109_TSMC_2023_3274222
crossref_primary_10_1016_j_neucom_2021_04_059
crossref_primary_10_1007_s12190_024_02219_9
crossref_primary_10_1007_s10957_020_01661_6
crossref_primary_10_1016_j_matcom_2024_10_008
crossref_primary_10_1007_s10915_023_02132_6
crossref_primary_10_1103_PhysRevB_104_115134
crossref_primary_10_1109_TCNS_2022_3204813
crossref_primary_10_1137_22M1505475
crossref_primary_10_1007_s10898_024_01377_1
crossref_primary_10_1007_s11075_023_01746_z
crossref_primary_10_1080_02331934_2022_2123241
crossref_primary_10_1109_TNNLS_2021_3105227
crossref_primary_10_1007_s10107_024_02143_7
crossref_primary_10_1007_s10589_024_00592_6
crossref_primary_10_1007_s11228_021_00586_0
crossref_primary_10_1007_s10589_021_00305_3
crossref_primary_10_1080_02331934_2024_2449256
crossref_primary_10_1007_s10898_024_01445_6
crossref_primary_10_1016_j_neunet_2024_106247
crossref_primary_10_1007_s13370_025_01275_z
crossref_primary_10_1007_s40314_021_01642_z
crossref_primary_10_1080_02331934_2024_2371041
crossref_primary_10_1007_s10915_022_01989_3
crossref_primary_10_1080_02331934_2023_2168483
crossref_primary_10_1016_j_cam_2023_115093
crossref_primary_10_3934_math_2025097
crossref_primary_10_1007_s10957_023_02320_2
crossref_primary_10_1007_s11075_023_01566_1
crossref_primary_10_1007_s40314_021_01441_6
crossref_primary_10_1016_j_apnum_2023_10_004
crossref_primary_10_1007_s10589_021_00291_6
crossref_primary_10_1016_j_cnsns_2024_108217
crossref_primary_10_3846_mma_2022_14479
crossref_primary_10_1364_BOE_498092
crossref_primary_10_2478_fcds_2024_0004
crossref_primary_10_1007_s10915_020_01327_5
crossref_primary_10_1186_s13660_023_03039_4
crossref_primary_10_1007_s10957_021_01860_9
crossref_primary_10_1007_s10107_025_02206_3
crossref_primary_10_1016_j_cam_2023_115518
crossref_primary_10_1007_s11081_020_09540_9
crossref_primary_10_1007_s40314_021_01540_4
crossref_primary_10_1016_j_apnum_2023_08_005
crossref_primary_10_24193_subbmath_2022_1_06
crossref_primary_10_1109_TAC_2021_3108496
crossref_primary_10_1080_02331934_2019_1683554
crossref_primary_10_1007_s10851_024_01174_1
crossref_primary_10_1007_s11063_021_10628_1
crossref_primary_10_1287_moor_2024_0407
crossref_primary_10_1007_s10589_022_00399_3
crossref_primary_10_1080_02331934_2024_2424446
crossref_primary_10_1007_s12215_024_01183_4
crossref_primary_10_3390_photonics12030229
crossref_primary_10_1007_s10107_023_01976_y
crossref_primary_10_1080_10556788_2023_2246168
crossref_primary_10_3934_jimo_2021160
crossref_primary_10_1137_22M1470104
crossref_primary_10_1016_j_cam_2022_114132
crossref_primary_10_1007_s00245_025_10229_7
crossref_primary_10_3390_app13127058
crossref_primary_10_1515_ijnsns_2021_0459
crossref_primary_10_1007_s10898_022_01253_w
crossref_primary_10_1007_s10589_019_00156_z
crossref_primary_10_1002_mma_6647
crossref_primary_10_1016_j_neunet_2024_106323
crossref_primary_10_1007_s00500_022_07319_x
crossref_primary_10_1287_moor_2023_0167
Cites_doi 10.1007/BF01581141
10.1007/978-1-4419-9467-7
10.1007/BF01585096
10.1023/A:1022605117998
10.1287/moor.2017.0898
10.1007/s10107-016-0992-8
10.1007/BF01141092
10.1137/S0363012998338806
10.1007/s10107-015-0957-3
10.1080/02331939708844365
10.1023/A:1011253113155
10.1287/moor.2016.0817
10.1080/02331934.2014.883510
10.1007/s10851-010-0251-1
10.1007/s10559-011-9343-1
10.1016/S0377-0427(02)00906-8
10.1007/BF02591802
10.1016/0377-0427(94)00094-H
10.1006/jdeq.1996.0104
10.1007/s10851-014-0523-2
10.1090/S0002-9939-1974-0336469-5
10.1137/14097238X
10.1016/0041-5553(64)90137-5
10.1007/s10957-010-9757-3
10.1080/10556788.2017.1300899
10.1137/S0363012994268655
10.1007/s10559-014-9614-8
10.1016/0022-247X(83)90052-5
10.1137/S1052623403425629
10.1007/s11075-015-0007-5
10.1007/s10957-018-1351-0
10.1137/S0363012997317475
10.1016/0041-5553(87)90058-9
10.1137/080716542
10.1007/s10107-006-0034-z
10.1287/10-SSY011
10.1137/100801652
10.1137/11085801X
10.1137/16M1099546
10.1016/0885-064X(92)90013-2
10.1137/S1052623495290179
10.1007/s10107-002-0369-z
10.1137/S0036144593251710
10.1016/0022-247X(87)90031-X
10.1016/S1076-5670(08)70157-5
10.1109/CDC.2016.7798401
ContentType Journal Article
Copyright Springer-Verlag GmbH Germany, part of Springer Nature and Mathematical Optimization Society 2019
Mathematical Programming is a copyright of Springer, (2019). All Rights Reserved.
Springer-Verlag GmbH Germany, part of Springer Nature and Mathematical Optimization Society 2019.
Copyright_xml – notice: Springer-Verlag GmbH Germany, part of Springer Nature and Mathematical Optimization Society 2019
– notice: Mathematical Programming is a copyright of Springer, (2019). All Rights Reserved.
– notice: Springer-Verlag GmbH Germany, part of Springer Nature and Mathematical Optimization Society 2019.
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1007/s10107-019-01416-w
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Computer and Information Systems Abstracts
Computer and Information Systems Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Mathematics
EISSN 1436-4646
EndPage 410
ExternalDocumentID 10_1007_s10107_019_01416_w
GrantInformation_xml – fundername: Deutsche Forschungsgemeinschaft
  grantid: SFB755-A4
  funderid: http://dx.doi.org/10.13039/501100001659
GroupedDBID --K
--Z
-52
-5D
-5G
-BR
-EM
-Y2
-~C
-~X
.4S
.86
.DC
.VR
06D
0R~
0VY
199
1B1
1N0
1OL
1SB
203
28-
29M
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
6TJ
78A
7WY
88I
8AO
8FE
8FG
8FL
8TC
8UJ
8VB
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACNCT
ACOKC
ACOMO
ACPIV
ACUHS
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMOZ
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFFNX
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHQJS
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKVCP
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
B0M
BA0
BAPOH
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EAD
EAP
EBA
EBLON
EBR
EBS
EBU
ECS
EDO
EIOEI
EJD
EMI
EMK
EPL
ESBYG
EST
ESX
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
H~9
I-F
I09
IAO
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K1G
K60
K6V
K6~
K7-
KDC
KOV
KOW
L6V
LAS
LLZTM
M0C
M0N
M2P
M4Y
M7S
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQ-
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P62
P9R
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
PTHSS
Q2X
QOK
QOS
QWB
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RPZ
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SDD
SDH
SDM
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TH9
TN5
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WH7
WK8
XPP
YLTOR
Z45
Z5O
Z7R
Z7S
Z7X
Z7Y
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8N
Z8R
Z8T
Z8W
Z92
ZL0
ZMTXR
ZWQNP
~02
~8M
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
ADXHL
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
7SC
8FD
ABRTQ
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c391t-cee189ff587ab2a95d6baeb3be5644d7d5742d638b9baac7c315aa666f87e5a73
IEDL.DBID U2A
ISSN 0025-5610
IngestDate Fri Jul 25 19:39:44 EDT 2025
Fri Jul 25 19:58:04 EDT 2025
Thu Apr 24 23:02:43 EDT 2025
Tue Jul 01 02:15:12 EDT 2025
Fri Feb 21 02:32:35 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1-2
Keywords Fixed point problem
65K15
47J20
Variational inequality
Composite minimization
90C33
65K10
Saddle point problem
65Y20
Linesearch
First-order methods
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c391t-cee189ff587ab2a95d6baeb3be5644d7d5742d638b9baac7c315aa666f87e5a73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-7325-5766
OpenAccessLink https://resolver.sub.uni-goettingen.de/purl?gro-2/83829
PQID 2266690432
PQPubID 25307
PageCount 28
ParticipantIDs proquest_journals_2451399844
proquest_journals_2266690432
crossref_citationtrail_10_1007_s10107_019_01416_w
crossref_primary_10_1007_s10107_019_01416_w
springer_journals_10_1007_s10107_019_01416_w
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-11-01
PublicationDateYYYYMMDD 2020-11-01
PublicationDate_xml – month: 11
  year: 2020
  text: 2020-11-01
  day: 01
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationSubtitle A Publication of the Mathematical Optimization Society
PublicationTitle Mathematical programming
PublicationTitleAbbrev Math. Program
PublicationYear 2020
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References Juditsky, Nemirovski, Tauvel (CR27) 2011; 1
Naimpally, Singh (CR42) 1983; 96
Nemirovsky (CR44) 1992; 8
Tseng (CR57) 2000; 38
Bello Cruz, Díaz Millán (CR12) 2015; 64
Antipin (CR2) 1994; 30
Yang, Liu (CR58) 2018; 179
Konnov (CR30) 1997; 94
Solodov, Svaiter (CR51) 1999; 37
Polyak (CR47) 1967; 4
Attouch, Chbani, Peypouquet, Redont (CR4) 2018; 168
Bauschke, Combettes (CR10) 2011
Lu, Freund, Nesterov (CR33) 2018; 28
Facchinei, Pang (CR21) 2003
Chambolle, Pock (CR17) 2016; 159
Chambolle, Pock (CR16) 2011; 40
Berinde (CR13) 2007
Khobotov (CR28) 1989; 27
Qihou (CR49) 1987; 124
Bauschke, Bolte, Teboulle (CR8) 2016; 42
Censor, Gibali, Reich (CR15) 2011; 148
Nemirovski (CR43) 2004; 15
Ishikawa (CR25) 1974; 44
Korpelevich (CR31) 1976; 12
Arrow, Hurwicz, Uzawa (CR3) 1958
Bauschke, Borwein (CR9) 1996; 38
Murphy, Sherali, Soyster (CR41) 1982; 24
Combettes (CR20) 1996; 95
Chang, Lin (CR18) 2011; 2
Lorenz, Pock (CR32) 2015; 51
He (CR24) 1994; 66
CR54
CR53
Beck, Teboulle (CR11) 2009; 2
Boţ, Csetnek (CR14) 2016; 71
Malitsky, Semenov (CR38) 2014; 50
Attouch, Cominetti (CR5) 1996; 128
Banert, Boţ (CR7) 2018; 25
Harker (CR23) 1984; 30
Baes, Bürgisser, Nemirovski (CR6) 2013; 23
Pang (CR46) 1997; 79
Alvarez, Attouch (CR1) 2001; 9
Luke, Thao, Tam (CR34) 2018; 43
Tran-Dinh, Kyrillidis, Cevher (CR55) 2015; 16
Iusem, Svaiter (CR26) 1997; 42
Solodov (CR50) 2003; 96
Kinderlehrer, Stampacchia (CR29) 1980
Popov (CR48) 1980; 28
Malitsky (CR36) 2015; 25
Nesterov (CR45) 2007; 109
Chen, Rockafellar (CR19) 1997; 7
CR22
Solodov, Tseng (CR52) 1996; 34
Monteiro, Svaiter (CR39) 2011; 21
Moudafi, Oliny (CR40) 2003; 155
Tseng (CR56) 1995; 60
Malitsky (CR37) 2018; 33
Lyashko, Semenov, Voitova (CR35) 2011; 47
GH Chen (1416_CR19) 1997; 7
AN Iusem (1416_CR26) 1997; 42
S Naimpally (1416_CR42) 1983; 96
Y Malitsky (1416_CR36) 2015; 25
V Berinde (1416_CR13) 2007
J Yang (1416_CR58) 2018; 179
A Juditsky (1416_CR27) 2011; 1
JS Pang (1416_CR46) 1997; 79
HH Bauschke (1416_CR10) 2011
HH Bauschke (1416_CR8) 2016; 42
1416_CR22
GM Korpelevich (1416_CR31) 1976; 12
Q Tran-Dinh (1416_CR55) 2015; 16
AS Antipin (1416_CR2) 1994; 30
YV Malitsky (1416_CR38) 2014; 50
P Tseng (1416_CR57) 2000; 38
F Facchinei (1416_CR21) 2003
B Polyak (1416_CR47) 1967; 4
PT Harker (1416_CR23) 1984; 30
S Ishikawa (1416_CR25) 1974; 44
KJ Arrow (1416_CR3) 1958
S Banert (1416_CR7) 2018; 25
M Baes (1416_CR6) 2013; 23
F Alvarez (1416_CR1) 2001; 9
J Bello Cruz (1416_CR12) 2015; 64
A Moudafi (1416_CR40) 2003; 155
1416_CR54
FH Murphy (1416_CR41) 1982; 24
1416_CR53
P Tseng (1416_CR56) 1995; 60
P Combettes (1416_CR20) 1996; 95
RD Monteiro (1416_CR39) 2011; 21
H Attouch (1416_CR5) 1996; 128
HH Bauschke (1416_CR9) 1996; 38
L Qihou (1416_CR49) 1987; 124
SI Lyashko (1416_CR35) 2011; 47
B He (1416_CR24) 1994; 66
CC Chang (1416_CR18) 2011; 2
I Konnov (1416_CR30) 1997; 94
Y Nesterov (1416_CR45) 2007; 109
Y Malitsky (1416_CR37) 2018; 33
LD Popov (1416_CR48) 1980; 28
MV Solodov (1416_CR50) 2003; 96
H Attouch (1416_CR4) 2018; 168
A Chambolle (1416_CR16) 2011; 40
RD Luke (1416_CR34) 2018; 43
MV Solodov (1416_CR51) 1999; 37
A Chambolle (1416_CR17) 2016; 159
D Lorenz (1416_CR32) 2015; 51
D Kinderlehrer (1416_CR29) 1980
A Nemirovski (1416_CR43) 2004; 15
MV Solodov (1416_CR52) 1996; 34
H Lu (1416_CR33) 2018; 28
EN Khobotov (1416_CR28) 1989; 27
A Beck (1416_CR11) 2009; 2
RI Boţ (1416_CR14) 2016; 71
Y Censor (1416_CR15) 2011; 148
A Nemirovsky (1416_CR44) 1992; 8
References_xml – volume: 38
  start-page: 367
  issue: 3
  year: 1996
  end-page: 426
  ident: CR9
  article-title: On projection algorithms for solving convex feasibility problems
  publication-title: SIAM Rev.
– volume: 40
  start-page: 120
  issue: 1
  year: 2011
  end-page: 145
  ident: CR16
  article-title: A first-order primal-dual algorithm for convex problems with applications to imaging
  publication-title: J. Math. Imaging Vis.
– ident: CR22
– volume: 66
  start-page: 137
  issue: 1–3
  year: 1994
  end-page: 144
  ident: CR24
  article-title: A new method for a class of linear variational inequalities
  publication-title: Math. Program.
– volume: 4
  start-page: 1
  issue: 5
  year: 1967
  end-page: 17
  ident: CR47
  article-title: Some methods of speeding up the convergence of iteration methods
  publication-title: U.S.S.R. Comput. Math. Math. Phys.
– volume: 43
  start-page: 1143
  issue: 4
  year: 2018
  end-page: 1176
  ident: CR34
  article-title: Quantitative convergence analysis of iterated expansive, set-valued mappings
  publication-title: Math. Oper. Res.
– volume: 12
  start-page: 747
  issue: 4
  year: 1976
  end-page: 756
  ident: CR31
  article-title: The extragradient method for finding saddle points and other problems
  publication-title: Ekonomika i Matematicheskie Metody
– volume: 2
  start-page: 183
  issue: 1
  year: 2009
  end-page: 202
  ident: CR11
  article-title: A fast iterative shrinkage-thresholding algorithm for linear inverse problem
  publication-title: SIAM J. Imaging Sci.
– volume: 71
  start-page: 519
  issue: 3
  year: 2016
  end-page: 540
  ident: CR14
  article-title: An inertial forward-backward-forward primal-dual splitting algorithm for solving monotone inclusion problems
  publication-title: Numer. Algorithms
– year: 2007
  ident: CR13
  publication-title: Iterative Approximation of Fixed Points
– volume: 60
  start-page: 237
  issue: 1–2
  year: 1995
  end-page: 252
  ident: CR56
  article-title: On linear convergence of iterative methods for the variational inequality problem
  publication-title: J. Comput. Appl. Math.
– volume: 27
  start-page: 120
  year: 1989
  end-page: 127
  ident: CR28
  article-title: Modification of the extragradient method for solving variational inequalities and certain optimization problems
  publication-title: USSR Comput. Math. Math. Phys.
– volume: 47
  start-page: 631
  year: 2011
  end-page: 639
  ident: CR35
  article-title: Low-cost modification of Korpelevich’s method for monotone equilibrium problems
  publication-title: Cybernet. Syst. Anal.
– volume: 28
  start-page: 845
  issue: 5
  year: 1980
  end-page: 848
  ident: CR48
  article-title: A modification of the Arrow–Hurwicz method for finding saddle points
  publication-title: Math. Notes
– ident: CR54
– volume: 124
  start-page: 157
  issue: 1
  year: 1987
  end-page: 164
  ident: CR49
  article-title: On Naimpally and Singh’s open questions
  publication-title: J. Math. Anal. Appl.
– volume: 51
  start-page: 311
  issue: 2
  year: 2015
  end-page: 325
  ident: CR32
  article-title: An inertial forward-backward algorithm for monotone inclusions
  publication-title: J. Math. Imaging Vis.
– volume: 1
  start-page: 17
  issue: 1
  year: 2011
  end-page: 58
  ident: CR27
  article-title: Solving variational inequalities with stochastic mirror-prox algorithm
  publication-title: Stoch. Syst.
– volume: 179
  start-page: 197
  issue: 1
  year: 2018
  end-page: 211
  ident: CR58
  article-title: A modified projected gradient method for monotone variational inequalities
  publication-title: J. Optim. Theory Appl.
– volume: 34
  start-page: 1814
  issue: 5
  year: 1996
  end-page: 1830
  ident: CR52
  article-title: Modified projection-type methods for monotone variational inequalities
  publication-title: SIAM J. Control Optim.
– volume: 148
  start-page: 318
  year: 2011
  end-page: 335
  ident: CR15
  article-title: The subgradient extragradient method for solving variational inequalities in Hilbert space
  publication-title: J. Optitm. Theory Appl.
– volume: 7
  start-page: 421
  issue: 2
  year: 1997
  end-page: 444
  ident: CR19
  article-title: Convergence rates in forward-backward splitting
  publication-title: SIAM J. Optim.
– volume: 128
  start-page: 519
  issue: 2
  year: 1996
  end-page: 540
  ident: CR5
  article-title: A dynamical approach to convex minimization coupling approximation with the steepest descent method
  publication-title: J. Differ. Equ.
– volume: 23
  start-page: 934
  issue: 2
  year: 2013
  end-page: 962
  ident: CR6
  article-title: A randomized mirror-prox method for solving structured large-scale matrix saddle-point problems
  publication-title: SIAM J. Optim.
– volume: 109
  start-page: 319
  issue: 2–3
  year: 2007
  end-page: 344
  ident: CR45
  article-title: Dual extrapolation and its applications to solving variational inequalities and related problems
  publication-title: Math. Program.
– volume: 8
  start-page: 153
  issue: 2
  year: 1992
  end-page: 175
  ident: CR44
  article-title: Information-based complexity of linear operator equations
  publication-title: J. Complex.
– volume: 30
  start-page: 1365
  issue: 9
  year: 1994
  end-page: 1375
  ident: CR2
  article-title: Minimization of convex functions on convex sets by means of differential equations
  publication-title: Differ. Equ.
– volume: 79
  start-page: 299
  issue: 1–3
  year: 1997
  end-page: 332
  ident: CR46
  article-title: Error bounds in mathematical programming
  publication-title: Math. Program.
– volume: 38
  start-page: 431
  year: 2000
  end-page: 446
  ident: CR57
  article-title: A modified forward-backward splitting method for maximal monotone mappings
  publication-title: SIAM J. Control Optim.
– volume: 25
  start-page: 502
  issue: 1
  year: 2015
  end-page: 520
  ident: CR36
  article-title: Reflected projected gradient method for solving monotone variational inequalities
  publication-title: SIAM J. Optim.
– volume: 94
  start-page: 677
  issue: 3
  year: 1997
  end-page: 693
  ident: CR30
  article-title: A class of combined iterative methods for solving variational inequalities
  publication-title: J. Optim. Theory Appl.
– volume: 64
  start-page: 1471
  issue: 7
  year: 2015
  end-page: 1486
  ident: CR12
  article-title: A variant of forward-backward splitting method for the sum of two monotone operators with a new search strategy
  publication-title: Optimization
– volume: 95
  start-page: 155
  year: 1996
  end-page: 270
  ident: CR20
  article-title: The convex feasibility problem in image recovery
  publication-title: Adv. Imaging Electron Phys.
– volume: 21
  start-page: 1688
  issue: 4
  year: 2011
  end-page: 1720
  ident: CR39
  article-title: Complexity of variants of Tseng’s modified FB splitting and Korpelevich’s methods for hemivariational inequalities with applications to saddle-point and convex optimization problems
  publication-title: SIAM J. Optim.
– volume: 16
  start-page: 371
  issue: 1
  year: 2015
  end-page: 416
  ident: CR55
  article-title: Composite self-concordant minimization
  publication-title: J. Mach. Learn. Res.
– volume: 50
  start-page: 271
  issue: 2
  year: 2014
  end-page: 277
  ident: CR38
  article-title: An extragradient algorithm for monotone variational inequalities
  publication-title: Cybernet. Syst. Anal.
– volume: 15
  start-page: 229
  issue: 1
  year: 2004
  end-page: 251
  ident: CR43
  article-title: Prox-method with rate of convergence for variational inequalities with Lipschitz continuous monotone operators and smooth convex-concave saddle point problems
  publication-title: SIAM J. Optim.
– volume: 96
  start-page: 437
  issue: 2
  year: 1983
  end-page: 446
  ident: CR42
  article-title: Extensions of some fixed point theorems of Rhoades
  publication-title: J. Math. Anal. Appl.
– ident: CR53
– volume: 155
  start-page: 447
  issue: 2
  year: 2003
  end-page: 454
  ident: CR40
  article-title: Convergence of a splitting inertial proximal method for monotone operators
  publication-title: J. Comput. Appl. Math.
– volume: 9
  start-page: 3
  issue: 1–2
  year: 2001
  end-page: 11
  ident: CR1
  article-title: An inertial proximal method for maximal monotone operators via discretization of a nonlinear oscillator with damping
  publication-title: Set-Valued Anal.
– volume: 168
  start-page: 123
  issue: 1–2
  year: 2018
  end-page: 175
  ident: CR4
  article-title: Fast convergence of inertial dynamics and algorithms with asymptotic vanishing viscosity
  publication-title: Math. Program.
– volume: 28
  start-page: 333
  issue: 1
  year: 2018
  end-page: 354
  ident: CR33
  article-title: Relatively smooth convex optimization by first-order methods, and applications
  publication-title: SIAM J. Optim.
– volume: 33
  start-page: 140
  issue: 1
  year: 2018
  end-page: 164
  ident: CR37
  article-title: Proximal extrapolated gradient methods for variational inequalities
  publication-title: Optim. Methods Softw.
– volume: 44
  start-page: 147
  issue: 1
  year: 1974
  end-page: 150
  ident: CR25
  article-title: Fixed points by a new iteration method
  publication-title: Proc. Am. Math. Soc.
– year: 1958
  ident: CR3
  publication-title: Studies in Linear and Non-linear Programming
– volume: 37
  start-page: 765
  issue: 3
  year: 1999
  end-page: 776
  ident: CR51
  article-title: A new projection method for variational inequality problems
  publication-title: SIAM J. Control Optim.
– year: 1980
  ident: CR29
  publication-title: An Introduction to Variational Inequalities and Their Applications
– volume: 96
  start-page: 513
  issue: 3
  year: 2003
  end-page: 528
  ident: CR50
  article-title: Convergence rate analysis of iteractive algorithms for solving variational inequality problems
  publication-title: Math. Program.
– volume: 42
  start-page: 330
  issue: 2
  year: 2016
  end-page: 348
  ident: CR8
  article-title: A descent lemma beyond Lipschitz gradient continuity: first-order methods revisited and applications
  publication-title: Math. Oper. Res.
– year: 2011
  ident: CR10
  publication-title: Convex Analysis and Monotone Operator Theory in Hilbert Spaces
– volume: 42
  start-page: 309
  year: 1997
  end-page: 321
  ident: CR26
  article-title: A variant of Korpelevich’s method for variational inequalities with a new search strategy
  publication-title: Optimization
– year: 2003
  ident: CR21
  publication-title: Finite-Dimensional Variational Inequalities and Complementarity Problems, Volume I and Volume II
– volume: 159
  start-page: 253
  issue: 1–2
  year: 2016
  end-page: 287
  ident: CR17
  article-title: On the ergodic convergence rates of a first-order primal-dual algorithm
  publication-title: Math. Program.
– volume: 2
  start-page: 27
  issue: 3
  year: 2011
  ident: CR18
  article-title: LIBSVM: a library for support vector machines
  publication-title: ACM Trans. Intell. Syst. Technol. (TIST)
– volume: 24
  start-page: 92
  issue: 1
  year: 1982
  end-page: 106
  ident: CR41
  article-title: A mathematical programming approach for determining oligopolistic market equilibrium
  publication-title: Math. Program.
– volume: 25
  start-page: 371
  issue: 2
  year: 2018
  end-page: 388
  ident: CR7
  article-title: A forward-backward-forward differential equation and its asymptotic properties
  publication-title: J. Convex Anal.
– volume: 30
  start-page: 105
  issue: 1
  year: 1984
  end-page: 111
  ident: CR23
  article-title: A variational inequality approach for the determination of oligopolistic market equilibrium
  publication-title: Math. Program.
– volume: 66
  start-page: 137
  issue: 1–3
  year: 1994
  ident: 1416_CR24
  publication-title: Math. Program.
  doi: 10.1007/BF01581141
– volume-title: Convex Analysis and Monotone Operator Theory in Hilbert Spaces
  year: 2011
  ident: 1416_CR10
  doi: 10.1007/978-1-4419-9467-7
– volume: 24
  start-page: 92
  issue: 1
  year: 1982
  ident: 1416_CR41
  publication-title: Math. Program.
  doi: 10.1007/BF01585096
– ident: 1416_CR54
– volume: 25
  start-page: 371
  issue: 2
  year: 2018
  ident: 1416_CR7
  publication-title: J. Convex Anal.
– volume: 94
  start-page: 677
  issue: 3
  year: 1997
  ident: 1416_CR30
  publication-title: J. Optim. Theory Appl.
  doi: 10.1023/A:1022605117998
– volume: 43
  start-page: 1143
  issue: 4
  year: 2018
  ident: 1416_CR34
  publication-title: Math. Oper. Res.
  doi: 10.1287/moor.2017.0898
– volume: 168
  start-page: 123
  issue: 1–2
  year: 2018
  ident: 1416_CR4
  publication-title: Math. Program.
  doi: 10.1007/s10107-016-0992-8
– volume: 28
  start-page: 845
  issue: 5
  year: 1980
  ident: 1416_CR48
  publication-title: Math. Notes
  doi: 10.1007/BF01141092
– volume: 38
  start-page: 431
  year: 2000
  ident: 1416_CR57
  publication-title: SIAM J. Control Optim.
  doi: 10.1137/S0363012998338806
– volume: 159
  start-page: 253
  issue: 1–2
  year: 2016
  ident: 1416_CR17
  publication-title: Math. Program.
  doi: 10.1007/s10107-015-0957-3
– volume: 42
  start-page: 309
  year: 1997
  ident: 1416_CR26
  publication-title: Optimization
  doi: 10.1080/02331939708844365
– volume: 9
  start-page: 3
  issue: 1–2
  year: 2001
  ident: 1416_CR1
  publication-title: Set-Valued Anal.
  doi: 10.1023/A:1011253113155
– volume: 42
  start-page: 330
  issue: 2
  year: 2016
  ident: 1416_CR8
  publication-title: Math. Oper. Res.
  doi: 10.1287/moor.2016.0817
– volume: 64
  start-page: 1471
  issue: 7
  year: 2015
  ident: 1416_CR12
  publication-title: Optimization
  doi: 10.1080/02331934.2014.883510
– volume: 16
  start-page: 371
  issue: 1
  year: 2015
  ident: 1416_CR55
  publication-title: J. Mach. Learn. Res.
– volume: 40
  start-page: 120
  issue: 1
  year: 2011
  ident: 1416_CR16
  publication-title: J. Math. Imaging Vis.
  doi: 10.1007/s10851-010-0251-1
– volume: 47
  start-page: 631
  year: 2011
  ident: 1416_CR35
  publication-title: Cybernet. Syst. Anal.
  doi: 10.1007/s10559-011-9343-1
– volume: 12
  start-page: 747
  issue: 4
  year: 1976
  ident: 1416_CR31
  publication-title: Ekonomika i Matematicheskie Metody
– volume-title: Iterative Approximation of Fixed Points
  year: 2007
  ident: 1416_CR13
– volume: 155
  start-page: 447
  issue: 2
  year: 2003
  ident: 1416_CR40
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/S0377-0427(02)00906-8
– volume: 79
  start-page: 299
  issue: 1–3
  year: 1997
  ident: 1416_CR46
  publication-title: Math. Program.
– volume: 30
  start-page: 105
  issue: 1
  year: 1984
  ident: 1416_CR23
  publication-title: Math. Program.
  doi: 10.1007/BF02591802
– volume: 60
  start-page: 237
  issue: 1–2
  year: 1995
  ident: 1416_CR56
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/0377-0427(94)00094-H
– volume: 128
  start-page: 519
  issue: 2
  year: 1996
  ident: 1416_CR5
  publication-title: J. Differ. Equ.
  doi: 10.1006/jdeq.1996.0104
– volume: 51
  start-page: 311
  issue: 2
  year: 2015
  ident: 1416_CR32
  publication-title: J. Math. Imaging Vis.
  doi: 10.1007/s10851-014-0523-2
– volume: 44
  start-page: 147
  issue: 1
  year: 1974
  ident: 1416_CR25
  publication-title: Proc. Am. Math. Soc.
  doi: 10.1090/S0002-9939-1974-0336469-5
– volume: 25
  start-page: 502
  issue: 1
  year: 2015
  ident: 1416_CR36
  publication-title: SIAM J. Optim.
  doi: 10.1137/14097238X
– volume: 4
  start-page: 1
  issue: 5
  year: 1967
  ident: 1416_CR47
  publication-title: U.S.S.R. Comput. Math. Math. Phys.
  doi: 10.1016/0041-5553(64)90137-5
– volume-title: Finite-Dimensional Variational Inequalities and Complementarity Problems, Volume I and Volume II
  year: 2003
  ident: 1416_CR21
– volume: 30
  start-page: 1365
  issue: 9
  year: 1994
  ident: 1416_CR2
  publication-title: Differ. Equ.
– volume: 148
  start-page: 318
  year: 2011
  ident: 1416_CR15
  publication-title: J. Optitm. Theory Appl.
  doi: 10.1007/s10957-010-9757-3
– volume: 33
  start-page: 140
  issue: 1
  year: 2018
  ident: 1416_CR37
  publication-title: Optim. Methods Softw.
  doi: 10.1080/10556788.2017.1300899
– volume: 34
  start-page: 1814
  issue: 5
  year: 1996
  ident: 1416_CR52
  publication-title: SIAM J. Control Optim.
  doi: 10.1137/S0363012994268655
– volume: 50
  start-page: 271
  issue: 2
  year: 2014
  ident: 1416_CR38
  publication-title: Cybernet. Syst. Anal.
  doi: 10.1007/s10559-014-9614-8
– volume: 96
  start-page: 437
  issue: 2
  year: 1983
  ident: 1416_CR42
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/0022-247X(83)90052-5
– volume: 15
  start-page: 229
  issue: 1
  year: 2004
  ident: 1416_CR43
  publication-title: SIAM J. Optim.
  doi: 10.1137/S1052623403425629
– volume: 2
  start-page: 27
  issue: 3
  year: 2011
  ident: 1416_CR18
  publication-title: ACM Trans. Intell. Syst. Technol. (TIST)
– volume: 71
  start-page: 519
  issue: 3
  year: 2016
  ident: 1416_CR14
  publication-title: Numer. Algorithms
  doi: 10.1007/s11075-015-0007-5
– volume: 179
  start-page: 197
  issue: 1
  year: 2018
  ident: 1416_CR58
  publication-title: J. Optim. Theory Appl.
  doi: 10.1007/s10957-018-1351-0
– volume: 37
  start-page: 765
  issue: 3
  year: 1999
  ident: 1416_CR51
  publication-title: SIAM J. Control Optim.
  doi: 10.1137/S0363012997317475
– volume: 27
  start-page: 120
  year: 1989
  ident: 1416_CR28
  publication-title: USSR Comput. Math. Math. Phys.
  doi: 10.1016/0041-5553(87)90058-9
– volume: 2
  start-page: 183
  issue: 1
  year: 2009
  ident: 1416_CR11
  publication-title: SIAM J. Imaging Sci.
  doi: 10.1137/080716542
– volume: 109
  start-page: 319
  issue: 2–3
  year: 2007
  ident: 1416_CR45
  publication-title: Math. Program.
  doi: 10.1007/s10107-006-0034-z
– volume-title: An Introduction to Variational Inequalities and Their Applications
  year: 1980
  ident: 1416_CR29
– volume: 1
  start-page: 17
  issue: 1
  year: 2011
  ident: 1416_CR27
  publication-title: Stoch. Syst.
  doi: 10.1287/10-SSY011
– volume: 21
  start-page: 1688
  issue: 4
  year: 2011
  ident: 1416_CR39
  publication-title: SIAM J. Optim.
  doi: 10.1137/100801652
– volume: 23
  start-page: 934
  issue: 2
  year: 2013
  ident: 1416_CR6
  publication-title: SIAM J. Optim.
  doi: 10.1137/11085801X
– volume: 28
  start-page: 333
  issue: 1
  year: 2018
  ident: 1416_CR33
  publication-title: SIAM J. Optim.
  doi: 10.1137/16M1099546
– ident: 1416_CR53
– volume: 8
  start-page: 153
  issue: 2
  year: 1992
  ident: 1416_CR44
  publication-title: J. Complex.
  doi: 10.1016/0885-064X(92)90013-2
– volume: 7
  start-page: 421
  issue: 2
  year: 1997
  ident: 1416_CR19
  publication-title: SIAM J. Optim.
  doi: 10.1137/S1052623495290179
– volume: 96
  start-page: 513
  issue: 3
  year: 2003
  ident: 1416_CR50
  publication-title: Math. Program.
  doi: 10.1007/s10107-002-0369-z
– volume: 38
  start-page: 367
  issue: 3
  year: 1996
  ident: 1416_CR9
  publication-title: SIAM Rev.
  doi: 10.1137/S0036144593251710
– volume: 124
  start-page: 157
  issue: 1
  year: 1987
  ident: 1416_CR49
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/0022-247X(87)90031-X
– volume: 95
  start-page: 155
  year: 1996
  ident: 1416_CR20
  publication-title: Adv. Imaging Electron Phys.
  doi: 10.1016/S1076-5670(08)70157-5
– volume-title: Studies in Linear and Non-linear Programming
  year: 1958
  ident: 1416_CR3
– ident: 1416_CR22
  doi: 10.1109/CDC.2016.7798401
SSID ssj0001388
Score 2.648235
Snippet The paper presents a fully adaptive algorithm for monotone variational inequalities. In each iteration the method uses two previous iterates for an...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 383
SubjectTerms Adaptive algorithms
Algorithms
Applied mathematics
Calculus of Variations and Optimal Control; Optimization
Combinatorics
Control theory
Full Length Paper
Inequalities
Mapping
Mathematical and Computational Physics
Mathematical Methods in Physics
Mathematical programming
Mathematics
Mathematics and Statistics
Mathematics of Computing
Methods
Numerical Analysis
Optimization
Theoretical
Title Golden ratio algorithms for variational inequalities
URI https://link.springer.com/article/10.1007/s10107-019-01416-w
https://www.proquest.com/docview/2266690432
https://www.proquest.com/docview/2451399844
Volume 184
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED5Bu8CAeIpCQRnYIBKOnxlb6EOgMlGpTJHtJDCUFtFC_z5nN2kLKkhMUWTHke7su--z784AFyyjqSvUFkYG6SqTsQ1VbmgYC4nuVFmd-z3d3oPo9tndgA-KpLBJGe1eHkl6S72S7EZ8mKSL70EYEc42ocqRu7tArn7UWNhfQpUqL2p16KBIlVk_xnd3tMSYP45Fvbdp78JOARODxlyve7CRjfZhe6V4IL71FhVXJwfAOuMhmpDAKzTQw-cxsv6X10mAoDT4REJcbPoFOMA8kRIp8iH0263Hm25Y3IgQWhqTaYgejag4z7mS2kQ65qkwGumwyTjimlSmHJluikvKxEZrKy0lXGtkKLmSGdeSHkFlNB5lxxBkMmdUCKsIz1hkqRZEXctcECE1NSatASkFk9iiXLi7tWKYLAsdO2EmKMzECzOZ1eBy8c3bvFjGn73rpbyTYuFMEkSDAgk7o9H6ZsYRssaKsRpclSpaNv_-s5P_dT-FrcgRa590WIfK9P0jO0P0MTXnUG00b5tt9-w83bfO_eT7Ap810mc
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV07T8MwED7xGIAB8RSFAhlggkg4fmZgqHgV2jK1UrdgJw4glRbRQsX_4YdycZMWECAxMEZ2nOh89n2ffQ-APWZpkiVq8wODdJXJMPZVaqgfConmVMU6dWe6jWtRbbGrNm9PwVsRC-O83YsrSbdTfwh2I85NMvPvQRjhD3NXypp9HSJR6x9fnuKs7gfB-VnzpOrntQT8mIZk4KMtICpMU66kNoEOeSKMRiJpLEdEkMiEI0dMUBlNaLSOZUwJ1xqxfaqk5VpSHHcaZhF8qGzttILKeL8nVKmiMGyGRvLQnO__-bP5m2DaL9ewzrqdL8FiDku9ykiPlmHKdldg4UOyQnxqjDO89leBXfQ6uGV5ToE83bntPd0P7h76HoJg7wUJeH7I6OEAo8BNpORr0PoXqa3DTLfXtRvgWZkyKkSsCLcsiKkWRB3JVBAhNTUmKQEpBBPFeXryrEpGJ5okVs6EGaEwIyfMaFiCg_E7j6PkHL_2LhfyjvKF2o8QfQoRZnkJv29mHCFyqBgrwWExRZPmnz-2-bfuuzBXbTbqUf3yurYF80FG6l3AYxlmBk_PdhuRz8DsOMXz4Oa_Nf0dIeIORw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV07T8MwED7xkBAMiKcoFMgAE0Tg-JmBoQLKGzFQiS3YiQNIpa1ooOJf8RM5p0kLCJAYGCM7TnQ--76z774D2GCWJo6ozQ8MuqtMhrGvUkP9UEg0pyrWaX6me3Epjhvs9IbfjMBbmQuTR7uXV5L9nAbH0tTKdjpJuvMh8Y3kIZMu1gchhd8rwirP7GsPnbbu3skBzvBmENQPr_eP_aKugB_TkGQ-2gWiwjTlSmoT6JAnwmh0Ko3liA4SmXD0FxNUTBMarWMZU8K1RpyfKmm5lhTHHYVx5rKPcQU1gtpg7ydUqbJIrEMmRZrO9__82RQO8e2XK9nc0tVnYLqAqF6tr1OzMGJbczD1gbgQny4GbK_deWBH7SZuX16uTJ5u3rWfHrL7x66HgNh7QWe8OHD0cIB-Eie65wvQ-BepLcJYq92yS-BZmTIqRKwItyyIqRZE7cpUECE1NSapACkFE8UFVbmrmNGMhiTLTpgRCjPKhRn1KrA1eKfTJ-r4tXe1lHdULNpuhEhUiNBxFH7fzDjC5VAxVoHtcoqGzT9_bPlv3ddh4uqgHp2fXJ6twGTg_Ps897EKY9nTs11FEJSZtVzvPLj9b0V_B_SxEno
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Golden+ratio+algorithms+for+variational+inequalities&rft.jtitle=Mathematical+programming&rft.au=Malitsky%2C+Yura&rft.date=2020-11-01&rft.pub=Springer+Nature+B.V&rft.issn=0025-5610&rft.eissn=1436-4646&rft.spage=1&rft.epage=28&rft_id=info:doi/10.1007%2Fs10107-019-01416-w&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0025-5610&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0025-5610&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0025-5610&client=summon