Golden ratio algorithms for variational inequalities
The paper presents a fully adaptive algorithm for monotone variational inequalities. In each iteration the method uses two previous iterates for an approximation of the local Lipschitz constant without running a linesearch. Thus, every iteration of the method requires only one evaluation of a monoto...
Saved in:
Published in | Mathematical programming Vol. 184; no. 1-2; pp. 383 - 410 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.11.2020
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The paper presents a fully adaptive algorithm for monotone variational inequalities. In each iteration the method uses two previous iterates for an approximation of the local Lipschitz constant without running a linesearch. Thus, every iteration of the method requires only one evaluation of a monotone operator
F
and a proximal mapping
g
. The operator
F
need not be Lipschitz continuous, which also makes the algorithm interesting in the area of composite minimization. The method exhibits an ergodic
O
(1 /
k
) convergence rate and
R
-linear rate under an error bound condition. We discuss possible applications of the method to fixed point problems as well as its different generalizations. |
---|---|
AbstractList | The paper presents a fully adaptive algorithm for monotone variational inequalities. In each iteration the method uses two previous iterates for an approximation of the local Lipschitz constant without running a linesearch. Thus, every iteration of the method requires only one evaluation of a monotone operator
F
and a proximal mapping
g
. The operator
F
need not be Lipschitz continuous, which also makes the algorithm interesting in the area of composite minimization. The method exhibits an ergodic
O
(1 /
k
) convergence rate and
R
-linear rate under an error bound condition. We discuss possible applications of the method to fixed point problems as well as its different generalizations. The paper presents a fully adaptive algorithm for monotone variational inequalities. In each iteration the method uses two previous iterates for an approximation of the local Lipschitz constant without running a linesearch. Thus, every iteration of the method requires only one evaluation of a monotone operator F and a proximal mapping g. The operator F need not be Lipschitz continuous, which also makes the algorithm interesting in the area of composite minimization. The method exhibits an ergodic O(1 / k) convergence rate and R-linear rate under an error bound condition. We discuss possible applications of the method to fixed point problems as well as its different generalizations. |
Author | Malitsky, Yura |
Author_xml | – sequence: 1 givenname: Yura orcidid: 0000-0001-7325-5766 surname: Malitsky fullname: Malitsky, Yura email: y.malitsky@gmail.com organization: Institute for Numerical and Applied Mathematics, University of Göttingen |
BookMark | eNp9kE9Lw0AQxRepYFv9Ap4CnqO72f9HKVqFghc9L5NkU7ek2XY3tfjt3TaC4CGHYWB4v8ebN0OTzncWoVuC7wnG8iESTLDMMdFpGBH58QJNCaMiZ4KJCZpiXPCcC4Kv0CzGDcaYUKWmiC19W9suC9A7n0G79sH1n9uYNT5kXxDc6d5Bm7nO7g_Qut7ZeI0uG2ijvfndc_Tx_PS-eMlXb8vXxeMqr6gmfV5ZS5RuGq4klAVoXosSbElLywVjtay5ZEUtqCp1CVDJihIOIIRolLQcJJ2ju8F3F_z-YGNvNv4QUppoCsYJ1VoxNqoqkpvGjBZJpQZVFXyMwTamcv35uT6Aaw3B5tSkGZo0qUlzbtIcE1r8Q3fBbSF8j0N0gGISd2sb_lKNUD-kwYhU |
CitedBy_id | crossref_primary_10_1007_s10957_023_02375_1 crossref_primary_10_1016_j_ins_2023_120078 crossref_primary_10_1080_10556788_2021_1924714 crossref_primary_10_1016_j_arcontrol_2022_01_003 crossref_primary_10_1007_s10957_021_01882_3 crossref_primary_10_1016_j_cam_2024_116420 crossref_primary_10_3390_math12233773 crossref_primary_10_1080_10556788_2021_1910946 crossref_primary_10_2298_FIL2212969Y crossref_primary_10_1137_22M1504597 crossref_primary_10_1109_TAC_2022_3204543 crossref_primary_10_1007_s10898_022_01152_0 crossref_primary_10_1016_j_apnum_2024_03_009 crossref_primary_10_1007_s10957_024_02555_7 crossref_primary_10_1016_j_cam_2024_116381 crossref_primary_10_1016_j_compeleceng_2024_109471 crossref_primary_10_1007_s11075_022_01457_x crossref_primary_10_1007_s10898_022_01154_y crossref_primary_10_1109_TCSI_2024_3488858 crossref_primary_10_1080_00036811_2020_1757078 crossref_primary_10_1016_j_cam_2022_114517 crossref_primary_10_1080_00036811_2024_2432527 crossref_primary_10_1109_TCYB_2021_3093076 crossref_primary_10_1007_s10915_022_02033_0 crossref_primary_10_1007_s12559_024_10252_w crossref_primary_10_1007_s10473_024_0210_3 crossref_primary_10_1007_s40840_023_01522_1 crossref_primary_10_1016_j_cnsns_2024_108010 crossref_primary_10_1007_s11075_025_02034_8 crossref_primary_10_3934_math_20231184 crossref_primary_10_1007_s10589_025_00647_2 crossref_primary_10_1137_21M1420319 crossref_primary_10_1007_s40840_024_01664_w crossref_primary_10_1007_s42250_024_00971_w crossref_primary_10_1016_j_ejor_2020_04_035 crossref_primary_10_1007_s11228_022_00651_2 crossref_primary_10_1007_s11075_024_01974_x crossref_primary_10_1109_LCSYS_2024_3368008 crossref_primary_10_3390_sym13030489 crossref_primary_10_3934_math_2025279 crossref_primary_10_1007_s10898_024_01419_8 crossref_primary_10_1007_s11081_022_09713_8 crossref_primary_10_1007_s10898_023_01346_0 crossref_primary_10_1080_02331934_2020_1836634 crossref_primary_10_1109_TSMC_2023_3274222 crossref_primary_10_1016_j_neucom_2021_04_059 crossref_primary_10_1007_s12190_024_02219_9 crossref_primary_10_1007_s10957_020_01661_6 crossref_primary_10_1016_j_matcom_2024_10_008 crossref_primary_10_1007_s10915_023_02132_6 crossref_primary_10_1103_PhysRevB_104_115134 crossref_primary_10_1109_TCNS_2022_3204813 crossref_primary_10_1137_22M1505475 crossref_primary_10_1007_s10898_024_01377_1 crossref_primary_10_1007_s11075_023_01746_z crossref_primary_10_1080_02331934_2022_2123241 crossref_primary_10_1109_TNNLS_2021_3105227 crossref_primary_10_1007_s10107_024_02143_7 crossref_primary_10_1007_s10589_024_00592_6 crossref_primary_10_1007_s11228_021_00586_0 crossref_primary_10_1007_s10589_021_00305_3 crossref_primary_10_1080_02331934_2024_2449256 crossref_primary_10_1007_s10898_024_01445_6 crossref_primary_10_1016_j_neunet_2024_106247 crossref_primary_10_1007_s13370_025_01275_z crossref_primary_10_1007_s40314_021_01642_z crossref_primary_10_1080_02331934_2024_2371041 crossref_primary_10_1007_s10915_022_01989_3 crossref_primary_10_1080_02331934_2023_2168483 crossref_primary_10_1016_j_cam_2023_115093 crossref_primary_10_3934_math_2025097 crossref_primary_10_1007_s10957_023_02320_2 crossref_primary_10_1007_s11075_023_01566_1 crossref_primary_10_1007_s40314_021_01441_6 crossref_primary_10_1016_j_apnum_2023_10_004 crossref_primary_10_1007_s10589_021_00291_6 crossref_primary_10_1016_j_cnsns_2024_108217 crossref_primary_10_3846_mma_2022_14479 crossref_primary_10_1364_BOE_498092 crossref_primary_10_2478_fcds_2024_0004 crossref_primary_10_1007_s10915_020_01327_5 crossref_primary_10_1186_s13660_023_03039_4 crossref_primary_10_1007_s10957_021_01860_9 crossref_primary_10_1007_s10107_025_02206_3 crossref_primary_10_1016_j_cam_2023_115518 crossref_primary_10_1007_s11081_020_09540_9 crossref_primary_10_1007_s40314_021_01540_4 crossref_primary_10_1016_j_apnum_2023_08_005 crossref_primary_10_24193_subbmath_2022_1_06 crossref_primary_10_1109_TAC_2021_3108496 crossref_primary_10_1080_02331934_2019_1683554 crossref_primary_10_1007_s10851_024_01174_1 crossref_primary_10_1007_s11063_021_10628_1 crossref_primary_10_1287_moor_2024_0407 crossref_primary_10_1007_s10589_022_00399_3 crossref_primary_10_1080_02331934_2024_2424446 crossref_primary_10_1007_s12215_024_01183_4 crossref_primary_10_3390_photonics12030229 crossref_primary_10_1007_s10107_023_01976_y crossref_primary_10_1080_10556788_2023_2246168 crossref_primary_10_3934_jimo_2021160 crossref_primary_10_1137_22M1470104 crossref_primary_10_1016_j_cam_2022_114132 crossref_primary_10_1007_s00245_025_10229_7 crossref_primary_10_3390_app13127058 crossref_primary_10_1515_ijnsns_2021_0459 crossref_primary_10_1007_s10898_022_01253_w crossref_primary_10_1007_s10589_019_00156_z crossref_primary_10_1002_mma_6647 crossref_primary_10_1016_j_neunet_2024_106323 crossref_primary_10_1007_s00500_022_07319_x crossref_primary_10_1287_moor_2023_0167 |
Cites_doi | 10.1007/BF01581141 10.1007/978-1-4419-9467-7 10.1007/BF01585096 10.1023/A:1022605117998 10.1287/moor.2017.0898 10.1007/s10107-016-0992-8 10.1007/BF01141092 10.1137/S0363012998338806 10.1007/s10107-015-0957-3 10.1080/02331939708844365 10.1023/A:1011253113155 10.1287/moor.2016.0817 10.1080/02331934.2014.883510 10.1007/s10851-010-0251-1 10.1007/s10559-011-9343-1 10.1016/S0377-0427(02)00906-8 10.1007/BF02591802 10.1016/0377-0427(94)00094-H 10.1006/jdeq.1996.0104 10.1007/s10851-014-0523-2 10.1090/S0002-9939-1974-0336469-5 10.1137/14097238X 10.1016/0041-5553(64)90137-5 10.1007/s10957-010-9757-3 10.1080/10556788.2017.1300899 10.1137/S0363012994268655 10.1007/s10559-014-9614-8 10.1016/0022-247X(83)90052-5 10.1137/S1052623403425629 10.1007/s11075-015-0007-5 10.1007/s10957-018-1351-0 10.1137/S0363012997317475 10.1016/0041-5553(87)90058-9 10.1137/080716542 10.1007/s10107-006-0034-z 10.1287/10-SSY011 10.1137/100801652 10.1137/11085801X 10.1137/16M1099546 10.1016/0885-064X(92)90013-2 10.1137/S1052623495290179 10.1007/s10107-002-0369-z 10.1137/S0036144593251710 10.1016/0022-247X(87)90031-X 10.1016/S1076-5670(08)70157-5 10.1109/CDC.2016.7798401 |
ContentType | Journal Article |
Copyright | Springer-Verlag GmbH Germany, part of Springer Nature and Mathematical Optimization Society 2019 Mathematical Programming is a copyright of Springer, (2019). All Rights Reserved. Springer-Verlag GmbH Germany, part of Springer Nature and Mathematical Optimization Society 2019. |
Copyright_xml | – notice: Springer-Verlag GmbH Germany, part of Springer Nature and Mathematical Optimization Society 2019 – notice: Mathematical Programming is a copyright of Springer, (2019). All Rights Reserved. – notice: Springer-Verlag GmbH Germany, part of Springer Nature and Mathematical Optimization Society 2019. |
DBID | AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
DOI | 10.1007/s10107-019-01416-w |
DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Computer and Information Systems Abstracts Computer and Information Systems Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Mathematics |
EISSN | 1436-4646 |
EndPage | 410 |
ExternalDocumentID | 10_1007_s10107_019_01416_w |
GrantInformation_xml | – fundername: Deutsche Forschungsgemeinschaft grantid: SFB755-A4 funderid: http://dx.doi.org/10.13039/501100001659 |
GroupedDBID | --K --Z -52 -5D -5G -BR -EM -Y2 -~C -~X .4S .86 .DC .VR 06D 0R~ 0VY 199 1B1 1N0 1OL 1SB 203 28- 29M 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 6TJ 78A 7WY 88I 8AO 8FE 8FG 8FL 8TC 8UJ 8VB 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDZT ABECU ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACGOD ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACNCT ACOKC ACOMO ACPIV ACUHS ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMOZ AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFFNX AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHQJS AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ AKVCP ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. B0M BA0 BAPOH BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EAD EAP EBA EBLON EBR EBS EBU ECS EDO EIOEI EJD EMI EMK EPL ESBYG EST ESX FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ H~9 I-F I09 IAO IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K1G K60 K6V K6~ K7- KDC KOV KOW L6V LAS LLZTM M0C M0N M2P M4Y M7S MA- N2Q N9A NB0 NDZJH NPVJJ NQ- NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P P62 P9R PF0 PQBIZ PQBZA PQQKQ PROAC PT4 PT5 PTHSS Q2X QOK QOS QWB R4E R89 R9I RHV RIG RNI RNS ROL RPX RPZ RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SDD SDH SDM SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TH9 TN5 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WH7 WK8 XPP YLTOR Z45 Z5O Z7R Z7S Z7X Z7Y Z7Z Z81 Z83 Z86 Z88 Z8M Z8N Z8R Z8T Z8W Z92 ZL0 ZMTXR ZWQNP ~02 ~8M ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG ADXHL AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP AMVHM ATHPR AYFIA CITATION PHGZM PHGZT 7SC 8FD ABRTQ JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c391t-cee189ff587ab2a95d6baeb3be5644d7d5742d638b9baac7c315aa666f87e5a73 |
IEDL.DBID | U2A |
ISSN | 0025-5610 |
IngestDate | Fri Jul 25 19:39:44 EDT 2025 Fri Jul 25 19:58:04 EDT 2025 Thu Apr 24 23:02:43 EDT 2025 Tue Jul 01 02:15:12 EDT 2025 Fri Feb 21 02:32:35 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1-2 |
Keywords | Fixed point problem 65K15 47J20 Variational inequality Composite minimization 90C33 65K10 Saddle point problem 65Y20 Linesearch First-order methods |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c391t-cee189ff587ab2a95d6baeb3be5644d7d5742d638b9baac7c315aa666f87e5a73 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-7325-5766 |
OpenAccessLink | https://resolver.sub.uni-goettingen.de/purl?gro-2/83829 |
PQID | 2266690432 |
PQPubID | 25307 |
PageCount | 28 |
ParticipantIDs | proquest_journals_2451399844 proquest_journals_2266690432 crossref_citationtrail_10_1007_s10107_019_01416_w crossref_primary_10_1007_s10107_019_01416_w springer_journals_10_1007_s10107_019_01416_w |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-11-01 |
PublicationDateYYYYMMDD | 2020-11-01 |
PublicationDate_xml | – month: 11 year: 2020 text: 2020-11-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
PublicationSubtitle | A Publication of the Mathematical Optimization Society |
PublicationTitle | Mathematical programming |
PublicationTitleAbbrev | Math. Program |
PublicationYear | 2020 |
Publisher | Springer Berlin Heidelberg Springer Nature B.V |
Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
References | Juditsky, Nemirovski, Tauvel (CR27) 2011; 1 Naimpally, Singh (CR42) 1983; 96 Nemirovsky (CR44) 1992; 8 Tseng (CR57) 2000; 38 Bello Cruz, Díaz Millán (CR12) 2015; 64 Antipin (CR2) 1994; 30 Yang, Liu (CR58) 2018; 179 Konnov (CR30) 1997; 94 Solodov, Svaiter (CR51) 1999; 37 Polyak (CR47) 1967; 4 Attouch, Chbani, Peypouquet, Redont (CR4) 2018; 168 Bauschke, Combettes (CR10) 2011 Lu, Freund, Nesterov (CR33) 2018; 28 Facchinei, Pang (CR21) 2003 Chambolle, Pock (CR17) 2016; 159 Chambolle, Pock (CR16) 2011; 40 Berinde (CR13) 2007 Khobotov (CR28) 1989; 27 Qihou (CR49) 1987; 124 Bauschke, Bolte, Teboulle (CR8) 2016; 42 Censor, Gibali, Reich (CR15) 2011; 148 Nemirovski (CR43) 2004; 15 Ishikawa (CR25) 1974; 44 Korpelevich (CR31) 1976; 12 Arrow, Hurwicz, Uzawa (CR3) 1958 Bauschke, Borwein (CR9) 1996; 38 Murphy, Sherali, Soyster (CR41) 1982; 24 Combettes (CR20) 1996; 95 Chang, Lin (CR18) 2011; 2 Lorenz, Pock (CR32) 2015; 51 He (CR24) 1994; 66 CR54 CR53 Beck, Teboulle (CR11) 2009; 2 Boţ, Csetnek (CR14) 2016; 71 Malitsky, Semenov (CR38) 2014; 50 Attouch, Cominetti (CR5) 1996; 128 Banert, Boţ (CR7) 2018; 25 Harker (CR23) 1984; 30 Baes, Bürgisser, Nemirovski (CR6) 2013; 23 Pang (CR46) 1997; 79 Alvarez, Attouch (CR1) 2001; 9 Luke, Thao, Tam (CR34) 2018; 43 Tran-Dinh, Kyrillidis, Cevher (CR55) 2015; 16 Iusem, Svaiter (CR26) 1997; 42 Solodov (CR50) 2003; 96 Kinderlehrer, Stampacchia (CR29) 1980 Popov (CR48) 1980; 28 Malitsky (CR36) 2015; 25 Nesterov (CR45) 2007; 109 Chen, Rockafellar (CR19) 1997; 7 CR22 Solodov, Tseng (CR52) 1996; 34 Monteiro, Svaiter (CR39) 2011; 21 Moudafi, Oliny (CR40) 2003; 155 Tseng (CR56) 1995; 60 Malitsky (CR37) 2018; 33 Lyashko, Semenov, Voitova (CR35) 2011; 47 GH Chen (1416_CR19) 1997; 7 AN Iusem (1416_CR26) 1997; 42 S Naimpally (1416_CR42) 1983; 96 Y Malitsky (1416_CR36) 2015; 25 V Berinde (1416_CR13) 2007 J Yang (1416_CR58) 2018; 179 A Juditsky (1416_CR27) 2011; 1 JS Pang (1416_CR46) 1997; 79 HH Bauschke (1416_CR10) 2011 HH Bauschke (1416_CR8) 2016; 42 1416_CR22 GM Korpelevich (1416_CR31) 1976; 12 Q Tran-Dinh (1416_CR55) 2015; 16 AS Antipin (1416_CR2) 1994; 30 YV Malitsky (1416_CR38) 2014; 50 P Tseng (1416_CR57) 2000; 38 F Facchinei (1416_CR21) 2003 B Polyak (1416_CR47) 1967; 4 PT Harker (1416_CR23) 1984; 30 S Ishikawa (1416_CR25) 1974; 44 KJ Arrow (1416_CR3) 1958 S Banert (1416_CR7) 2018; 25 M Baes (1416_CR6) 2013; 23 F Alvarez (1416_CR1) 2001; 9 J Bello Cruz (1416_CR12) 2015; 64 A Moudafi (1416_CR40) 2003; 155 1416_CR54 FH Murphy (1416_CR41) 1982; 24 1416_CR53 P Tseng (1416_CR56) 1995; 60 P Combettes (1416_CR20) 1996; 95 RD Monteiro (1416_CR39) 2011; 21 H Attouch (1416_CR5) 1996; 128 HH Bauschke (1416_CR9) 1996; 38 L Qihou (1416_CR49) 1987; 124 SI Lyashko (1416_CR35) 2011; 47 B He (1416_CR24) 1994; 66 CC Chang (1416_CR18) 2011; 2 I Konnov (1416_CR30) 1997; 94 Y Nesterov (1416_CR45) 2007; 109 Y Malitsky (1416_CR37) 2018; 33 LD Popov (1416_CR48) 1980; 28 MV Solodov (1416_CR50) 2003; 96 H Attouch (1416_CR4) 2018; 168 A Chambolle (1416_CR16) 2011; 40 RD Luke (1416_CR34) 2018; 43 MV Solodov (1416_CR51) 1999; 37 A Chambolle (1416_CR17) 2016; 159 D Lorenz (1416_CR32) 2015; 51 D Kinderlehrer (1416_CR29) 1980 A Nemirovski (1416_CR43) 2004; 15 MV Solodov (1416_CR52) 1996; 34 H Lu (1416_CR33) 2018; 28 EN Khobotov (1416_CR28) 1989; 27 A Beck (1416_CR11) 2009; 2 RI Boţ (1416_CR14) 2016; 71 Y Censor (1416_CR15) 2011; 148 A Nemirovsky (1416_CR44) 1992; 8 |
References_xml | – volume: 38 start-page: 367 issue: 3 year: 1996 end-page: 426 ident: CR9 article-title: On projection algorithms for solving convex feasibility problems publication-title: SIAM Rev. – volume: 40 start-page: 120 issue: 1 year: 2011 end-page: 145 ident: CR16 article-title: A first-order primal-dual algorithm for convex problems with applications to imaging publication-title: J. Math. Imaging Vis. – ident: CR22 – volume: 66 start-page: 137 issue: 1–3 year: 1994 end-page: 144 ident: CR24 article-title: A new method for a class of linear variational inequalities publication-title: Math. Program. – volume: 4 start-page: 1 issue: 5 year: 1967 end-page: 17 ident: CR47 article-title: Some methods of speeding up the convergence of iteration methods publication-title: U.S.S.R. Comput. Math. Math. Phys. – volume: 43 start-page: 1143 issue: 4 year: 2018 end-page: 1176 ident: CR34 article-title: Quantitative convergence analysis of iterated expansive, set-valued mappings publication-title: Math. Oper. Res. – volume: 12 start-page: 747 issue: 4 year: 1976 end-page: 756 ident: CR31 article-title: The extragradient method for finding saddle points and other problems publication-title: Ekonomika i Matematicheskie Metody – volume: 2 start-page: 183 issue: 1 year: 2009 end-page: 202 ident: CR11 article-title: A fast iterative shrinkage-thresholding algorithm for linear inverse problem publication-title: SIAM J. Imaging Sci. – volume: 71 start-page: 519 issue: 3 year: 2016 end-page: 540 ident: CR14 article-title: An inertial forward-backward-forward primal-dual splitting algorithm for solving monotone inclusion problems publication-title: Numer. Algorithms – year: 2007 ident: CR13 publication-title: Iterative Approximation of Fixed Points – volume: 60 start-page: 237 issue: 1–2 year: 1995 end-page: 252 ident: CR56 article-title: On linear convergence of iterative methods for the variational inequality problem publication-title: J. Comput. Appl. Math. – volume: 27 start-page: 120 year: 1989 end-page: 127 ident: CR28 article-title: Modification of the extragradient method for solving variational inequalities and certain optimization problems publication-title: USSR Comput. Math. Math. Phys. – volume: 47 start-page: 631 year: 2011 end-page: 639 ident: CR35 article-title: Low-cost modification of Korpelevich’s method for monotone equilibrium problems publication-title: Cybernet. Syst. Anal. – volume: 28 start-page: 845 issue: 5 year: 1980 end-page: 848 ident: CR48 article-title: A modification of the Arrow–Hurwicz method for finding saddle points publication-title: Math. Notes – ident: CR54 – volume: 124 start-page: 157 issue: 1 year: 1987 end-page: 164 ident: CR49 article-title: On Naimpally and Singh’s open questions publication-title: J. Math. Anal. Appl. – volume: 51 start-page: 311 issue: 2 year: 2015 end-page: 325 ident: CR32 article-title: An inertial forward-backward algorithm for monotone inclusions publication-title: J. Math. Imaging Vis. – volume: 1 start-page: 17 issue: 1 year: 2011 end-page: 58 ident: CR27 article-title: Solving variational inequalities with stochastic mirror-prox algorithm publication-title: Stoch. Syst. – volume: 179 start-page: 197 issue: 1 year: 2018 end-page: 211 ident: CR58 article-title: A modified projected gradient method for monotone variational inequalities publication-title: J. Optim. Theory Appl. – volume: 34 start-page: 1814 issue: 5 year: 1996 end-page: 1830 ident: CR52 article-title: Modified projection-type methods for monotone variational inequalities publication-title: SIAM J. Control Optim. – volume: 148 start-page: 318 year: 2011 end-page: 335 ident: CR15 article-title: The subgradient extragradient method for solving variational inequalities in Hilbert space publication-title: J. Optitm. Theory Appl. – volume: 7 start-page: 421 issue: 2 year: 1997 end-page: 444 ident: CR19 article-title: Convergence rates in forward-backward splitting publication-title: SIAM J. Optim. – volume: 128 start-page: 519 issue: 2 year: 1996 end-page: 540 ident: CR5 article-title: A dynamical approach to convex minimization coupling approximation with the steepest descent method publication-title: J. Differ. Equ. – volume: 23 start-page: 934 issue: 2 year: 2013 end-page: 962 ident: CR6 article-title: A randomized mirror-prox method for solving structured large-scale matrix saddle-point problems publication-title: SIAM J. Optim. – volume: 109 start-page: 319 issue: 2–3 year: 2007 end-page: 344 ident: CR45 article-title: Dual extrapolation and its applications to solving variational inequalities and related problems publication-title: Math. Program. – volume: 8 start-page: 153 issue: 2 year: 1992 end-page: 175 ident: CR44 article-title: Information-based complexity of linear operator equations publication-title: J. Complex. – volume: 30 start-page: 1365 issue: 9 year: 1994 end-page: 1375 ident: CR2 article-title: Minimization of convex functions on convex sets by means of differential equations publication-title: Differ. Equ. – volume: 79 start-page: 299 issue: 1–3 year: 1997 end-page: 332 ident: CR46 article-title: Error bounds in mathematical programming publication-title: Math. Program. – volume: 38 start-page: 431 year: 2000 end-page: 446 ident: CR57 article-title: A modified forward-backward splitting method for maximal monotone mappings publication-title: SIAM J. Control Optim. – volume: 25 start-page: 502 issue: 1 year: 2015 end-page: 520 ident: CR36 article-title: Reflected projected gradient method for solving monotone variational inequalities publication-title: SIAM J. Optim. – volume: 94 start-page: 677 issue: 3 year: 1997 end-page: 693 ident: CR30 article-title: A class of combined iterative methods for solving variational inequalities publication-title: J. Optim. Theory Appl. – volume: 64 start-page: 1471 issue: 7 year: 2015 end-page: 1486 ident: CR12 article-title: A variant of forward-backward splitting method for the sum of two monotone operators with a new search strategy publication-title: Optimization – volume: 95 start-page: 155 year: 1996 end-page: 270 ident: CR20 article-title: The convex feasibility problem in image recovery publication-title: Adv. Imaging Electron Phys. – volume: 21 start-page: 1688 issue: 4 year: 2011 end-page: 1720 ident: CR39 article-title: Complexity of variants of Tseng’s modified FB splitting and Korpelevich’s methods for hemivariational inequalities with applications to saddle-point and convex optimization problems publication-title: SIAM J. Optim. – volume: 16 start-page: 371 issue: 1 year: 2015 end-page: 416 ident: CR55 article-title: Composite self-concordant minimization publication-title: J. Mach. Learn. Res. – volume: 50 start-page: 271 issue: 2 year: 2014 end-page: 277 ident: CR38 article-title: An extragradient algorithm for monotone variational inequalities publication-title: Cybernet. Syst. Anal. – volume: 15 start-page: 229 issue: 1 year: 2004 end-page: 251 ident: CR43 article-title: Prox-method with rate of convergence for variational inequalities with Lipschitz continuous monotone operators and smooth convex-concave saddle point problems publication-title: SIAM J. Optim. – volume: 96 start-page: 437 issue: 2 year: 1983 end-page: 446 ident: CR42 article-title: Extensions of some fixed point theorems of Rhoades publication-title: J. Math. Anal. Appl. – ident: CR53 – volume: 155 start-page: 447 issue: 2 year: 2003 end-page: 454 ident: CR40 article-title: Convergence of a splitting inertial proximal method for monotone operators publication-title: J. Comput. Appl. Math. – volume: 9 start-page: 3 issue: 1–2 year: 2001 end-page: 11 ident: CR1 article-title: An inertial proximal method for maximal monotone operators via discretization of a nonlinear oscillator with damping publication-title: Set-Valued Anal. – volume: 168 start-page: 123 issue: 1–2 year: 2018 end-page: 175 ident: CR4 article-title: Fast convergence of inertial dynamics and algorithms with asymptotic vanishing viscosity publication-title: Math. Program. – volume: 28 start-page: 333 issue: 1 year: 2018 end-page: 354 ident: CR33 article-title: Relatively smooth convex optimization by first-order methods, and applications publication-title: SIAM J. Optim. – volume: 33 start-page: 140 issue: 1 year: 2018 end-page: 164 ident: CR37 article-title: Proximal extrapolated gradient methods for variational inequalities publication-title: Optim. Methods Softw. – volume: 44 start-page: 147 issue: 1 year: 1974 end-page: 150 ident: CR25 article-title: Fixed points by a new iteration method publication-title: Proc. Am. Math. Soc. – year: 1958 ident: CR3 publication-title: Studies in Linear and Non-linear Programming – volume: 37 start-page: 765 issue: 3 year: 1999 end-page: 776 ident: CR51 article-title: A new projection method for variational inequality problems publication-title: SIAM J. Control Optim. – year: 1980 ident: CR29 publication-title: An Introduction to Variational Inequalities and Their Applications – volume: 96 start-page: 513 issue: 3 year: 2003 end-page: 528 ident: CR50 article-title: Convergence rate analysis of iteractive algorithms for solving variational inequality problems publication-title: Math. Program. – volume: 42 start-page: 330 issue: 2 year: 2016 end-page: 348 ident: CR8 article-title: A descent lemma beyond Lipschitz gradient continuity: first-order methods revisited and applications publication-title: Math. Oper. Res. – year: 2011 ident: CR10 publication-title: Convex Analysis and Monotone Operator Theory in Hilbert Spaces – volume: 42 start-page: 309 year: 1997 end-page: 321 ident: CR26 article-title: A variant of Korpelevich’s method for variational inequalities with a new search strategy publication-title: Optimization – year: 2003 ident: CR21 publication-title: Finite-Dimensional Variational Inequalities and Complementarity Problems, Volume I and Volume II – volume: 159 start-page: 253 issue: 1–2 year: 2016 end-page: 287 ident: CR17 article-title: On the ergodic convergence rates of a first-order primal-dual algorithm publication-title: Math. Program. – volume: 2 start-page: 27 issue: 3 year: 2011 ident: CR18 article-title: LIBSVM: a library for support vector machines publication-title: ACM Trans. Intell. Syst. Technol. (TIST) – volume: 24 start-page: 92 issue: 1 year: 1982 end-page: 106 ident: CR41 article-title: A mathematical programming approach for determining oligopolistic market equilibrium publication-title: Math. Program. – volume: 25 start-page: 371 issue: 2 year: 2018 end-page: 388 ident: CR7 article-title: A forward-backward-forward differential equation and its asymptotic properties publication-title: J. Convex Anal. – volume: 30 start-page: 105 issue: 1 year: 1984 end-page: 111 ident: CR23 article-title: A variational inequality approach for the determination of oligopolistic market equilibrium publication-title: Math. Program. – volume: 66 start-page: 137 issue: 1–3 year: 1994 ident: 1416_CR24 publication-title: Math. Program. doi: 10.1007/BF01581141 – volume-title: Convex Analysis and Monotone Operator Theory in Hilbert Spaces year: 2011 ident: 1416_CR10 doi: 10.1007/978-1-4419-9467-7 – volume: 24 start-page: 92 issue: 1 year: 1982 ident: 1416_CR41 publication-title: Math. Program. doi: 10.1007/BF01585096 – ident: 1416_CR54 – volume: 25 start-page: 371 issue: 2 year: 2018 ident: 1416_CR7 publication-title: J. Convex Anal. – volume: 94 start-page: 677 issue: 3 year: 1997 ident: 1416_CR30 publication-title: J. Optim. Theory Appl. doi: 10.1023/A:1022605117998 – volume: 43 start-page: 1143 issue: 4 year: 2018 ident: 1416_CR34 publication-title: Math. Oper. Res. doi: 10.1287/moor.2017.0898 – volume: 168 start-page: 123 issue: 1–2 year: 2018 ident: 1416_CR4 publication-title: Math. Program. doi: 10.1007/s10107-016-0992-8 – volume: 28 start-page: 845 issue: 5 year: 1980 ident: 1416_CR48 publication-title: Math. Notes doi: 10.1007/BF01141092 – volume: 38 start-page: 431 year: 2000 ident: 1416_CR57 publication-title: SIAM J. Control Optim. doi: 10.1137/S0363012998338806 – volume: 159 start-page: 253 issue: 1–2 year: 2016 ident: 1416_CR17 publication-title: Math. Program. doi: 10.1007/s10107-015-0957-3 – volume: 42 start-page: 309 year: 1997 ident: 1416_CR26 publication-title: Optimization doi: 10.1080/02331939708844365 – volume: 9 start-page: 3 issue: 1–2 year: 2001 ident: 1416_CR1 publication-title: Set-Valued Anal. doi: 10.1023/A:1011253113155 – volume: 42 start-page: 330 issue: 2 year: 2016 ident: 1416_CR8 publication-title: Math. Oper. Res. doi: 10.1287/moor.2016.0817 – volume: 64 start-page: 1471 issue: 7 year: 2015 ident: 1416_CR12 publication-title: Optimization doi: 10.1080/02331934.2014.883510 – volume: 16 start-page: 371 issue: 1 year: 2015 ident: 1416_CR55 publication-title: J. Mach. Learn. Res. – volume: 40 start-page: 120 issue: 1 year: 2011 ident: 1416_CR16 publication-title: J. Math. Imaging Vis. doi: 10.1007/s10851-010-0251-1 – volume: 47 start-page: 631 year: 2011 ident: 1416_CR35 publication-title: Cybernet. Syst. Anal. doi: 10.1007/s10559-011-9343-1 – volume: 12 start-page: 747 issue: 4 year: 1976 ident: 1416_CR31 publication-title: Ekonomika i Matematicheskie Metody – volume-title: Iterative Approximation of Fixed Points year: 2007 ident: 1416_CR13 – volume: 155 start-page: 447 issue: 2 year: 2003 ident: 1416_CR40 publication-title: J. Comput. Appl. Math. doi: 10.1016/S0377-0427(02)00906-8 – volume: 79 start-page: 299 issue: 1–3 year: 1997 ident: 1416_CR46 publication-title: Math. Program. – volume: 30 start-page: 105 issue: 1 year: 1984 ident: 1416_CR23 publication-title: Math. Program. doi: 10.1007/BF02591802 – volume: 60 start-page: 237 issue: 1–2 year: 1995 ident: 1416_CR56 publication-title: J. Comput. Appl. Math. doi: 10.1016/0377-0427(94)00094-H – volume: 128 start-page: 519 issue: 2 year: 1996 ident: 1416_CR5 publication-title: J. Differ. Equ. doi: 10.1006/jdeq.1996.0104 – volume: 51 start-page: 311 issue: 2 year: 2015 ident: 1416_CR32 publication-title: J. Math. Imaging Vis. doi: 10.1007/s10851-014-0523-2 – volume: 44 start-page: 147 issue: 1 year: 1974 ident: 1416_CR25 publication-title: Proc. Am. Math. Soc. doi: 10.1090/S0002-9939-1974-0336469-5 – volume: 25 start-page: 502 issue: 1 year: 2015 ident: 1416_CR36 publication-title: SIAM J. Optim. doi: 10.1137/14097238X – volume: 4 start-page: 1 issue: 5 year: 1967 ident: 1416_CR47 publication-title: U.S.S.R. Comput. Math. Math. Phys. doi: 10.1016/0041-5553(64)90137-5 – volume-title: Finite-Dimensional Variational Inequalities and Complementarity Problems, Volume I and Volume II year: 2003 ident: 1416_CR21 – volume: 30 start-page: 1365 issue: 9 year: 1994 ident: 1416_CR2 publication-title: Differ. Equ. – volume: 148 start-page: 318 year: 2011 ident: 1416_CR15 publication-title: J. Optitm. Theory Appl. doi: 10.1007/s10957-010-9757-3 – volume: 33 start-page: 140 issue: 1 year: 2018 ident: 1416_CR37 publication-title: Optim. Methods Softw. doi: 10.1080/10556788.2017.1300899 – volume: 34 start-page: 1814 issue: 5 year: 1996 ident: 1416_CR52 publication-title: SIAM J. Control Optim. doi: 10.1137/S0363012994268655 – volume: 50 start-page: 271 issue: 2 year: 2014 ident: 1416_CR38 publication-title: Cybernet. Syst. Anal. doi: 10.1007/s10559-014-9614-8 – volume: 96 start-page: 437 issue: 2 year: 1983 ident: 1416_CR42 publication-title: J. Math. Anal. Appl. doi: 10.1016/0022-247X(83)90052-5 – volume: 15 start-page: 229 issue: 1 year: 2004 ident: 1416_CR43 publication-title: SIAM J. Optim. doi: 10.1137/S1052623403425629 – volume: 2 start-page: 27 issue: 3 year: 2011 ident: 1416_CR18 publication-title: ACM Trans. Intell. Syst. Technol. (TIST) – volume: 71 start-page: 519 issue: 3 year: 2016 ident: 1416_CR14 publication-title: Numer. Algorithms doi: 10.1007/s11075-015-0007-5 – volume: 179 start-page: 197 issue: 1 year: 2018 ident: 1416_CR58 publication-title: J. Optim. Theory Appl. doi: 10.1007/s10957-018-1351-0 – volume: 37 start-page: 765 issue: 3 year: 1999 ident: 1416_CR51 publication-title: SIAM J. Control Optim. doi: 10.1137/S0363012997317475 – volume: 27 start-page: 120 year: 1989 ident: 1416_CR28 publication-title: USSR Comput. Math. Math. Phys. doi: 10.1016/0041-5553(87)90058-9 – volume: 2 start-page: 183 issue: 1 year: 2009 ident: 1416_CR11 publication-title: SIAM J. Imaging Sci. doi: 10.1137/080716542 – volume: 109 start-page: 319 issue: 2–3 year: 2007 ident: 1416_CR45 publication-title: Math. Program. doi: 10.1007/s10107-006-0034-z – volume-title: An Introduction to Variational Inequalities and Their Applications year: 1980 ident: 1416_CR29 – volume: 1 start-page: 17 issue: 1 year: 2011 ident: 1416_CR27 publication-title: Stoch. Syst. doi: 10.1287/10-SSY011 – volume: 21 start-page: 1688 issue: 4 year: 2011 ident: 1416_CR39 publication-title: SIAM J. Optim. doi: 10.1137/100801652 – volume: 23 start-page: 934 issue: 2 year: 2013 ident: 1416_CR6 publication-title: SIAM J. Optim. doi: 10.1137/11085801X – volume: 28 start-page: 333 issue: 1 year: 2018 ident: 1416_CR33 publication-title: SIAM J. Optim. doi: 10.1137/16M1099546 – ident: 1416_CR53 – volume: 8 start-page: 153 issue: 2 year: 1992 ident: 1416_CR44 publication-title: J. Complex. doi: 10.1016/0885-064X(92)90013-2 – volume: 7 start-page: 421 issue: 2 year: 1997 ident: 1416_CR19 publication-title: SIAM J. Optim. doi: 10.1137/S1052623495290179 – volume: 96 start-page: 513 issue: 3 year: 2003 ident: 1416_CR50 publication-title: Math. Program. doi: 10.1007/s10107-002-0369-z – volume: 38 start-page: 367 issue: 3 year: 1996 ident: 1416_CR9 publication-title: SIAM Rev. doi: 10.1137/S0036144593251710 – volume: 124 start-page: 157 issue: 1 year: 1987 ident: 1416_CR49 publication-title: J. Math. Anal. Appl. doi: 10.1016/0022-247X(87)90031-X – volume: 95 start-page: 155 year: 1996 ident: 1416_CR20 publication-title: Adv. Imaging Electron Phys. doi: 10.1016/S1076-5670(08)70157-5 – volume-title: Studies in Linear and Non-linear Programming year: 1958 ident: 1416_CR3 – ident: 1416_CR22 doi: 10.1109/CDC.2016.7798401 |
SSID | ssj0001388 |
Score | 2.648235 |
Snippet | The paper presents a fully adaptive algorithm for monotone variational inequalities. In each iteration the method uses two previous iterates for an... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 383 |
SubjectTerms | Adaptive algorithms Algorithms Applied mathematics Calculus of Variations and Optimal Control; Optimization Combinatorics Control theory Full Length Paper Inequalities Mapping Mathematical and Computational Physics Mathematical Methods in Physics Mathematical programming Mathematics Mathematics and Statistics Mathematics of Computing Methods Numerical Analysis Optimization Theoretical |
Title | Golden ratio algorithms for variational inequalities |
URI | https://link.springer.com/article/10.1007/s10107-019-01416-w https://www.proquest.com/docview/2266690432 https://www.proquest.com/docview/2451399844 |
Volume | 184 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED5Bu8CAeIpCQRnYIBKOnxlb6EOgMlGpTJHtJDCUFtFC_z5nN2kLKkhMUWTHke7su--z784AFyyjqSvUFkYG6SqTsQ1VbmgYC4nuVFmd-z3d3oPo9tndgA-KpLBJGe1eHkl6S72S7EZ8mKSL70EYEc42ocqRu7tArn7UWNhfQpUqL2p16KBIlVk_xnd3tMSYP45Fvbdp78JOARODxlyve7CRjfZhe6V4IL71FhVXJwfAOuMhmpDAKzTQw-cxsv6X10mAoDT4REJcbPoFOMA8kRIp8iH0263Hm25Y3IgQWhqTaYgejag4z7mS2kQ65qkwGumwyTjimlSmHJluikvKxEZrKy0lXGtkKLmSGdeSHkFlNB5lxxBkMmdUCKsIz1hkqRZEXctcECE1NSatASkFk9iiXLi7tWKYLAsdO2EmKMzECzOZ1eBy8c3bvFjGn73rpbyTYuFMEkSDAgk7o9H6ZsYRssaKsRpclSpaNv_-s5P_dT-FrcgRa590WIfK9P0jO0P0MTXnUG00b5tt9-w83bfO_eT7Ap810mc |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV07T8MwED7xGIAB8RSFAhlggkg4fmZgqHgV2jK1UrdgJw4glRbRQsX_4YdycZMWECAxMEZ2nOh89n2ffQ-APWZpkiVq8wODdJXJMPZVaqgfConmVMU6dWe6jWtRbbGrNm9PwVsRC-O83YsrSbdTfwh2I85NMvPvQRjhD3NXypp9HSJR6x9fnuKs7gfB-VnzpOrntQT8mIZk4KMtICpMU66kNoEOeSKMRiJpLEdEkMiEI0dMUBlNaLSOZUwJ1xqxfaqk5VpSHHcaZhF8qGzttILKeL8nVKmiMGyGRvLQnO__-bP5m2DaL9ewzrqdL8FiDku9ykiPlmHKdldg4UOyQnxqjDO89leBXfQ6uGV5ToE83bntPd0P7h76HoJg7wUJeH7I6OEAo8BNpORr0PoXqa3DTLfXtRvgWZkyKkSsCLcsiKkWRB3JVBAhNTUmKQEpBBPFeXryrEpGJ5okVs6EGaEwIyfMaFiCg_E7j6PkHL_2LhfyjvKF2o8QfQoRZnkJv29mHCFyqBgrwWExRZPmnz-2-bfuuzBXbTbqUf3yurYF80FG6l3AYxlmBk_PdhuRz8DsOMXz4Oa_Nf0dIeIORw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV07T8MwED7xkBAMiKcoFMgAE0Tg-JmBoQLKGzFQiS3YiQNIpa1ooOJf8RM5p0kLCJAYGCM7TnQ--76z774D2GCWJo6ozQ8MuqtMhrGvUkP9UEg0pyrWaX6me3Epjhvs9IbfjMBbmQuTR7uXV5L9nAbH0tTKdjpJuvMh8Y3kIZMu1gchhd8rwirP7GsPnbbu3skBzvBmENQPr_eP_aKugB_TkGQ-2gWiwjTlSmoT6JAnwmh0Ko3liA4SmXD0FxNUTBMarWMZU8K1RpyfKmm5lhTHHYVx5rKPcQU1gtpg7ydUqbJIrEMmRZrO9__82RQO8e2XK9nc0tVnYLqAqF6tr1OzMGJbczD1gbgQny4GbK_deWBH7SZuX16uTJ5u3rWfHrL7x66HgNh7QWe8OHD0cIB-Eie65wvQ-BepLcJYq92yS-BZmTIqRKwItyyIqRZE7cpUECE1NSapACkFE8UFVbmrmNGMhiTLTpgRCjPKhRn1KrA1eKfTJ-r4tXe1lHdULNpuhEhUiNBxFH7fzDjC5VAxVoHtcoqGzT9_bPlv3ddh4uqgHp2fXJ6twGTg_Ps897EKY9nTs11FEJSZtVzvPLj9b0V_B_SxEno |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Golden+ratio+algorithms+for+variational+inequalities&rft.jtitle=Mathematical+programming&rft.au=Malitsky%2C+Yura&rft.date=2020-11-01&rft.pub=Springer+Nature+B.V&rft.issn=0025-5610&rft.eissn=1436-4646&rft.spage=1&rft.epage=28&rft_id=info:doi/10.1007%2Fs10107-019-01416-w&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0025-5610&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0025-5610&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0025-5610&client=summon |