Repeated impact of simulated hail ice on glass fibre composite materials

Wind turbine blade damage, particularly leading edge erosion, is a significant problem faced by the renewable energy industry. Wind turbines are subject to a wide range of environmental factors during a 20 + year lifespan, with hailstones often touted as a key contributor to the deterioration of the...

Full description

Saved in:
Bibliographic Details
Published inWear Vol. 432-433; p. 102926
Main Authors Macdonald, Hamish, Nash, David, Stack, Margaret M.
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier B.V 15.08.2019
Elsevier Science Ltd
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Wind turbine blade damage, particularly leading edge erosion, is a significant problem faced by the renewable energy industry. Wind turbines are subject to a wide range of environmental factors during a 20 + year lifespan, with hailstones often touted as a key contributor to the deterioration of the blade profile. An experimental campaign was carried out to investigate the effects of repeated impact of smaller diameter simulated hail ice (SHI) on composite materials, to correspond to those most prevalent at wind farm locations. Hailstones of four different diameters (5 mm, 10 mm, 15 mm and 20 mm) were fired at velocities in the range of 50 ms−1 to 95 ms−1. Samples used for experimentation were manufactured from triaxial stitched glass fibre [0°/−45°/+45°] and epoxy resin. Damage was evaluated in terms of sample mass loss and microscopy of the composite surface. For all examples, mass loss was negligible and optical microscopy showed little evidence of surface damage. Surface degradation was discernible under scanning electron microscopy for the larger diameter SHI (≥15mm), with projectile velocity a notable factor in the extent of the damage. Even for large numbers of impacts, there was little noteworthy damage caused by smaller, more prevalent SHI (≤10mm). This suggests that hail is not a direct cause of wind turbine blade erosion. •Repeated impact of more prevalently sized hailstones did not result in notable erosive mass loss of wind turbine blade materials.•Little noteworthy damage was observed using optical microscopy but damage was found under scanning electron microscopy.•Damage was encountered for the larger hailstones at higher velocities, indicating a damage threshold velocity.•Little noteworthy damage was found for the smaller, more prevalent diameter hailstones, indicating that hail is not a direct cause of wind turbine blade erosion.
AbstractList Wind turbine blade damage, particularly leading edge erosion, is a significant problem faced by the renewable energy industry. Wind turbines are subject to a wide range of environmental factors during a 20 + year lifespan, with hailstones often touted as a key contributor to the deterioration of the blade profile. An experimental campaign was carried out to investigate the effects of repeated impact of smaller diameter simulated hail ice (SHI) on composite materials, to correspond to those most prevalent at wind farm locations. Hailstones of four different diameters (5 mm, 10 mm, 15 mm and 20 mm) were fired at velocities in the range of 50 ms−1 to 95 ms−1. Samples used for experimentation were manufactured from triaxial stitched glass fibre [0°/−45°/+45°] and epoxy resin. Damage was evaluated in terms of sample mass loss and microscopy of the composite surface. For all examples, mass loss was negligible and optical microscopy showed little evidence of surface damage. Surface degradation was discernible under scanning electron microscopy for the larger diameter SHI (≥15mm), with projectile velocity a notable factor in the extent of the damage. Even for large numbers of impacts, there was little noteworthy damage caused by smaller, more prevalent SHI (≤10mm). This suggests that hail is not a direct cause of wind turbine blade erosion. •Repeated impact of more prevalently sized hailstones did not result in notable erosive mass loss of wind turbine blade materials.•Little noteworthy damage was observed using optical microscopy but damage was found under scanning electron microscopy.•Damage was encountered for the larger hailstones at higher velocities, indicating a damage threshold velocity.•Little noteworthy damage was found for the smaller, more prevalent diameter hailstones, indicating that hail is not a direct cause of wind turbine blade erosion.
Wind turbine blade damage, particularly leading edge erosion, is a significant problem faced by the renewable energy industry. Wind turbines are subject to a wide range of environmental factors during a 20 + year lifespan, with hailstones often touted as a key contributor to the deterioration of the blade profile. An experimental campaign was carried out to investigate the effects of repeated impact of smaller diameter simulated hail ice (SHI) on composite materials, to correspond to those most prevalent at wind farm locations. Hailstones of four different diameters (5 mm, 10 mm, 15 mm and 20 mm) were fired at velocities in the range of 50 m s-1 to 95 m s-1.Samples used for experimentation were manufactured from triaxial stitched glass fibre [0°/-45°/+45°] and epoxy resin. Damage was evaluated in terms of sample mass loss and microscopy of the composite surface. For all examples, mass loss was negligible and optical microscopy showed little evidence of surface damage. Surface degradation was discernible under scanning electron microscopy for the larger diameter SHI (≥ 15mm), with projectile velocity a notable factor in the extent of the damage. Even for large numbers of impacts, there was little noteworthy damage caused by smaller, more prevalent SHI (≤ 10 mm). This suggests that hail is not a direct cause of wind turbine blade erosion.
ArticleNumber 102926
Author Macdonald, Hamish
Stack, Margaret M.
Nash, David
Author_xml – sequence: 1
  givenname: Hamish
  surname: Macdonald
  fullname: Macdonald, Hamish
  email: hamish.m.macdonald@strath.ac.uk
  organization: Wind Energy Systems CDT, University of Strathclyde, Glasgow, UK
– sequence: 2
  givenname: David
  surname: Nash
  fullname: Nash, David
  organization: Mechanical and Aerospace Engineering, University of Strathclyde, Glasgow, UK
– sequence: 3
  givenname: Margaret M.
  surname: Stack
  fullname: Stack, Margaret M.
  organization: Mechanical and Aerospace Engineering, University of Strathclyde, Glasgow, UK
BookMark eNp9kE1rGzEQhkVJoI6TP5CToOfdjPZDWkEuwbR1wRAI7VlopVEi411tJTml_z5ynVMPOQ28vM8M81yRiznMSMgtg5oB43f7-g_qWDfAZA28BmCfyIoNoq2aXogLsgLo2orxbvhMrlLaQ2nInq_I9gkX1Bkt9dOiTabB0eSn4-Ff9qL9gXqDNMz0-aBTos6PEakJ0xKSz0in0oteH9I1uXRl4M37XJNf377-3Gyr3eP3H5uHXWVayXJlOgHaCNu2hne27wGEHCU6ycd-dCBGPpQIGTQIg2UCJHfcWuug65gbsF2TL-e9Swy_j5iy2odjnMtJ1TRCCskaJkurObdMDClFdGqJftLxr2KgTsbUXp2MqZMxBVwVHwUa_oOMzzr7MOdYRHyM3p9RLK-_eowqGY-zQesjmqxs8B_hb1fwiJk
CitedBy_id crossref_primary_10_1080_13588265_2020_1816438
crossref_primary_10_1016_j_compositesa_2022_107322
crossref_primary_10_1016_j_renene_2022_03_132
crossref_primary_10_1080_15376494_2022_2158504
crossref_primary_10_1016_j_matdes_2021_109540
crossref_primary_10_3390_polym15061403
crossref_primary_10_1016_j_ijimpeng_2022_104296
crossref_primary_10_1177_10996362241249033
crossref_primary_10_3390_en14154555
crossref_primary_10_3390_en16093906
crossref_primary_10_1515_epoly_2023_0146
Cites_doi 10.1016/j.ijimpeng.2009.08.005
10.1016/j.compositesa.2012.02.017
10.1098/rspa.2015.0525
10.1016/S0013-7944(01)00037-6
10.1023/A:1021134128038
10.1007/s10853-006-1376-x
10.1016/S0263-8223(98)00056-7
10.1088/0022-3727/46/38/383001
10.1016/S1359-835X(02)00258-0
10.1016/j.compstruct.2011.04.029
10.1002/we.1854
10.1017/S0001924000000385
10.1016/j.ijimpeng.2013.01.013
10.2514/2.1099
ContentType Journal Article
Copyright 2019
Copyright Elsevier Science Ltd. Aug 15, 2019
Copyright_xml – notice: 2019
– notice: Copyright Elsevier Science Ltd. Aug 15, 2019
DBID AAYXX
CITATION
7SR
7TB
7U5
8BQ
8FD
FR3
JG9
L7M
DOI 10.1016/j.wear.2019.06.001
DatabaseName CrossRef
Engineered Materials Abstracts
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Engineering Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList
Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-2577
ExternalDocumentID 10_1016_j_wear_2019_06_001
S0043164818310172
GroupedDBID --K
--M
.~1
0R~
123
1B1
1~.
1~5
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABMAC
ABNUV
ABXRA
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHPOS
AIEXJ
AIKHN
AITUG
AJOXV
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JJJVA
KOM
LY7
M24
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
RPZ
SCU
SDF
SDG
SDP
SES
SMS
SPC
SPCBC
SSG
SSM
SST
SSZ
T5K
ZMT
~02
~G-
29R
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABXDB
ACNNM
ACVFH
ADCNI
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
FEDTE
FGOYB
G-2
HVGLF
HZ~
H~9
R2-
SET
SEW
SSH
WUQ
7SR
7TB
7U5
8BQ
8FD
EFKBS
FR3
JG9
L7M
ID FETCH-LOGICAL-c391t-c470ac7d33c64d550079b9ef96b5bf07b68007e102e08d17096f6dddf0441f8e3
IEDL.DBID .~1
ISSN 0043-1648
IngestDate Fri Jul 25 05:38:37 EDT 2025
Thu Apr 24 23:10:56 EDT 2025
Tue Jul 01 03:16:28 EDT 2025
Fri Feb 23 02:28:50 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Glass fibre
Damage
Wind turbine
Hail
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c391t-c470ac7d33c64d550079b9ef96b5bf07b68007e102e08d17096f6dddf0441f8e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2279791219
PQPubID 2047449
ParticipantIDs proquest_journals_2279791219
crossref_primary_10_1016_j_wear_2019_06_001
crossref_citationtrail_10_1016_j_wear_2019_06_001
elsevier_sciencedirect_doi_10_1016_j_wear_2019_06_001
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-08-15
PublicationDateYYYYMMDD 2019-08-15
PublicationDate_xml – month: 08
  year: 2019
  text: 2019-08-15
  day: 15
PublicationDecade 2010
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Wear
PublicationYear 2019
Publisher Elsevier B.V
Elsevier Science Ltd
Publisher_xml – name: Elsevier B.V
– name: Elsevier Science Ltd
References Keegan, Nash, Stack (bib3) 2013; 46
Kim, Keune (bib13) 2007; 42
Field, Hand, Cappelluti, McMillan, Foreman, Stubbs, Willows (bib15) 2008
Juntikka, Olsson (bib18) 2009
Tippmann, Kim, Rhymer (bib14) 2013; 57
Petrovic (bib9) 2003; 38
Park, Kim (bib19) 2010; 37
Olsson, Juntikka, Asp (bib10) 2013; vol. 192
Kim, Kedward (bib11) 2000; 38
Kim, Welch, Kedward (bib12) 2003; 34
Schulson (bib8) dec 2001; 68
Rhymer, Kim, Roach (bib21) 2012; 43
H. Macdonald, D. Infield, D. H. Nash, and M. M. Stack, “Mapping Hail Meteorological Observations for Prediction of Erosion in Wind Turbines,”
Davis, Olsson (bib5) 2004; 108
pp. n/a–n/a, apr 2015.
Roisman, Tropea (bib20) nov 2015; 471
Langston (bib4) 2010; 39
(bib1) 2016
Mahinfalah, Skordahl (bib6) jun 1998; 42
Appleby-Thomas, Hazell, Dahini (bib16) 2011; 93
(bib7) 2011
BVG Associates (bib2) 2019
Tippmann (10.1016/j.wear.2019.06.001_bib14) 2013; 57
(10.1016/j.wear.2019.06.001_bib7) 2011
Petrovic (10.1016/j.wear.2019.06.001_bib9) 2003; 38
Park (10.1016/j.wear.2019.06.001_bib19) 2010; 37
Olsson (10.1016/j.wear.2019.06.001_bib10) 2013; vol. 192
Juntikka (10.1016/j.wear.2019.06.001_bib18) 2009
(10.1016/j.wear.2019.06.001_bib1) 2016
Langston (10.1016/j.wear.2019.06.001_bib4) 2010; 39
Rhymer (10.1016/j.wear.2019.06.001_bib21) 2012; 43
Appleby-Thomas (10.1016/j.wear.2019.06.001_bib16) 2011; 93
Kim (10.1016/j.wear.2019.06.001_bib11) 2000; 38
Mahinfalah (10.1016/j.wear.2019.06.001_bib6) 1998; 42
Kim (10.1016/j.wear.2019.06.001_bib13) 2007; 42
Kim (10.1016/j.wear.2019.06.001_bib12) 2003; 34
Field (10.1016/j.wear.2019.06.001_bib15) 2008
Roisman (10.1016/j.wear.2019.06.001_bib20) 2015; 471
BVG Associates (10.1016/j.wear.2019.06.001_bib2) 2019
Keegan (10.1016/j.wear.2019.06.001_bib3) 2013; 46
Davis (10.1016/j.wear.2019.06.001_bib5) 2004; 108
Schulson (10.1016/j.wear.2019.06.001_bib8) 2001; 68
10.1016/j.wear.2019.06.001_bib17
References_xml – year: 2011
  ident: bib7
  article-title: “Manual on Codes: Part A - Alphanumeric Codes,” Tech. Rep. 2
– volume: 93
  start-page: 2619
  year: 2011
  end-page: 2627
  ident: bib16
  article-title: On the response of two commercially-important CFRP structures to multiple ice impacts
  publication-title: Compos. Struct.
– reference: H. Macdonald, D. Infield, D. H. Nash, and M. M. Stack, “Mapping Hail Meteorological Observations for Prediction of Erosion in Wind Turbines,”
– volume: 42
  start-page: 101
  year: jun 1998
  end-page: 106
  ident: bib6
  article-title: The effects of hail damage on the fatigue strength of a graphite/epoxy composite laminate
  publication-title: Compos. Struct.
– volume: 34
  start-page: 25
  year: 2003
  end-page: 41
  ident: bib12
  article-title: Experimental investigation of high velocity ice impacts on woven carbon/epoxy composite panels
  publication-title: Composer Part A Appl. Sci. Manuf.
– year: 2016
  ident: bib1
  article-title: THOMSEN, “Blade Inspections - INSTRUCTION
– year: 2009
  ident: bib18
  article-title: Experimental and modelling study of hail impact on composite plates
  publication-title: in
– volume: 39
  year: 2010
  ident: bib4
  article-title: Offshore wind farms and birds : round 3 zones , extensions to & Scottish Territorial Waters
  publication-title: Tech. Rep.
– volume: 43
  start-page: 1134
  year: 2012
  end-page: 1144
  ident: bib21
  article-title: The damage resistance of quasi-isotropic carbon/epoxy composite tape laminates impacted by high velocity ice
  publication-title: Composer Part A Appl. Sci. Manuf.
– volume: 108
  start-page: 541
  year: 2004
  end-page: 563
  ident: bib5
  article-title: Impact on composite structures
  publication-title: Aeronaut. J.
– volume: 471
  start-page: 20150525
  year: nov 2015
  ident: bib20
  article-title: Impact of a crushing ice particle onto a dry solid wall
  publication-title: Proc. R. Soc. A Math. Phys. Eng. Sci.
– volume: 57
  start-page: 43
  year: 2013
  end-page: 54
  ident: bib14
  article-title: Experimentally validated strain rate dependent material model for spherical ice impact simulation
  publication-title: Int. J. Impact Eng.
– volume: 46
  start-page: 383001
  year: 2013
  ident: bib3
  article-title: On erosion issues associated with the leading edge of wind turbine blades
  publication-title: J. Phys. D Appl. Phys.
– volume: 38
  start-page: 1278
  year: 2000
  end-page: 1288
  ident: bib11
  article-title: Modeling hail ice impacts and predicting impact damage initiation in composite structures
  publication-title: AIAA J.
– volume: 38
  start-page: 1
  year: 2003
  end-page: 6
  ident: bib9
  article-title: Review Mechanical properties of ice and snow
  publication-title: J. Mater. Sci.
– volume: vol. 192
  start-page: 393
  year: 2013
  end-page: 426
  ident: bib10
  article-title: High velocity hail impact on composite laminates - modelling and testing
  publication-title: Dyn. Fail. Compos. Sandw. Struct.
– volume: 68
  start-page: 1839
  year: dec 2001
  end-page: 1887
  ident: bib8
  article-title: Brittle failure of ice
  publication-title: Eng. Fract. Mech.
– volume: 37
  start-page: 177
  year: 2010
  end-page: 184
  ident: bib19
  article-title: Damage resistance of single lap adhesive composite joints by transverse ice impact
  publication-title: Int. J. Impact Eng.
– year: 2019
  ident: bib2
  article-title: The Crown Estate, and ORE Catapult, “Guide to an Offshore Wind Farm (Updated and Extended),” Tech. Rep. January
– volume: 42
  start-page: 2802
  year: 2007
  end-page: 2806
  ident: bib13
  article-title: Compressive strength of ice at impact strain rates
  publication-title: J. Mater. Sci.
– year: 2008
  ident: bib15
  article-title: “Hail Threat Standardisation - Final Report,” Research Project easa.2008/5
– reference: , pp. n/a–n/a, apr 2015.
– volume: 37
  start-page: 177
  issue: 2
  year: 2010
  ident: 10.1016/j.wear.2019.06.001_bib19
  article-title: Damage resistance of single lap adhesive composite joints by transverse ice impact
  publication-title: Int. J. Impact Eng.
  doi: 10.1016/j.ijimpeng.2009.08.005
– volume: 43
  start-page: 1134
  issue: 7
  year: 2012
  ident: 10.1016/j.wear.2019.06.001_bib21
  article-title: The damage resistance of quasi-isotropic carbon/epoxy composite tape laminates impacted by high velocity ice
  publication-title: Composer Part A Appl. Sci. Manuf.
  doi: 10.1016/j.compositesa.2012.02.017
– year: 2008
  ident: 10.1016/j.wear.2019.06.001_bib15
– volume: 471
  start-page: 20150525
  year: 2015
  ident: 10.1016/j.wear.2019.06.001_bib20
  article-title: Impact of a crushing ice particle onto a dry solid wall
  publication-title: Proc. R. Soc. A Math. Phys. Eng. Sci.
  doi: 10.1098/rspa.2015.0525
– volume: 39
  year: 2010
  ident: 10.1016/j.wear.2019.06.001_bib4
  article-title: Offshore wind farms and birds : round 3 zones , extensions to & Scottish Territorial Waters
  publication-title: Tech. Rep.
– year: 2009
  ident: 10.1016/j.wear.2019.06.001_bib18
  article-title: Experimental and modelling study of hail impact on composite plates
  publication-title: in 17th International Conference on Composite Materials (ICCM-17), Edinburgh, UK, Paper F7:4
– volume: 68
  start-page: 1839
  year: 2001
  ident: 10.1016/j.wear.2019.06.001_bib8
  article-title: Brittle failure of ice
  publication-title: Eng. Fract. Mech.
  doi: 10.1016/S0013-7944(01)00037-6
– volume: 38
  start-page: 1
  year: 2003
  ident: 10.1016/j.wear.2019.06.001_bib9
  article-title: Review Mechanical properties of ice and snow
  publication-title: J. Mater. Sci.
  doi: 10.1023/A:1021134128038
– volume: 42
  start-page: 2802
  issue: 8
  year: 2007
  ident: 10.1016/j.wear.2019.06.001_bib13
  article-title: Compressive strength of ice at impact strain rates
  publication-title: J. Mater. Sci.
  doi: 10.1007/s10853-006-1376-x
– volume: 42
  start-page: 101
  year: 1998
  ident: 10.1016/j.wear.2019.06.001_bib6
  article-title: The effects of hail damage on the fatigue strength of a graphite/epoxy composite laminate
  publication-title: Compos. Struct.
  doi: 10.1016/S0263-8223(98)00056-7
– volume: 46
  start-page: 383001
  issue: 38
  year: 2013
  ident: 10.1016/j.wear.2019.06.001_bib3
  article-title: On erosion issues associated with the leading edge of wind turbine blades
  publication-title: J. Phys. D Appl. Phys.
  doi: 10.1088/0022-3727/46/38/383001
– volume: 34
  start-page: 25
  issue: 1
  year: 2003
  ident: 10.1016/j.wear.2019.06.001_bib12
  article-title: Experimental investigation of high velocity ice impacts on woven carbon/epoxy composite panels
  publication-title: Composer Part A Appl. Sci. Manuf.
  doi: 10.1016/S1359-835X(02)00258-0
– volume: 93
  start-page: 2619
  issue: 10
  year: 2011
  ident: 10.1016/j.wear.2019.06.001_bib16
  article-title: On the response of two commercially-important CFRP structures to multiple ice impacts
  publication-title: Compos. Struct.
  doi: 10.1016/j.compstruct.2011.04.029
– year: 2011
  ident: 10.1016/j.wear.2019.06.001_bib7
– year: 2019
  ident: 10.1016/j.wear.2019.06.001_bib2
– ident: 10.1016/j.wear.2019.06.001_bib17
  doi: 10.1002/we.1854
– volume: 108
  start-page: 541
  issue: 1089
  year: 2004
  ident: 10.1016/j.wear.2019.06.001_bib5
  article-title: Impact on composite structures
  publication-title: Aeronaut. J.
  doi: 10.1017/S0001924000000385
– year: 2016
  ident: 10.1016/j.wear.2019.06.001_bib1
– volume: 57
  start-page: 43
  issue: 0
  year: 2013
  ident: 10.1016/j.wear.2019.06.001_bib14
  article-title: Experimentally validated strain rate dependent material model for spherical ice impact simulation
  publication-title: Int. J. Impact Eng.
  doi: 10.1016/j.ijimpeng.2013.01.013
– volume: vol. 192
  start-page: 393
  year: 2013
  ident: 10.1016/j.wear.2019.06.001_bib10
  article-title: High velocity hail impact on composite laminates - modelling and testing
– volume: 38
  start-page: 1278
  issue: 7
  year: 2000
  ident: 10.1016/j.wear.2019.06.001_bib11
  article-title: Modeling hail ice impacts and predicting impact damage initiation in composite structures
  publication-title: AIAA J.
  doi: 10.2514/2.1099
SSID ssj0001956
Score 2.3714335
Snippet Wind turbine blade damage, particularly leading edge erosion, is a significant problem faced by the renewable energy industry. Wind turbines are subject to a...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 102926
SubjectTerms Composite materials
Damage
Damage assessment
Epoxy resins
Erosion mechanisms
Experimentation
Fiber composites
Glass fiber reinforced plastics
Glass fibre
Glass-epoxy composites
Hail
Hailstones
Impact damage
Microscopy
Optical microscopy
Projectiles
Turbine blades
Wind damage
Wind power
Wind turbine
Wind turbines
Title Repeated impact of simulated hail ice on glass fibre composite materials
URI https://dx.doi.org/10.1016/j.wear.2019.06.001
https://www.proquest.com/docview/2279791219
Volume 432-433
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA5FL3oQn_gsOXiTbXe7eR6lWFbFnhS8hc0LK9qKVrz5253Zhy-wB48JybJMZr_5svlmQsix18opHmUysGVMWJbqxConoOk5E0pxVxV7vhqL4oZd3PLbDhm2uTAoq2ywv8b0Cq2bnn5jzf7TZII5vpjGzSDi5OhXiMOMSfTy3vuXzAPz4dpTZhzdJM7UGq838CaUd-lefSbxV3D6BdNV7Bmtk7WGNNLT-r02SCdMN8nqt1KCW6QAJg2wGjyt8x7pLNKXySNezgV9d-XkgQIk0NmUVnyZRtgmB4qCclRtBQrEtfbFbXIzOrseFklzS0Licp3NE8dkWjrp89wJ5mHDkUptdYhaWG5jKq0ATigDEImQKp9J2LNE4b2PKTChqEK-Q5ams2nYJTQPIQoHUdsqyxwXWmXR-1IzFvjAi8EeyVrzGNeUEMebLB5MqxW7N2hSgyY1tWBuj5x8znmqC2gsHM1bq5sfbmAA4RfOO2yXyDQf4YvB4ohSZ4DJ-_987AFZwRb-Q874IVmaP7-GIyAhc9utvKxLlk_PL4vxB43M2sA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA6yHtSD-MT1mYM3qbbbJE2OIkp97cmFvYXmhSvaFV3x7zvTpqKCHjw2bUqZTr_50nwzQ8ihU9JKHopkYKqQsCxViZFWwKHjTEjJbVPs-XYoyhG7GvPxHDnrcmFQVhmxv8X0Bq3jyEm05snzZII5vpjGzSDi5OhXgMPzWJ2K98j86eV1OfwEZEyJ6zaacULMnWllXu_gUKjwUsfttsRv8ekHUjfh52KFLEfeSE_bR1slc75eI0tfqgmukxLINCCrd7RNfaTTQF8nT9ifC8buq8kjBVSg05o2lJkGWCl7ippyFG55Cty1dccNMro4vzsrk9goIbG5ymaJZUVa2cLluRXMwZojLZRRPihhuAlpYQTQwsIDl_CpdFkBy5YgnHMhBTIUpM83Sa-e1n6L0Nz7ICwEbiMNs1womQXnKsWY5wMnBn2SdebRNlYRx2YWj7qTiz1oNKlGk-pWM9cnR59zntsaGn9ezTur62-eoAHk_5y3270iHb_DV431EQuVASxv__O2B2ShvLu90TeXw-sdsohn8JdyxndJb_by5veAk8zMfvS5Dxpu3XE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Repeated+impact+of+simulated+hail+ice+on+glass+fibre+composite+materials&rft.jtitle=Wear&rft.au=Macdonald%2C+Hamish&rft.au=Nash%2C+David&rft.au=Stack%2C+Margaret+M.&rft.date=2019-08-15&rft.pub=Elsevier+B.V&rft.issn=0043-1648&rft.eissn=1873-2577&rft.volume=432-433&rft_id=info:doi/10.1016%2Fj.wear.2019.06.001&rft.externalDocID=S0043164818310172
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0043-1648&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0043-1648&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0043-1648&client=summon