Lanthanides Toxicity in Zebrafish Embryos Are Correlated to Their Atomic Number

Rare earth elements (REEs) are critical metallic materials with a broad application in industry and biomedicine. The exponential increase in REEs utilization might elevate the toxicity to aquatic animals if they are released into the water due to uncareful handling. The specific objective of our stu...

Full description

Saved in:
Bibliographic Details
Published inToxics (Basel) Vol. 10; no. 6; p. 336
Main Authors Lin, Ying-Ting, Liu, Rong-Xuan, Audira, Gilbert, Suryanto, Michael Edbert, Roldan, Marri Jmelou M., Lee, Jiann-Shing, Ger, Tzong-Rong, Hsiao, Chung-Der
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 19.06.2022
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Rare earth elements (REEs) are critical metallic materials with a broad application in industry and biomedicine. The exponential increase in REEs utilization might elevate the toxicity to aquatic animals if they are released into the water due to uncareful handling. The specific objective of our study is to explore comprehensively the critical factor of a model Lanthanide complex electronic structures for the acute toxicity of REEs based on utilizing zebrafish as a model animal. Based on the 96 h LC50 test, we found that the majority of light REEs display lower LC50 values (4.19–25.17 ppm) than heavy REEs (10.30–41.83 ppm); indicating that they are atomic number dependent. Later, linear regression analyses further show that the average carbon charge on the aromatic ring (aromatic Cavg charge) can be the most significant electronic structural factor responsible for the Lanthanides’ toxicity in zebrafish embryos. Our results confirm a very strong correlation of LC50 to Lanthanide’s atomic numbers (r = 0.72), Milliken charge (r = 0.70), and aromatic Cavg charge (r = −0.85). This most significant correlation suggests a possible toxicity mechanism that the Lanthanide cation’s capability to stably bind to the aromatic ring on the residue of targeted proteins via a covalent chelating bond. Instead, the increasing ionic bond character can reduce REEs’ toxicity. In addition, Lanthanide toxicity was also evaluated by observing the disruption of photo motor response (PMR) activity in zebrafish embryos. Our study provides the first in vivo evidence to demonstrate the correlation between an atomic number of Lanthanide ions and the Lanthanide toxicity to zebrafish embryos.
AbstractList Rare earth elements (REEs) are critical metallic materials with a broad application in industry and biomedicine. The exponential increase in REEs utilization might elevate the toxicity to aquatic animals if they are released into the water due to uncareful handling. The specific objective of our study is to explore comprehensively the critical factor of a model Lanthanide complex electronic structures for the acute toxicity of REEs based on utilizing zebrafish as a model animal. Based on the 96 h LC50 test, we found that the majority of light REEs display lower LC50 values (4.19–25.17 ppm) than heavy REEs (10.30–41.83 ppm); indicating that they are atomic number dependent. Later, linear regression analyses further show that the average carbon charge on the aromatic ring (aromatic Cavg charge) can be the most significant electronic structural factor responsible for the Lanthanides’ toxicity in zebrafish embryos. Our results confirm a very strong correlation of LC50 to Lanthanide’s atomic numbers (r = 0.72), Milliken charge (r = 0.70), and aromatic Cavg charge (r = −0.85). This most significant correlation suggests a possible toxicity mechanism that the Lanthanide cation’s capability to stably bind to the aromatic ring on the residue of targeted proteins via a covalent chelating bond. Instead, the increasing ionic bond character can reduce REEs’ toxicity. In addition, Lanthanide toxicity was also evaluated by observing the disruption of photo motor response (PMR) activity in zebrafish embryos. Our study provides the first in vivo evidence to demonstrate the correlation between an atomic number of Lanthanide ions and the Lanthanide toxicity to zebrafish embryos.
Rare earth elements (REEs) are critical metallic materials with a broad application in industry and biomedicine. The exponential increase in REEs utilization might elevate the toxicity to aquatic animals if they are released into the water due to uncareful handling. The specific objective of our study is to explore comprehensively the critical factor of a model Lanthanide complex electronic structures for the acute toxicity of REEs based on utilizing zebrafish as a model animal. Based on the 96 h LC 50 test, we found that the majority of light REEs display lower LC 50 values (4.19–25.17 ppm) than heavy REEs (10.30–41.83 ppm); indicating that they are atomic number dependent. Later, linear regression analyses further show that the average carbon charge on the aromatic ring (aromatic C avg charge) can be the most significant electronic structural factor responsible for the Lanthanides’ toxicity in zebrafish embryos. Our results confirm a very strong correlation of LC 50 to Lanthanide’s atomic numbers (r = 0.72), Milliken charge (r = 0.70), and aromatic C avg charge (r = −0.85). This most significant correlation suggests a possible toxicity mechanism that the Lanthanide cation’s capability to stably bind to the aromatic ring on the residue of targeted proteins via a covalent chelating bond. Instead, the increasing ionic bond character can reduce REEs’ toxicity. In addition, Lanthanide toxicity was also evaluated by observing the disruption of photo motor response (PMR) activity in zebrafish embryos. Our study provides the first in vivo evidence to demonstrate the correlation between an atomic number of Lanthanide ions and the Lanthanide toxicity to zebrafish embryos.
Rare earth elements (REEs) are critical metallic materials with a broad application in industry and biomedicine. The exponential increase in REEs utilization might elevate the toxicity to aquatic animals if they are released into the water due to uncareful handling. The specific objective of our study is to explore comprehensively the critical factor of a model Lanthanide complex electronic structures for the acute toxicity of REEs based on utilizing zebrafish as a model animal. Based on the 96 h LC50 test, we found that the majority of light REEs display lower LC50 values (4.19-25.17 ppm) than heavy REEs (10.30-41.83 ppm); indicating that they are atomic number dependent. Later, linear regression analyses further show that the average carbon charge on the aromatic ring (aromatic Cavg charge) can be the most significant electronic structural factor responsible for the Lanthanides' toxicity in zebrafish embryos. Our results confirm a very strong correlation of LC50 to Lanthanide's atomic numbers (r = 0.72), Milliken charge (r = 0.70), and aromatic Cavg charge (r = -0.85). This most significant correlation suggests a possible toxicity mechanism that the Lanthanide cation's capability to stably bind to the aromatic ring on the residue of targeted proteins via a covalent chelating bond. Instead, the increasing ionic bond character can reduce REEs' toxicity. In addition, Lanthanide toxicity was also evaluated by observing the disruption of photo motor response (PMR) activity in zebrafish embryos. Our study provides the first in vivo evidence to demonstrate the correlation between an atomic number of Lanthanide ions and the Lanthanide toxicity to zebrafish embryos.Rare earth elements (REEs) are critical metallic materials with a broad application in industry and biomedicine. The exponential increase in REEs utilization might elevate the toxicity to aquatic animals if they are released into the water due to uncareful handling. The specific objective of our study is to explore comprehensively the critical factor of a model Lanthanide complex electronic structures for the acute toxicity of REEs based on utilizing zebrafish as a model animal. Based on the 96 h LC50 test, we found that the majority of light REEs display lower LC50 values (4.19-25.17 ppm) than heavy REEs (10.30-41.83 ppm); indicating that they are atomic number dependent. Later, linear regression analyses further show that the average carbon charge on the aromatic ring (aromatic Cavg charge) can be the most significant electronic structural factor responsible for the Lanthanides' toxicity in zebrafish embryos. Our results confirm a very strong correlation of LC50 to Lanthanide's atomic numbers (r = 0.72), Milliken charge (r = 0.70), and aromatic Cavg charge (r = -0.85). This most significant correlation suggests a possible toxicity mechanism that the Lanthanide cation's capability to stably bind to the aromatic ring on the residue of targeted proteins via a covalent chelating bond. Instead, the increasing ionic bond character can reduce REEs' toxicity. In addition, Lanthanide toxicity was also evaluated by observing the disruption of photo motor response (PMR) activity in zebrafish embryos. Our study provides the first in vivo evidence to demonstrate the correlation between an atomic number of Lanthanide ions and the Lanthanide toxicity to zebrafish embryos.
Author Liu, Rong-Xuan
Lin, Ying-Ting
Ger, Tzong-Rong
Suryanto, Michael Edbert
Hsiao, Chung-Der
Audira, Gilbert
Roldan, Marri Jmelou M.
Lee, Jiann-Shing
AuthorAffiliation 1 Department of Biotechnology, College of Life Science, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; ytlin@kmu.edu.tw (Y.-T.L.); fromoursound@gmail.com (R.-X.L.)
8 Research Center for Aquatic Toxicology and Pharmacology, Chung Yuan Christian University, Chung-Li 320314, Taiwan
5 Faculty of Pharmacy, The Graduate School, University of Santo Tomas, Manila 1008, Philippines; mmroldan@ust.edu.ph
6 Department of Applied Physics, National Pingtung University, Pingtung 90003, Taiwan
3 Department of Bioscience Technology, Chung Yuan Christian University, Taoyuan 320314, Taiwan; gilbertaudira@yahoo.com (G.A.); michael.edbert93@gmail.com (M.E.S.)
2 Drug Development & Value Creation Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
4 Department of Chemistry, Chung Yuan Christian University, Taoyuan 320314, Taiwan
7 Department of Biomedical Engineering, Chung Yuan Christian University, Taoyuan 320314, Taiwan
AuthorAffiliation_xml – name: 8 Research Center for Aquatic Toxicology and Pharmacology, Chung Yuan Christian University, Chung-Li 320314, Taiwan
– name: 1 Department of Biotechnology, College of Life Science, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; ytlin@kmu.edu.tw (Y.-T.L.); fromoursound@gmail.com (R.-X.L.)
– name: 2 Drug Development & Value Creation Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
– name: 5 Faculty of Pharmacy, The Graduate School, University of Santo Tomas, Manila 1008, Philippines; mmroldan@ust.edu.ph
– name: 6 Department of Applied Physics, National Pingtung University, Pingtung 90003, Taiwan
– name: 3 Department of Bioscience Technology, Chung Yuan Christian University, Taoyuan 320314, Taiwan; gilbertaudira@yahoo.com (G.A.); michael.edbert93@gmail.com (M.E.S.)
– name: 4 Department of Chemistry, Chung Yuan Christian University, Taoyuan 320314, Taiwan
– name: 7 Department of Biomedical Engineering, Chung Yuan Christian University, Taoyuan 320314, Taiwan
Author_xml – sequence: 1
  givenname: Ying-Ting
  orcidid: 0000-0001-8096-3402
  surname: Lin
  fullname: Lin, Ying-Ting
– sequence: 2
  givenname: Rong-Xuan
  surname: Liu
  fullname: Liu, Rong-Xuan
– sequence: 3
  givenname: Gilbert
  surname: Audira
  fullname: Audira, Gilbert
– sequence: 4
  givenname: Michael Edbert
  orcidid: 0000-0003-0089-6516
  surname: Suryanto
  fullname: Suryanto, Michael Edbert
– sequence: 5
  givenname: Marri Jmelou M.
  orcidid: 0000-0001-6398-1828
  surname: Roldan
  fullname: Roldan, Marri Jmelou M.
– sequence: 6
  givenname: Jiann-Shing
  orcidid: 0000-0002-2875-4192
  surname: Lee
  fullname: Lee, Jiann-Shing
– sequence: 7
  givenname: Tzong-Rong
  orcidid: 0000-0001-5472-431X
  surname: Ger
  fullname: Ger, Tzong-Rong
– sequence: 8
  givenname: Chung-Der
  orcidid: 0000-0002-6398-8672
  surname: Hsiao
  fullname: Hsiao, Chung-Der
BookMark eNp1kcFvFCEUhyemxtbaq-dJvHjZCjxgZi4mm02tTTb2sl68EGAeXTYzQwXGuP-9bLcxbhO5QB7f-_Lg97Y6m8KEVfWekmuAjnzK4be3iRIiCYB8VV0wIGIhgfCzf87n1VVKO1JWR6GV8k11DqIB2XF-Ud2v9ZS3evI9pnpz8Pm8r_1U_0ATtfNpW9-MJu5DqpcR61WIEQedsa9zqDdb9LFe5jB6W3-bR4PxXfXa6SHh1fN-WX3_crNZfV2s72_vVsv1wkJH88KalgDrhRQWnHRIuex6oI5J6oTtaKM5CsCOoOGMtsaZ8mCKYIXtDdUaLqu7o7cPeqceox913KugvXoqhPigdMzeDqga0BSZ0CCE4wx6jYY6h5zKVmLHRXF9ProeZzNib3HKUQ8n0tObyW_VQ_ilOsYa0rIi-PgsiOHnjCmr0SeLw6AnDHNSTLaEQUMlLeiHF-guzHEqX1WopmuBF6hQ10fKxpBSRPd3GErUIXp1Gn1p4C8aSo46-3AY2A__a_sD_--0Tg
CitedBy_id crossref_primary_10_1038_s41598_023_36496_4
crossref_primary_10_1016_j_envres_2024_120235
crossref_primary_10_3389_fenvs_2024_1390948
crossref_primary_10_3390_jox14040102
crossref_primary_10_1111_jfb_15860
crossref_primary_10_1134_S0022093022070067
crossref_primary_10_1029_2024GB008125
crossref_primary_10_3389_fpls_2025_1540266
crossref_primary_10_1016_j_crcon_2023_09_001
crossref_primary_10_1016_j_jtemin_2023_100068
crossref_primary_10_1007_s12011_024_04231_3
crossref_primary_10_1016_j_scitotenv_2023_167302
crossref_primary_10_3390_toxics11080680
crossref_primary_10_1016_j_aquatox_2024_107217
crossref_primary_10_24072_pcjournal_440
crossref_primary_10_1016_j_ecoenv_2024_117494
Cites_doi 10.1002/etc.5620101204
10.1021/acs.est.8b05547
10.1016/j.envpol.2019.113804
10.1021/jp060876d
10.1007/978-3-319-26809-5
10.1016/j.envint.2014.06.019
10.1093/jn/137.12.2809
10.1021/ja00984a014
10.1016/S0168-1273(96)22009-4
10.1021/ja00905a001
10.1016/j.crci.2004.07.002
10.1897/04-177R.1
10.1021/ed045p581
10.1007/s00128-020-02840-x
10.1039/B204717A
10.1201/b17045
10.3390/cells10040738
10.1016/j.aquatox.2011.07.010
10.2113/gselements.8.5.333
10.1016/0045-6535(94)90281-X
10.3390/ijerph17134632
10.1016/j.stem.2007.11.002
10.1093/toxsci/kfi110
10.1080/15287390500196230
10.1063/1.2814820
10.1016/S0166-5162(02)00125-8
10.1016/j.tiv.2009.05.014
10.1021/es050972c
10.1007/978-1-4471-2204-3
10.1093/toxsci/kfy044
10.1016/S1001-0742(11)60755-9
10.1016/j.cbpc.2019.05.009
10.1002/bdrc.21027
10.1242/dev.123.1.399
10.1016/j.jcp.2013.06.042
10.1016/j.ecoenv.2020.111588
10.2174/1877944111101010091
10.1016/j.ecoenv.2018.07.033
10.3390/ani10091663
ContentType Journal Article
Copyright 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2022 by the authors. 2022
Copyright_xml – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2022 by the authors. 2022
DBID AAYXX
CITATION
3V.
7U7
7XB
8FE
8FH
8FK
8G5
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
C1K
CCPQU
DWQXO
GNUQQ
GUQSH
HCIFZ
LK8
M2O
M7P
MBDVC
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
Q9U
7X8
5PM
DOA
DOI 10.3390/toxics10060336
DatabaseName CrossRef
ProQuest Central (Corporate)
Toxicology Abstracts
ProQuest Central (purchase pre-March 2016)
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Research Library
ProQuest Central (Alumni)
ProQuest One Sustainability (subscription)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Student
ProQuest Research Library
SciTech Premium Collection
ProQuest Biological Science Collection
ProQuest Research Library
Biological Science Database
Research Library (Corporate)
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Research Library Prep
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Research Library
ProQuest Central (New)
ProQuest Biological Science Collection
ProQuest Central Basic
Toxicology Abstracts
ProQuest One Academic Eastern Edition
Biological Science Database
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
CrossRef

MEDLINE - Academic
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Public Health
EISSN 2305-6304
ExternalDocumentID oai_doaj_org_article_73a1e25a355f423daeb1ffe41686e945
PMC9227082
10_3390_toxics10060336
GrantInformation_xml – fundername: Kaohsiung Medical University Research Center Grant and Research Foundation
  grantid: KMU-M111018
– fundername: the Ministry of Science Technology, Taiwan
  grantid: MOST 108-2313-B-033-001-MY3; MOST 108-2622-B-033-001-CC2; MOST 107-2119-M-037-001-MY2; MOST 108-2221-E-033-017-MY3
GroupedDBID 53G
5VS
8FE
8FH
8G5
AADQD
AAFWJ
AAHBH
AAYXX
ABUWG
ADBBV
AEUYN
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
CCPQU
CITATION
DWQXO
GNUQQ
GROUPED_DOAJ
GUQSH
HCIFZ
HYE
IAO
IHR
ITC
KQ8
LK8
M2O
M7P
MODMG
M~E
OK1
PGMZT
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
RPM
3V.
7U7
7XB
8FK
C1K
MBDVC
PKEHL
PQEST
PQGLB
PQUKI
Q9U
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c391t-cb8032d565c3f6fe1469d31f261f5c917a4e53e90eb4218bfb3391e3c5cdb1aa3
IEDL.DBID DOA
ISSN 2305-6304
IngestDate Wed Aug 27 01:21:17 EDT 2025
Thu Aug 21 13:41:11 EDT 2025
Fri Jul 11 09:51:33 EDT 2025
Fri Jul 25 12:14:34 EDT 2025
Tue Jul 01 02:00:59 EDT 2025
Thu Apr 24 22:52:31 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c391t-cb8032d565c3f6fe1469d31f261f5c917a4e53e90eb4218bfb3391e3c5cdb1aa3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-2875-4192
0000-0003-0089-6516
0000-0001-6398-1828
0000-0001-5472-431X
0000-0002-6398-8672
0000-0001-8096-3402
OpenAccessLink https://doaj.org/article/73a1e25a355f423daeb1ffe41686e945
PMID 35736944
PQID 2679834613
PQPubID 2032322
ParticipantIDs doaj_primary_oai_doaj_org_article_73a1e25a355f423daeb1ffe41686e945
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9227082
proquest_miscellaneous_2680237161
proquest_journals_2679834613
crossref_primary_10_3390_toxics10060336
crossref_citationtrail_10_3390_toxics10060336
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20220619
PublicationDateYYYYMMDD 2022-06-19
PublicationDate_xml – month: 6
  year: 2022
  text: 20220619
  day: 19
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Toxics (Basel)
PublicationYear 2022
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Yokel (ref_14) 2006; 9
MacMillan (ref_51) 2018; 53
Jin (ref_38) 2014; 9
Cardon (ref_52) 2020; 258
Zhang (ref_30) 2012; 24
Ortmann (ref_40) 2022; 39
Dolg (ref_19) 1996; 22
ref_10
Granato (ref_25) 1996; 123
Steele (ref_35) 2018; 137
Chen (ref_43) 1989; 9
Alsop (ref_45) 2011; 105
ref_18
ref_16
Cotton (ref_21) 2005; 8
Chen (ref_42) 2020; 104
Jastrow (ref_9) 1985; 38
(ref_13) 1991; 10
Finkelman (ref_12) 2002; 50
ref_28
Borgmann (ref_39) 2005; 24
Sojka (ref_33) 2019; 24
Lammer (ref_41) 2009; 23
Franke (ref_53) 1994; 29
Auclair (ref_31) 2019; 223
Avdesh (ref_29) 2012; 69
Hill (ref_23) 2005; 86
ref_36
Pearson (ref_46) 1968; 45
Horzmann (ref_26) 2018; 163
Motamarri (ref_37) 2013; 253
Schinzel (ref_15) 2006; 110
Pearson (ref_47) 1967; 89
Bailey (ref_27) 2013; 99
Gonzalez (ref_44) 2014; 71
Toraishi (ref_48) 2002; 24
Hanana (ref_32) 2021; 208
Blaise (ref_34) 2018; 163
White (ref_22) 2008; 2
Wright (ref_11) 2007; 137
Vos (ref_24) 2006; 40
ref_3
ref_2
(ref_20) 2011; 1
Pearson (ref_17) 1963; 85
Chakhmouradian (ref_1) 2012; 8
ref_8
Wells (ref_49) 2001; 20
Barron (ref_50) 1995; 2
ref_5
ref_4
ref_7
ref_6
References_xml – volume: 10
  start-page: 1585
  year: 1991
  ident: ref_13
  article-title: Assessing the toxicity of freshwater sediments
  publication-title: Environ. Toxicol. Chem. Int. J.
  doi: 10.1002/etc.5620101204
– volume: 53
  start-page: 1650
  year: 2018
  ident: ref_51
  article-title: Environmental drivers of rare earth element bioaccumulation in freshwater zooplankton
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.8b05547
– ident: ref_5
– volume: 258
  start-page: 113804
  year: 2020
  ident: ref_52
  article-title: Role of prey subcellular distribution on the bioaccumulation of yttrium (Y) in the rainbow trout
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2019.113804
– volume: 110
  start-page: 11324
  year: 2006
  ident: ref_15
  article-title: Structural and electronic analysis of lanthanide complexes: Reactivity may not necessarily be independent of the identity of the lanthanide atom—A DFT study
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp060876d
– volume: 39
  start-page: 82
  year: 2022
  ident: ref_40
  article-title: Photomotor response data analysis approach to assess chemical neurotoxicity with the zebrafish embryo
  publication-title: ALTEX-Altern. Anim. Exp.
– ident: ref_2
  doi: 10.1007/978-3-319-26809-5
– volume: 71
  start-page: 148
  year: 2014
  ident: ref_44
  article-title: Environmental fate and ecotoxicity of lanthanides: Are they a uniform group beyond chemistry?
  publication-title: Environ. Int.
  doi: 10.1016/j.envint.2014.06.019
– volume: 137
  start-page: 2809
  year: 2007
  ident: ref_11
  article-title: Metals and neurotoxicology
  publication-title: J. Nutr.
  doi: 10.1093/jn/137.12.2809
– ident: ref_16
– volume: 89
  start-page: 1827
  year: 1967
  ident: ref_47
  article-title: Application of the principle of hard and soft acids and bases to organic chemistry
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja00984a014
– volume: 22
  start-page: 607
  year: 1996
  ident: ref_19
  article-title: Electronic structure calculations for molecules containing lanthanide atoms
  publication-title: Handb. Phys. Chem. Rare Earths
  doi: 10.1016/S0168-1273(96)22009-4
– volume: 85
  start-page: 3533
  year: 1963
  ident: ref_17
  article-title: Hard and soft acids and bases
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja00905a001
– volume: 8
  start-page: 129
  year: 2005
  ident: ref_21
  article-title: Establishing coordination numbers for the lanthanides in simple complexes
  publication-title: Comptes Rendus Chim.
  doi: 10.1016/j.crci.2004.07.002
– volume: 24
  start-page: 641
  year: 2005
  ident: ref_39
  article-title: Toxicity of sixty-three metals and metalloids to Hyalella azteca at two levels of water hardness
  publication-title: Environ. Toxicol. Chem. Int. J.
  doi: 10.1897/04-177R.1
– volume: 45
  start-page: 581
  year: 1968
  ident: ref_46
  article-title: Hard and soft acids and bases, HSAB, part 1: Fundamental principles
  publication-title: J. Chem. Educ.
  doi: 10.1021/ed045p581
– volume: 104
  start-page: 582
  year: 2020
  ident: ref_42
  article-title: Calculation of toxicity coefficient of potential ecological risk assessment of rare earth elements
  publication-title: Bull. Environ. Contam. Toxicol.
  doi: 10.1007/s00128-020-02840-x
– volume: 24
  start-page: 3805
  year: 2002
  ident: ref_48
  article-title: Complexation of Th (iv) and various lanthanides (iii) by glycolic acid; potentiometric, 13 C-NMR and EXAFS studies
  publication-title: J. Chem. Soc. Dalton Trans.
  doi: 10.1039/B204717A
– ident: ref_7
  doi: 10.1201/b17045
– ident: ref_8
– ident: ref_36
  doi: 10.3390/cells10040738
– ident: ref_4
– volume: 105
  start-page: 385
  year: 2011
  ident: ref_45
  article-title: Metal uptake and acute toxicity in zebrafish: Common mechanisms across multiple metals
  publication-title: Aquat. Toxicol.
  doi: 10.1016/j.aquatox.2011.07.010
– volume: 8
  start-page: 333
  year: 2012
  ident: ref_1
  article-title: Rare earth elements: Minerals, mines, magnets (and more)
  publication-title: Elements
  doi: 10.2113/gselements.8.5.333
– volume: 29
  start-page: 1501
  year: 1994
  ident: ref_53
  article-title: The assessment of bioaccumulation
  publication-title: Chemosphere
  doi: 10.1016/0045-6535(94)90281-X
– ident: ref_28
  doi: 10.3390/ijerph17134632
– volume: 20
  start-page: 817
  year: 2001
  ident: ref_49
  article-title: The lanthanides, rare earth elements
  publication-title: Patty’s Toxicol.
– volume: 2
  start-page: 183
  year: 2008
  ident: ref_22
  article-title: Transparent adult zebrafish as a tool for in vivo transplantation analysis
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2007.11.002
– volume: 86
  start-page: 6
  year: 2005
  ident: ref_23
  article-title: Zebrafish as a model vertebrate for investigating chemical toxicity
  publication-title: Toxicol. Sci.
  doi: 10.1093/toxsci/kfi110
– volume: 69
  start-page: e4196
  year: 2012
  ident: ref_29
  article-title: Regular care and maintenance of a zebrafish (Danio rerio) laboratory: An introduction
  publication-title: JoVE
– ident: ref_3
– volume: 9
  start-page: 63
  year: 2006
  ident: ref_14
  article-title: The speciation of metals in mammals influences their toxicokinetics and toxicodynamics and therefore human health risk assessment
  publication-title: J. Toxicol. Environ. Health Part B
  doi: 10.1080/15287390500196230
– volume: 2
  start-page: 652
  year: 1995
  ident: ref_50
  article-title: Bioaccumulation and bioconcentration in aquatic organisms
  publication-title: Handb. Ecotoxicol.
– volume: 38
  start-page: 75
  year: 1985
  ident: ref_9
  article-title: How to Make Nuclear Weapons Obsolete
  publication-title: Phys. Today
  doi: 10.1063/1.2814820
– volume: 50
  start-page: 425
  year: 2002
  ident: ref_12
  article-title: Health impacts of coal and coal use: Possible solutions
  publication-title: Int. J. Coal Geol.
  doi: 10.1016/S0166-5162(02)00125-8
– volume: 23
  start-page: 1436
  year: 2009
  ident: ref_41
  article-title: Development of a flow-through system for the fish embryo toxicity test (FET) with the zebrafish (Danio rerio)
  publication-title: Toxicol. Vitr.
  doi: 10.1016/j.tiv.2009.05.014
– volume: 40
  start-page: 74
  year: 2006
  ident: ref_24
  article-title: Effects of the antithyroid agent propylthiouracil in a partial life cycle assay with zebrafish
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es050972c
– ident: ref_18
– ident: ref_6
  doi: 10.1007/978-1-4471-2204-3
– volume: 163
  start-page: 5
  year: 2018
  ident: ref_26
  article-title: Making waves: New developments in toxicology with the zebrafish
  publication-title: Toxicol. Sci.
  doi: 10.1093/toxsci/kfy044
– volume: 137
  start-page: e57938
  year: 2018
  ident: ref_35
  article-title: Experimental protocol for examining behavioral response profiles in larval fish: Application to the neuro-stimulant caffeine
  publication-title: JoVE (J. Vis. Exp.)
– volume: 24
  start-page: 209
  year: 2012
  ident: ref_30
  article-title: Effects of rare earth elements La and Yb on the morphological and functional development of zebrafish embryos
  publication-title: J. Environ. Sci.
  doi: 10.1016/S1001-0742(11)60755-9
– volume: 223
  start-page: 88
  year: 2019
  ident: ref_31
  article-title: Gene expression changes and toxicity of selected rare earth elements in rainbow trout juveniles
  publication-title: Comp. Biochem. Physiol. Part C Toxicol. Pharmacol.
  doi: 10.1016/j.cbpc.2019.05.009
– volume: 9
  start-page: 213
  year: 2014
  ident: ref_38
  article-title: A review on ecological toxicity of rare earth elements in soil
  publication-title: Asian J. Ecotoxicol.
– volume: 9
  start-page: 16
  year: 1989
  ident: ref_43
  article-title: Metal pollution of potential hazards in water: Sedimentology method evaluation
  publication-title: Environ. Sci. Technol.
– volume: 99
  start-page: 14
  year: 2013
  ident: ref_27
  article-title: Zebrafish model systems for developmental neurobehavioral toxicology
  publication-title: Birth Defects Res. Part C Embryo Today Rev.
  doi: 10.1002/bdrc.21027
– volume: 123
  start-page: 399
  year: 1996
  ident: ref_25
  article-title: Genes controlling and mediating locomotion behavior of the zebrafish embryo and larva
  publication-title: Development
  doi: 10.1242/dev.123.1.399
– volume: 253
  start-page: 308
  year: 2013
  ident: ref_37
  article-title: Higher-order adaptive finite-element methods for Kohn–Sham density functional theory
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2013.06.042
– volume: 208
  start-page: 111588
  year: 2021
  ident: ref_32
  article-title: Evaluation of general stress, detoxification pathways, and genotoxicity in rainbow trout exposed to rare earth elements dysprosium and lutetium
  publication-title: Ecotoxicol. Environ. Saf.
  doi: 10.1016/j.ecoenv.2020.111588
– volume: 1
  start-page: 91
  year: 2011
  ident: ref_20
  article-title: Applications of density functional theory (DFT) to investigate the structural, spectroscopic and magnetic properties of lanthanide (III) complexes
  publication-title: Curr. Inorg. Chem.
  doi: 10.2174/1877944111101010091
– volume: 24
  start-page: 125
  year: 2019
  ident: ref_33
  article-title: Concentration of Rare Earth Elements in surface water and bottom sediments in Lake Wadag, Poland
  publication-title: J. Elem.
– volume: 163
  start-page: 486
  year: 2018
  ident: ref_34
  article-title: Ecotoxicity responses of the freshwater cnidarian Hydra attenuata to 11 rare earth elements
  publication-title: Ecotoxicol. Environ. Saf.
  doi: 10.1016/j.ecoenv.2018.07.033
– ident: ref_10
  doi: 10.3390/ani10091663
SSID ssj0000913866
Score 2.2864764
Snippet Rare earth elements (REEs) are critical metallic materials with a broad application in industry and biomedicine. The exponential increase in REEs utilization...
SourceID doaj
pubmedcentral
proquest
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 336
SubjectTerms Acute toxicity
Animals
Aquatic animals
Aromatic compounds
atomic number
Atomic properties
Biocompatibility
Biomedical materials
Chelation
Chemical bonds
Chemical elements
Danio rerio
electronic structural factors
Embryos
In vivo methods and tests
Industrial applications
Lanthanides
Ligands
rare earth element
Rare earth elements
Regression analysis
Toxicity
Zebrafish
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1La9wwEBbt5lIooU_qNC0qFHoyWUl-yKeShA2htNtSNhB6MZI86hpSO1070P77ztjaTX1IrtZgm5E0882M9A1j7yG3Spr5PBY5YICiMhEbAzZO0FcCLhJnhlLMl2V2fpF8ukwvQ8KtC8cqtzZxMNRV6yhHfiSpXKAS9D4fr3_H1DWKqquhhcZDtocmWOsZ2ztZLL9932VZiPVSZ9nI1qgwvj_q2z-16wTxkKiBl_nWGw2k_ROkOT0n-Z_jOXvC9gNi5MfjFD9lD6B5xh6P6TY-3iJ6zr5-Rg2tTVNX0PEVfRzRNa8b_oMKw77u1nzxy27-th2-CPgp9eS4QphZ8b7lKyoW8OOeLijz5dAi5AW7OFusTs_j0CshdqoQfeysnitZITxzymce0AAWlRIeAySfOozJTAKpgmIONkGvbr1FbQhQLnWVFcaol2zWtA28YlwqSDKXem01hjOV1w6l8ryQ1iQ6K3zE4q3OSheIxKmfxVWJAQXpuJzqOGIfdvLXI4XGnZInNAU7KaK-Hh60m59l2EllrowAmRoESh6xYIUrS3gPCCx1BkWSRuxwO4Fl2I9debt6IvZuN4w7icojpoH2hmSIDA_jRxGxfDLxkx-ajjT1euDkLqTMEU0d3P_x1-yRpOsT1PuoOGSzfnMDbxDU9PZtWLn_AEEr-h8
  priority: 102
  providerName: ProQuest
Title Lanthanides Toxicity in Zebrafish Embryos Are Correlated to Their Atomic Number
URI https://www.proquest.com/docview/2679834613
https://www.proquest.com/docview/2680237161
https://pubmed.ncbi.nlm.nih.gov/PMC9227082
https://doaj.org/article/73a1e25a355f423daeb1ffe41686e945
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYhvQRK6ZM6SYMKhZ5MVpJfOiZhQyjJtpQNhF6MJI9YQ2KHtQPtv--M7GzXh9BLrtYgy6OR5huP9A1jXyC3SprZLBY5YICiMhEbAzZO0FcCGokzIRVztcgurpNvN-nNVqkvOhM20AMPijvOlREgU4N-0aPrr7Aj4T0gjigy0ElgL0WftxVMhT1YC1Vk2cDSqDCuP-7b37XrBPGPqMDH_M8LBbL-CcKcno_ccjjnr9mrESnyk2GEb9gONG_Zy-E3Gx9uD71j3y9RMyvT1BV0fEkvR1TN64b_ooSwr7sVn9_Z9Z-2w46An1EtjluElxXvW76kJAE_6eliMl-E0iDv2fX5fHl2EY81EmKntOhjZ4uZkhXCMqd85gE3Pl0p4TEw8qnDWMwkkCrQM7AJenPrLWpDgHKpq6wwRn1gu03bwEfGpYIkc6kvbIFhTOULh1J5rqU1SZFpH7H4UWelGwnEqY7FbYmBBOm4nOo4Yl838vcDdcaTkqc0BRsporwOD9AQytEQyv8ZQsQOHyewHNdhV0pKMqkEMUvEPm-acQVRWsQ00D6QDJHgYdwoIpZPJn4yoGlLU68CF7eWMkcUtf8cX3DA9iRdrqDKSPqQ7fbrB_iEkKe3R-zF6Xzx4-dRsPK_zeUC7g
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6V7QEkhHiKlAJGAnGKmth5HhBqy1Zbul0Q2koVl2A7NhupTcomFfRP8RuZSbJbcoBbr_HESTxjzzee-BuA1yZWgkvPc_3YYIAiIt-V0ig3QF9p0Ei0bFMxx7NochJ8PA1PN-D36iwM_Va5WhPbhTqvNO2R73BKF4gAvc_7ix8uVY2i7OqqhEZnFkfm6ieGbPW7ww-o3zecH4zn-xO3ryrgapH6jatV4gmeI5DRwkbW4FKR5sK3GErYUGP0IgMTCpN6RgXo_5RVAu8zQoc6V76UAvu9BZv4WR4fwebeePb5y3pXh1g2kyjq2CHxPm-nqX4VuvaJ90S0PNDX3q8tEjBAtsP_Mv9ydAf34V6PUNluZ1IPYMOUD-Fut73HulNLj-DTFDWykGWRm5rN6eGI5llRsq-UiLZFvWDjc7W8qmrsyLB9qgFyhrA2Z03F5pScYLsNHYhms7YkyWM4uZFRfAKjsirNU2BcmCDSoU1UguFTbhONUnGcciWDJEqtA-5qzDLdE5dT_YyzDAMYGuNsOMYOvF3LX3SUHf-U3CMVrKWIaru9UC2_Z_3MzWIhfcNDicDMIvbM0ZJ9aw0C2SQyaRA6sL1SYNbP_zq7tlYHXq2bceZSOkaWprokGSLfw3jVdyAeKH7wQsOWsli0HOAp5zGit63_P_wl3J7Mj6fZ9HB29AzucDq6QXWX0m0YNctL8xwBVaNe9FbM4NtNT5w_mmc3ew
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrYSQEOIpAgWMBOIU7cbO84BQH7tqaVkqtJUqLqnt2GykkpRNKuhf49cxk8eWHODWazyJI8_Y843H_gbgjYmU4HIycb3IYIAiQs-V0ijXR19p0Ei0bFIxn-bh_on_8TQ43YDf_V0YOlbZr4nNQp2VmvbIx5zSBcJH7zO23bGI473Zh4sfLlWQokxrX06jNZFDc_UTw7fq_cEe6vot57PpYnff7SoMuFokXu1qFU8EzxDUaGFDa3DZSDLhWQwrbKAxkpG-CYRJJkb56AuVVQLfM0IHOlOelAK_ews2I4qKRrC5M50ff1nv8BDjZhyGLVMkvjcZ1-WvXFcecaCIhhP62hM2BQMGKHd4RvMvpze7D_c6tMq2W_N6ABumeAh3260-1t5gegSfj1A7S1nkmanYgjpHZM_ygn2lpLTNqyWbflerq7LCDxm2S_VAzhHiZqwu2YISFWy7psvRbN6UJ3kMJzcyik9gVJSFeQqMC-OHOrCxijGUymysUSqKEq6kH4eJdcDtxyzVHYk51dI4TzGYoTFOh2PswLu1_EVL3_FPyR1SwVqKaLebB-XqW9rN4jQS0jM8kAjSLOLQDK3as9YgqI1Dk_iBA1u9AtNuLajSa8t14PW6GWcxpWZkYcpLkiEiPoxdPQeigeIHPzRsKfJlwweecB4hknv2_85fwW2cMOnRwfzwOdzhdIuDSjAlWzCqV5fmBWKrWr3sjJjB2U3Pmz_GKzuw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Lanthanides+Toxicity+in+Zebrafish+Embryos+Are+Correlated+to+Their+Atomic+Number&rft.jtitle=Toxics+%28Basel%29&rft.au=Ying-Ting+Lin&rft.au=Rong-Xuan+Liu&rft.au=Gilbert+Audira&rft.au=Michael+Edbert+Suryanto&rft.date=2022-06-19&rft.pub=MDPI+AG&rft.eissn=2305-6304&rft.volume=10&rft.issue=6&rft.spage=336&rft_id=info:doi/10.3390%2Ftoxics10060336&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_73a1e25a355f423daeb1ffe41686e945
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2305-6304&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2305-6304&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2305-6304&client=summon