Lanthanides Toxicity in Zebrafish Embryos Are Correlated to Their Atomic Number
Rare earth elements (REEs) are critical metallic materials with a broad application in industry and biomedicine. The exponential increase in REEs utilization might elevate the toxicity to aquatic animals if they are released into the water due to uncareful handling. The specific objective of our stu...
Saved in:
Published in | Toxics (Basel) Vol. 10; no. 6; p. 336 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
19.06.2022
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Rare earth elements (REEs) are critical metallic materials with a broad application in industry and biomedicine. The exponential increase in REEs utilization might elevate the toxicity to aquatic animals if they are released into the water due to uncareful handling. The specific objective of our study is to explore comprehensively the critical factor of a model Lanthanide complex electronic structures for the acute toxicity of REEs based on utilizing zebrafish as a model animal. Based on the 96 h LC50 test, we found that the majority of light REEs display lower LC50 values (4.19–25.17 ppm) than heavy REEs (10.30–41.83 ppm); indicating that they are atomic number dependent. Later, linear regression analyses further show that the average carbon charge on the aromatic ring (aromatic Cavg charge) can be the most significant electronic structural factor responsible for the Lanthanides’ toxicity in zebrafish embryos. Our results confirm a very strong correlation of LC50 to Lanthanide’s atomic numbers (r = 0.72), Milliken charge (r = 0.70), and aromatic Cavg charge (r = −0.85). This most significant correlation suggests a possible toxicity mechanism that the Lanthanide cation’s capability to stably bind to the aromatic ring on the residue of targeted proteins via a covalent chelating bond. Instead, the increasing ionic bond character can reduce REEs’ toxicity. In addition, Lanthanide toxicity was also evaluated by observing the disruption of photo motor response (PMR) activity in zebrafish embryos. Our study provides the first in vivo evidence to demonstrate the correlation between an atomic number of Lanthanide ions and the Lanthanide toxicity to zebrafish embryos. |
---|---|
AbstractList | Rare earth elements (REEs) are critical metallic materials with a broad application in industry and biomedicine. The exponential increase in REEs utilization might elevate the toxicity to aquatic animals if they are released into the water due to uncareful handling. The specific objective of our study is to explore comprehensively the critical factor of a model Lanthanide complex electronic structures for the acute toxicity of REEs based on utilizing zebrafish as a model animal. Based on the 96 h LC50 test, we found that the majority of light REEs display lower LC50 values (4.19–25.17 ppm) than heavy REEs (10.30–41.83 ppm); indicating that they are atomic number dependent. Later, linear regression analyses further show that the average carbon charge on the aromatic ring (aromatic Cavg charge) can be the most significant electronic structural factor responsible for the Lanthanides’ toxicity in zebrafish embryos. Our results confirm a very strong correlation of LC50 to Lanthanide’s atomic numbers (r = 0.72), Milliken charge (r = 0.70), and aromatic Cavg charge (r = −0.85). This most significant correlation suggests a possible toxicity mechanism that the Lanthanide cation’s capability to stably bind to the aromatic ring on the residue of targeted proteins via a covalent chelating bond. Instead, the increasing ionic bond character can reduce REEs’ toxicity. In addition, Lanthanide toxicity was also evaluated by observing the disruption of photo motor response (PMR) activity in zebrafish embryos. Our study provides the first in vivo evidence to demonstrate the correlation between an atomic number of Lanthanide ions and the Lanthanide toxicity to zebrafish embryos. Rare earth elements (REEs) are critical metallic materials with a broad application in industry and biomedicine. The exponential increase in REEs utilization might elevate the toxicity to aquatic animals if they are released into the water due to uncareful handling. The specific objective of our study is to explore comprehensively the critical factor of a model Lanthanide complex electronic structures for the acute toxicity of REEs based on utilizing zebrafish as a model animal. Based on the 96 h LC 50 test, we found that the majority of light REEs display lower LC 50 values (4.19–25.17 ppm) than heavy REEs (10.30–41.83 ppm); indicating that they are atomic number dependent. Later, linear regression analyses further show that the average carbon charge on the aromatic ring (aromatic C avg charge) can be the most significant electronic structural factor responsible for the Lanthanides’ toxicity in zebrafish embryos. Our results confirm a very strong correlation of LC 50 to Lanthanide’s atomic numbers (r = 0.72), Milliken charge (r = 0.70), and aromatic C avg charge (r = −0.85). This most significant correlation suggests a possible toxicity mechanism that the Lanthanide cation’s capability to stably bind to the aromatic ring on the residue of targeted proteins via a covalent chelating bond. Instead, the increasing ionic bond character can reduce REEs’ toxicity. In addition, Lanthanide toxicity was also evaluated by observing the disruption of photo motor response (PMR) activity in zebrafish embryos. Our study provides the first in vivo evidence to demonstrate the correlation between an atomic number of Lanthanide ions and the Lanthanide toxicity to zebrafish embryos. Rare earth elements (REEs) are critical metallic materials with a broad application in industry and biomedicine. The exponential increase in REEs utilization might elevate the toxicity to aquatic animals if they are released into the water due to uncareful handling. The specific objective of our study is to explore comprehensively the critical factor of a model Lanthanide complex electronic structures for the acute toxicity of REEs based on utilizing zebrafish as a model animal. Based on the 96 h LC50 test, we found that the majority of light REEs display lower LC50 values (4.19-25.17 ppm) than heavy REEs (10.30-41.83 ppm); indicating that they are atomic number dependent. Later, linear regression analyses further show that the average carbon charge on the aromatic ring (aromatic Cavg charge) can be the most significant electronic structural factor responsible for the Lanthanides' toxicity in zebrafish embryos. Our results confirm a very strong correlation of LC50 to Lanthanide's atomic numbers (r = 0.72), Milliken charge (r = 0.70), and aromatic Cavg charge (r = -0.85). This most significant correlation suggests a possible toxicity mechanism that the Lanthanide cation's capability to stably bind to the aromatic ring on the residue of targeted proteins via a covalent chelating bond. Instead, the increasing ionic bond character can reduce REEs' toxicity. In addition, Lanthanide toxicity was also evaluated by observing the disruption of photo motor response (PMR) activity in zebrafish embryos. Our study provides the first in vivo evidence to demonstrate the correlation between an atomic number of Lanthanide ions and the Lanthanide toxicity to zebrafish embryos.Rare earth elements (REEs) are critical metallic materials with a broad application in industry and biomedicine. The exponential increase in REEs utilization might elevate the toxicity to aquatic animals if they are released into the water due to uncareful handling. The specific objective of our study is to explore comprehensively the critical factor of a model Lanthanide complex electronic structures for the acute toxicity of REEs based on utilizing zebrafish as a model animal. Based on the 96 h LC50 test, we found that the majority of light REEs display lower LC50 values (4.19-25.17 ppm) than heavy REEs (10.30-41.83 ppm); indicating that they are atomic number dependent. Later, linear regression analyses further show that the average carbon charge on the aromatic ring (aromatic Cavg charge) can be the most significant electronic structural factor responsible for the Lanthanides' toxicity in zebrafish embryos. Our results confirm a very strong correlation of LC50 to Lanthanide's atomic numbers (r = 0.72), Milliken charge (r = 0.70), and aromatic Cavg charge (r = -0.85). This most significant correlation suggests a possible toxicity mechanism that the Lanthanide cation's capability to stably bind to the aromatic ring on the residue of targeted proteins via a covalent chelating bond. Instead, the increasing ionic bond character can reduce REEs' toxicity. In addition, Lanthanide toxicity was also evaluated by observing the disruption of photo motor response (PMR) activity in zebrafish embryos. Our study provides the first in vivo evidence to demonstrate the correlation between an atomic number of Lanthanide ions and the Lanthanide toxicity to zebrafish embryos. |
Author | Liu, Rong-Xuan Lin, Ying-Ting Ger, Tzong-Rong Suryanto, Michael Edbert Hsiao, Chung-Der Audira, Gilbert Roldan, Marri Jmelou M. Lee, Jiann-Shing |
AuthorAffiliation | 1 Department of Biotechnology, College of Life Science, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; ytlin@kmu.edu.tw (Y.-T.L.); fromoursound@gmail.com (R.-X.L.) 8 Research Center for Aquatic Toxicology and Pharmacology, Chung Yuan Christian University, Chung-Li 320314, Taiwan 5 Faculty of Pharmacy, The Graduate School, University of Santo Tomas, Manila 1008, Philippines; mmroldan@ust.edu.ph 6 Department of Applied Physics, National Pingtung University, Pingtung 90003, Taiwan 3 Department of Bioscience Technology, Chung Yuan Christian University, Taoyuan 320314, Taiwan; gilbertaudira@yahoo.com (G.A.); michael.edbert93@gmail.com (M.E.S.) 2 Drug Development & Value Creation Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan 4 Department of Chemistry, Chung Yuan Christian University, Taoyuan 320314, Taiwan 7 Department of Biomedical Engineering, Chung Yuan Christian University, Taoyuan 320314, Taiwan |
AuthorAffiliation_xml | – name: 8 Research Center for Aquatic Toxicology and Pharmacology, Chung Yuan Christian University, Chung-Li 320314, Taiwan – name: 1 Department of Biotechnology, College of Life Science, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; ytlin@kmu.edu.tw (Y.-T.L.); fromoursound@gmail.com (R.-X.L.) – name: 2 Drug Development & Value Creation Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan – name: 5 Faculty of Pharmacy, The Graduate School, University of Santo Tomas, Manila 1008, Philippines; mmroldan@ust.edu.ph – name: 6 Department of Applied Physics, National Pingtung University, Pingtung 90003, Taiwan – name: 3 Department of Bioscience Technology, Chung Yuan Christian University, Taoyuan 320314, Taiwan; gilbertaudira@yahoo.com (G.A.); michael.edbert93@gmail.com (M.E.S.) – name: 4 Department of Chemistry, Chung Yuan Christian University, Taoyuan 320314, Taiwan – name: 7 Department of Biomedical Engineering, Chung Yuan Christian University, Taoyuan 320314, Taiwan |
Author_xml | – sequence: 1 givenname: Ying-Ting orcidid: 0000-0001-8096-3402 surname: Lin fullname: Lin, Ying-Ting – sequence: 2 givenname: Rong-Xuan surname: Liu fullname: Liu, Rong-Xuan – sequence: 3 givenname: Gilbert surname: Audira fullname: Audira, Gilbert – sequence: 4 givenname: Michael Edbert orcidid: 0000-0003-0089-6516 surname: Suryanto fullname: Suryanto, Michael Edbert – sequence: 5 givenname: Marri Jmelou M. orcidid: 0000-0001-6398-1828 surname: Roldan fullname: Roldan, Marri Jmelou M. – sequence: 6 givenname: Jiann-Shing orcidid: 0000-0002-2875-4192 surname: Lee fullname: Lee, Jiann-Shing – sequence: 7 givenname: Tzong-Rong orcidid: 0000-0001-5472-431X surname: Ger fullname: Ger, Tzong-Rong – sequence: 8 givenname: Chung-Der orcidid: 0000-0002-6398-8672 surname: Hsiao fullname: Hsiao, Chung-Der |
BookMark | eNp1kcFvFCEUhyemxtbaq-dJvHjZCjxgZi4mm02tTTb2sl68EGAeXTYzQwXGuP-9bLcxbhO5QB7f-_Lg97Y6m8KEVfWekmuAjnzK4be3iRIiCYB8VV0wIGIhgfCzf87n1VVKO1JWR6GV8k11DqIB2XF-Ud2v9ZS3evI9pnpz8Pm8r_1U_0ATtfNpW9-MJu5DqpcR61WIEQedsa9zqDdb9LFe5jB6W3-bR4PxXfXa6SHh1fN-WX3_crNZfV2s72_vVsv1wkJH88KalgDrhRQWnHRIuex6oI5J6oTtaKM5CsCOoOGMtsaZ8mCKYIXtDdUaLqu7o7cPeqceox913KugvXoqhPigdMzeDqga0BSZ0CCE4wx6jYY6h5zKVmLHRXF9ProeZzNib3HKUQ8n0tObyW_VQ_ilOsYa0rIi-PgsiOHnjCmr0SeLw6AnDHNSTLaEQUMlLeiHF-guzHEqX1WopmuBF6hQ10fKxpBSRPd3GErUIXp1Gn1p4C8aSo46-3AY2A__a_sD_--0Tg |
CitedBy_id | crossref_primary_10_1038_s41598_023_36496_4 crossref_primary_10_1016_j_envres_2024_120235 crossref_primary_10_3389_fenvs_2024_1390948 crossref_primary_10_3390_jox14040102 crossref_primary_10_1111_jfb_15860 crossref_primary_10_1134_S0022093022070067 crossref_primary_10_1029_2024GB008125 crossref_primary_10_3389_fpls_2025_1540266 crossref_primary_10_1016_j_crcon_2023_09_001 crossref_primary_10_1016_j_jtemin_2023_100068 crossref_primary_10_1007_s12011_024_04231_3 crossref_primary_10_1016_j_scitotenv_2023_167302 crossref_primary_10_3390_toxics11080680 crossref_primary_10_1016_j_aquatox_2024_107217 crossref_primary_10_24072_pcjournal_440 crossref_primary_10_1016_j_ecoenv_2024_117494 |
Cites_doi | 10.1002/etc.5620101204 10.1021/acs.est.8b05547 10.1016/j.envpol.2019.113804 10.1021/jp060876d 10.1007/978-3-319-26809-5 10.1016/j.envint.2014.06.019 10.1093/jn/137.12.2809 10.1021/ja00984a014 10.1016/S0168-1273(96)22009-4 10.1021/ja00905a001 10.1016/j.crci.2004.07.002 10.1897/04-177R.1 10.1021/ed045p581 10.1007/s00128-020-02840-x 10.1039/B204717A 10.1201/b17045 10.3390/cells10040738 10.1016/j.aquatox.2011.07.010 10.2113/gselements.8.5.333 10.1016/0045-6535(94)90281-X 10.3390/ijerph17134632 10.1016/j.stem.2007.11.002 10.1093/toxsci/kfi110 10.1080/15287390500196230 10.1063/1.2814820 10.1016/S0166-5162(02)00125-8 10.1016/j.tiv.2009.05.014 10.1021/es050972c 10.1007/978-1-4471-2204-3 10.1093/toxsci/kfy044 10.1016/S1001-0742(11)60755-9 10.1016/j.cbpc.2019.05.009 10.1002/bdrc.21027 10.1242/dev.123.1.399 10.1016/j.jcp.2013.06.042 10.1016/j.ecoenv.2020.111588 10.2174/1877944111101010091 10.1016/j.ecoenv.2018.07.033 10.3390/ani10091663 |
ContentType | Journal Article |
Copyright | 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2022 by the authors. 2022 |
Copyright_xml | – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2022 by the authors. 2022 |
DBID | AAYXX CITATION 3V. 7U7 7XB 8FE 8FH 8FK 8G5 ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI C1K CCPQU DWQXO GNUQQ GUQSH HCIFZ LK8 M2O M7P MBDVC PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI Q9U 7X8 5PM DOA |
DOI | 10.3390/toxics10060336 |
DatabaseName | CrossRef ProQuest Central (Corporate) Toxicology Abstracts ProQuest Central (purchase pre-March 2016) ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Research Library ProQuest Central (Alumni) ProQuest One Sustainability (subscription) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Korea ProQuest Central Student ProQuest Research Library SciTech Premium Collection ProQuest Biological Science Collection ProQuest Research Library Biological Science Database Research Library (Corporate) ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Research Library Prep ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Research Library (Alumni Edition) ProQuest Natural Science Collection Environmental Sciences and Pollution Management ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Research Library ProQuest Central (New) ProQuest Biological Science Collection ProQuest Central Basic Toxicology Abstracts ProQuest One Academic Eastern Edition Biological Science Database ProQuest SciTech Collection ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE - Academic Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Public Health |
EISSN | 2305-6304 |
ExternalDocumentID | oai_doaj_org_article_73a1e25a355f423daeb1ffe41686e945 PMC9227082 10_3390_toxics10060336 |
GrantInformation_xml | – fundername: Kaohsiung Medical University Research Center Grant and Research Foundation grantid: KMU-M111018 – fundername: the Ministry of Science Technology, Taiwan grantid: MOST 108-2313-B-033-001-MY3; MOST 108-2622-B-033-001-CC2; MOST 107-2119-M-037-001-MY2; MOST 108-2221-E-033-017-MY3 |
GroupedDBID | 53G 5VS 8FE 8FH 8G5 AADQD AAFWJ AAHBH AAYXX ABUWG ADBBV AEUYN AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BBNVY BCNDV BENPR BHPHI BPHCQ CCPQU CITATION DWQXO GNUQQ GROUPED_DOAJ GUQSH HCIFZ HYE IAO IHR ITC KQ8 LK8 M2O M7P MODMG M~E OK1 PGMZT PHGZM PHGZT PIMPY PQQKQ PROAC RPM 3V. 7U7 7XB 8FK C1K MBDVC PKEHL PQEST PQGLB PQUKI Q9U 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c391t-cb8032d565c3f6fe1469d31f261f5c917a4e53e90eb4218bfb3391e3c5cdb1aa3 |
IEDL.DBID | DOA |
ISSN | 2305-6304 |
IngestDate | Wed Aug 27 01:21:17 EDT 2025 Thu Aug 21 13:41:11 EDT 2025 Fri Jul 11 09:51:33 EDT 2025 Fri Jul 25 12:14:34 EDT 2025 Tue Jul 01 02:00:59 EDT 2025 Thu Apr 24 22:52:31 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c391t-cb8032d565c3f6fe1469d31f261f5c917a4e53e90eb4218bfb3391e3c5cdb1aa3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-2875-4192 0000-0003-0089-6516 0000-0001-6398-1828 0000-0001-5472-431X 0000-0002-6398-8672 0000-0001-8096-3402 |
OpenAccessLink | https://doaj.org/article/73a1e25a355f423daeb1ffe41686e945 |
PMID | 35736944 |
PQID | 2679834613 |
PQPubID | 2032322 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_73a1e25a355f423daeb1ffe41686e945 pubmedcentral_primary_oai_pubmedcentral_nih_gov_9227082 proquest_miscellaneous_2680237161 proquest_journals_2679834613 crossref_primary_10_3390_toxics10060336 crossref_citationtrail_10_3390_toxics10060336 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20220619 |
PublicationDateYYYYMMDD | 2022-06-19 |
PublicationDate_xml | – month: 6 year: 2022 text: 20220619 day: 19 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Toxics (Basel) |
PublicationYear | 2022 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | Yokel (ref_14) 2006; 9 MacMillan (ref_51) 2018; 53 Jin (ref_38) 2014; 9 Cardon (ref_52) 2020; 258 Zhang (ref_30) 2012; 24 Ortmann (ref_40) 2022; 39 Dolg (ref_19) 1996; 22 ref_10 Granato (ref_25) 1996; 123 Steele (ref_35) 2018; 137 Chen (ref_43) 1989; 9 Alsop (ref_45) 2011; 105 ref_18 ref_16 Cotton (ref_21) 2005; 8 Chen (ref_42) 2020; 104 Jastrow (ref_9) 1985; 38 (ref_13) 1991; 10 Finkelman (ref_12) 2002; 50 ref_28 Borgmann (ref_39) 2005; 24 Sojka (ref_33) 2019; 24 Lammer (ref_41) 2009; 23 Franke (ref_53) 1994; 29 Auclair (ref_31) 2019; 223 Avdesh (ref_29) 2012; 69 Hill (ref_23) 2005; 86 ref_36 Pearson (ref_46) 1968; 45 Horzmann (ref_26) 2018; 163 Motamarri (ref_37) 2013; 253 Schinzel (ref_15) 2006; 110 Pearson (ref_47) 1967; 89 Bailey (ref_27) 2013; 99 Gonzalez (ref_44) 2014; 71 Toraishi (ref_48) 2002; 24 Hanana (ref_32) 2021; 208 Blaise (ref_34) 2018; 163 White (ref_22) 2008; 2 Wright (ref_11) 2007; 137 Vos (ref_24) 2006; 40 ref_3 ref_2 (ref_20) 2011; 1 Pearson (ref_17) 1963; 85 Chakhmouradian (ref_1) 2012; 8 ref_8 Wells (ref_49) 2001; 20 Barron (ref_50) 1995; 2 ref_5 ref_4 ref_7 ref_6 |
References_xml | – volume: 10 start-page: 1585 year: 1991 ident: ref_13 article-title: Assessing the toxicity of freshwater sediments publication-title: Environ. Toxicol. Chem. Int. J. doi: 10.1002/etc.5620101204 – volume: 53 start-page: 1650 year: 2018 ident: ref_51 article-title: Environmental drivers of rare earth element bioaccumulation in freshwater zooplankton publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.8b05547 – ident: ref_5 – volume: 258 start-page: 113804 year: 2020 ident: ref_52 article-title: Role of prey subcellular distribution on the bioaccumulation of yttrium (Y) in the rainbow trout publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2019.113804 – volume: 110 start-page: 11324 year: 2006 ident: ref_15 article-title: Structural and electronic analysis of lanthanide complexes: Reactivity may not necessarily be independent of the identity of the lanthanide atom—A DFT study publication-title: J. Phys. Chem. A doi: 10.1021/jp060876d – volume: 39 start-page: 82 year: 2022 ident: ref_40 article-title: Photomotor response data analysis approach to assess chemical neurotoxicity with the zebrafish embryo publication-title: ALTEX-Altern. Anim. Exp. – ident: ref_2 doi: 10.1007/978-3-319-26809-5 – volume: 71 start-page: 148 year: 2014 ident: ref_44 article-title: Environmental fate and ecotoxicity of lanthanides: Are they a uniform group beyond chemistry? publication-title: Environ. Int. doi: 10.1016/j.envint.2014.06.019 – volume: 137 start-page: 2809 year: 2007 ident: ref_11 article-title: Metals and neurotoxicology publication-title: J. Nutr. doi: 10.1093/jn/137.12.2809 – ident: ref_16 – volume: 89 start-page: 1827 year: 1967 ident: ref_47 article-title: Application of the principle of hard and soft acids and bases to organic chemistry publication-title: J. Am. Chem. Soc. doi: 10.1021/ja00984a014 – volume: 22 start-page: 607 year: 1996 ident: ref_19 article-title: Electronic structure calculations for molecules containing lanthanide atoms publication-title: Handb. Phys. Chem. Rare Earths doi: 10.1016/S0168-1273(96)22009-4 – volume: 85 start-page: 3533 year: 1963 ident: ref_17 article-title: Hard and soft acids and bases publication-title: J. Am. Chem. Soc. doi: 10.1021/ja00905a001 – volume: 8 start-page: 129 year: 2005 ident: ref_21 article-title: Establishing coordination numbers for the lanthanides in simple complexes publication-title: Comptes Rendus Chim. doi: 10.1016/j.crci.2004.07.002 – volume: 24 start-page: 641 year: 2005 ident: ref_39 article-title: Toxicity of sixty-three metals and metalloids to Hyalella azteca at two levels of water hardness publication-title: Environ. Toxicol. Chem. Int. J. doi: 10.1897/04-177R.1 – volume: 45 start-page: 581 year: 1968 ident: ref_46 article-title: Hard and soft acids and bases, HSAB, part 1: Fundamental principles publication-title: J. Chem. Educ. doi: 10.1021/ed045p581 – volume: 104 start-page: 582 year: 2020 ident: ref_42 article-title: Calculation of toxicity coefficient of potential ecological risk assessment of rare earth elements publication-title: Bull. Environ. Contam. Toxicol. doi: 10.1007/s00128-020-02840-x – volume: 24 start-page: 3805 year: 2002 ident: ref_48 article-title: Complexation of Th (iv) and various lanthanides (iii) by glycolic acid; potentiometric, 13 C-NMR and EXAFS studies publication-title: J. Chem. Soc. Dalton Trans. doi: 10.1039/B204717A – ident: ref_7 doi: 10.1201/b17045 – ident: ref_8 – ident: ref_36 doi: 10.3390/cells10040738 – ident: ref_4 – volume: 105 start-page: 385 year: 2011 ident: ref_45 article-title: Metal uptake and acute toxicity in zebrafish: Common mechanisms across multiple metals publication-title: Aquat. Toxicol. doi: 10.1016/j.aquatox.2011.07.010 – volume: 8 start-page: 333 year: 2012 ident: ref_1 article-title: Rare earth elements: Minerals, mines, magnets (and more) publication-title: Elements doi: 10.2113/gselements.8.5.333 – volume: 29 start-page: 1501 year: 1994 ident: ref_53 article-title: The assessment of bioaccumulation publication-title: Chemosphere doi: 10.1016/0045-6535(94)90281-X – ident: ref_28 doi: 10.3390/ijerph17134632 – volume: 20 start-page: 817 year: 2001 ident: ref_49 article-title: The lanthanides, rare earth elements publication-title: Patty’s Toxicol. – volume: 2 start-page: 183 year: 2008 ident: ref_22 article-title: Transparent adult zebrafish as a tool for in vivo transplantation analysis publication-title: Cell Stem Cell doi: 10.1016/j.stem.2007.11.002 – volume: 86 start-page: 6 year: 2005 ident: ref_23 article-title: Zebrafish as a model vertebrate for investigating chemical toxicity publication-title: Toxicol. Sci. doi: 10.1093/toxsci/kfi110 – volume: 69 start-page: e4196 year: 2012 ident: ref_29 article-title: Regular care and maintenance of a zebrafish (Danio rerio) laboratory: An introduction publication-title: JoVE – ident: ref_3 – volume: 9 start-page: 63 year: 2006 ident: ref_14 article-title: The speciation of metals in mammals influences their toxicokinetics and toxicodynamics and therefore human health risk assessment publication-title: J. Toxicol. Environ. Health Part B doi: 10.1080/15287390500196230 – volume: 2 start-page: 652 year: 1995 ident: ref_50 article-title: Bioaccumulation and bioconcentration in aquatic organisms publication-title: Handb. Ecotoxicol. – volume: 38 start-page: 75 year: 1985 ident: ref_9 article-title: How to Make Nuclear Weapons Obsolete publication-title: Phys. Today doi: 10.1063/1.2814820 – volume: 50 start-page: 425 year: 2002 ident: ref_12 article-title: Health impacts of coal and coal use: Possible solutions publication-title: Int. J. Coal Geol. doi: 10.1016/S0166-5162(02)00125-8 – volume: 23 start-page: 1436 year: 2009 ident: ref_41 article-title: Development of a flow-through system for the fish embryo toxicity test (FET) with the zebrafish (Danio rerio) publication-title: Toxicol. Vitr. doi: 10.1016/j.tiv.2009.05.014 – volume: 40 start-page: 74 year: 2006 ident: ref_24 article-title: Effects of the antithyroid agent propylthiouracil in a partial life cycle assay with zebrafish publication-title: Environ. Sci. Technol. doi: 10.1021/es050972c – ident: ref_18 – ident: ref_6 doi: 10.1007/978-1-4471-2204-3 – volume: 163 start-page: 5 year: 2018 ident: ref_26 article-title: Making waves: New developments in toxicology with the zebrafish publication-title: Toxicol. Sci. doi: 10.1093/toxsci/kfy044 – volume: 137 start-page: e57938 year: 2018 ident: ref_35 article-title: Experimental protocol for examining behavioral response profiles in larval fish: Application to the neuro-stimulant caffeine publication-title: JoVE (J. Vis. Exp.) – volume: 24 start-page: 209 year: 2012 ident: ref_30 article-title: Effects of rare earth elements La and Yb on the morphological and functional development of zebrafish embryos publication-title: J. Environ. Sci. doi: 10.1016/S1001-0742(11)60755-9 – volume: 223 start-page: 88 year: 2019 ident: ref_31 article-title: Gene expression changes and toxicity of selected rare earth elements in rainbow trout juveniles publication-title: Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. doi: 10.1016/j.cbpc.2019.05.009 – volume: 9 start-page: 213 year: 2014 ident: ref_38 article-title: A review on ecological toxicity of rare earth elements in soil publication-title: Asian J. Ecotoxicol. – volume: 9 start-page: 16 year: 1989 ident: ref_43 article-title: Metal pollution of potential hazards in water: Sedimentology method evaluation publication-title: Environ. Sci. Technol. – volume: 99 start-page: 14 year: 2013 ident: ref_27 article-title: Zebrafish model systems for developmental neurobehavioral toxicology publication-title: Birth Defects Res. Part C Embryo Today Rev. doi: 10.1002/bdrc.21027 – volume: 123 start-page: 399 year: 1996 ident: ref_25 article-title: Genes controlling and mediating locomotion behavior of the zebrafish embryo and larva publication-title: Development doi: 10.1242/dev.123.1.399 – volume: 253 start-page: 308 year: 2013 ident: ref_37 article-title: Higher-order adaptive finite-element methods for Kohn–Sham density functional theory publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2013.06.042 – volume: 208 start-page: 111588 year: 2021 ident: ref_32 article-title: Evaluation of general stress, detoxification pathways, and genotoxicity in rainbow trout exposed to rare earth elements dysprosium and lutetium publication-title: Ecotoxicol. Environ. Saf. doi: 10.1016/j.ecoenv.2020.111588 – volume: 1 start-page: 91 year: 2011 ident: ref_20 article-title: Applications of density functional theory (DFT) to investigate the structural, spectroscopic and magnetic properties of lanthanide (III) complexes publication-title: Curr. Inorg. Chem. doi: 10.2174/1877944111101010091 – volume: 24 start-page: 125 year: 2019 ident: ref_33 article-title: Concentration of Rare Earth Elements in surface water and bottom sediments in Lake Wadag, Poland publication-title: J. Elem. – volume: 163 start-page: 486 year: 2018 ident: ref_34 article-title: Ecotoxicity responses of the freshwater cnidarian Hydra attenuata to 11 rare earth elements publication-title: Ecotoxicol. Environ. Saf. doi: 10.1016/j.ecoenv.2018.07.033 – ident: ref_10 doi: 10.3390/ani10091663 |
SSID | ssj0000913866 |
Score | 2.2864764 |
Snippet | Rare earth elements (REEs) are critical metallic materials with a broad application in industry and biomedicine. The exponential increase in REEs utilization... |
SourceID | doaj pubmedcentral proquest crossref |
SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database |
StartPage | 336 |
SubjectTerms | Acute toxicity Animals Aquatic animals Aromatic compounds atomic number Atomic properties Biocompatibility Biomedical materials Chelation Chemical bonds Chemical elements Danio rerio electronic structural factors Embryos In vivo methods and tests Industrial applications Lanthanides Ligands rare earth element Rare earth elements Regression analysis Toxicity Zebrafish |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1La9wwEBbt5lIooU_qNC0qFHoyWUl-yKeShA2htNtSNhB6MZI86hpSO1070P77ztjaTX1IrtZgm5E0882M9A1j7yG3Spr5PBY5YICiMhEbAzZO0FcCLhJnhlLMl2V2fpF8ukwvQ8KtC8cqtzZxMNRV6yhHfiSpXKAS9D4fr3_H1DWKqquhhcZDtocmWOsZ2ztZLL9932VZiPVSZ9nI1qgwvj_q2z-16wTxkKiBl_nWGw2k_ROkOT0n-Z_jOXvC9gNi5MfjFD9lD6B5xh6P6TY-3iJ6zr5-Rg2tTVNX0PEVfRzRNa8b_oMKw77u1nzxy27-th2-CPgp9eS4QphZ8b7lKyoW8OOeLijz5dAi5AW7OFusTs_j0CshdqoQfeysnitZITxzymce0AAWlRIeAySfOozJTAKpgmIONkGvbr1FbQhQLnWVFcaol2zWtA28YlwqSDKXem01hjOV1w6l8ryQ1iQ6K3zE4q3OSheIxKmfxVWJAQXpuJzqOGIfdvLXI4XGnZInNAU7KaK-Hh60m59l2EllrowAmRoESh6xYIUrS3gPCCx1BkWSRuxwO4Fl2I9debt6IvZuN4w7icojpoH2hmSIDA_jRxGxfDLxkx-ajjT1euDkLqTMEU0d3P_x1-yRpOsT1PuoOGSzfnMDbxDU9PZtWLn_AEEr-h8 priority: 102 providerName: ProQuest |
Title | Lanthanides Toxicity in Zebrafish Embryos Are Correlated to Their Atomic Number |
URI | https://www.proquest.com/docview/2679834613 https://www.proquest.com/docview/2680237161 https://pubmed.ncbi.nlm.nih.gov/PMC9227082 https://doaj.org/article/73a1e25a355f423daeb1ffe41686e945 |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYhvQRK6ZM6SYMKhZ5MVpJfOiZhQyjJtpQNhF6MJI9YQ2KHtQPtv--M7GzXh9BLrtYgy6OR5huP9A1jXyC3SprZLBY5YICiMhEbAzZO0FcCGokzIRVztcgurpNvN-nNVqkvOhM20AMPijvOlREgU4N-0aPrr7Aj4T0gjigy0ElgL0WftxVMhT1YC1Vk2cDSqDCuP-7b37XrBPGPqMDH_M8LBbL-CcKcno_ccjjnr9mrESnyk2GEb9gONG_Zy-E3Gx9uD71j3y9RMyvT1BV0fEkvR1TN64b_ooSwr7sVn9_Z9Z-2w46An1EtjluElxXvW76kJAE_6eliMl-E0iDv2fX5fHl2EY81EmKntOhjZ4uZkhXCMqd85gE3Pl0p4TEw8qnDWMwkkCrQM7AJenPrLWpDgHKpq6wwRn1gu03bwEfGpYIkc6kvbIFhTOULh1J5rqU1SZFpH7H4UWelGwnEqY7FbYmBBOm4nOo4Yl838vcDdcaTkqc0BRsporwOD9AQytEQyv8ZQsQOHyewHNdhV0pKMqkEMUvEPm-acQVRWsQ00D6QDJHgYdwoIpZPJn4yoGlLU68CF7eWMkcUtf8cX3DA9iRdrqDKSPqQ7fbrB_iEkKe3R-zF6Xzx4-dRsPK_zeUC7g |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6V7QEkhHiKlAJGAnGKmth5HhBqy1Zbul0Q2koVl2A7NhupTcomFfRP8RuZSbJbcoBbr_HESTxjzzee-BuA1yZWgkvPc_3YYIAiIt-V0ig3QF9p0Ei0bFMxx7NochJ8PA1PN-D36iwM_Va5WhPbhTqvNO2R73BKF4gAvc_7ix8uVY2i7OqqhEZnFkfm6ieGbPW7ww-o3zecH4zn-xO3ryrgapH6jatV4gmeI5DRwkbW4FKR5sK3GErYUGP0IgMTCpN6RgXo_5RVAu8zQoc6V76UAvu9BZv4WR4fwebeePb5y3pXh1g2kyjq2CHxPm-nqX4VuvaJ90S0PNDX3q8tEjBAtsP_Mv9ydAf34V6PUNluZ1IPYMOUD-Fut73HulNLj-DTFDWykGWRm5rN6eGI5llRsq-UiLZFvWDjc7W8qmrsyLB9qgFyhrA2Z03F5pScYLsNHYhms7YkyWM4uZFRfAKjsirNU2BcmCDSoU1UguFTbhONUnGcciWDJEqtA-5qzDLdE5dT_YyzDAMYGuNsOMYOvF3LX3SUHf-U3CMVrKWIaru9UC2_Z_3MzWIhfcNDicDMIvbM0ZJ9aw0C2SQyaRA6sL1SYNbP_zq7tlYHXq2bceZSOkaWprokGSLfw3jVdyAeKH7wQsOWsli0HOAp5zGit63_P_wl3J7Mj6fZ9HB29AzucDq6QXWX0m0YNctL8xwBVaNe9FbM4NtNT5w_mmc3ew |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrYSQEOIpAgWMBOIU7cbO84BQH7tqaVkqtJUqLqnt2GykkpRNKuhf49cxk8eWHODWazyJI8_Y843H_gbgjYmU4HIycb3IYIAiQs-V0ijXR19p0Ei0bFIxn-bh_on_8TQ43YDf_V0YOlbZr4nNQp2VmvbIx5zSBcJH7zO23bGI473Zh4sfLlWQokxrX06jNZFDc_UTw7fq_cEe6vot57PpYnff7SoMuFokXu1qFU8EzxDUaGFDa3DZSDLhWQwrbKAxkpG-CYRJJkb56AuVVQLfM0IHOlOelAK_ews2I4qKRrC5M50ff1nv8BDjZhyGLVMkvjcZ1-WvXFcecaCIhhP62hM2BQMGKHd4RvMvpze7D_c6tMq2W_N6ABumeAh3260-1t5gegSfj1A7S1nkmanYgjpHZM_ygn2lpLTNqyWbflerq7LCDxm2S_VAzhHiZqwu2YISFWy7psvRbN6UJ3kMJzcyik9gVJSFeQqMC-OHOrCxijGUymysUSqKEq6kH4eJdcDtxyzVHYk51dI4TzGYoTFOh2PswLu1_EVL3_FPyR1SwVqKaLebB-XqW9rN4jQS0jM8kAjSLOLQDK3as9YgqI1Dk_iBA1u9AtNuLajSa8t14PW6GWcxpWZkYcpLkiEiPoxdPQeigeIHPzRsKfJlwweecB4hknv2_85fwW2cMOnRwfzwOdzhdIuDSjAlWzCqV5fmBWKrWr3sjJjB2U3Pmz_GKzuw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Lanthanides+Toxicity+in+Zebrafish+Embryos+Are+Correlated+to+Their+Atomic+Number&rft.jtitle=Toxics+%28Basel%29&rft.au=Ying-Ting+Lin&rft.au=Rong-Xuan+Liu&rft.au=Gilbert+Audira&rft.au=Michael+Edbert+Suryanto&rft.date=2022-06-19&rft.pub=MDPI+AG&rft.eissn=2305-6304&rft.volume=10&rft.issue=6&rft.spage=336&rft_id=info:doi/10.3390%2Ftoxics10060336&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_73a1e25a355f423daeb1ffe41686e945 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2305-6304&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2305-6304&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2305-6304&client=summon |