Are Daphnia similis Playing a Significant Role in Microplastic Biofragmentation?
Environmental plastic contamination is a global problem, which is driven by the growing demand for plastics. Over time, plastics undergo fragmentation processes and become so-called microplastics, which have been shown to be a threat to the various environments where their presence occurs. The most...
Saved in:
Published in | Water, air, and soil pollution Vol. 234; no. 6; p. 371 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Cham
Springer International Publishing
01.06.2023
Springer Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Environmental plastic contamination is a global problem, which is driven by the growing demand for plastics. Over time, plastics undergo fragmentation processes and become so-called microplastics, which have been shown to be a threat to the various environments where their presence occurs. The most accepted hypothesis is that, like macroplastics, microplastics have fragmented into smaller and smaller particles, with sub-micrometer sizes. However, little is known about fragmentation rates and which are the most determining factors in this process. The main objective of the present study was to investigate the biofragmentation capacity of microplastics by
Daphnia similis
, a microcrustacean from inland waters. The organisms were exposed to polystyrene spheres (PS; 24 µm), under two concentrations: 135 and 1350 items/50 mL, for a period of 6 days. The rate of biofragmentation was obtained by analyzing the size of the particles over time (48, 96, and 144 h); ingestion and survival rates were also investigated. At the end of the exposure, the microspheres had their size reduced by 32.8%. From the first 48 h, the organisms ingested particles, and the rate of ingestion was dose dependent. Mortality was shown to increase in the treatment of higher concentration. The results demonstrate the ability of this microcrustacean to induce the reduction of the dimensions of microplastics, evidencing a fragmentation pathway previously neglected. |
---|---|
AbstractList | Environmental plastic contamination is a global problem, which is driven by the growing demand for plastics. Over time, plastics undergo fragmentation processes and become so-called microplastics, which have been shown to be a threat to the various environments where their presence occurs. The most accepted hypothesis is that, like macroplastics, microplastics have fragmented into smaller and smaller particles, with sub-micrometer sizes. However, little is known about fragmentation rates and which are the most determining factors in this process. The main objective of the present study was to investigate the biofragmentation capacity of microplastics by
Daphnia similis
, a microcrustacean from inland waters. The organisms were exposed to polystyrene spheres (PS; 24 µm), under two concentrations: 135 and 1350 items/50 mL, for a period of 6 days. The rate of biofragmentation was obtained by analyzing the size of the particles over time (48, 96, and 144 h); ingestion and survival rates were also investigated. At the end of the exposure, the microspheres had their size reduced by 32.8%. From the first 48 h, the organisms ingested particles, and the rate of ingestion was dose dependent. Mortality was shown to increase in the treatment of higher concentration. The results demonstrate the ability of this microcrustacean to induce the reduction of the dimensions of microplastics, evidencing a fragmentation pathway previously neglected. Environmental plastic contamination is a global problem, which is driven by the growing demand for plastics. Over time, plastics undergo fragmentation processes and become so-called microplastics, which have been shown to be a threat to the various environments where their presence occurs. The most accepted hypothesis is that, like macroplastics, microplastics have fragmented into smaller and smaller particles, with sub-micrometer sizes. However, little is known about fragmentation rates and which are the most determining factors in this process. The main objective of the present study was to investigate the biofragmentation capacity of microplastics by Daphnia similis, a microcrustacean from inland waters. The organisms were exposed to polystyrene spheres (PS; 24 µm), under two concentrations: 135 and 1350 items/50 mL, for a period of 6 days. The rate of biofragmentation was obtained by analyzing the size of the particles over time (48, 96, and 144 h); ingestion and survival rates were also investigated. At the end of the exposure, the microspheres had their size reduced by 32.8%. From the first 48 h, the organisms ingested particles, and the rate of ingestion was dose dependent. Mortality was shown to increase in the treatment of higher concentration. The results demonstrate the ability of this microcrustacean to induce the reduction of the dimensions of microplastics, evidencing a fragmentation pathway previously neglected. Environmental plastic contamination is a global problem, which is driven by the growing demand for plastics. Over time, plastics undergo fragmentation processes and become so-called microplastics, which have been shown to be a threat to the various environments where their presence occurs. The most accepted hypothesis is that, like macroplastics, microplastics have fragmented into smaller and smaller particles, with sub-micrometer sizes. However, little is known about fragmentation rates and which are the most determining factors in this process. The main objective of the present study was to investigate the biofragmentation capacity of microplastics by Daphnia similis, a microcrustacean from inland waters. The organisms were exposed to polystyrene spheres (PS; 24 [micro]m), under two concentrations: 135 and 1350 items/50 mL, for a period of 6 days. The rate of biofragmentation was obtained by analyzing the size of the particles over time (48, 96, and 144 h); ingestion and survival rates were also investigated. At the end of the exposure, the microspheres had their size reduced by 32.8%. From the first 48 h, the organisms ingested particles, and the rate of ingestion was dose dependent. Mortality was shown to increase in the treatment of higher concentration. The results demonstrate the ability of this microcrustacean to induce the reduction of the dimensions of microplastics, evidencing a fragmentation pathway previously neglected. |
ArticleNumber | 371 |
Audience | Academic |
Author | Rani-Borges, Bárbara Pompêo, Marcelo Queiroz, Lucas Gonçalves |
Author_xml | – sequence: 1 givenname: Bárbara orcidid: 0000-0003-3738-686X surname: Rani-Borges fullname: Rani-Borges, Bárbara email: barbara.rani-borges@usp.br organization: Institute of Science and Technology, São Paulo State University, UNESP – sequence: 2 givenname: Marcelo orcidid: 0000-0002-5632-9257 surname: Pompêo fullname: Pompêo, Marcelo organization: Department of Ecology, Institute of Biosciences, University of São Paulo, USP – sequence: 3 givenname: Lucas Gonçalves orcidid: 0000-0003-3305-1042 surname: Queiroz fullname: Queiroz, Lucas Gonçalves organization: Department of Ecology, Institute of Biosciences, University of São Paulo, USP |
BookMark | eNp9kU1LHTEUhkNR6FX7B7oKdONmbD5mbiYrudpaCxalH-twJjeZHskk12Tuwn9v6hQEFyaBQHifkDzvETmIKTpCPnJ2xhlTnwvnQrGGCdmwtezbpn9HVrxTshFaigOyYqzVzVor_Z4clXLP6tC9WpG7TXb0C-z-RgRacMKAhd4FeMQ4UqC_cIzo0UKc6c8UHMVIf6DNaRegzGjpBSafYZxcnGHGFM9PyKGHUNyH__sx-XP19ffldXNz--375eamsVLzubHKy8FL5mxruR6kYG47OOU52w6dYIPwAx84h_UaQEqtWstaJXvYirYTSml5TE6Xe3c5Pexdmc2ExboQILq0L0byrq6Oa1Gjn15F79M-x_o6I3rBdbUiWE2dLakRgjMYfZoz2Dq3bkJbdXus5xvVcSW7KroC_QJUHaVk543FRUIFMRjOzL9uzNKNqYh57sb0FRWv0F3GCfLj25BcoFLDcXT55RtvUE_qIqHp |
CitedBy_id | crossref_primary_10_1007_s11270_023_06684_z crossref_primary_10_1007_s11270_024_07003_w crossref_primary_10_1016_j_ecohyd_2025_100647 crossref_primary_10_1016_j_jhazmat_2025_137977 crossref_primary_10_3390_ijerph21010044 crossref_primary_10_1021_acs_est_3c08193 crossref_primary_10_1016_j_marenvres_2025_107027 crossref_primary_10_1021_acs_chemrestox_4c00300 crossref_primary_10_1088_1755_1315_1305_1_012005 |
Cites_doi | 10.1021/acs.est.6b02917 10.1016/j.chemosphere.2017.02.024 10.2307/1537264 10.1080/10934529.2020.1756656 10.1038/s41598-020-69635-2 10.1016/j.envpol.2019.07.087 10.2307/1937196 10.1016/j.envpol.2018.04.127 10.1016/j.envpol.2018.11.081 10.1016/j.marpolbul.2011.06.004 10.1016/j.cbpc.2021.109080 10.1016/j.envpol.2018.10.102 10.1016/j.envint.2017.02.013 10.1021/acs.estlett.7b00008 10.1111/j.1399-3054.1962.tb08052.x 10.1016/j.envpol.2019.113904 10.1371/journal.pone.0155063 10.1016/j.envpol.2016.10.037 10.1007/bf00379140 10.1021/acs.est.8b06963 10.1787/9789264069947-en 10.1016/j.scitotenv.2022.158560 10.2139/ssrn.4206912 10.1016/j.ecss.2015.12.003 10.1007/978-3-319-61615-5 10.1787/9789264185203-en 10.1039/C5EM00207A 10.1016/j.ecss.2013.06.016 10.1038/s41598-019-39366-0 10.1016/j.envc.2021.100042 10.1016/j.ecoenv.2021.112199 10.1002/gch2.201900022 10.1021/es400663f 10.1016/j.watres.2016.01.002 10.1016/j.chemosphere.2017.05.096 10.1016/j.envpol.2017.03.062 10.1016/j.envpol.2013.02.031 10.1039/C8EN01378K 10.1016/j.jhazmat.2020.122596 10.1002/ieam.1913 10.1016/j.scitotenv.2021.151022 10.1016/j.envpol.2020.115659 10.1016/j.scitotenv.2022.161254 10.1016/j.scitotenv.2020.143875 10.1021/acs.est.8b02301 10.1002/etc.3311 10.1016/j.scitotenv.2019.135800 10.1016/j.scitotenv.2021.147082 10.1139/anc-2018-0030 10.1038/s41467-018-03465-9 10.1007/s11356-019-04695-0 10.1016/j.chemosphere.2021.132517 10.1371/journal.pone.0187590 10.1021/es504525u 10.1016/j.scitotenv.2018.03.176 10.1016/j.chemosphere.2016.02.133 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer Nature Switzerland AG 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. COPYRIGHT 2023 Springer |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Nature Switzerland AG 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: COPYRIGHT 2023 Springer |
DBID | AAYXX CITATION 3V. 7QH 7T7 7TV 7U7 7UA 7WY 7WZ 7X2 7X7 7XB 87Z 88E 88I 8C1 8FD 8FE 8FH 8FI 8FJ 8FK 8FL ABUWG AEUYN AFKRA ATCPS AZQEC BENPR BEZIV BHPHI BKSAR C1K CCPQU DWQXO F1W FR3 FRNLG FYUFA F~G GHDGH GNUQQ H96 H97 HCIFZ K60 K6~ K9. L.- L.G M0C M0K M0S M1P M2P P64 PATMY PCBAR PHGZM PHGZT PJZUB PKEHL PPXIY PQBIZ PQBZA PQEST PQQKQ PQUKI PYCSY Q9U 7S9 L.6 |
DOI | 10.1007/s11270-023-06384-8 |
DatabaseName | CrossRef ProQuest Central (Corporate) Aqualine Industrial and Applied Microbiology Abstracts (Microbiology A) Pollution Abstracts Toxicology Abstracts Water Resources Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) Agricultural Science Collection Health & Medical Collection ProQuest Central (purchase pre-March 2016) ABI/INFORM Global (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) Public Health Database Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni Edition) ProQuest Central (Alumni) ProQuest One Sustainability (subscription) ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials ProQuest Central Business Premium Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Korea ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Business Premium Collection (Alumni) Health Research Premium Collection ABI/INFORM Global (Corporate) Health Research Premium Collection (Alumni) ProQuest Central Student Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality SciTech Premium Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection ProQuest Health & Medical Complete (Alumni) ABI/INFORM Professional Advanced Aquatic Science & Fisheries Abstracts (ASFA) Professional ABI/INFORM Global Agricultural Science Database ProQuest Health & Medical Collection Medical Database Science Database Biotechnology and BioEngineering Abstracts Environmental Science Database Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition Environmental Science Collection ProQuest Central Basic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef Agricultural Science Database ProQuest Business Collection (Alumni Edition) ProQuest Central Student ProQuest Central Essentials SciTech Premium Collection ABI/INFORM Complete Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality Water Resources Abstracts Environmental Sciences and Pollution Management ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Medical Library (Alumni) Business Premium Collection ABI/INFORM Global ProQuest Science Journals (Alumni Edition) ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database Agricultural Science Collection ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Business Collection Aqualine ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Environmental Science Collection ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Environmental Science Database Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ABI/INFORM Global (Corporate) ProQuest One Business Aquatic Science & Fisheries Abstracts (ASFA) Professional Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection Pollution Abstracts ProQuest Central Earth, Atmospheric & Aquatic Science Collection ABI/INFORM Professional Advanced ProQuest Health & Medical Research Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Agricultural & Environmental Science Collection ABI/INFORM Complete (Alumni Edition) ProQuest Public Health ABI/INFORM Global (Alumni Edition) ProQuest Central Basic Toxicology Abstracts ProQuest Science Journals ProQuest SciTech Collection ProQuest Medical Library Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ASFA: Aquatic Sciences and Fisheries Abstracts ProQuest One Business (Alumni) ProQuest Central (Alumni) Business Premium Collection (Alumni) AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA Agricultural Science Database |
Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Environmental Sciences |
EISSN | 1573-2932 |
EndPage | 371 |
ExternalDocumentID | A751735023 10_1007_s11270_023_06384_8 |
GroupedDBID | --- -5A -5G -5~ -BR -EM -Y2 -~C -~X .86 .VR 06D 0R~ 0VY 123 199 1N0 1SB 2.D 203 28- 29R 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2XV 2~H 30V 3SX 3V. 4.4 406 408 409 40D 40E 4P2 53G 5QI 5VS 67M 67Z 6NX 78A 7WY 7X2 7X7 7XC 88E 88I 8C1 8CJ 8FE 8FH 8FI 8FJ 8FL 8UJ 95- 95. 95~ 96X A8Z AAAVM AABHQ AACDK AAHBH AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJOX ABKCH ABKTR ABLJU ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACGOD ACHSB ACHXU ACKIV ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACPRK ACZOJ ADBBV ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEUYN AEVLU AEXYK AFEXP AFFNX AFGCZ AFKRA AFLOW AFQWF AFRAH AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGWIL AGWZB AGYKE AHAVH AHBYD AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALIPV ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG APEBS ARMRJ ASPBG ATCPS AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BBWZM BDATZ BENPR BEZIV BGNMA BHPHI BKSAR BPHCQ BSONS BVXVI CAG CCPQU COF CS3 CSCUP D1J D1K DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBD EBLON EBS ECGQY EDH EIOEI EJD EPAXT ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC FYUFA GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GXS H13 HCIFZ HF~ HG5 HG6 HMCUK HMJXF HQYDN HRMNR HVGLF HZ~ I09 IAO IEP IFM IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K6- K60 K6~ KDC KOV KOW L8X LAK LLZTM M0C M0K M1P M2P M4Y MA- ML. N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 PATMY PCBAR PF0 PQBIZ PQBZA PQQKQ PROAC PSQYO PT4 PT5 PYCSY Q2X QOK QOS R4E R89 R9I RHV RIG RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCK SCLPG SDH SDM SEV SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TN5 TSG TSK TSV TUC U2A UG4 UKHRP UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WH7 WJK WK6 WK8 XJT Y6R YLTOR Z45 Z5O Z7R Z7S Z7U Z7V Z7W Z7X Z7Y Z7Z Z81 Z85 Z86 Z8M Z8N Z8O Z8P Z8Q Z8S Z8T Z8U Z8Z Z92 ZMTXR ~02 ~A~ ~EX ~KM AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG ADXHL AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT AEIIB PMFND 7QH 7T7 7TV 7U7 7UA 7XB 8FD 8FK ABRTQ C1K F1W FR3 H96 H97 K9. L.- L.G P64 PJZUB PKEHL PPXIY PQEST PQUKI Q9U 7S9 L.6 |
ID | FETCH-LOGICAL-c391t-c7f3bf30ec4c19b320edbe7f10db520b2fb1b11a66aa33974c04738ad24527793 |
IEDL.DBID | U2A |
ISSN | 0049-6979 |
IngestDate | Fri Jul 11 00:42:19 EDT 2025 Fri Jul 25 23:20:51 EDT 2025 Tue Jun 10 21:09:24 EDT 2025 Tue Jul 01 02:34:46 EDT 2025 Thu Apr 24 23:07:26 EDT 2025 Fri Feb 21 02:43:17 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | Nile Red Crustaceans Polystyrene PS Freshwater invertebrates Fragmentation |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c391t-c7f3bf30ec4c19b320edbe7f10db520b2fb1b11a66aa33974c04738ad24527793 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-3738-686X 0000-0003-3305-1042 0000-0002-5632-9257 |
PQID | 2821997920 |
PQPubID | 54157 |
PageCount | 1 |
ParticipantIDs | proquest_miscellaneous_3153155192 proquest_journals_2821997920 gale_infotracacademiconefile_A751735023 crossref_citationtrail_10_1007_s11270_023_06384_8 crossref_primary_10_1007_s11270_023_06384_8 springer_journals_10_1007_s11270_023_06384_8 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20230600 2023-06-00 20230601 |
PublicationDateYYYYMMDD | 2023-06-01 |
PublicationDate_xml | – month: 6 year: 2023 text: 20230600 |
PublicationDecade | 2020 |
PublicationPlace | Cham |
PublicationPlace_xml | – name: Cham – name: Dordrecht |
PublicationSubtitle | An International Journal of Environmental Pollution |
PublicationTitle | Water, air, and soil pollution |
PublicationTitleAbbrev | Water Air Soil Pollut |
PublicationYear | 2023 |
Publisher | Springer International Publishing Springer Springer Nature B.V |
Publisher_xml | – name: Springer International Publishing – name: Springer – name: Springer Nature B.V |
References | Brennecke, D., Duarte, B., Paiva, F., Caçador, I., & Canning-Clode, J. (2016). Microplastics as vector for heavy metal contamination from the marine environment. Estuarine, Coastal and Shelf Science, 178, 189–195. https://doi.org/10.1016/j.ecss.2015.12.003 EltemsahYSBøhnTAcute and chronic effects of polystyrene microplastics on juvenile and adult Daphnia MagnaEnvironmental Pollution.20192541129191:CAS:528:DC%2BC1MXhsFGjtrzM10.1016/j.envpol.2019.07.087 Müller, A., Becker, R., Dorgerloh, U., Simon, F.-G., & Braun, U. (2018). The effect of polymer aging on the uptake of fuel aromatics and ethers by microplastics. Environmental Pollution, 240, 639–646. https://doi.org/10.1016/j.envpol.2018.04.127 ColeMLindequePFilemanEHalsbandCGoodheadRMogerJGallowayTSMicroplastic ingestion by zooplanktonEnvironmental Science & Technology.201347664666551:CAS:528:DC%2BC3sXnvFSksr8%3D10.1021/es400663f JooSHLiangYKimMByunJChoiHMicroplastics with adsorbed contaminants: Mechanisms and treatmentEnvironmental Challenges.202131000421:CAS:528:DC%2BB38XhtlOju77I10.1016/j.envc.2021.100042 TorresFGDioses-SalinasDCPizarro-OrtegaCIDe-la-TorreGESorption of chemical contaminants on degradable and non-degradable microplastics: recent progress and research trendsScience of the Total Environment.20207571438751:CAS:528:DC%2BB3cXis1ais7bM10.1016/j.scitotenv.2020.143875 GophenMGellerWFilter mesh size and food particle uptake by DaphniaOecologia19846440841210.1007/bf00379140 PorterKGOrcuttJDGerritsenJFunctional response and fitness in a generalist filter feeder, Daphnia Magna (Cladocera: Crustacea)Ecology19836473574210.2307/1937196 Mateos-CárdenasAO’HalloranJvan PeltFNAMJansenMAKRapid fragmentation of microplastics by the freshwater amphipod Gammarus duebeni (Lillj.)Scientific Reports202010127991:CAS:528:DC%2BB3cXhsFajt7jN10.1038/s41598-020-69635-2 AljaibachiRLairdWBStevensFCallaghanAImpacts of polystyrene microplastics on Daphnia magna: A laboratory and a mesocosm studyScience of the Total Environment.20207051358001:CAS:528:DC%2BC1MXitlaju73P10.1016/j.scitotenv.2019.135800 JahnkeAArpHPHEscherBIGewertBGorokhovaEKühnelDOgonowskiMPotthoffARummelCSchmitt-JansenMToormanEMacLeodMReducing uncertainty and confronting ignorance about the possible impacts of weathering plastic in the marine environmentEnvironmental Science & Technology Letters.2017485901:CAS:528:DC%2BC2sXislSrur8%3D10.1021/acs.estlett.7b00008 LomonacoTMancoECortiALa NasaJGhimentiSBiaginiDDi FrancescoFModugnoFCeccariniAFuocoRCastelvetroVRelease of harmful volatile organic compounds (VOCs) from photo-degraded plastic debris: A neglected source of environmental pollutionJournal of Hazardous Materials.20203941225961:CAS:528:DC%2BB3cXntVOqtL8%3D10.1016/j.jhazmat.2020.122596 PetersenEJMortimerMBurgessRMHandyRHannaSHoKTJohnsonMLoureiroSSelckHScott-FordsmandJJSpurgeonDUnrineJvan den BrinkNWWangYWhiteJHoldenPStrategies for robust and accurate experimental approaches to quantify nanomaterial bioaccumulation across a broad range of organismsEnvironmental Science: Nano Journal.20196161916561:CAS:528:DC%2BC1MXnsFSht70%3D10.1039/C8EN01378K GuilherminoLMartinsACunhaSFernandesJOLong-term adverse effects of microplastics on Daphnia magna reproduction and population growth rate at increased water temperature and light intensity: Combined effects of stressors and interactionsScience of The Total Environment.20217841470821:CAS:528:DC%2BB3MXpsVSltb4%3D10.1016/j.scitotenv.2021.147082 LahiveECrossRSaarloosAIHortonAASvendsenCHufenusRMitranoDMEarthworms ingest microplastic fibres and nanoplastics with effects on egestion rate and long-term retentionScience of the Total Environment.20218071510221:CAS:528:DC%2BB3MXit1Kmtb%2FM10.1016/j.scitotenv.2021.151022 GewertBPlassmannMMMacleodMPathways for degradation of plastic polymers floating in the marine environmentEnvironmental Science: Processes & Impacts201517151315211:CAS:528:DC%2BC2MXhtFGgtbjF10.1039/C5EM00207A KarimiMBiriaDThe promiscuous activity of alpha-amylase in biodegradation of low-density polyethylene in a polymer-starch blendScientific Reports.2019926121:CAS:528:DC%2BC1MXnslCitLo%3D10.1038/s41598-019-39366-0 ButelerMFasanellaMAlmaAMSilvaLILangenheimMTombaJPLakes with or without urbanization along their coasts had similar level of microplastic contamination, but significant differences were seen between sampling methodsScience of The Total Environment20238661612541:CAS:528:DC%2BB3sXoslGitw%3D%3D10.1016/j.scitotenv.2022.161254 CincinelliAScopetaniCChelazziDLombardiniEMartelliniTKatsoyiannisAFossiMCCorsoliniSMicroplastic in the surface waters of the Ross Sea (Antarctica): Occurrence, distribution and characterization by FTIRChemosphere20171753914001:CAS:528:DC%2BC2sXktVylt70%3D10.1016/j.chemosphere.2017.02.024 MurashigeTSkoogFAA revised medium for a rapid growth and bioassays with tobacco tissues culturesPhysiologia Plantarum.1962154734791:CAS:528:DyaF3sXksFKm10.1111/j.1399-3054.1962.tb08052.x LiYZhangHTangCA review of possible pathways of marine microplastics transport in the oceanAnthropocene Coasts.2020361310.1139/anc-2018-0030 AntunesJFriasJGLMicaeloACSobralPResin pellets from beaches of the Portuguese coast and adsorbed persistent organic pollutantsEstuarine, Coastal and Shelf Science.201313062691:CAS:528:DC%2BC3sXhtV2rs7nP10.1016/j.ecss.2013.06.016 Castro, G. B., Bernegossi, A. C., Felipe, M. C., & Corbi, J. J. (2020). Is the development of Daphnia magna neonates affected by shortterm exposure to polyethylene microplastics? Journal of Environmental Science and Health, Part A. 1–12. https://doi.org/10.1080/10934529.2020.1756656. BackhausTWagnerMMicroplastics in the environment: Much ado about nothing?A Debate. Global Challenges.20204190002210.1002/gch2.201900022 LiuLFokkinkRKoelmansAASorption of polycyclic aromatic hydrocarbons to polystyrene nanoplasticEnvironmental Toxicology and Chemistry.201635165016551:CAS:528:DC%2BC28XktFKms70%3D10.1002/etc.3311 JovanovićBIngestion of microplastics by fish and its potential consequences from a physical perspectiveIntegrated Environmental Assessment and Management.20171351051510.1002/ieam.1913 SchürCZippSThalauTWagnerMMicroplastics but not natural particles induce multigenerational effects in Daphnia magnaEnvironmental Pollution.20202601139041:CAS:528:DC%2BB3cXktlygt7w%3D10.1016/j.envpol.2019.113904 ToumiHAbidliSBejaouiMMicroplastics in freshwater environment: The first evaluation in sediments from seven water streams surrounding the lagoon of Bizerte (Northern Tunisia)Environmental Science and Pollution Research.20192614673146821:CAS:528:DC%2BC1MXot1ygu70%3D10.1007/s11356-019-04695-0 Kowalczyk, N., Blake, N., Charko, F., & Quek, Y. (2017). Microplastics in the Maribyrnong and Yarra Rivers, Melbourne, Australia, Port Phillip EcoCentre, retrieved from https://ecocentre.com/sites/default/files/images/Documents/Programs/Baykeeper/Microplastics%20in%20the%20Maribyrnong%20and%20Yarra%20Rivers_2017.pdf (15 March 2023). PradoCCAQueirozLGSilvaFTPaivaTCBEcotoxicological effect of ketoconazole on the antioxidant system of Daphnia similisComparative Biochemistry and Physiology Part C: Toxicology & Pharmacology.20212461090801:CAS:528:DC%2BB3MXhtFektrbF10.1016/j.cbpc.2021.109080 BaldwinAKCorsiSRMasonSAPlastic debris in 29 great Lakes tributaries: Relations to watershed attributes and hydrologyEnvironmental Science & Technology.20165010377103851:CAS:528:DC%2BC28XhsFSjurnJ10.1021/acs.est.6b02917 ABNT, Associação Brasileira de Normas Técnicas. (2016). Ecotoxicologia aquática, Toxicidade Aguda - Método de ensaio com Daphnia spp (Crustacea, Cladocera). ABNT, Rio de Janeiro (NBR12713). BrandonAMGaoSHTianRNingDYangS-SZhouJWuW-MCriddleCSBiodegradation of polyethylene and plastic mixtures in mealworms (Larvae of Tenebrio molitor) and effects on the gut microbiomeEnvironmental Science & Technology.201852652665331:CAS:528:DC%2BC1cXpsFOisr8%3D10.1021/acs.est.8b02301 RehseSKloasWZarflCShort-Term exposure with high concentrations of pristine microplastic particles leads to immobilization of Daphnia MagnaChemosphere201615391991:CAS:528:DC%2BC28XkslKhtL0%3D10.1016/j.chemosphere.2016.02.133 CanniffPMHoangTCMicroplastic ingestion by Daphnia magna and its enhancement on algal growthScience of the Total Environment.20186335005071:CAS:528:DC%2BC1cXmtVCnsrk%3D10.1016/j.scitotenv.2018.03.176 ZhangCZhouHCuiYWangCLiYZhangDMicroplastics in offshore sediment in the Yellow Sea and East China SeaChina. Environmental Pollution20192448278331:CAS:528:DC%2BC1cXitVKgs7%2FO10.1016/j.envpol.2018.10.102 HaslerADThe physiology of digestion of plankton crustaceaBiology Bulletin.19356820721410.2307/1537264 Wang, Z., Fu, D., Gao, L., Qi, H., Su, Y., & Peng, L. (2021). Aged microplastics decrease the bioavailability of coexisting heavy metals tomicroalga Chlorella vulgaris. Ecotoxicology and Environmental Safety, 217, 112199. https://doi.org/10.1016/j.ecoenv.2021.112199 AutaHSEmenikeCUFauziahSHDistribution and importance of microplastics in the marine environment: A review of the sources, fate, effects, and potential solutionsEnvironment International.201610216517610.1016/j.envint.2017.02.013 OECD. (2012). Test No. 211: Daphnia magna Reproduction Test, OECD Guidelines for the Testing of Chemicals, Section 2, OECD Publishing, https://doi.org/10.1787/9789264185203-en. HiraiHTakadaHOgataYYamashitaRMizukawaKSahaMKwanCMooreCGrayHLaursenDZettlerERFarringtonJWReddyCMPeacockEEWardMWOrganic micropollutants in marine plastics debris from the open ocean and remote and urban beachesMarine Pollution Bulletin201162168316921:CAS:528:DC%2BC3MXovFKrtb4%3D10.1016/j.marpolbul.2011.06.004 ImhofKHRusekJThielMWolinskaJLaforschCDo microplastic particles affect Daphnia magna at the morphological, life history and molecular level?Plos One201712e01875901:CAS:528:DC%2BC1cXitFKiu7nL10.1371/journal.pone.0187590 HermabessiereLDehautAPaul-PontILacroixCJezequelRSoudantPDuflosGOccurrence and effects of plastic additives on marine environments and organisms: A reviewChemosphere20171827817931:CAS:528:DC%2BC2sXot1entbo%3D10.1016/j.chemosphere.2017.05.0 M Buteler (6384_CR10) 2023; 866 E Lahive (6384_CR32) 2021; 807 6384_CR47 M Steer (6384_CR51) 2017; 226 T Backhaus (6384_CR5) 2020; 4 6384_CR41 6384_CR40 6384_CR9 AD Hasler (6384_CR22) 1935; 68 S Rehse (6384_CR49) 2016; 153 CCA Prado (6384_CR46) 2021; 246 L Hermabessiere (6384_CR23) 2017; 182 B Rani-Borges (6384_CR48) 2022 M Cole (6384_CR15) 2013; 47 AK Baldwin (6384_CR6) 2016; 50 6384_CR38 SL Wright (6384_CR57) 2013; 178 SH Joo (6384_CR28) 2021; 3 W Luo (6384_CR36) 2019; 246 6384_CR1 AM Brandon (6384_CR8) 2018; 52 MM Borges-Ramírez (6384_CR7) 2020; 267 6384_CR31 FG Torres (6384_CR52) 2020; 757 H Toumi (6384_CR53) 2019; 26 KH Imhof (6384_CR25) 2017; 12 L Guilhermino (6384_CR21) 2021; 784 A Jahnke (6384_CR26) 2017; 4 PM Canniff (6384_CR11) 2018; 633 A Mateos-Cárdenas (6384_CR37) 2020; 10 T Murashige (6384_CR39) 1962; 15 T Lomonaco (6384_CR35) 2020; 394 J Antunes (6384_CR3) 2013; 130 C Schür (6384_CR50) 2020; 260 R Aljaibachi (6384_CR2) 2020; 705 SA Carr (6384_CR12) 2016; 91 M Ogonowski (6384_CR42) 2016; 11 Y Li (6384_CR33) 2020; 3 YS Eltemsah (6384_CR18) 2019; 254 B Gewert (6384_CR19) 2015; 17 M Cole (6384_CR16) 2015; 49 L Liu (6384_CR34) 2016; 35 M Karimi (6384_CR30) 2019; 9 H Hirai (6384_CR24) 2011; 62 M Gophen (6384_CR20) 1984; 64 KG Porter (6384_CR45) 1983; 64 6384_CR56 HS Auta (6384_CR4) 2016; 102 6384_CR13 A Cincinelli (6384_CR14) 2017; 175 P Uzun (6384_CR54) 2022; 288 6384_CR55 AL Dawson (6384_CR17) 2018; 9 A Jemec (6384_CR27) 2016; 219 B-Y Peng (6384_CR43) 2019; 53 B Jovanović (6384_CR29) 2017; 13 C Zhang (6384_CR58) 2019; 244 EJ Petersen (6384_CR44) 2019; 6 |
References_xml | – reference: ImhofKHRusekJThielMWolinskaJLaforschCDo microplastic particles affect Daphnia magna at the morphological, life history and molecular level?Plos One201712e01875901:CAS:528:DC%2BC1cXitFKiu7nL10.1371/journal.pone.0187590 – reference: JooSHLiangYKimMByunJChoiHMicroplastics with adsorbed contaminants: Mechanisms and treatmentEnvironmental Challenges.202131000421:CAS:528:DC%2BB38XhtlOju77I10.1016/j.envc.2021.100042 – reference: Castro, G. B., Bernegossi, A. C., Felipe, M. C., & Corbi, J. J. (2020). Is the development of Daphnia magna neonates affected by shortterm exposure to polyethylene microplastics? Journal of Environmental Science and Health, Part A. 1–12. https://doi.org/10.1080/10934529.2020.1756656. – reference: BackhausTWagnerMMicroplastics in the environment: Much ado about nothing?A Debate. Global Challenges.20204190002210.1002/gch2.201900022 – reference: JahnkeAArpHPHEscherBIGewertBGorokhovaEKühnelDOgonowskiMPotthoffARummelCSchmitt-JansenMToormanEMacLeodMReducing uncertainty and confronting ignorance about the possible impacts of weathering plastic in the marine environmentEnvironmental Science & Technology Letters.2017485901:CAS:528:DC%2BC2sXislSrur8%3D10.1021/acs.estlett.7b00008 – reference: Rani-BorgesBQueirozLGPradoCCAMeloECMoraesBRAndoRAPaivaTCBPompêoMExpressive biofragmentation of polystyrene microplastics by the amphipod Hyalella aztecaSSRN202210.2139/ssrn.4206912 – reference: PetersenEJMortimerMBurgessRMHandyRHannaSHoKTJohnsonMLoureiroSSelckHScott-FordsmandJJSpurgeonDUnrineJvan den BrinkNWWangYWhiteJHoldenPStrategies for robust and accurate experimental approaches to quantify nanomaterial bioaccumulation across a broad range of organismsEnvironmental Science: Nano Journal.20196161916561:CAS:528:DC%2BC1MXnsFSht70%3D10.1039/C8EN01378K – reference: LomonacoTMancoECortiALa NasaJGhimentiSBiaginiDDi FrancescoFModugnoFCeccariniAFuocoRCastelvetroVRelease of harmful volatile organic compounds (VOCs) from photo-degraded plastic debris: A neglected source of environmental pollutionJournal of Hazardous Materials.20203941225961:CAS:528:DC%2BB3cXntVOqtL8%3D10.1016/j.jhazmat.2020.122596 – reference: WrightSLThompsonRCGallowayTSThe physical impacts of microplastics on marine organisms: A reviewEnvironmental Pollution.20131784834921:CAS:528:DC%2BC3sXltVCrtLc%3D10.1016/j.envpol.2013.02.031 – reference: GuilherminoLMartinsACunhaSFernandesJOLong-term adverse effects of microplastics on Daphnia magna reproduction and population growth rate at increased water temperature and light intensity: Combined effects of stressors and interactionsScience of The Total Environment.20217841470821:CAS:528:DC%2BB3MXpsVSltb4%3D10.1016/j.scitotenv.2021.147082 – reference: ColeMLindequePFilemanEHalsbandCGallowayTSThe impact of polystyrene microplastics on feeding, function and fecundity in the marine copepod Calanus helgolandicusEnvironmental Science & Technology.201549113011371:CAS:528:DC%2BC2MXkvFemsw%3D%3D10.1021/es504525u – reference: BrandonAMGaoSHTianRNingDYangS-SZhouJWuW-MCriddleCSBiodegradation of polyethylene and plastic mixtures in mealworms (Larvae of Tenebrio molitor) and effects on the gut microbiomeEnvironmental Science & Technology.201852652665331:CAS:528:DC%2BC1cXpsFOisr8%3D10.1021/acs.est.8b02301 – reference: MurashigeTSkoogFAA revised medium for a rapid growth and bioassays with tobacco tissues culturesPhysiologia Plantarum.1962154734791:CAS:528:DyaF3sXksFKm10.1111/j.1399-3054.1962.tb08052.x – reference: KarimiMBiriaDThe promiscuous activity of alpha-amylase in biodegradation of low-density polyethylene in a polymer-starch blendScientific Reports.2019926121:CAS:528:DC%2BC1MXnslCitLo%3D10.1038/s41598-019-39366-0 – reference: Kowalczyk, N., Blake, N., Charko, F., & Quek, Y. (2017). Microplastics in the Maribyrnong and Yarra Rivers, Melbourne, Australia, Port Phillip EcoCentre, retrieved from https://ecocentre.com/sites/default/files/images/Documents/Programs/Baykeeper/Microplastics%20in%20the%20Maribyrnong%20and%20Yarra%20Rivers_2017.pdf (15 March 2023). – reference: LahiveECrossRSaarloosAIHortonAASvendsenCHufenusRMitranoDMEarthworms ingest microplastic fibres and nanoplastics with effects on egestion rate and long-term retentionScience of the Total Environment.20218071510221:CAS:528:DC%2BB3MXit1Kmtb%2FM10.1016/j.scitotenv.2021.151022 – reference: SchürCZippSThalauTWagnerMMicroplastics but not natural particles induce multigenerational effects in Daphnia magnaEnvironmental Pollution.20202601139041:CAS:528:DC%2BB3cXktlygt7w%3D10.1016/j.envpol.2019.113904 – reference: LuoWSuLCraigNJWuCShiHComparison of microplastic pollution in different water bodies from urban creeks to coastal watersEnvironmental Pollution.20192461741821:CAS:528:DC%2BC1cXisVOhtbzF10.1016/j.envpol.2018.11.081 – reference: ZhangCZhouHCuiYWangCLiYZhangDMicroplastics in offshore sediment in the Yellow Sea and East China SeaChina. Environmental Pollution20192448278331:CAS:528:DC%2BC1cXitVKgs7%2FO10.1016/j.envpol.2018.10.102 – reference: RehseSKloasWZarflCShort-Term exposure with high concentrations of pristine microplastic particles leads to immobilization of Daphnia MagnaChemosphere201615391991:CAS:528:DC%2BC28XkslKhtL0%3D10.1016/j.chemosphere.2016.02.133 – reference: OECD. (2004). Test No. 202: Daphnia sp. Acute Immobilisation Test, OECD Guidelines for the Testing of Chemicals, Section 2, OECD Publishing, https://doi.org/10.1787/9789264069947-en. – reference: HermabessiereLDehautAPaul-PontILacroixCJezequelRSoudantPDuflosGOccurrence and effects of plastic additives on marine environments and organisms: A reviewChemosphere20171827817931:CAS:528:DC%2BC2sXot1entbo%3D10.1016/j.chemosphere.2017.05.096 – reference: Wang, Z., Fu, D., Gao, L., Qi, H., Su, Y., & Peng, L. (2021). Aged microplastics decrease the bioavailability of coexisting heavy metals tomicroalga Chlorella vulgaris. Ecotoxicology and Environmental Safety, 217, 112199. https://doi.org/10.1016/j.ecoenv.2021.112199 – reference: HiraiHTakadaHOgataYYamashitaRMizukawaKSahaMKwanCMooreCGrayHLaursenDZettlerERFarringtonJWReddyCMPeacockEEWardMWOrganic micropollutants in marine plastics debris from the open ocean and remote and urban beachesMarine Pollution Bulletin201162168316921:CAS:528:DC%2BC3MXovFKrtb4%3D10.1016/j.marpolbul.2011.06.004 – reference: CincinelliAScopetaniCChelazziDLombardiniEMartelliniTKatsoyiannisAFossiMCCorsoliniSMicroplastic in the surface waters of the Ross Sea (Antarctica): Occurrence, distribution and characterization by FTIRChemosphere20171753914001:CAS:528:DC%2BC2sXktVylt70%3D10.1016/j.chemosphere.2017.02.024 – reference: PengB-YSuYChenZChenJZhouXBenbowMECriddleCSWuW-MZhangYBiodegradation of polystyrene by dark (Tenebrio obscurus) and yellow (Tenebrio molitor) mealworms (Coleoptera: Tenebrionidae)Environmental Science & Technology.201953525652651:CAS:528:DC%2BC1MXnsV2qsLk%3D10.1021/acs.est.8b06963 – reference: DawsonALKawaguchiSKingCKTownsendKAKingRHustonWMNashSMBTurning microplastics into nanoplastics through digestive fragmentation by Antarctic krillNature Communications.2018910011:CAS:528:DC%2BC1cXhtFWktLrP10.1038/s41467-018-03465-9 – reference: BaldwinAKCorsiSRMasonSAPlastic debris in 29 great Lakes tributaries: Relations to watershed attributes and hydrologyEnvironmental Science & Technology.20165010377103851:CAS:528:DC%2BC28XhsFSjurnJ10.1021/acs.est.6b02917 – reference: GophenMGellerWFilter mesh size and food particle uptake by DaphniaOecologia19846440841210.1007/bf00379140 – reference: LiuLFokkinkRKoelmansAASorption of polycyclic aromatic hydrocarbons to polystyrene nanoplasticEnvironmental Toxicology and Chemistry.201635165016551:CAS:528:DC%2BC28XktFKms70%3D10.1002/etc.3311 – reference: PradoCCAQueirozLGSilvaFTPaivaTCBEcotoxicological effect of ketoconazole on the antioxidant system of Daphnia similisComparative Biochemistry and Physiology Part C: Toxicology & Pharmacology.20212461090801:CAS:528:DC%2BB3MXhtFektrbF10.1016/j.cbpc.2021.109080 – reference: SteerMColeMThompsonRCLindequePKMicroplastic ingestion in fish larvae in the western English ChannelEnvironmental Pollution.20172262502591:CAS:528:DC%2BC2sXlvFWksLw%3D10.1016/j.envpol.2017.03.062 – reference: AutaHSEmenikeCUFauziahSHDistribution and importance of microplastics in the marine environment: A review of the sources, fate, effects, and potential solutionsEnvironment International.201610216517610.1016/j.envint.2017.02.013 – reference: EltemsahYSBøhnTAcute and chronic effects of polystyrene microplastics on juvenile and adult Daphnia MagnaEnvironmental Pollution.20192541129191:CAS:528:DC%2BC1MXhsFGjtrzM10.1016/j.envpol.2019.07.087 – reference: AntunesJFriasJGLMicaeloACSobralPResin pellets from beaches of the Portuguese coast and adsorbed persistent organic pollutantsEstuarine, Coastal and Shelf Science.201313062691:CAS:528:DC%2BC3sXhtV2rs7nP10.1016/j.ecss.2013.06.016 – reference: ButelerMFasanellaMAlmaAMSilvaLILangenheimMTombaJPLakes with or without urbanization along their coasts had similar level of microplastic contamination, but significant differences were seen between sampling methodsScience of The Total Environment20238661612541:CAS:528:DC%2BB3sXoslGitw%3D%3D10.1016/j.scitotenv.2022.161254 – reference: GewertBPlassmannMMMacleodMPathways for degradation of plastic polymers floating in the marine environmentEnvironmental Science: Processes & Impacts201517151315211:CAS:528:DC%2BC2MXhtFGgtbjF10.1039/C5EM00207A – reference: HaslerADThe physiology of digestion of plankton crustaceaBiology Bulletin.19356820721410.2307/1537264 – reference: Brennecke, D., Duarte, B., Paiva, F., Caçador, I., & Canning-Clode, J. (2016). Microplastics as vector for heavy metal contamination from the marine environment. Estuarine, Coastal and Shelf Science, 178, 189–195. https://doi.org/10.1016/j.ecss.2015.12.003 – reference: ABNT, Associação Brasileira de Normas Técnicas. (2016). Ecotoxicologia aquática, Toxicidade Aguda - Método de ensaio com Daphnia spp (Crustacea, Cladocera). ABNT, Rio de Janeiro (NBR12713). – reference: AljaibachiRLairdWBStevensFCallaghanAImpacts of polystyrene microplastics on Daphnia magna: A laboratory and a mesocosm studyScience of the Total Environment.20207051358001:CAS:528:DC%2BC1MXitlaju73P10.1016/j.scitotenv.2019.135800 – reference: Borges-RamírezMMMendoza-FrancoEFEscalona-SeguraGOstenJRPlastic density as a key factor in the presence of microplastic in the gastrointestinal tract of commercial fishes from Campeche Bay MexicoEnvironmental Pollution20202671156591:CAS:528:DC%2BB3cXhvFejsbrM10.1016/j.envpol.2020.115659 – reference: TorresFGDioses-SalinasDCPizarro-OrtegaCIDe-la-TorreGESorption of chemical contaminants on degradable and non-degradable microplastics: recent progress and research trendsScience of the Total Environment.20207571438751:CAS:528:DC%2BB3cXis1ais7bM10.1016/j.scitotenv.2020.143875 – reference: Qiao, R., Mortimer, R., Richter, J., Rani-Borges, B., Yu, Z., Heinlaan, M., Lin, S., & Ivask, A. (2022). Hazard of polystyrene micro-and nanospheres to selected aquatic and terrestrial organisms. Science of the Total Environment.158560. https://doi.org/10.1016/j.scitotenv.2022.158560. – reference: Wagner, M., & Lambert, S. (2017). Freshwater microplastics: Emerging environmental contaminants? Cham: Springer. 303 p. (The Handbook of Environmental Chemistry, 58). – reference: LiYZhangHTangCA review of possible pathways of marine microplastics transport in the oceanAnthropocene Coasts.2020361310.1139/anc-2018-0030 – reference: JovanovićBIngestion of microplastics by fish and its potential consequences from a physical perspectiveIntegrated Environmental Assessment and Management.20171351051510.1002/ieam.1913 – reference: OECD. (2012). Test No. 211: Daphnia magna Reproduction Test, OECD Guidelines for the Testing of Chemicals, Section 2, OECD Publishing, https://doi.org/10.1787/9789264185203-en. – reference: Müller, A., Becker, R., Dorgerloh, U., Simon, F.-G., & Braun, U. (2018). The effect of polymer aging on the uptake of fuel aromatics and ethers by microplastics. Environmental Pollution, 240, 639–646. https://doi.org/10.1016/j.envpol.2018.04.127 – reference: ColeMLindequePFilemanEHalsbandCGoodheadRMogerJGallowayTSMicroplastic ingestion by zooplanktonEnvironmental Science & Technology.201347664666551:CAS:528:DC%2BC3sXnvFSksr8%3D10.1021/es400663f – reference: JemecAHorvatPKunejUBeleMKržanAUptake and effects of microplastic textile fibers on freshwater crustacean Daphnia magnaEnvironmental Pollution.20162192012091:CAS:528:DC%2BC28XhslOqsLrK10.1016/j.envpol.2016.10.037 – reference: Mateos-CárdenasAO’HalloranJvan PeltFNAMJansenMAKRapid fragmentation of microplastics by the freshwater amphipod Gammarus duebeni (Lillj.)Scientific Reports202010127991:CAS:528:DC%2BB3cXhsFajt7jN10.1038/s41598-020-69635-2 – reference: OgonowskiMSchurCJarsÅGorokhovaEThe effects of natural and anthropogenic microparticles on individual fitness in Daphnia MagnaPlos One201611e0155063–131:CAS:528:DC%2BC28XhsVaisL3I10.1371/journal.pone.0155063 – reference: UzunPFarazandeSGuvenBMathematical modeling of microplastic abundance, distribution, and transport in water environments: A reviewChemosphere.20222881325171:CAS:528:DC%2BB3MXitlamsrzJ10.1016/j.chemosphere.2021.132517 – reference: CanniffPMHoangTCMicroplastic ingestion by Daphnia magna and its enhancement on algal growthScience of the Total Environment.20186335005071:CAS:528:DC%2BC1cXmtVCnsrk%3D10.1016/j.scitotenv.2018.03.176 – reference: CarrSALiuJTesoroAGTransport and fate of microplastic particles in wastewater treatment plantsWater Research.2016911741821:CAS:528:DC%2BC28XpsVOjtw%3D%3D10.1016/j.watres.2016.01.002 – reference: ToumiHAbidliSBejaouiMMicroplastics in freshwater environment: The first evaluation in sediments from seven water streams surrounding the lagoon of Bizerte (Northern Tunisia)Environmental Science and Pollution Research.20192614673146821:CAS:528:DC%2BC1MXot1ygu70%3D10.1007/s11356-019-04695-0 – reference: PorterKGOrcuttJDGerritsenJFunctional response and fitness in a generalist filter feeder, Daphnia Magna (Cladocera: Crustacea)Ecology19836473574210.2307/1937196 – volume: 50 start-page: 10377 year: 2016 ident: 6384_CR6 publication-title: Environmental Science & Technology. doi: 10.1021/acs.est.6b02917 – volume: 175 start-page: 391 year: 2017 ident: 6384_CR14 publication-title: Chemosphere doi: 10.1016/j.chemosphere.2017.02.024 – volume: 68 start-page: 207214 year: 1935 ident: 6384_CR22 publication-title: Biology Bulletin. doi: 10.2307/1537264 – ident: 6384_CR13 doi: 10.1080/10934529.2020.1756656 – volume: 10 start-page: 12799 year: 2020 ident: 6384_CR37 publication-title: Scientific Reports doi: 10.1038/s41598-020-69635-2 – volume: 254 start-page: 112919 year: 2019 ident: 6384_CR18 publication-title: Environmental Pollution. doi: 10.1016/j.envpol.2019.07.087 – volume: 64 start-page: 735 year: 1983 ident: 6384_CR45 publication-title: Ecology doi: 10.2307/1937196 – ident: 6384_CR38 doi: 10.1016/j.envpol.2018.04.127 – volume: 246 start-page: 174 year: 2019 ident: 6384_CR36 publication-title: Environmental Pollution. doi: 10.1016/j.envpol.2018.11.081 – volume: 62 start-page: 1683 year: 2011 ident: 6384_CR24 publication-title: Marine Pollution Bulletin doi: 10.1016/j.marpolbul.2011.06.004 – volume: 246 start-page: 109080 year: 2021 ident: 6384_CR46 publication-title: Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology. doi: 10.1016/j.cbpc.2021.109080 – volume: 244 start-page: 827 year: 2019 ident: 6384_CR58 publication-title: China. Environmental Pollution doi: 10.1016/j.envpol.2018.10.102 – volume: 102 start-page: 165 year: 2016 ident: 6384_CR4 publication-title: Environment International. doi: 10.1016/j.envint.2017.02.013 – volume: 4 start-page: 85 year: 2017 ident: 6384_CR26 publication-title: Environmental Science & Technology Letters. doi: 10.1021/acs.estlett.7b00008 – volume: 15 start-page: 473 year: 1962 ident: 6384_CR39 publication-title: Physiologia Plantarum. doi: 10.1111/j.1399-3054.1962.tb08052.x – volume: 260 start-page: 113904 year: 2020 ident: 6384_CR50 publication-title: Environmental Pollution. doi: 10.1016/j.envpol.2019.113904 – volume: 11 start-page: e0155063–13 year: 2016 ident: 6384_CR42 publication-title: Plos One doi: 10.1371/journal.pone.0155063 – ident: 6384_CR31 – volume: 219 start-page: 201 year: 2016 ident: 6384_CR27 publication-title: Environmental Pollution. doi: 10.1016/j.envpol.2016.10.037 – volume: 64 start-page: 408 year: 1984 ident: 6384_CR20 publication-title: Oecologia doi: 10.1007/bf00379140 – volume: 53 start-page: 5256 year: 2019 ident: 6384_CR43 publication-title: Environmental Science & Technology. doi: 10.1021/acs.est.8b06963 – ident: 6384_CR40 doi: 10.1787/9789264069947-en – ident: 6384_CR47 doi: 10.1016/j.scitotenv.2022.158560 – year: 2022 ident: 6384_CR48 publication-title: SSRN doi: 10.2139/ssrn.4206912 – ident: 6384_CR9 doi: 10.1016/j.ecss.2015.12.003 – ident: 6384_CR55 doi: 10.1007/978-3-319-61615-5 – ident: 6384_CR41 doi: 10.1787/9789264185203-en – volume: 17 start-page: 1513 year: 2015 ident: 6384_CR19 publication-title: Environmental Science: Processes & Impacts doi: 10.1039/C5EM00207A – volume: 130 start-page: 62 year: 2013 ident: 6384_CR3 publication-title: Estuarine, Coastal and Shelf Science. doi: 10.1016/j.ecss.2013.06.016 – volume: 9 start-page: 2612 year: 2019 ident: 6384_CR30 publication-title: Scientific Reports. doi: 10.1038/s41598-019-39366-0 – volume: 3 start-page: 100042 year: 2021 ident: 6384_CR28 publication-title: Environmental Challenges. doi: 10.1016/j.envc.2021.100042 – ident: 6384_CR56 doi: 10.1016/j.ecoenv.2021.112199 – volume: 4 start-page: 1900022 year: 2020 ident: 6384_CR5 publication-title: A Debate. Global Challenges. doi: 10.1002/gch2.201900022 – volume: 47 start-page: 6646 year: 2013 ident: 6384_CR15 publication-title: Environmental Science & Technology. doi: 10.1021/es400663f – volume: 91 start-page: 174 year: 2016 ident: 6384_CR12 publication-title: Water Research. doi: 10.1016/j.watres.2016.01.002 – volume: 182 start-page: 781 year: 2017 ident: 6384_CR23 publication-title: Chemosphere doi: 10.1016/j.chemosphere.2017.05.096 – volume: 226 start-page: 250 year: 2017 ident: 6384_CR51 publication-title: Environmental Pollution. doi: 10.1016/j.envpol.2017.03.062 – volume: 178 start-page: 483 year: 2013 ident: 6384_CR57 publication-title: Environmental Pollution. doi: 10.1016/j.envpol.2013.02.031 – volume: 6 start-page: 1619 year: 2019 ident: 6384_CR44 publication-title: Environmental Science: Nano Journal. doi: 10.1039/C8EN01378K – volume: 394 start-page: 122596 year: 2020 ident: 6384_CR35 publication-title: Journal of Hazardous Materials. doi: 10.1016/j.jhazmat.2020.122596 – volume: 13 start-page: 510 year: 2017 ident: 6384_CR29 publication-title: Integrated Environmental Assessment and Management. doi: 10.1002/ieam.1913 – volume: 807 start-page: 151022 year: 2021 ident: 6384_CR32 publication-title: Science of the Total Environment. doi: 10.1016/j.scitotenv.2021.151022 – volume: 267 start-page: 115659 year: 2020 ident: 6384_CR7 publication-title: Environmental Pollution doi: 10.1016/j.envpol.2020.115659 – volume: 866 start-page: 161254 year: 2023 ident: 6384_CR10 publication-title: Science of The Total Environment doi: 10.1016/j.scitotenv.2022.161254 – volume: 757 start-page: 143875 year: 2020 ident: 6384_CR52 publication-title: Science of the Total Environment. doi: 10.1016/j.scitotenv.2020.143875 – volume: 52 start-page: 6526 year: 2018 ident: 6384_CR8 publication-title: Environmental Science & Technology. doi: 10.1021/acs.est.8b02301 – volume: 35 start-page: 1650 year: 2016 ident: 6384_CR34 publication-title: Environmental Toxicology and Chemistry. doi: 10.1002/etc.3311 – ident: 6384_CR1 – volume: 705 start-page: 135800 year: 2020 ident: 6384_CR2 publication-title: Science of the Total Environment. doi: 10.1016/j.scitotenv.2019.135800 – volume: 784 start-page: 147082 year: 2021 ident: 6384_CR21 publication-title: Science of The Total Environment. doi: 10.1016/j.scitotenv.2021.147082 – volume: 3 start-page: 6 year: 2020 ident: 6384_CR33 publication-title: Anthropocene Coasts. doi: 10.1139/anc-2018-0030 – volume: 9 start-page: 1001 year: 2018 ident: 6384_CR17 publication-title: Nature Communications. doi: 10.1038/s41467-018-03465-9 – volume: 26 start-page: 14673 year: 2019 ident: 6384_CR53 publication-title: Environmental Science and Pollution Research. doi: 10.1007/s11356-019-04695-0 – volume: 288 start-page: 132517 year: 2022 ident: 6384_CR54 publication-title: Chemosphere. doi: 10.1016/j.chemosphere.2021.132517 – volume: 12 start-page: e0187590 year: 2017 ident: 6384_CR25 publication-title: Plos One doi: 10.1371/journal.pone.0187590 – volume: 49 start-page: 1130 year: 2015 ident: 6384_CR16 publication-title: Environmental Science & Technology. doi: 10.1021/es504525u – volume: 633 start-page: 500 year: 2018 ident: 6384_CR11 publication-title: Science of the Total Environment. doi: 10.1016/j.scitotenv.2018.03.176 – volume: 153 start-page: 91 year: 2016 ident: 6384_CR49 publication-title: Chemosphere doi: 10.1016/j.chemosphere.2016.02.133 |
SSID | ssj0000987 |
Score | 2.4181817 |
Snippet | Environmental plastic contamination is a global problem, which is driven by the growing demand for plastics. Over time, plastics undergo fragmentation... |
SourceID | proquest gale crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 371 |
SubjectTerms | air Atmospheric Protection/Air Quality Control/Air Pollution Climate Change/Climate Change Impacts Contamination Daphnia similis dose response Earth and Environmental Science Environment Environmental monitoring Fragmentation Freshwater crustaceans Hydrogeology Ingestion Inland waters microparticles Microplastics Microspheres mortality Plastic debris Plastic pollution Plastics Polystyrene Polystyrene resins polystyrenes soil Soil Science & Conservation Survival water Water Quality/Water Pollution |
SummonAdditionalLinks | – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfR1LTxQxuFG86MEAShxFUxITD9o4nc5spyeyCoSYYIhKsremT5hkmVl3lv_P9-10GR-Bc5_53u33IuQ9dnRRNnhW29xhCzPLrIM3T6yicL5SovL4UDz7Pjm9KL_Nqln6cOtTWOVGJq4Fte8c_pF_hqcBxkSoIj9c_GbYNQq9q6mFxmPyBEuXIVXLmRwlsaqHmpmlYhNYm5JmhtQ5dLky0FgMlXbJ6r8U07_i-T8_6Vr9nGyT58lupNMB0TvkUWh3ybM_qgnukr3jMWkNpiau7V-Q8-ky0COzuGobQ_vmupk3PT2fG8xwoob-bC5bDBgCGNMf3TzQpqVnGKe3AMsajqNfmi4uzeV1SlNqD1-Si5PjX19PWeqkwJxQfMWcjMJGkQdXOq6sKPLgbZCR595WRW6LaLnl3EwmxgiwUEqXl1LUxqNfVgIL75GttmvDK0KlDzGPPvDSAv9ba13kAey42gdXhKAywjdg1C6VGcduF3M9FkhG0GsAvV6DXtcZ-Xi3ZjEU2Xhw9gfEjkYOhJ2dSYkEcD-sZaWnsuJSVLAiI_sbBOrEmr0eCSkjB3fDwFToKTFt6G56LUAPoC2piox82iB-3OL-u71--MQ35GkxkBzL-T7ZWi1vwlswalb23ZpybwGXOPHs priority: 102 providerName: ProQuest |
Title | Are Daphnia similis Playing a Significant Role in Microplastic Biofragmentation? |
URI | https://link.springer.com/article/10.1007/s11270-023-06384-8 https://www.proquest.com/docview/2821997920 https://www.proquest.com/docview/3153155192 |
Volume | 234 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlR1Nb9Mw9IltFzigMZgIjMpISBzAUhwndXyastExgTZVg0rlZNmOvUXq0qrp_j_PbbLANiZxSQ55dqz3_L70vgA-hIku0riS5ia2YYSZocaiz-Mzz22ZSZ6VwVE8Ox-eTtJv02zaFoU1XbZ7F5JcS-q-2C0ESSnqGBrUbErzLdjJ0HcPiVyTpOjlr8w3nTJTSYdSyLZU5uE9_lJHd4XyvejoWumc7MLz1lokxYa8L-CJq_fg2R89BPdgf9SXqiFoy6vNSxgXS0e-6MVVXWnSVNfVrGrIeKZDXRPR5Ed1WYc0IcQsuZjPHKlqchay8xZoT-PvyFE190t9ed0WJ9WHr2ByMvp5fErb-QnUcslW1ArPjeexs6ll0vAkdqVxwrO4NIg4k3jDDGN6ONSao12S2jgVPNdliMYKZNx92K7ntXsNRJTOx750LDXI9cYY65lD6y0vnU2ckxGwDo3Kts3Fw4yLmerbIgfUK0S9WqNe5RF8ul2z2LTWeBT6Y6COCnyHO1vdlg_g-UIHK1WIjAme4YoIDjoCqpYhG4WeZUipkUkcwfvbz8hKIT6iaze_aRRH6R8sSJlE8LkjfL_Fv8_25v_A38LTZHMFacwOYHu1vHHv0LRZmQFsianAZ37MBrBTfP31fYTvo9H5-GKwvuW_AQz186c |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3JbtNAdFSVA3BAUKgwFBgkEAcYMeOxY_uAqtBFKW2qClqpt-msxVLqhDgV4qf4Rt6L7ZpF9NazZ9Pbn99GyCuc6FIY71huuMURZoYZCz5PSIO0Li1k6tBRHB8ORifJp9P0dIX87GphMK2yk4lLQe2mFv-RvwfXAHMiiphvzr4xnBqF0dVuhEZDFvv-x3dw2eoPe9uA39dxvLtzvDVi7VQBZmUhFsxmQZogubeJFYWRMffO-CwI7kwacxMHI4wQejDQWoK2TixPMplrhzHKLMPmSyDybyUSWBMr07f6lBJe5E2PzqRgA3hrW6TTlOphiJeBhmRoJCQs_0MR_q0O_onLLtXd7n1yr7VT6bAhrAdkxVdr5O5v3QvXyPpOXyQHS1spUT8kR8O5p9t69rUqNa3Li3JS1vRoorGiimr6pTyvMEEJcEo_TyeelhUdY17gDCx5uI5-LKdhrs8v2rKoavMRObkRGK-T1Wpa-ceEZs4HHpwXiQF5Y4yxQXiwG3Pnbex9ERHRgVHZtq05TteYqL4hM4JeAejVEvQqj8jbqz2zpqnHtavfIHYUcjycbHVbuADvw95ZapilIpMp7IjIRodA1YqCWvWEG5GXV5-BiTEyoys_vayVBL2DtmsRR-Rdh_j-iP-_7cn1N74gt0fH4wN1sHe4_5TciRvyY1xskNXF_NI_A4NqYZ4vqZiSs5tmm196Ey6Q |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3batRAdCgVRB9Eq8Vo1REUH3ToTCbZJA9S1m6X1tqyqIW-jXOtgW123WwRf82v85xN0njBvvU5c-PcT86NkBc40aUw3rHccIsjzAwzFnyekAZpXVrI1KGjeHQ82D9J3p-mp2vkZ1cLg2mVnUxcCWo3s_iPfBtcA8yJKGK-Hdq0iMlovDP_xnCCFEZau3EaDYkc-h_fwX2r3x6MANcv43i893l3n7UTBpiVhVgymwVpguTeJlYURsbcO-OzILgzacxNHIwwQujBQGsJmjuxPMlkrh3GK7MMGzGB-L-RySxHHst3-_QSXuRNv86kYAN4d1uw05TtYbiXgbZkaDAkLP9DKf6tGv6J0a5U3_guudParHTYENk9suarDXL7t06GG2Rzry-Yg6WtxKjvk8lw4elIz79WpaZ1eV5Oy5pOphqrq6imn8qzCpOVAL_042zqaVnRI8wRnINVD9fRd-UsLPTZeVsiVe08ICfXAuNNsl7NKv-Q0Mz5wIPzIjEge4wxNggPNmTuvI29LyIiOjAq27Y4x0kbU9U3Z0bQKwC9WoFe5RF5fbln3jT4uHL1K8SOQu6Hk61uixjgfdhHSw2zVGQyhR0R2eoQqFqxUKueiCPy_PIzMDRGaXTlZxe1kqCD0I4t4oi86RDfH_H_tz26-sZn5CYwjPpwcHz4mNyKG-pjXGyR9eXiwj8B22ppnq6ImJIv1801vwCvFTLG |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Are+Daphnia+similis+Playing+a+Significant+Role+in+Microplastic+Biofragmentation%3F&rft.jtitle=Water%2C+air%2C+and+soil+pollution&rft.au=Rani-Borges%2C+B%C3%A1rbara&rft.au=Pomp%C3%AAo%2C+Marcelo&rft.au=Queiroz%2C+Lucas+Gon%C3%A7alves&rft.date=2023-06-01&rft.issn=0049-6979&rft.volume=234&rft.issue=6+p.371-371&rft.spage=371&rft.epage=371&rft_id=info:doi/10.1007%2Fs11270-023-06384-8&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0049-6979&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0049-6979&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0049-6979&client=summon |