Design and exploration of semiconductors from first principles: A review of recent advances
Recent first-principles approaches to semiconductors are reviewed, with an emphasis on theoretical insight into emerging materials and in silico exploration of as-yet-unreported materials. As relevant theory and methodologies have developed, along with computer performance, it is now feasible to pre...
Saved in:
Published in | Applied physics express Vol. 11; no. 6; pp. 60101 - 60130 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
The Japan Society of Applied Physics
01.06.2018
|
Online Access | Get full text |
Cover
Loading…
Abstract | Recent first-principles approaches to semiconductors are reviewed, with an emphasis on theoretical insight into emerging materials and in silico exploration of as-yet-unreported materials. As relevant theory and methodologies have developed, along with computer performance, it is now feasible to predict a variety of material properties ab initio at the practical level of accuracy required for detailed understanding and elaborate design of semiconductors; these material properties include (i) fundamental bulk properties such as band gaps, effective masses, dielectric constants, and optical absorption coefficients; (ii) the properties of point defects, including native defects, residual impurities, and dopants, such as donor, acceptor, and deep-trap levels, and formation energies, which determine the carrier type and density; and (iii) absolute and relative band positions, including ionization potentials and electron affinities at semiconductor surfaces, band offsets at heterointerfaces between dissimilar semiconductors, and Schottky barrier heights at metal-semiconductor interfaces, which are often discussed systematically using band alignment or lineup diagrams. These predictions from first principles have made it possible to elucidate the characteristics of semiconductors used in industry, including group III-V compounds such as GaN, GaP, and GaAs and their alloys with related Al and In compounds; amorphous oxides, represented by In-Ga-Zn-O; transparent conductive oxides (TCOs), represented by In2O3, SnO2, and ZnO; and photovoltaic absorber and buffer layer materials such as CdTe and CdS among group II-VI compounds and chalcopyrite CuInSe2, CuGaSe2, and CuIn1−xGaxSe2 (CIGS) alloys, in addition to the prototypical elemental semiconductors Si and Ge. Semiconductors attracting renewed or emerging interest have also been investigated, for instance, divalent tin compounds, including SnO and SnS; wurtzite-derived ternary compounds such as ZnSnN2 and CuGaO2; perovskite oxides such as SrTiO3 and BaSnO3; and organic-inorganic hybrid perovskites, represented by CH3NH3PbI3. Moreover, the deployment of first-principles calculations allows us to predict the crystal structure, stability, and properties of as-yet-unreported materials. Promising materials have been explored via high-throughput screening within either publicly available computational databases or unexplored composition and structure space. Reported examples include the identification of nitride semiconductors, TCOs, solar cell photoabsorber materials, and photocatalysts, some of which have been experimentally verified. Machine learning in combination with first-principles calculations has emerged recently as a technique to accelerate and enhance in silico screening. A blend of computation and experimentation with data science toward the development of materials is often referred to as materials informatics and is currently attracting growing interest. |
---|---|
AbstractList | Recent first-principles approaches to semiconductors are reviewed, with an emphasis on theoretical insight into emerging materials and in silico exploration of as-yet-unreported materials. As relevant theory and methodologies have developed, along with computer performance, it is now feasible to predict a variety of material properties ab initio at the practical level of accuracy required for detailed understanding and elaborate design of semiconductors; these material properties include (i) fundamental bulk properties such as band gaps, effective masses, dielectric constants, and optical absorption coefficients; (ii) the properties of point defects, including native defects, residual impurities, and dopants, such as donor, acceptor, and deep-trap levels, and formation energies, which determine the carrier type and density; and (iii) absolute and relative band positions, including ionization potentials and electron affinities at semiconductor surfaces, band offsets at heterointerfaces between dissimilar semiconductors, and Schottky barrier heights at metal-semiconductor interfaces, which are often discussed systematically using band alignment or lineup diagrams. These predictions from first principles have made it possible to elucidate the characteristics of semiconductors used in industry, including group III-V compounds such as GaN, GaP, and GaAs and their alloys with related Al and In compounds; amorphous oxides, represented by In-Ga-Zn-O; transparent conductive oxides (TCOs), represented by In2O3, SnO2, and ZnO; and photovoltaic absorber and buffer layer materials such as CdTe and CdS among group II-VI compounds and chalcopyrite CuInSe2, CuGaSe2, and CuIn1−xGaxSe2 (CIGS) alloys, in addition to the prototypical elemental semiconductors Si and Ge. Semiconductors attracting renewed or emerging interest have also been investigated, for instance, divalent tin compounds, including SnO and SnS; wurtzite-derived ternary compounds such as ZnSnN2 and CuGaO2; perovskite oxides such as SrTiO3 and BaSnO3; and organic-inorganic hybrid perovskites, represented by CH3NH3PbI3. Moreover, the deployment of first-principles calculations allows us to predict the crystal structure, stability, and properties of as-yet-unreported materials. Promising materials have been explored via high-throughput screening within either publicly available computational databases or unexplored composition and structure space. Reported examples include the identification of nitride semiconductors, TCOs, solar cell photoabsorber materials, and photocatalysts, some of which have been experimentally verified. Machine learning in combination with first-principles calculations has emerged recently as a technique to accelerate and enhance in silico screening. A blend of computation and experimentation with data science toward the development of materials is often referred to as materials informatics and is currently attracting growing interest. |
Author | Oba, Fumiyasu Kumagai, Yu |
Author_xml | – sequence: 1 givenname: Fumiyasu surname: Oba fullname: Oba, Fumiyasu email: oba@msl.titech.ac.jp organization: National Institute for Materials Science Center for Materials Research by Information Integration, Research and Services Division of Materials Data and Integrated System, Tsukuba, Ibaraki 305-0047, Japan – sequence: 2 givenname: Yu surname: Kumagai fullname: Kumagai, Yu organization: Japan Science and Technology Agency PRESTO, Kawaguchi, Saitama 332-0012, Japan |
BookMark | eNp1kM9LwzAUx4NMcJtePecoQmvSZknrbcz5AwZ6UBA8hCx9kYwuKUk3539v64YH0dN7h8_n8b7fERo47wChc0pSMeHiavo0f00pTQknlNAjNKRFkSVEFHzws4viBI1iXBHCWU75EL3dQLTvDitXYdg1tQ-qtd5hb3CEtdXeVRvd-hCxCX6NjQ2xxU2wTtumhniNpzjA1sJHbwTQ4Fqsqq1yGuIpOjaqjnB2mGP0cjt_nt0ni8e7h9l0kei8pG2i2URwkRvBVAaq7N43plwysSSlMjTTnExYmXGds4JBaZiqyLIqKCsLRfLMqHyM2P6uDj7GAEZq237HaIOytaRE9gXJviBJqdwX1GnpL63LtVbh83_hYi9Y38iV3wTXpZKqgV0P8QMmm8p06OUf6D93vwBlHYUs |
CODEN | APEPC4 |
CitedBy_id | crossref_primary_10_1016_j_carbon_2020_12_048 crossref_primary_10_1063_1_5089174 crossref_primary_10_1021_acs_jpcc_2c02357 crossref_primary_10_1002_er_6705 crossref_primary_10_1016_j_jmat_2022_04_006 crossref_primary_10_1103_PhysRevB_108_134102 crossref_primary_10_1021_acsapm_4c02913 crossref_primary_10_1039_D3TA02429F crossref_primary_10_1103_PhysRevB_107_115303 crossref_primary_10_1007_s10853_024_09379_w crossref_primary_10_1016_j_jpcs_2021_110099 crossref_primary_10_1021_acs_chemmater_1c02149 crossref_primary_10_1021_acsami_9b23431 crossref_primary_10_35848_1347_4065_acb74d crossref_primary_10_35848_1882_0786_ac083b crossref_primary_10_1103_PhysRevMaterials_4_064602 crossref_primary_10_1021_acs_jpclett_9b00009 crossref_primary_10_1007_s12596_023_01621_z crossref_primary_10_1103_PhysRevMaterials_4_044601 crossref_primary_10_1016_j_ultsonch_2020_105233 crossref_primary_10_1103_PhysRevMaterials_4_044606 crossref_primary_10_1063_1_5107516 crossref_primary_10_1088_1402_4896_ad6f5e crossref_primary_10_1080_14686996_2024_2423600 crossref_primary_10_1021_acsami_0c16108 crossref_primary_10_1016_j_mssp_2021_105949 crossref_primary_10_1103_PhysRevMaterials_3_084605 crossref_primary_10_1002_adfm_202003096 crossref_primary_10_1103_PhysRevB_108_035205 crossref_primary_10_1360_TB_2022_1217 crossref_primary_10_1021_acs_chemmater_1c00075 crossref_primary_10_1016_j_patter_2022_100450 crossref_primary_10_1016_j_commatsci_2021_111068 crossref_primary_10_1103_PhysRevB_106_054108 crossref_primary_10_1103_PhysRevMaterials_7_084602 crossref_primary_10_1016_j_commatsci_2023_112274 crossref_primary_10_35848_1882_0786_ad8b0c crossref_primary_10_1016_j_commatsci_2024_113108 crossref_primary_10_1039_D3RA00898C crossref_primary_10_1063_5_0047421 crossref_primary_10_2320_materia_58_320 crossref_primary_10_1039_D4CP03619K crossref_primary_10_1016_j_isci_2022_104107 crossref_primary_10_1016_j_nanoen_2020_105546 crossref_primary_10_1063_5_0021627 crossref_primary_10_1080_27660400_2023_2261834 crossref_primary_10_1021_acs_jpclett_5c00070 crossref_primary_10_1002_aisy_202400253 crossref_primary_10_1103_PhysRevMaterials_2_085201 crossref_primary_10_1016_j_cap_2022_04_003 crossref_primary_10_1002_solr_202400308 crossref_primary_10_1021_acs_jpcc_2c04764 crossref_primary_10_1039_D1NJ02429A crossref_primary_10_1103_PhysRevMaterials_5_123803 crossref_primary_10_1103_PhysRevMaterials_4_103801 crossref_primary_10_1021_jacs_2c06283 crossref_primary_10_1038_s41524_022_00850_3 crossref_primary_10_1103_PhysRevMaterials_3_044603 crossref_primary_10_3390_nano10020283 crossref_primary_10_1002_smll_202403129 crossref_primary_10_1002_qua_27101 crossref_primary_10_1021_acs_jctc_3c01320 crossref_primary_10_1039_C9CP06094D crossref_primary_10_1103_PhysRevB_109_054106 crossref_primary_10_1103_PhysRevMaterials_4_063803 crossref_primary_10_1021_acs_jctc_1c00562 crossref_primary_10_1021_acsaelm_0c01052 crossref_primary_10_1103_PhysRevB_100_165201 crossref_primary_10_1021_acs_inorgchem_2c00265 crossref_primary_10_1021_jacs_4c08579 crossref_primary_10_1021_acs_cgd_0c01564 crossref_primary_10_1021_acs_cgd_5c00012 crossref_primary_10_2109_jcersj2_23085 crossref_primary_10_1039_C8TC05749D crossref_primary_10_1016_j_apsusc_2021_150882 crossref_primary_10_1117_1_JNP_14_016010 crossref_primary_10_1002_cphc_202400060 crossref_primary_10_1007_s00339_019_2732_4 crossref_primary_10_1142_S0217979224501534 crossref_primary_10_35848_1882_0786_ad2a06 crossref_primary_10_35848_1882_0786_acd983 crossref_primary_10_1016_j_surfin_2025_105979 crossref_primary_10_1021_acsami_4c17868 crossref_primary_10_1021_acsami_8b15222 crossref_primary_10_1039_D1CP02068D crossref_primary_10_1021_jacs_3c13574 crossref_primary_10_1016_j_commatsci_2022_111526 crossref_primary_10_1039_D2TC03836F crossref_primary_10_35848_1347_4065_ac73d8 crossref_primary_10_1016_j_jece_2020_103930 crossref_primary_10_1063_1_5112375 crossref_primary_10_2320_materia_64_184 crossref_primary_10_1016_j_joule_2024_05_004 crossref_primary_10_1039_D1EE02971A crossref_primary_10_1016_j_jmmm_2024_171715 crossref_primary_10_1016_j_jcis_2019_06_053 crossref_primary_10_1039_D0TC04407E crossref_primary_10_1103_PhysRevMaterials_3_114601 crossref_primary_10_1039_D4TC01116C crossref_primary_10_1063_1_5122215 crossref_primary_10_1088_1361_6463_ad800a crossref_primary_10_1016_j_commatsci_2024_113151 crossref_primary_10_1021_acsami_3c11082 crossref_primary_10_1038_s41598_021_82845_6 crossref_primary_10_1016_j_compscitech_2024_110939 crossref_primary_10_1016_j_mtcomm_2023_107183 crossref_primary_10_1103_PhysRevMaterials_2_104604 crossref_primary_10_1103_PhysRevMaterials_5_104602 crossref_primary_10_3390_catal12010027 crossref_primary_10_1038_s41524_020_0312_y crossref_primary_10_1002_admi_201900471 crossref_primary_10_1103_PhysRevB_106_024303 crossref_primary_10_1103_PhysRevMaterials_6_114002 crossref_primary_10_1103_PhysRevApplied_22_044065 crossref_primary_10_1021_acsnano_4c08366 crossref_primary_10_1039_D4CP03101F crossref_primary_10_1021_acsaem_1c03023 crossref_primary_10_1039_C9CP06851A crossref_primary_10_1111_jace_20343 crossref_primary_10_1080_27660400_2022_2039573 crossref_primary_10_3390_coatings13020307 crossref_primary_10_1103_PhysRevMaterials_2_124603 |
Cites_doi | 10.1111/j.1151-2916.2002.tb00046.x 10.1103/PhysRevB.81.075125 10.1103/PhysRevB.23.5048 10.1103/PhysRevB.73.205203 10.1126/sciadv.1600225 10.1103/PhysRevB.92.224111 10.1103/PhysRevLett.100.186401 10.1103/PhysRevLett.112.096401 10.1111/j.1551-2916.2005.00118.x 10.1088/0965-0393/17/8/084002 10.1103/PhysRevB.87.094111 10.1103/PhysRevLett.105.026401 10.1016/j.chempr.2016.09.010 10.1103/PhysRevB.93.235106 10.1103/PhysRevB.80.035203 10.1021/ja507890u 10.1063/1.2187006 10.1002/jcc.21759 10.1039/C7SC03961A 10.1103/PhysRevB.86.045112 10.1103/PhysRevB.72.085108 10.1016/j.commatsci.2015.11.042 10.1039/C5TA08214E 10.1103/PhysRevB.77.115139 10.1103/PhysRevB.83.214107 10.1038/am.2015.57 10.1103/PhysRevB.81.115311 10.1103/PhysRevLett.102.086403 10.1103/PhysRevLett.114.196801 10.1143/JJAP.38.L166 10.1103/PhysRevLett.108.246404 10.1103/PhysRevB.53.3764 10.1103/PhysRevLett.96.226402 10.1063/1.2364469 10.1116/1.585726 10.1103/PhysRevB.61.15019 10.1021/cm404079a 10.1103/PhysRevB.93.085202 10.1038/nmat2321 10.1063/1.478401 10.1103/PhysRevLett.98.115503 10.1103/PhysRevA.51.1944 10.1038/srep20446 10.1063/1.2404663 10.1103/PhysRevLett.98.045501 10.1103/PhysRevB.84.035212 10.1103/PhysRevB.78.235104 10.1016/j.cpc.2016.02.011 10.1038/ncomms7327 10.1038/nature02756 10.1021/acs.chemmater.6b03306 10.1103/PhysRevB.46.13379 10.1016/j.jpowsour.2007.02.040 10.1039/C4CP02788D 10.1021/acs.nanolett.7b03490 10.1103/PhysRevLett.99.246403 10.1103/PhysRevB.37.8958 10.1016/0378-4371(84)90096-7 10.1103/PhysRevB.74.144432 10.1149/1.3505288 10.1126/science.aad3000 10.1103/PhysRevB.74.045202 10.1038/natrevmats.2015.4 10.1103/PhysRevLett.65.353 10.1103/PhysRev.136.B864 10.1063/1.121072 10.1103/PhysRevB.74.195128 10.1002/aenm.201400496 10.1016/0167-5729(95)00008-9 10.1021/acs.chemmater.6b04663 10.1103/PhysRevB.88.115104 10.1103/PhysRevB.51.4014 10.1103/PhysRev.140.A1133 10.1002/adma.201204718 10.1016/S0022-0248(74)80055-2 10.1063/1.1884601 10.1038/srep35148 10.1103/PhysRevApplied.6.044011 10.1038/sdata.2017.85 10.1103/PhysRevLett.88.066405 10.1103/PhysRevB.95.125309 10.1103/PhysRevB.31.2163 10.1103/PhysRevLett.104.197601 10.1038/nature11812 10.1103/PhysRevLett.110.065504 10.1103/PhysRevLett.100.045702 10.1021/jz401532q 10.1126/sciadv.1700270 10.1103/PhysRevB.83.035119 10.1021/acsenergylett.6b00471 10.1073/pnas.1619940114 10.1103/PhysRevB.72.035211 10.1002/adfm.201102546 10.1103/PhysRevLett.103.245501 10.1103/PhysRevB.82.115106 10.1103/PhysRevB.89.205309 10.1038/natrevmats.2015.7 10.1103/PhysRevLett.39.635 10.1103/PhysRevB.63.045410 10.1103/PhysRevB.89.155204 10.1063/1.1368865 10.1016/j.commatsci.2016.12.040 10.1103/PhysRevB.74.245115 10.1126/science.aad4424 10.1103/PhysRevB.95.075302 10.1063/1.3583460 10.1016/j.commatsci.2013.10.016 10.1038/nmat1795 10.1103/PhysRevB.87.075121 10.1103/PhysRevLett.77.3865 10.1116/1.585004 10.1103/PhysRevLett.110.166404 10.1103/PhysRevB.49.8024 10.1038/s41467-018-02838-4 10.1039/c2ee22341d 10.1103/PhysRevApplied.8.014015 10.1063/1.3216464 10.1103/PhysRevB.57.1505 10.1063/1.4864778 10.1063/1.2964197 10.1103/PhysRevApplied.6.014009 10.1039/C5TC04172D 10.1016/j.commatsci.2010.05.010 10.1002/9783527638529 10.1016/j.mssp.2016.10.032 10.1103/RevModPhys.86.253 10.1088/0953-8984/23/5/053201 10.1063/1.4816784 10.1039/c3cp54589j 10.1016/j.scriptamat.2015.07.021 10.1103/PhysRevB.72.035215 10.1038/nmat4676 10.1021/acs.jpcc.6b01696 10.1103/PhysRevLett.108.167402 10.1103/PhysRevB.35.8154 10.1002/adma.201103228 10.1103/PhysRevApplied.9.034019 10.1016/j.commatsci.2004.02.024 10.1103/PhysRevB.60.2340 10.1103/PhysRevApplied.8.024032 10.1039/C5TC04091D 10.1103/PhysRevB.88.035305 10.1063/1.2210932 10.1103/PhysRevB.89.205417 10.1016/j.physleta.2012.01.022 10.1103/PhysRevB.64.085120 10.1103/PhysRevB.34.5390 10.1038/srep03778 10.1103/PhysRevB.75.195211 10.1039/c1cs15098g 10.1103/PhysRevA.38.3098 10.1063/1.363899 10.1021/jz5001787 10.1103/PhysRevB.90.245145 10.1116/1.586491 10.1103/PhysRevB.82.205212 10.1016/j.cpc.2018.01.004 10.1103/PhysRevLett.100.167402 10.1103/PhysRevB.93.115104 10.1039/C6TA03376H 10.1103/PhysRevB.90.155405 10.1103/PhysRevB.88.115201 10.7567/APEX.6.061201 10.1016/j.commatsci.2014.05.014 10.1021/cm100795d 10.1103/PhysRevB.54.5495 10.1142/8480 10.1103/PhysRevLett.84.1942 10.1038/srep40907 10.1016/j.commatsci.2016.10.015 10.1103/PhysRevLett.115.036402 10.1063/1.336864 10.1002/adma.201203580 10.1063/1.4982255 10.1063/1.4812323 10.1063/1.478522 10.1063/1.3675880 10.1038/ncomms1484 10.1038/ncomms3292 10.1116/1.571130 10.1039/B408372P 10.1007/978-3-662-04459-9 10.1063/1.1354667 10.1103/PhysRevMaterials.2.013805 10.1103/PhysRevLett.102.016402 10.1103/PhysRevB.63.155107 10.1016/j.commatsci.2012.10.028 10.1103/RevModPhys.86.187 10.1103/PhysRevB.82.085208 10.1039/C2EE23482C 10.1088/0034-4885/72/12/126501 10.1063/1.2204597 10.1002/pssb.201046195 10.1039/C6CP03468C 10.1103/PhysRevB.54.11169 10.1126/science.1083842 10.1103/RevModPhys.74.601 10.1103/PhysRevB.90.085435 10.1063/1.3106643 10.1038/40087 10.1103/PhysRev.155.796 10.1103/PhysRevB.90.115201 10.1038/srep04467 10.1103/PhysRevB.93.165206 10.1063/1.1380994 10.1002/aenm.201400915 10.1016/j.susc.2013.05.016 10.1103/PhysRevB.84.075205 10.1103/PhysRevLett.91.076403 10.1063/1.472933 10.1103/PhysRevLett.108.068701 10.1039/C6TC00996D 10.1103/PhysRevB.80.085202 10.1103/PhysRevLett.102.073005 10.1103/PhysRevB.95.094105 10.1016/j.commatsci.2015.09.013 10.1103/PhysRevB.90.085202 10.1016/j.cpc.2006.03.007 10.1103/PhysRevB.77.245202 10.1002/anie.200462980 10.1016/j.commatsci.2008.07.016 10.1103/PhysRevB.59.7486 10.1038/ncomms11962 10.1021/jz100962n 10.1103/PhysRevB.77.155107 10.1103/PhysRevB.32.6968 10.1103/PhysRevLett.68.2664 10.1063/1.1730376 10.1088/0965-0393/17/8/084001 10.1103/PhysRevB.74.121102 10.1103/PhysRevB.90.165133 10.1038/nature01665 10.1103/PhysRevLett.107.216803 10.1103/PhysRevB.45.13244 10.1016/j.commatsci.2012.02.002 10.1088/0022-3719/18/6/010 10.1021/ja311599g 10.1038/s41524-017-0014-2 10.1088/0268-1242/17/9/305 10.1063/1.3143626 10.1103/PhysRevLett.103.185502 10.1103/PhysRevLett.61.873 10.1103/PhysRevLett.102.026402 10.1088/1361-648X/aa8f79 10.1039/C5TA09446A 10.1063/1.2053360 10.1016/j.cplett.2017.01.001 10.1038/npjcompumats.2016.28 10.1016/j.spmi.2010.08.011 10.1021/acs.chemmater.5b02026 10.1002/advs.201600246 10.1103/PhysRevB.91.155201 10.1103/PhysRevLett.105.196403 10.1103/PhysRevB.89.195205 10.1039/B607406E 10.1038/npjcompumats.2015.10 10.1103/PhysRevLett.112.136403 10.1063/1.4919242 10.1038/s41524-017-0048-5 10.1107/S0108768102006948 10.1038/nmat3568 10.1103/PhysRevB.41.7868 10.1017/CBO9780511755613 10.1103/PhysRevLett.118.026402 10.1103/PhysRevB.59.1758 10.1103/PhysRevB.44.943 10.1103/PhysRevB.90.054115 10.1139/p80-159 10.1021/jacs.7b09806 10.1063/1.464913 10.1002/9780470710609 10.1103/PhysRevB.86.245433 10.1038/am.2014.103 10.1016/S0081-1947(08)60639-6 10.1038/nmat1498 10.1116/1.4818426 10.1038/386351a0 10.1063/1.1724816 10.1088/0022-3719/18/5/005 10.1016/j.pmatsci.2008.07.002 10.1103/PhysRevB.66.125101 10.1103/PhysRevB.88.075319 10.1063/1.3548872 10.1002/pssb.200983195 10.1039/c3cs00007a 10.1063/1.1736034 10.1063/1.2764437 10.1063/1.4895623 10.1103/RevModPhys.82.1633 10.1038/srep19375 10.1063/1.3491271 10.1088/0953-8984/21/39/395502 10.1103/PhysRevB.85.033203 10.1103/PhysRevMaterials.1.035401 10.1103/PhysRevB.96.094102 10.1103/PhysRevX.5.021016 10.1103/PhysRevB.84.165116 10.1016/j.commatsci.2016.09.018 10.1063/1.1544643 10.1103/PhysRevB.74.165203 10.1103/PhysRevB.76.045209 10.1063/1.118061 10.1103/PhysRevB.26.3144 10.1109/JPROC.2010.2043330 10.1103/PhysRev.139.A796 10.1103/PhysRevB.75.104113 10.1103/PhysRevLett.78.475 10.1088/0953-8984/14/34/201 10.1088/0953-8984/26/36/365503 10.1103/PhysRevLett.91.146401 10.1103/PhysRevB.91.045104 10.1103/PhysRevLett.100.016401 10.1021/ja501614n 10.1103/PhysRevB.81.113201 10.1126/science.aaa6442 10.1063/1.3382344 10.1039/C4CP03010A 10.1103/PhysRevLett.95.225502 10.1103/PhysRevB.90.125202 10.1016/j.commatsci.2014.10.037 10.1103/PhysRevB.85.081109 10.1063/1.1682673 10.1002/9780470710609.ch2 10.1002/aenm.201200538 10.1002/pip.2909 10.1063/1.1564060 10.1063/1.1404994 10.1103/PhysRevMaterials.2.023802 10.1103/PhysRevB.30.4874 10.1103/PhysRevB.15.2884 10.1063/1.4950803 10.1002/adma.200390065 10.1103/PhysRevLett.102.226401 10.1103/PhysRevApplied.3.044008 10.1103/PhysRevB.33.7017 10.1021/cm5018135 10.1038/nchem.2207 10.1016/j.mser.2006.01.002 10.1103/PhysRevB.63.075205 10.1039/C1EE02717D 10.1021/acs.chemmater.5b03794 10.1103/RevModPhys.73.33 10.1016/j.cpc.2012.05.008 10.1103/PhysRevB.74.045102 10.2109/jcersj2.122.530 10.1038/nature03090 10.1103/PhysRevLett.105.265501 10.1103/PhysRevLett.85.1012 10.1103/PhysRevB.51.6868 10.1103/PhysRevLett.99.235504 10.1116/1.571684 10.1038/srep10428 10.1021/ic102031h 10.1103/PhysRevB.76.165202 10.1103/PhysRevB.89.195112 10.1103/PhysRevB.84.115205 10.1103/PhysRevLett.100.136406 10.1103/PhysRevX.4.031044 10.7567/APEX.9.051201 |
ContentType | Journal Article |
Copyright | 2018 The Japan Society of Applied Physics |
Copyright_xml | – notice: 2018 The Japan Society of Applied Physics |
DBID | O3W TSCCA AAYXX CITATION |
DOI | 10.7567/APEX.11.060101 |
DatabaseName | Institute of Physics Open Access Journal Titles IOPscience (Open Access) CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: O3W name: Institute of Physics Open Access Journal Titles url: http://iopscience.iop.org/ sourceTypes: Enrichment Source Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 1882-0786 |
ExternalDocumentID | 10_7567_APEX_11_060101 APR002 |
GroupedDBID | -~X 23M 4.4 5GY 6OB AAGCD AAGID AAJIO AALHV AATNI ABCXL ABHWH ABJNI ABVAM ACGFS ACHIP ACNCT ADWVK AEFHF AENEX AFYNE AKPSB ALMA_UNASSIGNED_HOLDINGS AOAED ASPBG ATQHT AVWKF AZFZN B.R CEBXE CJUJL CRLBU CS3 EBS EJD IIPPG IJHAN IOP IZVLO KOT MC8 N5L O3W P2P PJBAE QTG RIN RNS ROL RPA SJN TSCCA UPT AAYXX CITATION |
ID | FETCH-LOGICAL-c391t-c457673f74a2ea9060ff9b47b09af12c6054926c3484e9f4ad0bd81498a032fa3 |
IEDL.DBID | O3W |
ISSN | 1882-0778 |
IngestDate | Tue Jul 01 03:36:41 EDT 2025 Thu Apr 24 23:04:41 EDT 2025 Thu Jan 07 13:54:29 EST 2021 Wed Aug 21 03:41:49 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
License | Content from this work may be used under the terms of the Creative Commons Attribution 4.0 license. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c391t-c457673f74a2ea9060ff9b47b09af12c6054926c3484e9f4ad0bd81498a032fa3 |
OpenAccessLink | https://iopscience.iop.org/article/10.7567/APEX.11.060101 |
PageCount | 30 |
ParticipantIDs | crossref_citationtrail_10_7567_APEX_11_060101 crossref_primary_10_7567_APEX_11_060101 iop_journals_10_7567_APEX_11_060101 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-06-01 |
PublicationDateYYYYMMDD | 2018-06-01 |
PublicationDate_xml | – month: 06 year: 2018 text: 2018-06-01 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | Applied physics express |
PublicationTitleAlternate | Appl. Phys. Express |
PublicationYear | 2018 |
Publisher | The Japan Society of Applied Physics |
Publisher_xml | – name: The Japan Society of Applied Physics |
References | 350 230 351 110 231 352 111 232 353 112 233 354 113 234 355 114 235 Yanagi H. (262) 2016; 9 356 115 236 357 116 237 358 238 359 118 239 119 10 11 12 13 14 16 17 360 240 361 120 241 362 121 242 363 122 243 364 2 123 244 365 3 124 245 366 4 125 246 367 5 126 247 368 6 127 248 369 7 128 249 129 9 20 Yamamoto T. (254) 1999; 38 21 22 23 24 25 26 27 28 29 250 251 131 252 132 253 133 134 255 135 256 136 257 258 138 259 139 30 31 32 33 34 35 36 37 38 39 Lany S. (185) 2009; 17 140 261 141 142 263 143 264 265 145 266 146 267 147 268 148 269 149 40 41 42 43 44 45 Giannozzi P. (330) 2009; 21 46 47 48 49 270 150 271 151 272 152 273 153 274 154 275 155 276 156 277 157 278 158 279 159 50 51 52 53 54 55 56 57 58 Gerosa M. (69) 2018; 30 59 McQuarrie D. A. (195) 1997 280 160 281 161 282 162 283 163 284 164 285 165 286 166 287 167 288 168 289 169 60 Oba F. (97) 2011; 12 61 62 63 64 65 66 67 68 290 170 291 171 292 172 293 173 294 174 295 175 296 Lewis G. V. (15) 1985; 18 176 Zhang S. B. (181) 2002; 14 297 177 298 178 299 179 70 71 72 73 74 75 76 77 Janotti A. (227) 2009; 72 78 79 180 182 183 184 186 187 188 189 80 Kamiya T. (8) 2010; 11 81 82 83 84 85 86 87 88 89 190 191 192 193 194 196 198 199 Sanchez-Juarez A. (260) 2002; 17 90 91 92 93 94 95 98 99 Patrick C. E. (117) 2014; 26 Martin R. M. (18) 2008 Nieminen R. M. (204) 2009; 17 Yokoyama T. (130) 2013; 6 300 301 302 303 304 305 306 307 308 309 310 311 312 313 Giustino F. (19) 2014 Oba F. (96) 2010; 22 314 315 316 317 318 319 Giannozzi P. (331) 2017; 29 Ducastelle F. (137) 1994 320 200 321 201 322 202 323 203 324 325 205 326 206 327 207 328 208 329 209 210 211 332 212 333 213 334 214 335 215 336 216 337 217 338 218 339 219 Leslie M. (197) 1985; 18 Sze S. M. (1) 2002 340 220 341 100 221 342 101 222 343 102 223 344 103 Yu E. T. (144) 1992 224 345 104 225 346 105 226 106 348 107 228 349 108 229 109 Pickard C. J. (347) 2011; 23 |
References_xml | – ident: 286 doi: 10.1111/j.1151-2916.2002.tb00046.x – ident: 289 doi: 10.1103/PhysRevB.81.075125 – ident: 26 doi: 10.1103/PhysRevB.23.5048 – ident: 240 doi: 10.1103/PhysRevB.73.205203 – ident: 323 doi: 10.1126/sciadv.1600225 – ident: 246 doi: 10.1103/PhysRevB.92.224111 – ident: 172 doi: 10.1103/PhysRevLett.100.186401 – ident: 76 doi: 10.1103/PhysRevLett.112.096401 – ident: 170 doi: 10.1111/j.1551-2916.2005.00118.x – volume: 17 issn: 0965-0393 year: 2009 ident: 185 publication-title: Modelling Simulation Mater. Sci. Eng. doi: 10.1088/0965-0393/17/8/084002 – ident: 206 doi: 10.1103/PhysRevB.87.094111 – ident: 192 doi: 10.1103/PhysRevLett.105.026401 – ident: 353 doi: 10.1016/j.chempr.2016.09.010 – ident: 67 doi: 10.1103/PhysRevB.93.235106 – ident: 91 doi: 10.1103/PhysRevB.80.035203 – ident: 310 doi: 10.1021/ja507890u – ident: 49 doi: 10.1063/1.2187006 – ident: 35 doi: 10.1002/jcc.21759 – ident: 350 doi: 10.1039/C7SC03961A – ident: 205 doi: 10.1103/PhysRevB.86.045112 – ident: 31 doi: 10.1103/PhysRevB.72.085108 – ident: 165 doi: 10.1016/j.commatsci.2015.11.042 – ident: 259 doi: 10.1039/C5TA08214E – ident: 202 doi: 10.1103/PhysRevB.77.115139 – ident: 276 doi: 10.1103/PhysRevB.83.214107 – ident: 338 doi: 10.1038/am.2015.57 – ident: 102 doi: 10.1103/PhysRevB.81.115311 – ident: 253 doi: 10.1103/PhysRevLett.102.086403 – ident: 210 doi: 10.1103/PhysRevLett.114.196801 – volume: 38 start-page: L166 issn: 1347-4065 year: 1999 ident: 254 publication-title: Jpn. J. Appl. Phys. doi: 10.1143/JJAP.38.L166 – ident: 314 doi: 10.1103/PhysRevLett.108.246404 – ident: 54 doi: 10.1103/PhysRevB.53.3764 – ident: 73 doi: 10.1103/PhysRevLett.96.226402 – ident: 121 doi: 10.1063/1.2364469 – ident: 180 doi: 10.1116/1.585726 – ident: 233 doi: 10.1103/PhysRevB.61.15019 – ident: 322 doi: 10.1021/cm404079a – year: 1994 ident: 137 publication-title: Order and Phase Stability in Alloys – ident: 84 doi: 10.1103/PhysRevB.93.085202 – ident: 166 doi: 10.1038/nmat2321 – ident: 57 doi: 10.1063/1.478401 – ident: 279 doi: 10.1103/PhysRevLett.98.115503 – ident: 43 doi: 10.1103/PhysRevA.51.1944 – ident: 351 doi: 10.1038/srep20446 – ident: 48 doi: 10.1063/1.2404663 – ident: 193 doi: 10.1103/PhysRevLett.98.045501 – ident: 194 doi: 10.1103/PhysRevB.84.035212 – ident: 203 doi: 10.1103/PhysRevB.78.235104 – ident: 349 doi: 10.1016/j.cpc.2016.02.011 – ident: 169 doi: 10.1038/ncomms7327 – ident: 278 doi: 10.1038/nature02756 – ident: 307 doi: 10.1021/acs.chemmater.6b03306 – ident: 178 doi: 10.1103/PhysRevB.46.13379 – ident: 258 doi: 10.1016/j.jpowsour.2007.02.040 – ident: 352 doi: 10.1039/C4CP02788D – ident: 316 doi: 10.1021/acs.nanolett.7b03490 – ident: 72 doi: 10.1103/PhysRevLett.99.246403 – ident: 92 doi: 10.1103/PhysRevB.37.8958 – ident: 135 doi: 10.1016/0378-4371(84)90096-7 – ident: 242 doi: 10.1103/PhysRevB.74.144432 – ident: 266 doi: 10.1149/1.3505288 – ident: 20 doi: 10.1126/science.aad3000 – ident: 95 doi: 10.1103/PhysRevB.74.045202 – ident: 22 doi: 10.1038/natrevmats.2015.4 – ident: 140 doi: 10.1103/PhysRevLett.65.353 – ident: 23 doi: 10.1103/PhysRev.136.B864 – ident: 139 doi: 10.1063/1.121072 – ident: 105 doi: 10.1103/PhysRevB.74.195128 – ident: 256 doi: 10.1002/aenm.201400496 – ident: 145 doi: 10.1016/0167-5729(95)00008-9 – ident: 324 doi: 10.1021/acs.chemmater.6b04663 – ident: 214 doi: 10.1103/PhysRevB.88.115104 – ident: 198 doi: 10.1103/PhysRevB.51.4014 – ident: 24 doi: 10.1103/PhysRev.140.A1133 – ident: 125 doi: 10.1002/adma.201204718 – ident: 167 doi: 10.1016/S0022-0248(74)80055-2 – ident: 32 doi: 10.1063/1.1884601 – ident: 247 doi: 10.1038/srep35148 – ident: 295 doi: 10.1103/PhysRevApplied.6.044011 – ident: 107 doi: 10.1038/sdata.2017.85 – ident: 311 doi: 10.1103/PhysRevLett.88.066405 – ident: 149 doi: 10.1103/PhysRevB.95.125309 – ident: 85 doi: 10.1103/PhysRevB.31.2163 – ident: 272 doi: 10.1103/PhysRevLett.104.197601 – ident: 318 doi: 10.1038/nature11812 – ident: 282 doi: 10.1103/PhysRevLett.110.065504 – ident: 300 doi: 10.1103/PhysRevLett.100.045702 – ident: 80 doi: 10.1021/jz401532q – ident: 143 doi: 10.1126/sciadv.1700270 – ident: 61 doi: 10.1103/PhysRevB.83.035119 – ident: 133 doi: 10.1021/acsenergylett.6b00471 – ident: 363 doi: 10.1073/pnas.1619940114 – ident: 191 doi: 10.1103/PhysRevB.72.035211 – ident: 129 doi: 10.1002/adfm.201102546 – ident: 244 doi: 10.1103/PhysRevLett.103.245501 – ident: 44 doi: 10.1103/PhysRevB.82.115106 – ident: 158 doi: 10.1103/PhysRevB.89.205309 – ident: 263 doi: 10.1038/natrevmats.2015.7 – ident: 267 doi: 10.1103/PhysRevLett.39.635 – ident: 321 doi: 10.1103/PhysRevB.63.045410 – ident: 81 doi: 10.1103/PhysRevB.89.155204 – ident: 265 doi: 10.1063/1.1368865 – ident: 340 doi: 10.1016/j.commatsci.2016.12.040 – ident: 101 doi: 10.1103/PhysRevB.74.245115 – ident: 4 doi: 10.1126/science.aad4424 – ident: 68 doi: 10.1103/PhysRevB.95.075302 – ident: 275 doi: 10.1063/1.3583460 – ident: 365 doi: 10.1016/j.commatsci.2013.10.016 – ident: 251 doi: 10.1038/nmat1795 – ident: 42 doi: 10.1103/PhysRevB.87.075121 – ident: 29 doi: 10.1103/PhysRevLett.77.3865 – ident: 179 doi: 10.1116/1.585004 – ident: 211 doi: 10.1103/PhysRevLett.110.166404 – ident: 75 doi: 10.1103/PhysRevB.49.8024 – ident: 306 doi: 10.1038/s41467-018-02838-4 – ident: 360 doi: 10.1039/c2ee22341d – ident: 122 doi: 10.1103/PhysRevApplied.8.014015 – ident: 226 doi: 10.1063/1.3216464 – ident: 38 doi: 10.1103/PhysRevB.57.1505 – ident: 264 doi: 10.1063/1.4864778 – ident: 104 doi: 10.1063/1.2964197 – ident: 79 doi: 10.1103/PhysRevApplied.6.014009 – ident: 358 doi: 10.1039/C5TC04172D – ident: 88 doi: 10.1016/j.commatsci.2010.05.010 – ident: 186 doi: 10.1002/9783527638529 – ident: 232 doi: 10.1016/j.mssp.2016.10.032 – ident: 187 doi: 10.1103/RevModPhys.86.253 – volume: 23 issn: 0953-8984 year: 2011 ident: 347 publication-title: J. Phys.: Condens. Matter doi: 10.1088/0953-8984/23/5/053201 – ident: 151 doi: 10.1063/1.4816784 – ident: 161 doi: 10.1039/c3cp54589j – ident: 188 doi: 10.1016/j.scriptamat.2015.07.021 – ident: 238 doi: 10.1103/PhysRevB.72.035215 – ident: 3 doi: 10.1038/nmat4676 – ident: 302 doi: 10.1021/acs.jpcc.6b01696 – ident: 116 doi: 10.1103/PhysRevLett.108.167402 – ident: 156 doi: 10.1103/PhysRevB.35.8154 – ident: 9 doi: 10.1002/adma.201103228 – ident: 124 doi: 10.1103/PhysRevApplied.9.034019 – ident: 183 doi: 10.1016/j.commatsci.2004.02.024 – ident: 100 doi: 10.1103/PhysRevB.60.2340 – ident: 134 doi: 10.1103/PhysRevApplied.8.024032 – ident: 152 doi: 10.1039/C5TC04091D – ident: 150 doi: 10.1103/PhysRevB.88.035305 – year: 2008 ident: 18 publication-title: Electronic Structure: Basic Theory and Practical Methods – ident: 344 doi: 10.1063/1.2210932 – ident: 208 doi: 10.1103/PhysRevB.89.205417 – ident: 106 doi: 10.1016/j.physleta.2012.01.022 – ident: 237 doi: 10.1103/PhysRevB.64.085120 – ident: 71 doi: 10.1103/PhysRevB.34.5390 – ident: 283 doi: 10.1038/srep03778 – ident: 78 doi: 10.1103/PhysRevB.75.195211 – ident: 297 doi: 10.1039/c1cs15098g – year: 2002 ident: 1 publication-title: Semiconductor Devices: Physics and Technology – ident: 27 doi: 10.1103/PhysRevA.38.3098 – ident: 173 doi: 10.1063/1.363899 – ident: 299 doi: 10.1021/jz5001787 – ident: 82 doi: 10.1103/PhysRevB.90.245145 – ident: 174 doi: 10.1116/1.586491 – ident: 108 doi: 10.1103/PhysRevB.82.205212 – ident: 342 doi: 10.1016/j.cpc.2018.01.004 – ident: 118 doi: 10.1103/PhysRevLett.100.167402 – ident: 367 doi: 10.1103/PhysRevB.93.115104 – ident: 132 doi: 10.1039/C6TA03376H – ident: 90 doi: 10.1103/PhysRevB.90.155405 – ident: 215 doi: 10.1103/PhysRevB.88.115201 – volume: 6 issn: 1882-0786 year: 2013 ident: 130 publication-title: Appl. Phys. Express doi: 10.7567/APEX.6.061201 – ident: 332 doi: 10.1016/j.commatsci.2014.05.014 – ident: 368 doi: 10.1021/cm100795d – ident: 94 doi: 10.1103/PhysRevB.54.5495 – ident: 114 doi: 10.1142/8480 – ident: 201 doi: 10.1103/PhysRevLett.84.1942 – ident: 249 doi: 10.1038/srep40907 – ident: 89 doi: 10.1016/j.commatsci.2016.10.015 – ident: 40 doi: 10.1103/PhysRevLett.115.036402 – ident: 176 doi: 10.1063/1.336864 – ident: 277 doi: 10.1002/adma.201203580 – ident: 284 doi: 10.1063/1.4982255 – ident: 325 doi: 10.1063/1.4812323 – ident: 56 doi: 10.1063/1.478522 – ident: 255 doi: 10.1063/1.3675880 – ident: 309 doi: 10.1038/ncomms1484 – ident: 110 doi: 10.1038/ncomms3292 – ident: 175 doi: 10.1116/1.571130 – ident: 16 doi: 10.1039/B408372P – start-page: 1 year: 1992 ident: 144 publication-title: Solid State Physics – ident: 163 doi: 10.1007/978-3-662-04459-9 – ident: 285 doi: 10.1063/1.1354667 – ident: 369 doi: 10.1103/PhysRevMaterials.2.013805 – ident: 199 doi: 10.1103/PhysRevLett.102.016402 – ident: 113 doi: 10.1103/PhysRevB.63.155107 – ident: 336 doi: 10.1016/j.commatsci.2012.10.028 – ident: 13 doi: 10.1103/RevModPhys.86.187 – ident: 53 doi: 10.1103/PhysRevB.82.085208 – ident: 361 doi: 10.1039/C2EE23482C – volume: 72 issn: 0034-4885 year: 2009 ident: 227 publication-title: Rep. Prog. Phys. doi: 10.1088/0034-4885/72/12/126501 – ident: 59 doi: 10.1063/1.2204597 – ident: 62 doi: 10.1002/pssb.201046195 – ident: 131 doi: 10.1039/C6CP03468C – volume: 11 issn: 1468-6996 year: 2010 ident: 8 publication-title: Sci. Technol. Adv. Mater. – ident: 326 doi: 10.1103/PhysRevB.54.11169 – ident: 317 doi: 10.1126/science.1083842 – ident: 115 doi: 10.1103/RevModPhys.74.601 – ident: 207 doi: 10.1103/PhysRevB.90.085435 – ident: 220 doi: 10.1063/1.3106643 – ident: 296 doi: 10.1038/40087 – ident: 280 doi: 10.1103/PhysRev.155.796 – ident: 141 doi: 10.1103/PhysRevB.90.115201 – ident: 83 doi: 10.1038/srep04467 – ident: 216 doi: 10.1103/PhysRevB.93.165206 – ident: 235 doi: 10.1063/1.1380994 – year: 1997 ident: 195 publication-title: Physical Chemistry: A Molecular Approach – ident: 45 doi: 10.1002/aenm.201400915 – ident: 164 doi: 10.1016/j.susc.2013.05.016 – ident: 50 doi: 10.1103/PhysRevB.84.075205 – ident: 223 doi: 10.1103/PhysRevLett.91.076403 – year: 2014 ident: 19 publication-title: Materials Modelling Using Density Functional Theory: Properties and Predictions – ident: 55 doi: 10.1063/1.472933 – ident: 127 doi: 10.1103/PhysRevLett.108.068701 – ident: 303 doi: 10.1039/C6TC00996D – ident: 218 doi: 10.1103/PhysRevB.80.085202 – ident: 33 doi: 10.1103/PhysRevLett.102.073005 – ident: 248 doi: 10.1103/PhysRevB.95.094105 – ident: 337 doi: 10.1016/j.commatsci.2015.09.013 – ident: 274 doi: 10.1103/PhysRevB.90.085202 – ident: 111 doi: 10.1016/j.cpc.2006.03.007 – ident: 63 doi: 10.1103/PhysRevB.77.245202 – ident: 196 doi: 10.1002/anie.200462980 – ident: 334 doi: 10.1016/j.commatsci.2008.07.016 – ident: 52 doi: 10.1103/PhysRevB.59.7486 – ident: 190 doi: 10.1038/ncomms11962 – ident: 319 doi: 10.1021/jz100962n – ident: 119 doi: 10.1103/PhysRevB.77.155107 – ident: 154 doi: 10.1103/PhysRevB.32.6968 – ident: 11 doi: 10.1103/PhysRevLett.68.2664 – ident: 14 doi: 10.1063/1.1730376 – volume: 17 issn: 0965-0393 year: 2009 ident: 204 publication-title: Modelling Simulation Mater. Sci. Eng. doi: 10.1088/0965-0393/17/8/084001 – ident: 224 doi: 10.1103/PhysRevB.74.121102 – ident: 160 doi: 10.1103/PhysRevB.90.165133 – ident: 155 doi: 10.1038/nature01665 – ident: 213 doi: 10.1103/PhysRevLett.107.216803 – ident: 28 doi: 10.1103/PhysRevB.45.13244 – ident: 329 doi: 10.1016/j.commatsci.2012.02.002 – volume: 18 start-page: 1149 issn: 0022-3719 year: 1985 ident: 15 publication-title: J. Phys. C doi: 10.1088/0022-3719/18/6/010 – ident: 287 doi: 10.1021/ja311599g – ident: 217 doi: 10.1038/s41524-017-0014-2 – volume: 17 start-page: 931 issn: 0268-1242 year: 2002 ident: 260 publication-title: Semicond. Sci. Technol. doi: 10.1088/0268-1242/17/9/305 – ident: 157 doi: 10.1063/1.3143626 – ident: 270 doi: 10.1103/PhysRevLett.103.185502 – ident: 268 doi: 10.1103/PhysRevLett.61.873 – ident: 219 doi: 10.1103/PhysRevLett.102.026402 – volume: 29 issn: 0953-8984 year: 2017 ident: 331 publication-title: J. Phys.: Condens. Matter doi: 10.1088/1361-648X/aa8f79 – ident: 354 doi: 10.1039/C5TA09446A – ident: 239 doi: 10.1063/1.2053360 – ident: 341 doi: 10.1016/j.cplett.2017.01.001 – ident: 364 doi: 10.1038/npjcompumats.2016.28 – ident: 10 doi: 10.1016/j.spmi.2010.08.011 – ident: 357 doi: 10.1021/acs.chemmater.5b02026 – ident: 362 doi: 10.1002/advs.201600246 – ident: 66 doi: 10.1103/PhysRevB.91.155201 – ident: 47 doi: 10.1103/PhysRevLett.105.196403 – ident: 200 doi: 10.1103/PhysRevB.89.195205 – ident: 243 doi: 10.1039/B607406E – ident: 333 doi: 10.1038/npjcompumats.2015.10 – ident: 315 doi: 10.1103/PhysRevLett.112.136403 – ident: 225 doi: 10.1063/1.4919242 – ident: 335 doi: 10.1038/s41524-017-0048-5 – ident: 356 doi: 10.1107/S0108768102006948 – ident: 21 doi: 10.1038/nmat3568 – ident: 51 doi: 10.1103/PhysRevB.41.7868 – ident: 17 doi: 10.1017/CBO9780511755613 – ident: 99 doi: 10.1103/PhysRevLett.118.026402 – volume: 30 issn: 0953-8984 year: 2018 ident: 69 publication-title: J. Phys.: Condens. Matter – ident: 327 doi: 10.1103/PhysRevB.59.1758 – ident: 37 doi: 10.1103/PhysRevB.44.943 – ident: 221 doi: 10.1103/PhysRevB.90.054115 – ident: 25 doi: 10.1139/p80-159 – ident: 305 doi: 10.1021/jacs.7b09806 – ident: 60 doi: 10.1063/1.464913 – ident: 6 doi: 10.1002/9780470710609 – ident: 159 doi: 10.1103/PhysRevB.86.245433 – ident: 293 doi: 10.1038/am.2014.103 – ident: 136 doi: 10.1016/S0081-1947(08)60639-6 – ident: 281 doi: 10.1038/nmat1498 – ident: 146 doi: 10.1116/1.4818426 – ident: 2 doi: 10.1038/386351a0 – ident: 348 doi: 10.1063/1.1724816 – volume: 18 start-page: 973 issn: 0022-3719 year: 1985 ident: 197 publication-title: J. Phys. C doi: 10.1088/0022-3719/18/5/005 – ident: 228 doi: 10.1016/j.pmatsci.2008.07.002 – ident: 93 doi: 10.1103/PhysRevB.66.125101 – ident: 171 doi: 10.1103/PhysRevB.88.075319 – ident: 162 doi: 10.1063/1.3548872 – ident: 229 doi: 10.1002/pssb.200983195 – ident: 148 doi: 10.1039/c3cs00007a – ident: 126 doi: 10.1063/1.1736034 – ident: 271 doi: 10.1063/1.2764437 – ident: 65 doi: 10.1063/1.4895623 – ident: 291 doi: 10.1103/RevModPhys.82.1633 – ident: 366 doi: 10.1038/srep19375 – ident: 245 doi: 10.1063/1.3491271 – volume: 21 issn: 0953-8984 year: 2009 ident: 330 publication-title: J. Phys.: Condens. Matter doi: 10.1088/0953-8984/21/39/395502 – ident: 138 doi: 10.1103/PhysRevB.85.033203 – ident: 142 doi: 10.1103/PhysRevMaterials.1.035401 – ident: 36 doi: 10.1103/PhysRevB.96.094102 – ident: 308 doi: 10.1103/PhysRevX.5.021016 – ident: 109 doi: 10.1103/PhysRevB.84.165116 – ident: 339 doi: 10.1016/j.commatsci.2016.09.018 – ident: 304 doi: 10.1063/1.1544643 – ident: 86 doi: 10.1103/PhysRevB.74.165203 – ident: 298 doi: 10.1103/PhysRevB.76.045209 – ident: 12 doi: 10.1063/1.118061 – ident: 98 doi: 10.1103/PhysRevB.26.3144 – ident: 230 doi: 10.1109/JPROC.2010.2043330 – ident: 70 doi: 10.1103/PhysRev.139.A796 – ident: 345 doi: 10.1103/PhysRevB.75.104113 – ident: 168 doi: 10.1103/PhysRevLett.78.475 – volume: 14 start-page: R881 issn: 0953-8984 year: 2002 ident: 181 publication-title: J. Phys.: Condens. Matter doi: 10.1088/0953-8984/14/34/201 – volume: 26 issn: 0953-8984 year: 2014 ident: 117 publication-title: J. Phys.: Condens. Matter doi: 10.1088/0953-8984/26/36/365503 – ident: 39 doi: 10.1103/PhysRevLett.91.146401 – ident: 123 doi: 10.1103/PhysRevB.91.045104 – volume: 12 issn: 1468-6996 year: 2011 ident: 97 publication-title: Sci. Technol. Adv. Mater. – ident: 269 doi: 10.1103/PhysRevLett.100.016401 – ident: 312 doi: 10.1021/ja501614n – ident: 212 doi: 10.1103/PhysRevB.81.113201 – ident: 273 doi: 10.1126/science.aaa6442 – ident: 34 doi: 10.1063/1.3382344 – ident: 261 doi: 10.1039/C4CP03010A – ident: 252 doi: 10.1103/PhysRevLett.95.225502 – ident: 189 doi: 10.1103/PhysRevB.90.125202 – ident: 328 doi: 10.1016/j.commatsci.2014.10.037 – ident: 290 doi: 10.1103/PhysRevB.85.081109 – ident: 182 doi: 10.1063/1.1682673 – ident: 103 doi: 10.1002/9780470710609.ch2 – ident: 128 doi: 10.1002/aenm.201200538 – ident: 5 doi: 10.1002/pip.2909 – ident: 58 doi: 10.1063/1.1564060 – ident: 236 doi: 10.1063/1.1404994 – ident: 46 doi: 10.1103/PhysRevMaterials.2.023802 – volume: 22 issn: 0953-8984 year: 2010 ident: 96 publication-title: J. Phys.: Condens. Matter – ident: 153 doi: 10.1103/PhysRevB.30.4874 – ident: 77 doi: 10.1103/PhysRevB.15.2884 – ident: 120 doi: 10.1063/1.4950803 – ident: 147 doi: 10.1002/adma.200390065 – ident: 41 doi: 10.1103/PhysRevLett.102.226401 – ident: 294 doi: 10.1103/PhysRevApplied.3.044008 – ident: 112 doi: 10.1103/PhysRevB.33.7017 – ident: 355 doi: 10.1021/cm5018135 – ident: 288 doi: 10.1038/nchem.2207 – ident: 184 doi: 10.1016/j.mser.2006.01.002 – ident: 234 doi: 10.1103/PhysRevB.63.075205 – ident: 359 doi: 10.1039/C1EE02717D – ident: 301 doi: 10.1021/acs.chemmater.5b03794 – ident: 222 doi: 10.1103/RevModPhys.73.33 – ident: 346 doi: 10.1016/j.cpc.2012.05.008 – ident: 74 doi: 10.1103/PhysRevB.74.045102 – ident: 231 doi: 10.2109/jcersj2.122.530 – ident: 7 doi: 10.1038/nature03090 – ident: 87 doi: 10.1103/PhysRevLett.105.265501 – ident: 250 doi: 10.1103/PhysRevLett.85.1012 – ident: 313 doi: 10.1103/PhysRevB.51.6868 – ident: 320 doi: 10.1103/PhysRevLett.99.235504 – ident: 177 doi: 10.1116/1.571684 – ident: 257 doi: 10.1038/srep10428 – ident: 343 doi: 10.1021/ic102031h – ident: 241 doi: 10.1103/PhysRevB.76.165202 – ident: 64 doi: 10.1103/PhysRevB.89.195112 – ident: 292 doi: 10.1103/PhysRevB.84.115205 – ident: 30 doi: 10.1103/PhysRevLett.100.136406 – ident: 209 doi: 10.1103/PhysRevX.4.031044 – volume: 9 issn: 1882-0786 year: 2016 ident: 262 publication-title: Appl. Phys. Express doi: 10.7567/APEX.9.051201 |
SSID | ssj0064316 |
Score | 2.5513067 |
SecondaryResourceType | review_article |
Snippet | Recent first-principles approaches to semiconductors are reviewed, with an emphasis on theoretical insight into emerging materials and in silico exploration of... |
SourceID | crossref iop |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 60101 |
Title | Design and exploration of semiconductors from first principles: A review of recent advances |
URI | https://iopscience.iop.org/article/10.7567/APEX.11.060101 |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bS8MwFA5uIvgiXnFeRkTBp862aZPUt6Eb0wfng8OBDyVNExjIWtYJ_nzPaTpxoOBbISe9fG2S86XnfIeQKyO0lrHMPWZNiLtV2ku44Z6WYB7mJpMuyveJjybR4zSe_ij1NSvKZurvwaETCnYQ4vgWMRc3_efBtIfKm8glgPhsMskl8q4xe11NwhwzvJFroQPpCyGdXuMv_dfWoxZc88fyMtwlO41fSPvuLvbIhpnvk606PlNXB-Ttvo60oMD7qanD5mpEaWFpheHtxRx1W4tFRTFfhNoZOHW0XG2kV7e0T12SCvaASQ6WGtr8_q8OyWQ4eLkbeU1dBE-zJFh6OgKSIJgVkQqNSuA5rE2ySGR-omwQamAoKAOoWSQjk9hI5X6WS6BCUvkstIodkfa8mJtjQhlPlIytiv3MYBFiFYSWKZ7DGwxswESHeCt0Ut2IhmPtivcUyAOimSKaQCNSh2aHXH_bl04u40_LSwA7bUZM9afVxZqVKs0ntvKmPS1ze_KvM52SbfB1pIvyOiPt5eLDnIM_scy6pPUwfu7W388XwQHEGA |
linkProvider | IOP Publishing |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bS8MwFA5uovgiXnFeIwo-1bVNm6S-Dd2YF6YPigMfSpomIMha1gn-fM9pOlFQ8K2Q07Q9zeV84TvfIeTUCK1lLHOPWRPiaZX2Em64pyWYh7nJpGP5jvjwKboZx-OGm1PnwhRls_Sfw6UTCnYuxPktYi66vYf--ByVNxFLBN0yty2yGDPOsXLDPXueL8Qcs7wRb2EQ6QshnWbjL3382JNa8NxvW8xgjaw2sSHtuTdZJwtmskGWao6mrjbJy1XNtqCA_ampqXO1V2lhaYUU92KC2q3FtKKYM0LtKwR2tJwfplcXtEddogreAQsdbDe0oQBUW-Rp0H-8HHpNbQRPsySYeToCoCCYFZEKjUrgO6xNskhkfqJsEGpAKSgFqFkkI5PYSOV-lkuAQ1L5LLSKbZP2pJiYHUIZT5SMrYr9zGAhYhWElimew18MbMBEh3hz76S6EQ7H-hVvKQAI9GaK3gQokTpvdsjZl33pJDP-tDwBZ6fNrKn-tDr-YaVK84GtvGlPYQTs_qunI7L8cDVI765Ht3tkBUIf6Uhf-6Q9m76bAwgvZtlhPYg-AVutxv4 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Design+and+exploration+of+semiconductors+from+first+principles%3A+A+review+of+recent+advances&rft.jtitle=Applied+physics+express&rft.au=Oba%2C+Fumiyasu&rft.au=Kumagai%2C+Yu&rft.date=2018-06-01&rft.issn=1882-0778&rft.eissn=1882-0786&rft.volume=11&rft.issue=6&rft.spage=60101&rft_id=info:doi/10.7567%2FAPEX.11.060101&rft.externalDBID=n%2Fa&rft.externalDocID=10_7567_APEX_11_060101 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1882-0778&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1882-0778&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1882-0778&client=summon |