Are Daphnia similis Playing a Significant Role in Microplastic Biofragmentation?

Environmental plastic contamination is a global problem, which is driven by the growing demand for plastics. Over time, plastics undergo fragmentation processes and become so-called microplastics, which have been shown to be a threat to the various environments where their presence occurs. The most...

Full description

Saved in:
Bibliographic Details
Published inWater, air, and soil pollution Vol. 234; no. 6; p. 371
Main Authors Rani-Borges, Bárbara, Pompêo, Marcelo, Queiroz, Lucas Gonçalves
Format Journal Article
LanguageEnglish
Published Cham Springer International Publishing 01.06.2023
Springer
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Environmental plastic contamination is a global problem, which is driven by the growing demand for plastics. Over time, plastics undergo fragmentation processes and become so-called microplastics, which have been shown to be a threat to the various environments where their presence occurs. The most accepted hypothesis is that, like macroplastics, microplastics have fragmented into smaller and smaller particles, with sub-micrometer sizes. However, little is known about fragmentation rates and which are the most determining factors in this process. The main objective of the present study was to investigate the biofragmentation capacity of microplastics by Daphnia similis , a microcrustacean from inland waters. The organisms were exposed to polystyrene spheres (PS; 24 µm), under two concentrations: 135 and 1350 items/50 mL, for a period of 6 days. The rate of biofragmentation was obtained by analyzing the size of the particles over time (48, 96, and 144 h); ingestion and survival rates were also investigated. At the end of the exposure, the microspheres had their size reduced by 32.8%. From the first 48 h, the organisms ingested particles, and the rate of ingestion was dose dependent. Mortality was shown to increase in the treatment of higher concentration. The results demonstrate the ability of this microcrustacean to induce the reduction of the dimensions of microplastics, evidencing a fragmentation pathway previously neglected.
AbstractList Environmental plastic contamination is a global problem, which is driven by the growing demand for plastics. Over time, plastics undergo fragmentation processes and become so-called microplastics, which have been shown to be a threat to the various environments where their presence occurs. The most accepted hypothesis is that, like macroplastics, microplastics have fragmented into smaller and smaller particles, with sub-micrometer sizes. However, little is known about fragmentation rates and which are the most determining factors in this process. The main objective of the present study was to investigate the biofragmentation capacity of microplastics by Daphnia similis , a microcrustacean from inland waters. The organisms were exposed to polystyrene spheres (PS; 24 µm), under two concentrations: 135 and 1350 items/50 mL, for a period of 6 days. The rate of biofragmentation was obtained by analyzing the size of the particles over time (48, 96, and 144 h); ingestion and survival rates were also investigated. At the end of the exposure, the microspheres had their size reduced by 32.8%. From the first 48 h, the organisms ingested particles, and the rate of ingestion was dose dependent. Mortality was shown to increase in the treatment of higher concentration. The results demonstrate the ability of this microcrustacean to induce the reduction of the dimensions of microplastics, evidencing a fragmentation pathway previously neglected.
Environmental plastic contamination is a global problem, which is driven by the growing demand for plastics. Over time, plastics undergo fragmentation processes and become so-called microplastics, which have been shown to be a threat to the various environments where their presence occurs. The most accepted hypothesis is that, like macroplastics, microplastics have fragmented into smaller and smaller particles, with sub-micrometer sizes. However, little is known about fragmentation rates and which are the most determining factors in this process. The main objective of the present study was to investigate the biofragmentation capacity of microplastics by Daphnia similis, a microcrustacean from inland waters. The organisms were exposed to polystyrene spheres (PS; 24 µm), under two concentrations: 135 and 1350 items/50 mL, for a period of 6 days. The rate of biofragmentation was obtained by analyzing the size of the particles over time (48, 96, and 144 h); ingestion and survival rates were also investigated. At the end of the exposure, the microspheres had their size reduced by 32.8%. From the first 48 h, the organisms ingested particles, and the rate of ingestion was dose dependent. Mortality was shown to increase in the treatment of higher concentration. The results demonstrate the ability of this microcrustacean to induce the reduction of the dimensions of microplastics, evidencing a fragmentation pathway previously neglected.
Environmental plastic contamination is a global problem, which is driven by the growing demand for plastics. Over time, plastics undergo fragmentation processes and become so-called microplastics, which have been shown to be a threat to the various environments where their presence occurs. The most accepted hypothesis is that, like macroplastics, microplastics have fragmented into smaller and smaller particles, with sub-micrometer sizes. However, little is known about fragmentation rates and which are the most determining factors in this process. The main objective of the present study was to investigate the biofragmentation capacity of microplastics by Daphnia similis, a microcrustacean from inland waters. The organisms were exposed to polystyrene spheres (PS; 24 [micro]m), under two concentrations: 135 and 1350 items/50 mL, for a period of 6 days. The rate of biofragmentation was obtained by analyzing the size of the particles over time (48, 96, and 144 h); ingestion and survival rates were also investigated. At the end of the exposure, the microspheres had their size reduced by 32.8%. From the first 48 h, the organisms ingested particles, and the rate of ingestion was dose dependent. Mortality was shown to increase in the treatment of higher concentration. The results demonstrate the ability of this microcrustacean to induce the reduction of the dimensions of microplastics, evidencing a fragmentation pathway previously neglected.
ArticleNumber 371
Audience Academic
Author Rani-Borges, Bárbara
Pompêo, Marcelo
Queiroz, Lucas Gonçalves
Author_xml – sequence: 1
  givenname: Bárbara
  orcidid: 0000-0003-3738-686X
  surname: Rani-Borges
  fullname: Rani-Borges, Bárbara
  email: barbara.rani-borges@usp.br
  organization: Institute of Science and Technology, São Paulo State University, UNESP
– sequence: 2
  givenname: Marcelo
  orcidid: 0000-0002-5632-9257
  surname: Pompêo
  fullname: Pompêo, Marcelo
  organization: Department of Ecology, Institute of Biosciences, University of São Paulo, USP
– sequence: 3
  givenname: Lucas Gonçalves
  orcidid: 0000-0003-3305-1042
  surname: Queiroz
  fullname: Queiroz, Lucas Gonçalves
  organization: Department of Ecology, Institute of Biosciences, University of São Paulo, USP
BookMark eNp9kU1LHTEUhkNR6FX7B7oKdONmbD5mbiYrudpaCxalH-twJjeZHskk12Tuwn9v6hQEFyaBQHifkDzvETmIKTpCPnJ2xhlTnwvnQrGGCdmwtezbpn9HVrxTshFaigOyYqzVzVor_Z4clXLP6tC9WpG7TXb0C-z-RgRacMKAhd4FeMQ4UqC_cIzo0UKc6c8UHMVIf6DNaRegzGjpBSafYZxcnGHGFM9PyKGHUNyH__sx-XP19ffldXNz--375eamsVLzubHKy8FL5mxruR6kYG47OOU52w6dYIPwAx84h_UaQEqtWstaJXvYirYTSml5TE6Xe3c5Pexdmc2ExboQILq0L0byrq6Oa1Gjn15F79M-x_o6I3rBdbUiWE2dLakRgjMYfZoz2Dq3bkJbdXus5xvVcSW7KroC_QJUHaVk543FRUIFMRjOzL9uzNKNqYh57sb0FRWv0F3GCfLj25BcoFLDcXT55RtvUE_qIqHp
CitedBy_id crossref_primary_10_1007_s11270_023_06684_z
crossref_primary_10_1007_s11270_024_07003_w
crossref_primary_10_1016_j_ecohyd_2025_100647
crossref_primary_10_1016_j_jhazmat_2025_137977
crossref_primary_10_3390_ijerph21010044
crossref_primary_10_1021_acs_est_3c08193
crossref_primary_10_1016_j_marenvres_2025_107027
crossref_primary_10_1021_acs_chemrestox_4c00300
crossref_primary_10_1088_1755_1315_1305_1_012005
Cites_doi 10.1021/acs.est.6b02917
10.1016/j.chemosphere.2017.02.024
10.2307/1537264
10.1080/10934529.2020.1756656
10.1038/s41598-020-69635-2
10.1016/j.envpol.2019.07.087
10.2307/1937196
10.1016/j.envpol.2018.04.127
10.1016/j.envpol.2018.11.081
10.1016/j.marpolbul.2011.06.004
10.1016/j.cbpc.2021.109080
10.1016/j.envpol.2018.10.102
10.1016/j.envint.2017.02.013
10.1021/acs.estlett.7b00008
10.1111/j.1399-3054.1962.tb08052.x
10.1016/j.envpol.2019.113904
10.1371/journal.pone.0155063
10.1016/j.envpol.2016.10.037
10.1007/bf00379140
10.1021/acs.est.8b06963
10.1787/9789264069947-en
10.1016/j.scitotenv.2022.158560
10.2139/ssrn.4206912
10.1016/j.ecss.2015.12.003
10.1007/978-3-319-61615-5
10.1787/9789264185203-en
10.1039/C5EM00207A
10.1016/j.ecss.2013.06.016
10.1038/s41598-019-39366-0
10.1016/j.envc.2021.100042
10.1016/j.ecoenv.2021.112199
10.1002/gch2.201900022
10.1021/es400663f
10.1016/j.watres.2016.01.002
10.1016/j.chemosphere.2017.05.096
10.1016/j.envpol.2017.03.062
10.1016/j.envpol.2013.02.031
10.1039/C8EN01378K
10.1016/j.jhazmat.2020.122596
10.1002/ieam.1913
10.1016/j.scitotenv.2021.151022
10.1016/j.envpol.2020.115659
10.1016/j.scitotenv.2022.161254
10.1016/j.scitotenv.2020.143875
10.1021/acs.est.8b02301
10.1002/etc.3311
10.1016/j.scitotenv.2019.135800
10.1016/j.scitotenv.2021.147082
10.1139/anc-2018-0030
10.1038/s41467-018-03465-9
10.1007/s11356-019-04695-0
10.1016/j.chemosphere.2021.132517
10.1371/journal.pone.0187590
10.1021/es504525u
10.1016/j.scitotenv.2018.03.176
10.1016/j.chemosphere.2016.02.133
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Nature Switzerland AG 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
COPYRIGHT 2023 Springer
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Nature Switzerland AG 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: COPYRIGHT 2023 Springer
DBID AAYXX
CITATION
3V.
7QH
7T7
7TV
7U7
7UA
7WY
7WZ
7X2
7X7
7XB
87Z
88E
88I
8C1
8FD
8FE
8FH
8FI
8FJ
8FK
8FL
ABUWG
AEUYN
AFKRA
ATCPS
AZQEC
BENPR
BEZIV
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F1W
FR3
FRNLG
FYUFA
F~G
GHDGH
GNUQQ
H96
H97
HCIFZ
K60
K6~
K9.
L.-
L.G
M0C
M0K
M0S
M1P
M2P
P64
PATMY
PCBAR
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQBIZ
PQBZA
PQEST
PQQKQ
PQUKI
PYCSY
Q9U
7S9
L.6
DOI 10.1007/s11270-023-06384-8
DatabaseName CrossRef
ProQuest Central (Corporate)
Aqualine
Industrial and Applied Microbiology Abstracts (Microbiology A)
Pollution Abstracts
Toxicology Abstracts
Water Resources Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
Agricultural Science Collection
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Global (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
Public Health Database
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni Edition)
ProQuest Central (Alumni)
ProQuest One Sustainability (subscription)
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central Korea
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Business Premium Collection (Alumni)
Health Research Premium Collection
ABI/INFORM Global (Corporate)
Health Research Premium Collection (Alumni)
ProQuest Central Student
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
SciTech Premium Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
ProQuest Health & Medical Complete (Alumni)
ABI/INFORM Professional Advanced
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ABI/INFORM Global
Agricultural Science Database
ProQuest Health & Medical Collection
Medical Database
Science Database
Biotechnology and BioEngineering Abstracts
Environmental Science Database
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
Environmental Science Collection
ProQuest Central Basic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Agricultural Science Database
ProQuest Business Collection (Alumni Edition)
ProQuest Central Student
ProQuest Central Essentials
SciTech Premium Collection
ABI/INFORM Complete
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
Water Resources Abstracts
Environmental Sciences and Pollution Management
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Business Premium Collection
ABI/INFORM Global
ProQuest Science Journals (Alumni Edition)
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
Agricultural Science Collection
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Business Collection
Aqualine
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Environmental Science Collection
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Environmental Science Database
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ABI/INFORM Global (Corporate)
ProQuest One Business
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
Pollution Abstracts
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
ABI/INFORM Professional Advanced
ProQuest Health & Medical Research Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Agricultural & Environmental Science Collection
ABI/INFORM Complete (Alumni Edition)
ProQuest Public Health
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
Toxicology Abstracts
ProQuest Science Journals
ProQuest SciTech Collection
ProQuest Medical Library
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ASFA: Aquatic Sciences and Fisheries Abstracts
ProQuest One Business (Alumni)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA

Agricultural Science Database
Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Environmental Sciences
EISSN 1573-2932
EndPage 371
ExternalDocumentID A751735023
10_1007_s11270_023_06384_8
GroupedDBID ---
-5A
-5G
-5~
-BR
-EM
-Y2
-~C
-~X
.86
.VR
06D
0R~
0VY
123
199
1N0
1SB
2.D
203
28-
29R
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2XV
2~H
30V
3SX
3V.
4.4
406
408
409
40D
40E
4P2
53G
5QI
5VS
67M
67Z
6NX
78A
7WY
7X2
7X7
7XC
88E
88I
8C1
8CJ
8FE
8FH
8FI
8FJ
8FL
8UJ
95-
95.
95~
96X
A8Z
AAAVM
AABHQ
AACDK
AAHBH
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACKIV
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACPRK
ACZOJ
ADBBV
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEUYN
AEVLU
AEXYK
AFEXP
AFFNX
AFGCZ
AFKRA
AFLOW
AFQWF
AFRAH
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
APEBS
ARMRJ
ASPBG
ATCPS
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BEZIV
BGNMA
BHPHI
BKSAR
BPHCQ
BSONS
BVXVI
CAG
CCPQU
COF
CS3
CSCUP
D1J
D1K
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBD
EBLON
EBS
ECGQY
EDH
EIOEI
EJD
EPAXT
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
FYUFA
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GXS
H13
HCIFZ
HF~
HG5
HG6
HMCUK
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IAO
IEP
IFM
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K6-
K60
K6~
KDC
KOV
KOW
L8X
LAK
LLZTM
M0C
M0K
M1P
M2P
M4Y
MA-
ML.
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
PATMY
PCBAR
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PSQYO
PT4
PT5
PYCSY
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCK
SCLPG
SDH
SDM
SEV
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TN5
TSG
TSK
TSV
TUC
U2A
UG4
UKHRP
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WH7
WJK
WK6
WK8
XJT
Y6R
YLTOR
Z45
Z5O
Z7R
Z7S
Z7U
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z81
Z85
Z86
Z8M
Z8N
Z8O
Z8P
Z8Q
Z8S
Z8T
Z8U
Z8Z
Z92
ZMTXR
~02
~A~
~EX
~KM
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
ADXHL
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
AEIIB
PMFND
7QH
7T7
7TV
7U7
7UA
7XB
8FD
8FK
ABRTQ
C1K
F1W
FR3
H96
H97
K9.
L.-
L.G
P64
PJZUB
PKEHL
PPXIY
PQEST
PQUKI
Q9U
7S9
L.6
ID FETCH-LOGICAL-c391t-c7f3bf30ec4c19b320edbe7f10db520b2fb1b11a66aa33974c04738ad24527793
IEDL.DBID U2A
ISSN 0049-6979
IngestDate Fri Jul 11 00:42:19 EDT 2025
Fri Jul 25 23:20:51 EDT 2025
Tue Jun 10 21:09:24 EDT 2025
Tue Jul 01 02:34:46 EDT 2025
Thu Apr 24 23:07:26 EDT 2025
Fri Feb 21 02:43:17 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords Nile Red
Crustaceans
Polystyrene PS
Freshwater invertebrates
Fragmentation
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c391t-c7f3bf30ec4c19b320edbe7f10db520b2fb1b11a66aa33974c04738ad24527793
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-3738-686X
0000-0003-3305-1042
0000-0002-5632-9257
PQID 2821997920
PQPubID 54157
PageCount 1
ParticipantIDs proquest_miscellaneous_3153155192
proquest_journals_2821997920
gale_infotracacademiconefile_A751735023
crossref_citationtrail_10_1007_s11270_023_06384_8
crossref_primary_10_1007_s11270_023_06384_8
springer_journals_10_1007_s11270_023_06384_8
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20230600
2023-06-00
20230601
PublicationDateYYYYMMDD 2023-06-01
PublicationDate_xml – month: 6
  year: 2023
  text: 20230600
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: Dordrecht
PublicationSubtitle An International Journal of Environmental Pollution
PublicationTitle Water, air, and soil pollution
PublicationTitleAbbrev Water Air Soil Pollut
PublicationYear 2023
Publisher Springer International Publishing
Springer
Springer Nature B.V
Publisher_xml – name: Springer International Publishing
– name: Springer
– name: Springer Nature B.V
References Brennecke, D., Duarte, B., Paiva, F., Caçador, I., & Canning-Clode, J. (2016). Microplastics as vector for heavy metal contamination from the marine environment. Estuarine, Coastal and Shelf Science, 178, 189–195. https://doi.org/10.1016/j.ecss.2015.12.003
EltemsahYSBøhnTAcute and chronic effects of polystyrene microplastics on juvenile and adult Daphnia MagnaEnvironmental Pollution.20192541129191:CAS:528:DC%2BC1MXhsFGjtrzM10.1016/j.envpol.2019.07.087
Müller, A., Becker, R., Dorgerloh, U., Simon, F.-G., & Braun, U. (2018). The effect of polymer aging on the uptake of fuel aromatics and ethers by microplastics. Environmental Pollution, 240, 639–646. https://doi.org/10.1016/j.envpol.2018.04.127
ColeMLindequePFilemanEHalsbandCGoodheadRMogerJGallowayTSMicroplastic ingestion by zooplanktonEnvironmental Science & Technology.201347664666551:CAS:528:DC%2BC3sXnvFSksr8%3D10.1021/es400663f
JooSHLiangYKimMByunJChoiHMicroplastics with adsorbed contaminants: Mechanisms and treatmentEnvironmental Challenges.202131000421:CAS:528:DC%2BB38XhtlOju77I10.1016/j.envc.2021.100042
TorresFGDioses-SalinasDCPizarro-OrtegaCIDe-la-TorreGESorption of chemical contaminants on degradable and non-degradable microplastics: recent progress and research trendsScience of the Total Environment.20207571438751:CAS:528:DC%2BB3cXis1ais7bM10.1016/j.scitotenv.2020.143875
GophenMGellerWFilter mesh size and food particle uptake by DaphniaOecologia19846440841210.1007/bf00379140
PorterKGOrcuttJDGerritsenJFunctional response and fitness in a generalist filter feeder, Daphnia Magna (Cladocera: Crustacea)Ecology19836473574210.2307/1937196
Mateos-CárdenasAO’HalloranJvan PeltFNAMJansenMAKRapid fragmentation of microplastics by the freshwater amphipod Gammarus duebeni (Lillj.)Scientific Reports202010127991:CAS:528:DC%2BB3cXhsFajt7jN10.1038/s41598-020-69635-2
AljaibachiRLairdWBStevensFCallaghanAImpacts of polystyrene microplastics on Daphnia magna: A laboratory and a mesocosm studyScience of the Total Environment.20207051358001:CAS:528:DC%2BC1MXitlaju73P10.1016/j.scitotenv.2019.135800
JahnkeAArpHPHEscherBIGewertBGorokhovaEKühnelDOgonowskiMPotthoffARummelCSchmitt-JansenMToormanEMacLeodMReducing uncertainty and confronting ignorance about the possible impacts of weathering plastic in the marine environmentEnvironmental Science & Technology Letters.2017485901:CAS:528:DC%2BC2sXislSrur8%3D10.1021/acs.estlett.7b00008
LomonacoTMancoECortiALa NasaJGhimentiSBiaginiDDi FrancescoFModugnoFCeccariniAFuocoRCastelvetroVRelease of harmful volatile organic compounds (VOCs) from photo-degraded plastic debris: A neglected source of environmental pollutionJournal of Hazardous Materials.20203941225961:CAS:528:DC%2BB3cXntVOqtL8%3D10.1016/j.jhazmat.2020.122596
PetersenEJMortimerMBurgessRMHandyRHannaSHoKTJohnsonMLoureiroSSelckHScott-FordsmandJJSpurgeonDUnrineJvan den BrinkNWWangYWhiteJHoldenPStrategies for robust and accurate experimental approaches to quantify nanomaterial bioaccumulation across a broad range of organismsEnvironmental Science: Nano Journal.20196161916561:CAS:528:DC%2BC1MXnsFSht70%3D10.1039/C8EN01378K
GuilherminoLMartinsACunhaSFernandesJOLong-term adverse effects of microplastics on Daphnia magna reproduction and population growth rate at increased water temperature and light intensity: Combined effects of stressors and interactionsScience of The Total Environment.20217841470821:CAS:528:DC%2BB3MXpsVSltb4%3D10.1016/j.scitotenv.2021.147082
LahiveECrossRSaarloosAIHortonAASvendsenCHufenusRMitranoDMEarthworms ingest microplastic fibres and nanoplastics with effects on egestion rate and long-term retentionScience of the Total Environment.20218071510221:CAS:528:DC%2BB3MXit1Kmtb%2FM10.1016/j.scitotenv.2021.151022
GewertBPlassmannMMMacleodMPathways for degradation of plastic polymers floating in the marine environmentEnvironmental Science: Processes & Impacts201517151315211:CAS:528:DC%2BC2MXhtFGgtbjF10.1039/C5EM00207A
KarimiMBiriaDThe promiscuous activity of alpha-amylase in biodegradation of low-density polyethylene in a polymer-starch blendScientific Reports.2019926121:CAS:528:DC%2BC1MXnslCitLo%3D10.1038/s41598-019-39366-0
ButelerMFasanellaMAlmaAMSilvaLILangenheimMTombaJPLakes with or without urbanization along their coasts had similar level of microplastic contamination, but significant differences were seen between sampling methodsScience of The Total Environment20238661612541:CAS:528:DC%2BB3sXoslGitw%3D%3D10.1016/j.scitotenv.2022.161254
CincinelliAScopetaniCChelazziDLombardiniEMartelliniTKatsoyiannisAFossiMCCorsoliniSMicroplastic in the surface waters of the Ross Sea (Antarctica): Occurrence, distribution and characterization by FTIRChemosphere20171753914001:CAS:528:DC%2BC2sXktVylt70%3D10.1016/j.chemosphere.2017.02.024
MurashigeTSkoogFAA revised medium for a rapid growth and bioassays with tobacco tissues culturesPhysiologia Plantarum.1962154734791:CAS:528:DyaF3sXksFKm10.1111/j.1399-3054.1962.tb08052.x
LiYZhangHTangCA review of possible pathways of marine microplastics transport in the oceanAnthropocene Coasts.2020361310.1139/anc-2018-0030
AntunesJFriasJGLMicaeloACSobralPResin pellets from beaches of the Portuguese coast and adsorbed persistent organic pollutantsEstuarine, Coastal and Shelf Science.201313062691:CAS:528:DC%2BC3sXhtV2rs7nP10.1016/j.ecss.2013.06.016
Castro, G. B., Bernegossi, A. C., Felipe, M. C., & Corbi, J. J. (2020). Is the development of Daphnia magna neonates affected by shortterm exposure to polyethylene microplastics? Journal of Environmental Science and Health, Part A. 1–12. https://doi.org/10.1080/10934529.2020.1756656.
BackhausTWagnerMMicroplastics in the environment: Much ado about nothing?A Debate. Global Challenges.20204190002210.1002/gch2.201900022
LiuLFokkinkRKoelmansAASorption of polycyclic aromatic hydrocarbons to polystyrene nanoplasticEnvironmental Toxicology and Chemistry.201635165016551:CAS:528:DC%2BC28XktFKms70%3D10.1002/etc.3311
JovanovićBIngestion of microplastics by fish and its potential consequences from a physical perspectiveIntegrated Environmental Assessment and Management.20171351051510.1002/ieam.1913
SchürCZippSThalauTWagnerMMicroplastics but not natural particles induce multigenerational effects in Daphnia magnaEnvironmental Pollution.20202601139041:CAS:528:DC%2BB3cXktlygt7w%3D10.1016/j.envpol.2019.113904
ToumiHAbidliSBejaouiMMicroplastics in freshwater environment: The first evaluation in sediments from seven water streams surrounding the lagoon of Bizerte (Northern Tunisia)Environmental Science and Pollution Research.20192614673146821:CAS:528:DC%2BC1MXot1ygu70%3D10.1007/s11356-019-04695-0
Kowalczyk, N., Blake, N., Charko, F., & Quek, Y. (2017). Microplastics in the Maribyrnong and Yarra Rivers, Melbourne, Australia, Port Phillip EcoCentre, retrieved from https://ecocentre.com/sites/default/files/images/Documents/Programs/Baykeeper/Microplastics%20in%20the%20Maribyrnong%20and%20Yarra%20Rivers_2017.pdf (15 March 2023).
PradoCCAQueirozLGSilvaFTPaivaTCBEcotoxicological effect of ketoconazole on the antioxidant system of Daphnia similisComparative Biochemistry and Physiology Part C: Toxicology & Pharmacology.20212461090801:CAS:528:DC%2BB3MXhtFektrbF10.1016/j.cbpc.2021.109080
BaldwinAKCorsiSRMasonSAPlastic debris in 29 great Lakes tributaries: Relations to watershed attributes and hydrologyEnvironmental Science & Technology.20165010377103851:CAS:528:DC%2BC28XhsFSjurnJ10.1021/acs.est.6b02917
ABNT, Associação Brasileira de Normas Técnicas. (2016). Ecotoxicologia aquática, Toxicidade Aguda - Método de ensaio com Daphnia spp (Crustacea, Cladocera). ABNT, Rio de Janeiro (NBR12713).
BrandonAMGaoSHTianRNingDYangS-SZhouJWuW-MCriddleCSBiodegradation of polyethylene and plastic mixtures in mealworms (Larvae of Tenebrio molitor) and effects on the gut microbiomeEnvironmental Science & Technology.201852652665331:CAS:528:DC%2BC1cXpsFOisr8%3D10.1021/acs.est.8b02301
RehseSKloasWZarflCShort-Term exposure with high concentrations of pristine microplastic particles leads to immobilization of Daphnia MagnaChemosphere201615391991:CAS:528:DC%2BC28XkslKhtL0%3D10.1016/j.chemosphere.2016.02.133
CanniffPMHoangTCMicroplastic ingestion by Daphnia magna and its enhancement on algal growthScience of the Total Environment.20186335005071:CAS:528:DC%2BC1cXmtVCnsrk%3D10.1016/j.scitotenv.2018.03.176
ZhangCZhouHCuiYWangCLiYZhangDMicroplastics in offshore sediment in the Yellow Sea and East China SeaChina. Environmental Pollution20192448278331:CAS:528:DC%2BC1cXitVKgs7%2FO10.1016/j.envpol.2018.10.102
HaslerADThe physiology of digestion of plankton crustaceaBiology Bulletin.19356820721410.2307/1537264
Wang, Z., Fu, D., Gao, L., Qi, H., Su, Y., & Peng, L. (2021). Aged microplastics decrease the bioavailability of coexisting heavy metals tomicroalga Chlorella vulgaris. Ecotoxicology and Environmental Safety, 217, 112199. https://doi.org/10.1016/j.ecoenv.2021.112199
AutaHSEmenikeCUFauziahSHDistribution and importance of microplastics in the marine environment: A review of the sources, fate, effects, and potential solutionsEnvironment International.201610216517610.1016/j.envint.2017.02.013
OECD. (2012). Test No. 211: Daphnia magna Reproduction Test, OECD Guidelines for the Testing of Chemicals, Section 2, OECD Publishing, https://doi.org/10.1787/9789264185203-en.
HiraiHTakadaHOgataYYamashitaRMizukawaKSahaMKwanCMooreCGrayHLaursenDZettlerERFarringtonJWReddyCMPeacockEEWardMWOrganic micropollutants in marine plastics debris from the open ocean and remote and urban beachesMarine Pollution Bulletin201162168316921:CAS:528:DC%2BC3MXovFKrtb4%3D10.1016/j.marpolbul.2011.06.004
ImhofKHRusekJThielMWolinskaJLaforschCDo microplastic particles affect Daphnia magna at the morphological, life history and molecular level?Plos One201712e01875901:CAS:528:DC%2BC1cXitFKiu7nL10.1371/journal.pone.0187590
HermabessiereLDehautAPaul-PontILacroixCJezequelRSoudantPDuflosGOccurrence and effects of plastic additives on marine environments and organisms: A reviewChemosphere20171827817931:CAS:528:DC%2BC2sXot1entbo%3D10.1016/j.chemosphere.2017.05.0
M Buteler (6384_CR10) 2023; 866
E Lahive (6384_CR32) 2021; 807
6384_CR47
M Steer (6384_CR51) 2017; 226
T Backhaus (6384_CR5) 2020; 4
6384_CR41
6384_CR40
6384_CR9
AD Hasler (6384_CR22) 1935; 68
S Rehse (6384_CR49) 2016; 153
CCA Prado (6384_CR46) 2021; 246
L Hermabessiere (6384_CR23) 2017; 182
B Rani-Borges (6384_CR48) 2022
M Cole (6384_CR15) 2013; 47
AK Baldwin (6384_CR6) 2016; 50
6384_CR38
SL Wright (6384_CR57) 2013; 178
SH Joo (6384_CR28) 2021; 3
W Luo (6384_CR36) 2019; 246
6384_CR1
AM Brandon (6384_CR8) 2018; 52
MM Borges-Ramírez (6384_CR7) 2020; 267
6384_CR31
FG Torres (6384_CR52) 2020; 757
H Toumi (6384_CR53) 2019; 26
KH Imhof (6384_CR25) 2017; 12
L Guilhermino (6384_CR21) 2021; 784
A Jahnke (6384_CR26) 2017; 4
PM Canniff (6384_CR11) 2018; 633
A Mateos-Cárdenas (6384_CR37) 2020; 10
T Murashige (6384_CR39) 1962; 15
T Lomonaco (6384_CR35) 2020; 394
J Antunes (6384_CR3) 2013; 130
C Schür (6384_CR50) 2020; 260
R Aljaibachi (6384_CR2) 2020; 705
SA Carr (6384_CR12) 2016; 91
M Ogonowski (6384_CR42) 2016; 11
Y Li (6384_CR33) 2020; 3
YS Eltemsah (6384_CR18) 2019; 254
B Gewert (6384_CR19) 2015; 17
M Cole (6384_CR16) 2015; 49
L Liu (6384_CR34) 2016; 35
M Karimi (6384_CR30) 2019; 9
H Hirai (6384_CR24) 2011; 62
M Gophen (6384_CR20) 1984; 64
KG Porter (6384_CR45) 1983; 64
6384_CR56
HS Auta (6384_CR4) 2016; 102
6384_CR13
A Cincinelli (6384_CR14) 2017; 175
P Uzun (6384_CR54) 2022; 288
6384_CR55
AL Dawson (6384_CR17) 2018; 9
A Jemec (6384_CR27) 2016; 219
B-Y Peng (6384_CR43) 2019; 53
B Jovanović (6384_CR29) 2017; 13
C Zhang (6384_CR58) 2019; 244
EJ Petersen (6384_CR44) 2019; 6
References_xml – reference: ImhofKHRusekJThielMWolinskaJLaforschCDo microplastic particles affect Daphnia magna at the morphological, life history and molecular level?Plos One201712e01875901:CAS:528:DC%2BC1cXitFKiu7nL10.1371/journal.pone.0187590
– reference: JooSHLiangYKimMByunJChoiHMicroplastics with adsorbed contaminants: Mechanisms and treatmentEnvironmental Challenges.202131000421:CAS:528:DC%2BB38XhtlOju77I10.1016/j.envc.2021.100042
– reference: Castro, G. B., Bernegossi, A. C., Felipe, M. C., & Corbi, J. J. (2020). Is the development of Daphnia magna neonates affected by shortterm exposure to polyethylene microplastics? Journal of Environmental Science and Health, Part A. 1–12. https://doi.org/10.1080/10934529.2020.1756656.
– reference: BackhausTWagnerMMicroplastics in the environment: Much ado about nothing?A Debate. Global Challenges.20204190002210.1002/gch2.201900022
– reference: JahnkeAArpHPHEscherBIGewertBGorokhovaEKühnelDOgonowskiMPotthoffARummelCSchmitt-JansenMToormanEMacLeodMReducing uncertainty and confronting ignorance about the possible impacts of weathering plastic in the marine environmentEnvironmental Science & Technology Letters.2017485901:CAS:528:DC%2BC2sXislSrur8%3D10.1021/acs.estlett.7b00008
– reference: Rani-BorgesBQueirozLGPradoCCAMeloECMoraesBRAndoRAPaivaTCBPompêoMExpressive biofragmentation of polystyrene microplastics by the amphipod Hyalella aztecaSSRN202210.2139/ssrn.4206912
– reference: PetersenEJMortimerMBurgessRMHandyRHannaSHoKTJohnsonMLoureiroSSelckHScott-FordsmandJJSpurgeonDUnrineJvan den BrinkNWWangYWhiteJHoldenPStrategies for robust and accurate experimental approaches to quantify nanomaterial bioaccumulation across a broad range of organismsEnvironmental Science: Nano Journal.20196161916561:CAS:528:DC%2BC1MXnsFSht70%3D10.1039/C8EN01378K
– reference: LomonacoTMancoECortiALa NasaJGhimentiSBiaginiDDi FrancescoFModugnoFCeccariniAFuocoRCastelvetroVRelease of harmful volatile organic compounds (VOCs) from photo-degraded plastic debris: A neglected source of environmental pollutionJournal of Hazardous Materials.20203941225961:CAS:528:DC%2BB3cXntVOqtL8%3D10.1016/j.jhazmat.2020.122596
– reference: WrightSLThompsonRCGallowayTSThe physical impacts of microplastics on marine organisms: A reviewEnvironmental Pollution.20131784834921:CAS:528:DC%2BC3sXltVCrtLc%3D10.1016/j.envpol.2013.02.031
– reference: GuilherminoLMartinsACunhaSFernandesJOLong-term adverse effects of microplastics on Daphnia magna reproduction and population growth rate at increased water temperature and light intensity: Combined effects of stressors and interactionsScience of The Total Environment.20217841470821:CAS:528:DC%2BB3MXpsVSltb4%3D10.1016/j.scitotenv.2021.147082
– reference: ColeMLindequePFilemanEHalsbandCGallowayTSThe impact of polystyrene microplastics on feeding, function and fecundity in the marine copepod Calanus helgolandicusEnvironmental Science & Technology.201549113011371:CAS:528:DC%2BC2MXkvFemsw%3D%3D10.1021/es504525u
– reference: BrandonAMGaoSHTianRNingDYangS-SZhouJWuW-MCriddleCSBiodegradation of polyethylene and plastic mixtures in mealworms (Larvae of Tenebrio molitor) and effects on the gut microbiomeEnvironmental Science & Technology.201852652665331:CAS:528:DC%2BC1cXpsFOisr8%3D10.1021/acs.est.8b02301
– reference: MurashigeTSkoogFAA revised medium for a rapid growth and bioassays with tobacco tissues culturesPhysiologia Plantarum.1962154734791:CAS:528:DyaF3sXksFKm10.1111/j.1399-3054.1962.tb08052.x
– reference: KarimiMBiriaDThe promiscuous activity of alpha-amylase in biodegradation of low-density polyethylene in a polymer-starch blendScientific Reports.2019926121:CAS:528:DC%2BC1MXnslCitLo%3D10.1038/s41598-019-39366-0
– reference: Kowalczyk, N., Blake, N., Charko, F., & Quek, Y. (2017). Microplastics in the Maribyrnong and Yarra Rivers, Melbourne, Australia, Port Phillip EcoCentre, retrieved from https://ecocentre.com/sites/default/files/images/Documents/Programs/Baykeeper/Microplastics%20in%20the%20Maribyrnong%20and%20Yarra%20Rivers_2017.pdf (15 March 2023).
– reference: LahiveECrossRSaarloosAIHortonAASvendsenCHufenusRMitranoDMEarthworms ingest microplastic fibres and nanoplastics with effects on egestion rate and long-term retentionScience of the Total Environment.20218071510221:CAS:528:DC%2BB3MXit1Kmtb%2FM10.1016/j.scitotenv.2021.151022
– reference: SchürCZippSThalauTWagnerMMicroplastics but not natural particles induce multigenerational effects in Daphnia magnaEnvironmental Pollution.20202601139041:CAS:528:DC%2BB3cXktlygt7w%3D10.1016/j.envpol.2019.113904
– reference: LuoWSuLCraigNJWuCShiHComparison of microplastic pollution in different water bodies from urban creeks to coastal watersEnvironmental Pollution.20192461741821:CAS:528:DC%2BC1cXisVOhtbzF10.1016/j.envpol.2018.11.081
– reference: ZhangCZhouHCuiYWangCLiYZhangDMicroplastics in offshore sediment in the Yellow Sea and East China SeaChina. Environmental Pollution20192448278331:CAS:528:DC%2BC1cXitVKgs7%2FO10.1016/j.envpol.2018.10.102
– reference: RehseSKloasWZarflCShort-Term exposure with high concentrations of pristine microplastic particles leads to immobilization of Daphnia MagnaChemosphere201615391991:CAS:528:DC%2BC28XkslKhtL0%3D10.1016/j.chemosphere.2016.02.133
– reference: OECD. (2004). Test No. 202: Daphnia sp. Acute Immobilisation Test, OECD Guidelines for the Testing of Chemicals, Section 2, OECD Publishing, https://doi.org/10.1787/9789264069947-en.
– reference: HermabessiereLDehautAPaul-PontILacroixCJezequelRSoudantPDuflosGOccurrence and effects of plastic additives on marine environments and organisms: A reviewChemosphere20171827817931:CAS:528:DC%2BC2sXot1entbo%3D10.1016/j.chemosphere.2017.05.096
– reference: Wang, Z., Fu, D., Gao, L., Qi, H., Su, Y., & Peng, L. (2021). Aged microplastics decrease the bioavailability of coexisting heavy metals tomicroalga Chlorella vulgaris. Ecotoxicology and Environmental Safety, 217, 112199. https://doi.org/10.1016/j.ecoenv.2021.112199
– reference: HiraiHTakadaHOgataYYamashitaRMizukawaKSahaMKwanCMooreCGrayHLaursenDZettlerERFarringtonJWReddyCMPeacockEEWardMWOrganic micropollutants in marine plastics debris from the open ocean and remote and urban beachesMarine Pollution Bulletin201162168316921:CAS:528:DC%2BC3MXovFKrtb4%3D10.1016/j.marpolbul.2011.06.004
– reference: CincinelliAScopetaniCChelazziDLombardiniEMartelliniTKatsoyiannisAFossiMCCorsoliniSMicroplastic in the surface waters of the Ross Sea (Antarctica): Occurrence, distribution and characterization by FTIRChemosphere20171753914001:CAS:528:DC%2BC2sXktVylt70%3D10.1016/j.chemosphere.2017.02.024
– reference: PengB-YSuYChenZChenJZhouXBenbowMECriddleCSWuW-MZhangYBiodegradation of polystyrene by dark (Tenebrio obscurus) and yellow (Tenebrio molitor) mealworms (Coleoptera: Tenebrionidae)Environmental Science & Technology.201953525652651:CAS:528:DC%2BC1MXnsV2qsLk%3D10.1021/acs.est.8b06963
– reference: DawsonALKawaguchiSKingCKTownsendKAKingRHustonWMNashSMBTurning microplastics into nanoplastics through digestive fragmentation by Antarctic krillNature Communications.2018910011:CAS:528:DC%2BC1cXhtFWktLrP10.1038/s41467-018-03465-9
– reference: BaldwinAKCorsiSRMasonSAPlastic debris in 29 great Lakes tributaries: Relations to watershed attributes and hydrologyEnvironmental Science & Technology.20165010377103851:CAS:528:DC%2BC28XhsFSjurnJ10.1021/acs.est.6b02917
– reference: GophenMGellerWFilter mesh size and food particle uptake by DaphniaOecologia19846440841210.1007/bf00379140
– reference: LiuLFokkinkRKoelmansAASorption of polycyclic aromatic hydrocarbons to polystyrene nanoplasticEnvironmental Toxicology and Chemistry.201635165016551:CAS:528:DC%2BC28XktFKms70%3D10.1002/etc.3311
– reference: PradoCCAQueirozLGSilvaFTPaivaTCBEcotoxicological effect of ketoconazole on the antioxidant system of Daphnia similisComparative Biochemistry and Physiology Part C: Toxicology & Pharmacology.20212461090801:CAS:528:DC%2BB3MXhtFektrbF10.1016/j.cbpc.2021.109080
– reference: SteerMColeMThompsonRCLindequePKMicroplastic ingestion in fish larvae in the western English ChannelEnvironmental Pollution.20172262502591:CAS:528:DC%2BC2sXlvFWksLw%3D10.1016/j.envpol.2017.03.062
– reference: AutaHSEmenikeCUFauziahSHDistribution and importance of microplastics in the marine environment: A review of the sources, fate, effects, and potential solutionsEnvironment International.201610216517610.1016/j.envint.2017.02.013
– reference: EltemsahYSBøhnTAcute and chronic effects of polystyrene microplastics on juvenile and adult Daphnia MagnaEnvironmental Pollution.20192541129191:CAS:528:DC%2BC1MXhsFGjtrzM10.1016/j.envpol.2019.07.087
– reference: AntunesJFriasJGLMicaeloACSobralPResin pellets from beaches of the Portuguese coast and adsorbed persistent organic pollutantsEstuarine, Coastal and Shelf Science.201313062691:CAS:528:DC%2BC3sXhtV2rs7nP10.1016/j.ecss.2013.06.016
– reference: ButelerMFasanellaMAlmaAMSilvaLILangenheimMTombaJPLakes with or without urbanization along their coasts had similar level of microplastic contamination, but significant differences were seen between sampling methodsScience of The Total Environment20238661612541:CAS:528:DC%2BB3sXoslGitw%3D%3D10.1016/j.scitotenv.2022.161254
– reference: GewertBPlassmannMMMacleodMPathways for degradation of plastic polymers floating in the marine environmentEnvironmental Science: Processes & Impacts201517151315211:CAS:528:DC%2BC2MXhtFGgtbjF10.1039/C5EM00207A
– reference: HaslerADThe physiology of digestion of plankton crustaceaBiology Bulletin.19356820721410.2307/1537264
– reference: Brennecke, D., Duarte, B., Paiva, F., Caçador, I., & Canning-Clode, J. (2016). Microplastics as vector for heavy metal contamination from the marine environment. Estuarine, Coastal and Shelf Science, 178, 189–195. https://doi.org/10.1016/j.ecss.2015.12.003
– reference: ABNT, Associação Brasileira de Normas Técnicas. (2016). Ecotoxicologia aquática, Toxicidade Aguda - Método de ensaio com Daphnia spp (Crustacea, Cladocera). ABNT, Rio de Janeiro (NBR12713).
– reference: AljaibachiRLairdWBStevensFCallaghanAImpacts of polystyrene microplastics on Daphnia magna: A laboratory and a mesocosm studyScience of the Total Environment.20207051358001:CAS:528:DC%2BC1MXitlaju73P10.1016/j.scitotenv.2019.135800
– reference: Borges-RamírezMMMendoza-FrancoEFEscalona-SeguraGOstenJRPlastic density as a key factor in the presence of microplastic in the gastrointestinal tract of commercial fishes from Campeche Bay MexicoEnvironmental Pollution20202671156591:CAS:528:DC%2BB3cXhvFejsbrM10.1016/j.envpol.2020.115659
– reference: TorresFGDioses-SalinasDCPizarro-OrtegaCIDe-la-TorreGESorption of chemical contaminants on degradable and non-degradable microplastics: recent progress and research trendsScience of the Total Environment.20207571438751:CAS:528:DC%2BB3cXis1ais7bM10.1016/j.scitotenv.2020.143875
– reference: Qiao, R., Mortimer, R., Richter, J., Rani-Borges, B., Yu, Z., Heinlaan, M., Lin, S., & Ivask, A. (2022). Hazard of polystyrene micro-and nanospheres to selected aquatic and terrestrial organisms. Science of the Total Environment.158560. https://doi.org/10.1016/j.scitotenv.2022.158560.
– reference: Wagner, M., & Lambert, S. (2017). Freshwater microplastics: Emerging environmental contaminants? Cham: Springer. 303 p. (The Handbook of Environmental Chemistry, 58).
– reference: LiYZhangHTangCA review of possible pathways of marine microplastics transport in the oceanAnthropocene Coasts.2020361310.1139/anc-2018-0030
– reference: JovanovićBIngestion of microplastics by fish and its potential consequences from a physical perspectiveIntegrated Environmental Assessment and Management.20171351051510.1002/ieam.1913
– reference: OECD. (2012). Test No. 211: Daphnia magna Reproduction Test, OECD Guidelines for the Testing of Chemicals, Section 2, OECD Publishing, https://doi.org/10.1787/9789264185203-en.
– reference: Müller, A., Becker, R., Dorgerloh, U., Simon, F.-G., & Braun, U. (2018). The effect of polymer aging on the uptake of fuel aromatics and ethers by microplastics. Environmental Pollution, 240, 639–646. https://doi.org/10.1016/j.envpol.2018.04.127
– reference: ColeMLindequePFilemanEHalsbandCGoodheadRMogerJGallowayTSMicroplastic ingestion by zooplanktonEnvironmental Science & Technology.201347664666551:CAS:528:DC%2BC3sXnvFSksr8%3D10.1021/es400663f
– reference: JemecAHorvatPKunejUBeleMKržanAUptake and effects of microplastic textile fibers on freshwater crustacean Daphnia magnaEnvironmental Pollution.20162192012091:CAS:528:DC%2BC28XhslOqsLrK10.1016/j.envpol.2016.10.037
– reference: Mateos-CárdenasAO’HalloranJvan PeltFNAMJansenMAKRapid fragmentation of microplastics by the freshwater amphipod Gammarus duebeni (Lillj.)Scientific Reports202010127991:CAS:528:DC%2BB3cXhsFajt7jN10.1038/s41598-020-69635-2
– reference: OgonowskiMSchurCJarsÅGorokhovaEThe effects of natural and anthropogenic microparticles on individual fitness in Daphnia MagnaPlos One201611e0155063–131:CAS:528:DC%2BC28XhsVaisL3I10.1371/journal.pone.0155063
– reference: UzunPFarazandeSGuvenBMathematical modeling of microplastic abundance, distribution, and transport in water environments: A reviewChemosphere.20222881325171:CAS:528:DC%2BB3MXitlamsrzJ10.1016/j.chemosphere.2021.132517
– reference: CanniffPMHoangTCMicroplastic ingestion by Daphnia magna and its enhancement on algal growthScience of the Total Environment.20186335005071:CAS:528:DC%2BC1cXmtVCnsrk%3D10.1016/j.scitotenv.2018.03.176
– reference: CarrSALiuJTesoroAGTransport and fate of microplastic particles in wastewater treatment plantsWater Research.2016911741821:CAS:528:DC%2BC28XpsVOjtw%3D%3D10.1016/j.watres.2016.01.002
– reference: ToumiHAbidliSBejaouiMMicroplastics in freshwater environment: The first evaluation in sediments from seven water streams surrounding the lagoon of Bizerte (Northern Tunisia)Environmental Science and Pollution Research.20192614673146821:CAS:528:DC%2BC1MXot1ygu70%3D10.1007/s11356-019-04695-0
– reference: PorterKGOrcuttJDGerritsenJFunctional response and fitness in a generalist filter feeder, Daphnia Magna (Cladocera: Crustacea)Ecology19836473574210.2307/1937196
– volume: 50
  start-page: 10377
  year: 2016
  ident: 6384_CR6
  publication-title: Environmental Science & Technology.
  doi: 10.1021/acs.est.6b02917
– volume: 175
  start-page: 391
  year: 2017
  ident: 6384_CR14
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2017.02.024
– volume: 68
  start-page: 207214
  year: 1935
  ident: 6384_CR22
  publication-title: Biology Bulletin.
  doi: 10.2307/1537264
– ident: 6384_CR13
  doi: 10.1080/10934529.2020.1756656
– volume: 10
  start-page: 12799
  year: 2020
  ident: 6384_CR37
  publication-title: Scientific Reports
  doi: 10.1038/s41598-020-69635-2
– volume: 254
  start-page: 112919
  year: 2019
  ident: 6384_CR18
  publication-title: Environmental Pollution.
  doi: 10.1016/j.envpol.2019.07.087
– volume: 64
  start-page: 735
  year: 1983
  ident: 6384_CR45
  publication-title: Ecology
  doi: 10.2307/1937196
– ident: 6384_CR38
  doi: 10.1016/j.envpol.2018.04.127
– volume: 246
  start-page: 174
  year: 2019
  ident: 6384_CR36
  publication-title: Environmental Pollution.
  doi: 10.1016/j.envpol.2018.11.081
– volume: 62
  start-page: 1683
  year: 2011
  ident: 6384_CR24
  publication-title: Marine Pollution Bulletin
  doi: 10.1016/j.marpolbul.2011.06.004
– volume: 246
  start-page: 109080
  year: 2021
  ident: 6384_CR46
  publication-title: Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology.
  doi: 10.1016/j.cbpc.2021.109080
– volume: 244
  start-page: 827
  year: 2019
  ident: 6384_CR58
  publication-title: China. Environmental Pollution
  doi: 10.1016/j.envpol.2018.10.102
– volume: 102
  start-page: 165
  year: 2016
  ident: 6384_CR4
  publication-title: Environment International.
  doi: 10.1016/j.envint.2017.02.013
– volume: 4
  start-page: 85
  year: 2017
  ident: 6384_CR26
  publication-title: Environmental Science & Technology Letters.
  doi: 10.1021/acs.estlett.7b00008
– volume: 15
  start-page: 473
  year: 1962
  ident: 6384_CR39
  publication-title: Physiologia Plantarum.
  doi: 10.1111/j.1399-3054.1962.tb08052.x
– volume: 260
  start-page: 113904
  year: 2020
  ident: 6384_CR50
  publication-title: Environmental Pollution.
  doi: 10.1016/j.envpol.2019.113904
– volume: 11
  start-page: e0155063–13
  year: 2016
  ident: 6384_CR42
  publication-title: Plos One
  doi: 10.1371/journal.pone.0155063
– ident: 6384_CR31
– volume: 219
  start-page: 201
  year: 2016
  ident: 6384_CR27
  publication-title: Environmental Pollution.
  doi: 10.1016/j.envpol.2016.10.037
– volume: 64
  start-page: 408
  year: 1984
  ident: 6384_CR20
  publication-title: Oecologia
  doi: 10.1007/bf00379140
– volume: 53
  start-page: 5256
  year: 2019
  ident: 6384_CR43
  publication-title: Environmental Science & Technology.
  doi: 10.1021/acs.est.8b06963
– ident: 6384_CR40
  doi: 10.1787/9789264069947-en
– ident: 6384_CR47
  doi: 10.1016/j.scitotenv.2022.158560
– year: 2022
  ident: 6384_CR48
  publication-title: SSRN
  doi: 10.2139/ssrn.4206912
– ident: 6384_CR9
  doi: 10.1016/j.ecss.2015.12.003
– ident: 6384_CR55
  doi: 10.1007/978-3-319-61615-5
– ident: 6384_CR41
  doi: 10.1787/9789264185203-en
– volume: 17
  start-page: 1513
  year: 2015
  ident: 6384_CR19
  publication-title: Environmental Science: Processes & Impacts
  doi: 10.1039/C5EM00207A
– volume: 130
  start-page: 62
  year: 2013
  ident: 6384_CR3
  publication-title: Estuarine, Coastal and Shelf Science.
  doi: 10.1016/j.ecss.2013.06.016
– volume: 9
  start-page: 2612
  year: 2019
  ident: 6384_CR30
  publication-title: Scientific Reports.
  doi: 10.1038/s41598-019-39366-0
– volume: 3
  start-page: 100042
  year: 2021
  ident: 6384_CR28
  publication-title: Environmental Challenges.
  doi: 10.1016/j.envc.2021.100042
– ident: 6384_CR56
  doi: 10.1016/j.ecoenv.2021.112199
– volume: 4
  start-page: 1900022
  year: 2020
  ident: 6384_CR5
  publication-title: A Debate. Global Challenges.
  doi: 10.1002/gch2.201900022
– volume: 47
  start-page: 6646
  year: 2013
  ident: 6384_CR15
  publication-title: Environmental Science & Technology.
  doi: 10.1021/es400663f
– volume: 91
  start-page: 174
  year: 2016
  ident: 6384_CR12
  publication-title: Water Research.
  doi: 10.1016/j.watres.2016.01.002
– volume: 182
  start-page: 781
  year: 2017
  ident: 6384_CR23
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2017.05.096
– volume: 226
  start-page: 250
  year: 2017
  ident: 6384_CR51
  publication-title: Environmental Pollution.
  doi: 10.1016/j.envpol.2017.03.062
– volume: 178
  start-page: 483
  year: 2013
  ident: 6384_CR57
  publication-title: Environmental Pollution.
  doi: 10.1016/j.envpol.2013.02.031
– volume: 6
  start-page: 1619
  year: 2019
  ident: 6384_CR44
  publication-title: Environmental Science: Nano Journal.
  doi: 10.1039/C8EN01378K
– volume: 394
  start-page: 122596
  year: 2020
  ident: 6384_CR35
  publication-title: Journal of Hazardous Materials.
  doi: 10.1016/j.jhazmat.2020.122596
– volume: 13
  start-page: 510
  year: 2017
  ident: 6384_CR29
  publication-title: Integrated Environmental Assessment and Management.
  doi: 10.1002/ieam.1913
– volume: 807
  start-page: 151022
  year: 2021
  ident: 6384_CR32
  publication-title: Science of the Total Environment.
  doi: 10.1016/j.scitotenv.2021.151022
– volume: 267
  start-page: 115659
  year: 2020
  ident: 6384_CR7
  publication-title: Environmental Pollution
  doi: 10.1016/j.envpol.2020.115659
– volume: 866
  start-page: 161254
  year: 2023
  ident: 6384_CR10
  publication-title: Science of The Total Environment
  doi: 10.1016/j.scitotenv.2022.161254
– volume: 757
  start-page: 143875
  year: 2020
  ident: 6384_CR52
  publication-title: Science of the Total Environment.
  doi: 10.1016/j.scitotenv.2020.143875
– volume: 52
  start-page: 6526
  year: 2018
  ident: 6384_CR8
  publication-title: Environmental Science & Technology.
  doi: 10.1021/acs.est.8b02301
– volume: 35
  start-page: 1650
  year: 2016
  ident: 6384_CR34
  publication-title: Environmental Toxicology and Chemistry.
  doi: 10.1002/etc.3311
– ident: 6384_CR1
– volume: 705
  start-page: 135800
  year: 2020
  ident: 6384_CR2
  publication-title: Science of the Total Environment.
  doi: 10.1016/j.scitotenv.2019.135800
– volume: 784
  start-page: 147082
  year: 2021
  ident: 6384_CR21
  publication-title: Science of The Total Environment.
  doi: 10.1016/j.scitotenv.2021.147082
– volume: 3
  start-page: 6
  year: 2020
  ident: 6384_CR33
  publication-title: Anthropocene Coasts.
  doi: 10.1139/anc-2018-0030
– volume: 9
  start-page: 1001
  year: 2018
  ident: 6384_CR17
  publication-title: Nature Communications.
  doi: 10.1038/s41467-018-03465-9
– volume: 26
  start-page: 14673
  year: 2019
  ident: 6384_CR53
  publication-title: Environmental Science and Pollution Research.
  doi: 10.1007/s11356-019-04695-0
– volume: 288
  start-page: 132517
  year: 2022
  ident: 6384_CR54
  publication-title: Chemosphere.
  doi: 10.1016/j.chemosphere.2021.132517
– volume: 12
  start-page: e0187590
  year: 2017
  ident: 6384_CR25
  publication-title: Plos One
  doi: 10.1371/journal.pone.0187590
– volume: 49
  start-page: 1130
  year: 2015
  ident: 6384_CR16
  publication-title: Environmental Science & Technology.
  doi: 10.1021/es504525u
– volume: 633
  start-page: 500
  year: 2018
  ident: 6384_CR11
  publication-title: Science of the Total Environment.
  doi: 10.1016/j.scitotenv.2018.03.176
– volume: 153
  start-page: 91
  year: 2016
  ident: 6384_CR49
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2016.02.133
SSID ssj0000987
Score 2.4181817
Snippet Environmental plastic contamination is a global problem, which is driven by the growing demand for plastics. Over time, plastics undergo fragmentation...
SourceID proquest
gale
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 371
SubjectTerms air
Atmospheric Protection/Air Quality Control/Air Pollution
Climate Change/Climate Change Impacts
Contamination
Daphnia similis
dose response
Earth and Environmental Science
Environment
Environmental monitoring
Fragmentation
Freshwater crustaceans
Hydrogeology
Ingestion
Inland waters
microparticles
Microplastics
Microspheres
mortality
Plastic debris
Plastic pollution
Plastics
Polystyrene
Polystyrene resins
polystyrenes
soil
Soil Science & Conservation
Survival
water
Water Quality/Water Pollution
SummonAdditionalLinks – databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfR1LTxQxuFG86MEAShxFUxITD9o4nc5spyeyCoSYYIhKsremT5hkmVl3lv_P9-10GR-Bc5_53u33IuQ9dnRRNnhW29xhCzPLrIM3T6yicL5SovL4UDz7Pjm9KL_Nqln6cOtTWOVGJq4Fte8c_pF_hqcBxkSoIj9c_GbYNQq9q6mFxmPyBEuXIVXLmRwlsaqHmpmlYhNYm5JmhtQ5dLky0FgMlXbJ6r8U07_i-T8_6Vr9nGyT58lupNMB0TvkUWh3ybM_qgnukr3jMWkNpiau7V-Q8-ky0COzuGobQ_vmupk3PT2fG8xwoob-bC5bDBgCGNMf3TzQpqVnGKe3AMsajqNfmi4uzeV1SlNqD1-Si5PjX19PWeqkwJxQfMWcjMJGkQdXOq6sKPLgbZCR595WRW6LaLnl3EwmxgiwUEqXl1LUxqNfVgIL75GttmvDK0KlDzGPPvDSAv9ba13kAey42gdXhKAywjdg1C6VGcduF3M9FkhG0GsAvV6DXtcZ-Xi3ZjEU2Xhw9gfEjkYOhJ2dSYkEcD-sZaWnsuJSVLAiI_sbBOrEmr0eCSkjB3fDwFToKTFt6G56LUAPoC2piox82iB-3OL-u71--MQ35GkxkBzL-T7ZWi1vwlswalb23ZpybwGXOPHs
  priority: 102
  providerName: ProQuest
Title Are Daphnia similis Playing a Significant Role in Microplastic Biofragmentation?
URI https://link.springer.com/article/10.1007/s11270-023-06384-8
https://www.proquest.com/docview/2821997920
https://www.proquest.com/docview/3153155192
Volume 234
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlR1Nb9Mw9IltFzigMZgIjMpISBzAUhwndXyastExgTZVg0rlZNmOvUXq0qrp_j_PbbLANiZxSQ55dqz3_L70vgA-hIku0riS5ia2YYSZocaiz-Mzz22ZSZ6VwVE8Ox-eTtJv02zaFoU1XbZ7F5JcS-q-2C0ESSnqGBrUbErzLdjJ0HcPiVyTpOjlr8w3nTJTSYdSyLZU5uE9_lJHd4XyvejoWumc7MLz1lokxYa8L-CJq_fg2R89BPdgf9SXqiFoy6vNSxgXS0e-6MVVXWnSVNfVrGrIeKZDXRPR5Ed1WYc0IcQsuZjPHKlqchay8xZoT-PvyFE190t9ed0WJ9WHr2ByMvp5fErb-QnUcslW1ArPjeexs6ll0vAkdqVxwrO4NIg4k3jDDGN6ONSao12S2jgVPNdliMYKZNx92K7ntXsNRJTOx750LDXI9cYY65lD6y0vnU2ckxGwDo3Kts3Fw4yLmerbIgfUK0S9WqNe5RF8ul2z2LTWeBT6Y6COCnyHO1vdlg_g-UIHK1WIjAme4YoIDjoCqpYhG4WeZUipkUkcwfvbz8hKIT6iaze_aRRH6R8sSJlE8LkjfL_Fv8_25v_A38LTZHMFacwOYHu1vHHv0LRZmQFsianAZ37MBrBTfP31fYTvo9H5-GKwvuW_AQz186c
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3JbtNAdFSVA3BAUKgwFBgkEAcYMeOxY_uAqtBFKW2qClqpt-msxVLqhDgV4qf4Rt6L7ZpF9NazZ9Pbn99GyCuc6FIY71huuMURZoYZCz5PSIO0Li1k6tBRHB8ORifJp9P0dIX87GphMK2yk4lLQe2mFv-RvwfXAHMiiphvzr4xnBqF0dVuhEZDFvv-x3dw2eoPe9uA39dxvLtzvDVi7VQBZmUhFsxmQZogubeJFYWRMffO-CwI7kwacxMHI4wQejDQWoK2TixPMplrhzHKLMPmSyDybyUSWBMr07f6lBJe5E2PzqRgA3hrW6TTlOphiJeBhmRoJCQs_0MR_q0O_onLLtXd7n1yr7VT6bAhrAdkxVdr5O5v3QvXyPpOXyQHS1spUT8kR8O5p9t69rUqNa3Li3JS1vRoorGiimr6pTyvMEEJcEo_TyeelhUdY17gDCx5uI5-LKdhrs8v2rKoavMRObkRGK-T1Wpa-ceEZs4HHpwXiQF5Y4yxQXiwG3Pnbex9ERHRgVHZtq05TteYqL4hM4JeAejVEvQqj8jbqz2zpqnHtavfIHYUcjycbHVbuADvw95ZapilIpMp7IjIRodA1YqCWvWEG5GXV5-BiTEyoys_vayVBL2DtmsRR-Rdh_j-iP-_7cn1N74gt0fH4wN1sHe4_5TciRvyY1xskNXF_NI_A4NqYZ4vqZiSs5tmm196Ey6Q
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3batRAdCgVRB9Eq8Vo1REUH3ToTCbZJA9S1m6X1tqyqIW-jXOtgW123WwRf82v85xN0njBvvU5c-PcT86NkBc40aUw3rHccIsjzAwzFnyekAZpXVrI1KGjeHQ82D9J3p-mp2vkZ1cLg2mVnUxcCWo3s_iPfBtcA8yJKGK-Hdq0iMlovDP_xnCCFEZau3EaDYkc-h_fwX2r3x6MANcv43i893l3n7UTBpiVhVgymwVpguTeJlYURsbcO-OzILgzacxNHIwwQujBQGsJmjuxPMlkrh3GK7MMGzGB-L-RySxHHst3-_QSXuRNv86kYAN4d1uw05TtYbiXgbZkaDAkLP9DKf6tGv6J0a5U3_guudParHTYENk9suarDXL7t06GG2Rzry-Yg6WtxKjvk8lw4elIz79WpaZ1eV5Oy5pOphqrq6imn8qzCpOVAL_042zqaVnRI8wRnINVD9fRd-UsLPTZeVsiVe08ICfXAuNNsl7NKv-Q0Mz5wIPzIjEge4wxNggPNmTuvI29LyIiOjAq27Y4x0kbU9U3Z0bQKwC9WoFe5RF5fbln3jT4uHL1K8SOQu6Hk61uixjgfdhHSw2zVGQyhR0R2eoQqFqxUKueiCPy_PIzMDRGaXTlZxe1kqCD0I4t4oi86RDfH_H_tz26-sZn5CYwjPpwcHz4mNyKG-pjXGyR9eXiwj8B22ppnq6ImJIv1801vwCvFTLG
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Are+Daphnia+similis+Playing+a+Significant+Role+in+Microplastic+Biofragmentation%3F&rft.jtitle=Water%2C+air%2C+and+soil+pollution&rft.au=Rani-Borges%2C+B%C3%A1rbara&rft.au=Pomp%C3%AAo%2C+Marcelo&rft.au=Queiroz%2C+Lucas+Gon%C3%A7alves&rft.date=2023-06-01&rft.issn=0049-6979&rft.volume=234&rft.issue=6+p.371-371&rft.spage=371&rft.epage=371&rft_id=info:doi/10.1007%2Fs11270-023-06384-8&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0049-6979&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0049-6979&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0049-6979&client=summon