Design and exploration of semiconductors from first principles: A review of recent advances

Recent first-principles approaches to semiconductors are reviewed, with an emphasis on theoretical insight into emerging materials and in silico exploration of as-yet-unreported materials. As relevant theory and methodologies have developed, along with computer performance, it is now feasible to pre...

Full description

Saved in:
Bibliographic Details
Published inApplied physics express Vol. 11; no. 6; pp. 60101 - 60130
Main Authors Oba, Fumiyasu, Kumagai, Yu
Format Journal Article
LanguageEnglish
Published The Japan Society of Applied Physics 01.06.2018
Online AccessGet full text

Cover

Loading…
Abstract Recent first-principles approaches to semiconductors are reviewed, with an emphasis on theoretical insight into emerging materials and in silico exploration of as-yet-unreported materials. As relevant theory and methodologies have developed, along with computer performance, it is now feasible to predict a variety of material properties ab initio at the practical level of accuracy required for detailed understanding and elaborate design of semiconductors; these material properties include (i) fundamental bulk properties such as band gaps, effective masses, dielectric constants, and optical absorption coefficients; (ii) the properties of point defects, including native defects, residual impurities, and dopants, such as donor, acceptor, and deep-trap levels, and formation energies, which determine the carrier type and density; and (iii) absolute and relative band positions, including ionization potentials and electron affinities at semiconductor surfaces, band offsets at heterointerfaces between dissimilar semiconductors, and Schottky barrier heights at metal-semiconductor interfaces, which are often discussed systematically using band alignment or lineup diagrams. These predictions from first principles have made it possible to elucidate the characteristics of semiconductors used in industry, including group III-V compounds such as GaN, GaP, and GaAs and their alloys with related Al and In compounds; amorphous oxides, represented by In-Ga-Zn-O; transparent conductive oxides (TCOs), represented by In2O3, SnO2, and ZnO; and photovoltaic absorber and buffer layer materials such as CdTe and CdS among group II-VI compounds and chalcopyrite CuInSe2, CuGaSe2, and CuIn1−xGaxSe2 (CIGS) alloys, in addition to the prototypical elemental semiconductors Si and Ge. Semiconductors attracting renewed or emerging interest have also been investigated, for instance, divalent tin compounds, including SnO and SnS; wurtzite-derived ternary compounds such as ZnSnN2 and CuGaO2; perovskite oxides such as SrTiO3 and BaSnO3; and organic-inorganic hybrid perovskites, represented by CH3NH3PbI3. Moreover, the deployment of first-principles calculations allows us to predict the crystal structure, stability, and properties of as-yet-unreported materials. Promising materials have been explored via high-throughput screening within either publicly available computational databases or unexplored composition and structure space. Reported examples include the identification of nitride semiconductors, TCOs, solar cell photoabsorber materials, and photocatalysts, some of which have been experimentally verified. Machine learning in combination with first-principles calculations has emerged recently as a technique to accelerate and enhance in silico screening. A blend of computation and experimentation with data science toward the development of materials is often referred to as materials informatics and is currently attracting growing interest.
AbstractList Recent first-principles approaches to semiconductors are reviewed, with an emphasis on theoretical insight into emerging materials and in silico exploration of as-yet-unreported materials. As relevant theory and methodologies have developed, along with computer performance, it is now feasible to predict a variety of material properties ab initio at the practical level of accuracy required for detailed understanding and elaborate design of semiconductors; these material properties include (i) fundamental bulk properties such as band gaps, effective masses, dielectric constants, and optical absorption coefficients; (ii) the properties of point defects, including native defects, residual impurities, and dopants, such as donor, acceptor, and deep-trap levels, and formation energies, which determine the carrier type and density; and (iii) absolute and relative band positions, including ionization potentials and electron affinities at semiconductor surfaces, band offsets at heterointerfaces between dissimilar semiconductors, and Schottky barrier heights at metal-semiconductor interfaces, which are often discussed systematically using band alignment or lineup diagrams. These predictions from first principles have made it possible to elucidate the characteristics of semiconductors used in industry, including group III-V compounds such as GaN, GaP, and GaAs and their alloys with related Al and In compounds; amorphous oxides, represented by In-Ga-Zn-O; transparent conductive oxides (TCOs), represented by In2O3, SnO2, and ZnO; and photovoltaic absorber and buffer layer materials such as CdTe and CdS among group II-VI compounds and chalcopyrite CuInSe2, CuGaSe2, and CuIn1−xGaxSe2 (CIGS) alloys, in addition to the prototypical elemental semiconductors Si and Ge. Semiconductors attracting renewed or emerging interest have also been investigated, for instance, divalent tin compounds, including SnO and SnS; wurtzite-derived ternary compounds such as ZnSnN2 and CuGaO2; perovskite oxides such as SrTiO3 and BaSnO3; and organic-inorganic hybrid perovskites, represented by CH3NH3PbI3. Moreover, the deployment of first-principles calculations allows us to predict the crystal structure, stability, and properties of as-yet-unreported materials. Promising materials have been explored via high-throughput screening within either publicly available computational databases or unexplored composition and structure space. Reported examples include the identification of nitride semiconductors, TCOs, solar cell photoabsorber materials, and photocatalysts, some of which have been experimentally verified. Machine learning in combination with first-principles calculations has emerged recently as a technique to accelerate and enhance in silico screening. A blend of computation and experimentation with data science toward the development of materials is often referred to as materials informatics and is currently attracting growing interest.
Author Oba, Fumiyasu
Kumagai, Yu
Author_xml – sequence: 1
  givenname: Fumiyasu
  surname: Oba
  fullname: Oba, Fumiyasu
  email: oba@msl.titech.ac.jp
  organization: National Institute for Materials Science Center for Materials Research by Information Integration, Research and Services Division of Materials Data and Integrated System, Tsukuba, Ibaraki 305-0047, Japan
– sequence: 2
  givenname: Yu
  surname: Kumagai
  fullname: Kumagai, Yu
  organization: Japan Science and Technology Agency PRESTO, Kawaguchi, Saitama 332-0012, Japan
BookMark eNp1kM9LwzAUx4NMcJtePecoQmvSZknrbcz5AwZ6UBA8hCx9kYwuKUk3539v64YH0dN7h8_n8b7fERo47wChc0pSMeHiavo0f00pTQknlNAjNKRFkSVEFHzws4viBI1iXBHCWU75EL3dQLTvDitXYdg1tQ-qtd5hb3CEtdXeVRvd-hCxCX6NjQ2xxU2wTtumhniNpzjA1sJHbwTQ4Fqsqq1yGuIpOjaqjnB2mGP0cjt_nt0ni8e7h9l0kei8pG2i2URwkRvBVAaq7N43plwysSSlMjTTnExYmXGds4JBaZiqyLIqKCsLRfLMqHyM2P6uDj7GAEZq237HaIOytaRE9gXJviBJqdwX1GnpL63LtVbh83_hYi9Y38iV3wTXpZKqgV0P8QMmm8p06OUf6D93vwBlHYUs
CODEN APEPC4
CitedBy_id crossref_primary_10_1016_j_carbon_2020_12_048
crossref_primary_10_1063_1_5089174
crossref_primary_10_1021_acs_jpcc_2c02357
crossref_primary_10_1002_er_6705
crossref_primary_10_1016_j_jmat_2022_04_006
crossref_primary_10_1103_PhysRevB_108_134102
crossref_primary_10_1021_acsapm_4c02913
crossref_primary_10_1039_D3TA02429F
crossref_primary_10_1103_PhysRevB_107_115303
crossref_primary_10_1007_s10853_024_09379_w
crossref_primary_10_1016_j_jpcs_2021_110099
crossref_primary_10_1021_acs_chemmater_1c02149
crossref_primary_10_1021_acsami_9b23431
crossref_primary_10_35848_1347_4065_acb74d
crossref_primary_10_35848_1882_0786_ac083b
crossref_primary_10_1103_PhysRevMaterials_4_064602
crossref_primary_10_1021_acs_jpclett_9b00009
crossref_primary_10_1007_s12596_023_01621_z
crossref_primary_10_1103_PhysRevMaterials_4_044601
crossref_primary_10_1016_j_ultsonch_2020_105233
crossref_primary_10_1103_PhysRevMaterials_4_044606
crossref_primary_10_1063_1_5107516
crossref_primary_10_1088_1402_4896_ad6f5e
crossref_primary_10_1080_14686996_2024_2423600
crossref_primary_10_1021_acsami_0c16108
crossref_primary_10_1016_j_mssp_2021_105949
crossref_primary_10_1103_PhysRevMaterials_3_084605
crossref_primary_10_1002_adfm_202003096
crossref_primary_10_1103_PhysRevB_108_035205
crossref_primary_10_1360_TB_2022_1217
crossref_primary_10_1021_acs_chemmater_1c00075
crossref_primary_10_1016_j_patter_2022_100450
crossref_primary_10_1016_j_commatsci_2021_111068
crossref_primary_10_1103_PhysRevB_106_054108
crossref_primary_10_1103_PhysRevMaterials_7_084602
crossref_primary_10_1016_j_commatsci_2023_112274
crossref_primary_10_35848_1882_0786_ad8b0c
crossref_primary_10_1016_j_commatsci_2024_113108
crossref_primary_10_1039_D3RA00898C
crossref_primary_10_1063_5_0047421
crossref_primary_10_2320_materia_58_320
crossref_primary_10_1039_D4CP03619K
crossref_primary_10_1016_j_isci_2022_104107
crossref_primary_10_1016_j_nanoen_2020_105546
crossref_primary_10_1063_5_0021627
crossref_primary_10_1080_27660400_2023_2261834
crossref_primary_10_1021_acs_jpclett_5c00070
crossref_primary_10_1002_aisy_202400253
crossref_primary_10_1103_PhysRevMaterials_2_085201
crossref_primary_10_1016_j_cap_2022_04_003
crossref_primary_10_1002_solr_202400308
crossref_primary_10_1021_acs_jpcc_2c04764
crossref_primary_10_1039_D1NJ02429A
crossref_primary_10_1103_PhysRevMaterials_5_123803
crossref_primary_10_1103_PhysRevMaterials_4_103801
crossref_primary_10_1021_jacs_2c06283
crossref_primary_10_1038_s41524_022_00850_3
crossref_primary_10_1103_PhysRevMaterials_3_044603
crossref_primary_10_3390_nano10020283
crossref_primary_10_1002_smll_202403129
crossref_primary_10_1002_qua_27101
crossref_primary_10_1021_acs_jctc_3c01320
crossref_primary_10_1039_C9CP06094D
crossref_primary_10_1103_PhysRevB_109_054106
crossref_primary_10_1103_PhysRevMaterials_4_063803
crossref_primary_10_1021_acs_jctc_1c00562
crossref_primary_10_1021_acsaelm_0c01052
crossref_primary_10_1103_PhysRevB_100_165201
crossref_primary_10_1021_acs_inorgchem_2c00265
crossref_primary_10_1021_jacs_4c08579
crossref_primary_10_1021_acs_cgd_0c01564
crossref_primary_10_1021_acs_cgd_5c00012
crossref_primary_10_2109_jcersj2_23085
crossref_primary_10_1039_C8TC05749D
crossref_primary_10_1016_j_apsusc_2021_150882
crossref_primary_10_1117_1_JNP_14_016010
crossref_primary_10_1002_cphc_202400060
crossref_primary_10_1007_s00339_019_2732_4
crossref_primary_10_1142_S0217979224501534
crossref_primary_10_35848_1882_0786_ad2a06
crossref_primary_10_35848_1882_0786_acd983
crossref_primary_10_1016_j_surfin_2025_105979
crossref_primary_10_1021_acsami_4c17868
crossref_primary_10_1021_acsami_8b15222
crossref_primary_10_1039_D1CP02068D
crossref_primary_10_1021_jacs_3c13574
crossref_primary_10_1016_j_commatsci_2022_111526
crossref_primary_10_1039_D2TC03836F
crossref_primary_10_35848_1347_4065_ac73d8
crossref_primary_10_1016_j_jece_2020_103930
crossref_primary_10_1063_1_5112375
crossref_primary_10_2320_materia_64_184
crossref_primary_10_1016_j_joule_2024_05_004
crossref_primary_10_1039_D1EE02971A
crossref_primary_10_1016_j_jmmm_2024_171715
crossref_primary_10_1016_j_jcis_2019_06_053
crossref_primary_10_1039_D0TC04407E
crossref_primary_10_1103_PhysRevMaterials_3_114601
crossref_primary_10_1039_D4TC01116C
crossref_primary_10_1063_1_5122215
crossref_primary_10_1088_1361_6463_ad800a
crossref_primary_10_1016_j_commatsci_2024_113151
crossref_primary_10_1021_acsami_3c11082
crossref_primary_10_1038_s41598_021_82845_6
crossref_primary_10_1016_j_compscitech_2024_110939
crossref_primary_10_1016_j_mtcomm_2023_107183
crossref_primary_10_1103_PhysRevMaterials_2_104604
crossref_primary_10_1103_PhysRevMaterials_5_104602
crossref_primary_10_3390_catal12010027
crossref_primary_10_1038_s41524_020_0312_y
crossref_primary_10_1002_admi_201900471
crossref_primary_10_1103_PhysRevB_106_024303
crossref_primary_10_1103_PhysRevMaterials_6_114002
crossref_primary_10_1103_PhysRevApplied_22_044065
crossref_primary_10_1021_acsnano_4c08366
crossref_primary_10_1039_D4CP03101F
crossref_primary_10_1021_acsaem_1c03023
crossref_primary_10_1039_C9CP06851A
crossref_primary_10_1111_jace_20343
crossref_primary_10_1080_27660400_2022_2039573
crossref_primary_10_3390_coatings13020307
crossref_primary_10_1103_PhysRevMaterials_2_124603
Cites_doi 10.1111/j.1151-2916.2002.tb00046.x
10.1103/PhysRevB.81.075125
10.1103/PhysRevB.23.5048
10.1103/PhysRevB.73.205203
10.1126/sciadv.1600225
10.1103/PhysRevB.92.224111
10.1103/PhysRevLett.100.186401
10.1103/PhysRevLett.112.096401
10.1111/j.1551-2916.2005.00118.x
10.1088/0965-0393/17/8/084002
10.1103/PhysRevB.87.094111
10.1103/PhysRevLett.105.026401
10.1016/j.chempr.2016.09.010
10.1103/PhysRevB.93.235106
10.1103/PhysRevB.80.035203
10.1021/ja507890u
10.1063/1.2187006
10.1002/jcc.21759
10.1039/C7SC03961A
10.1103/PhysRevB.86.045112
10.1103/PhysRevB.72.085108
10.1016/j.commatsci.2015.11.042
10.1039/C5TA08214E
10.1103/PhysRevB.77.115139
10.1103/PhysRevB.83.214107
10.1038/am.2015.57
10.1103/PhysRevB.81.115311
10.1103/PhysRevLett.102.086403
10.1103/PhysRevLett.114.196801
10.1143/JJAP.38.L166
10.1103/PhysRevLett.108.246404
10.1103/PhysRevB.53.3764
10.1103/PhysRevLett.96.226402
10.1063/1.2364469
10.1116/1.585726
10.1103/PhysRevB.61.15019
10.1021/cm404079a
10.1103/PhysRevB.93.085202
10.1038/nmat2321
10.1063/1.478401
10.1103/PhysRevLett.98.115503
10.1103/PhysRevA.51.1944
10.1038/srep20446
10.1063/1.2404663
10.1103/PhysRevLett.98.045501
10.1103/PhysRevB.84.035212
10.1103/PhysRevB.78.235104
10.1016/j.cpc.2016.02.011
10.1038/ncomms7327
10.1038/nature02756
10.1021/acs.chemmater.6b03306
10.1103/PhysRevB.46.13379
10.1016/j.jpowsour.2007.02.040
10.1039/C4CP02788D
10.1021/acs.nanolett.7b03490
10.1103/PhysRevLett.99.246403
10.1103/PhysRevB.37.8958
10.1016/0378-4371(84)90096-7
10.1103/PhysRevB.74.144432
10.1149/1.3505288
10.1126/science.aad3000
10.1103/PhysRevB.74.045202
10.1038/natrevmats.2015.4
10.1103/PhysRevLett.65.353
10.1103/PhysRev.136.B864
10.1063/1.121072
10.1103/PhysRevB.74.195128
10.1002/aenm.201400496
10.1016/0167-5729(95)00008-9
10.1021/acs.chemmater.6b04663
10.1103/PhysRevB.88.115104
10.1103/PhysRevB.51.4014
10.1103/PhysRev.140.A1133
10.1002/adma.201204718
10.1016/S0022-0248(74)80055-2
10.1063/1.1884601
10.1038/srep35148
10.1103/PhysRevApplied.6.044011
10.1038/sdata.2017.85
10.1103/PhysRevLett.88.066405
10.1103/PhysRevB.95.125309
10.1103/PhysRevB.31.2163
10.1103/PhysRevLett.104.197601
10.1038/nature11812
10.1103/PhysRevLett.110.065504
10.1103/PhysRevLett.100.045702
10.1021/jz401532q
10.1126/sciadv.1700270
10.1103/PhysRevB.83.035119
10.1021/acsenergylett.6b00471
10.1073/pnas.1619940114
10.1103/PhysRevB.72.035211
10.1002/adfm.201102546
10.1103/PhysRevLett.103.245501
10.1103/PhysRevB.82.115106
10.1103/PhysRevB.89.205309
10.1038/natrevmats.2015.7
10.1103/PhysRevLett.39.635
10.1103/PhysRevB.63.045410
10.1103/PhysRevB.89.155204
10.1063/1.1368865
10.1016/j.commatsci.2016.12.040
10.1103/PhysRevB.74.245115
10.1126/science.aad4424
10.1103/PhysRevB.95.075302
10.1063/1.3583460
10.1016/j.commatsci.2013.10.016
10.1038/nmat1795
10.1103/PhysRevB.87.075121
10.1103/PhysRevLett.77.3865
10.1116/1.585004
10.1103/PhysRevLett.110.166404
10.1103/PhysRevB.49.8024
10.1038/s41467-018-02838-4
10.1039/c2ee22341d
10.1103/PhysRevApplied.8.014015
10.1063/1.3216464
10.1103/PhysRevB.57.1505
10.1063/1.4864778
10.1063/1.2964197
10.1103/PhysRevApplied.6.014009
10.1039/C5TC04172D
10.1016/j.commatsci.2010.05.010
10.1002/9783527638529
10.1016/j.mssp.2016.10.032
10.1103/RevModPhys.86.253
10.1088/0953-8984/23/5/053201
10.1063/1.4816784
10.1039/c3cp54589j
10.1016/j.scriptamat.2015.07.021
10.1103/PhysRevB.72.035215
10.1038/nmat4676
10.1021/acs.jpcc.6b01696
10.1103/PhysRevLett.108.167402
10.1103/PhysRevB.35.8154
10.1002/adma.201103228
10.1103/PhysRevApplied.9.034019
10.1016/j.commatsci.2004.02.024
10.1103/PhysRevB.60.2340
10.1103/PhysRevApplied.8.024032
10.1039/C5TC04091D
10.1103/PhysRevB.88.035305
10.1063/1.2210932
10.1103/PhysRevB.89.205417
10.1016/j.physleta.2012.01.022
10.1103/PhysRevB.64.085120
10.1103/PhysRevB.34.5390
10.1038/srep03778
10.1103/PhysRevB.75.195211
10.1039/c1cs15098g
10.1103/PhysRevA.38.3098
10.1063/1.363899
10.1021/jz5001787
10.1103/PhysRevB.90.245145
10.1116/1.586491
10.1103/PhysRevB.82.205212
10.1016/j.cpc.2018.01.004
10.1103/PhysRevLett.100.167402
10.1103/PhysRevB.93.115104
10.1039/C6TA03376H
10.1103/PhysRevB.90.155405
10.1103/PhysRevB.88.115201
10.7567/APEX.6.061201
10.1016/j.commatsci.2014.05.014
10.1021/cm100795d
10.1103/PhysRevB.54.5495
10.1142/8480
10.1103/PhysRevLett.84.1942
10.1038/srep40907
10.1016/j.commatsci.2016.10.015
10.1103/PhysRevLett.115.036402
10.1063/1.336864
10.1002/adma.201203580
10.1063/1.4982255
10.1063/1.4812323
10.1063/1.478522
10.1063/1.3675880
10.1038/ncomms1484
10.1038/ncomms3292
10.1116/1.571130
10.1039/B408372P
10.1007/978-3-662-04459-9
10.1063/1.1354667
10.1103/PhysRevMaterials.2.013805
10.1103/PhysRevLett.102.016402
10.1103/PhysRevB.63.155107
10.1016/j.commatsci.2012.10.028
10.1103/RevModPhys.86.187
10.1103/PhysRevB.82.085208
10.1039/C2EE23482C
10.1088/0034-4885/72/12/126501
10.1063/1.2204597
10.1002/pssb.201046195
10.1039/C6CP03468C
10.1103/PhysRevB.54.11169
10.1126/science.1083842
10.1103/RevModPhys.74.601
10.1103/PhysRevB.90.085435
10.1063/1.3106643
10.1038/40087
10.1103/PhysRev.155.796
10.1103/PhysRevB.90.115201
10.1038/srep04467
10.1103/PhysRevB.93.165206
10.1063/1.1380994
10.1002/aenm.201400915
10.1016/j.susc.2013.05.016
10.1103/PhysRevB.84.075205
10.1103/PhysRevLett.91.076403
10.1063/1.472933
10.1103/PhysRevLett.108.068701
10.1039/C6TC00996D
10.1103/PhysRevB.80.085202
10.1103/PhysRevLett.102.073005
10.1103/PhysRevB.95.094105
10.1016/j.commatsci.2015.09.013
10.1103/PhysRevB.90.085202
10.1016/j.cpc.2006.03.007
10.1103/PhysRevB.77.245202
10.1002/anie.200462980
10.1016/j.commatsci.2008.07.016
10.1103/PhysRevB.59.7486
10.1038/ncomms11962
10.1021/jz100962n
10.1103/PhysRevB.77.155107
10.1103/PhysRevB.32.6968
10.1103/PhysRevLett.68.2664
10.1063/1.1730376
10.1088/0965-0393/17/8/084001
10.1103/PhysRevB.74.121102
10.1103/PhysRevB.90.165133
10.1038/nature01665
10.1103/PhysRevLett.107.216803
10.1103/PhysRevB.45.13244
10.1016/j.commatsci.2012.02.002
10.1088/0022-3719/18/6/010
10.1021/ja311599g
10.1038/s41524-017-0014-2
10.1088/0268-1242/17/9/305
10.1063/1.3143626
10.1103/PhysRevLett.103.185502
10.1103/PhysRevLett.61.873
10.1103/PhysRevLett.102.026402
10.1088/1361-648X/aa8f79
10.1039/C5TA09446A
10.1063/1.2053360
10.1016/j.cplett.2017.01.001
10.1038/npjcompumats.2016.28
10.1016/j.spmi.2010.08.011
10.1021/acs.chemmater.5b02026
10.1002/advs.201600246
10.1103/PhysRevB.91.155201
10.1103/PhysRevLett.105.196403
10.1103/PhysRevB.89.195205
10.1039/B607406E
10.1038/npjcompumats.2015.10
10.1103/PhysRevLett.112.136403
10.1063/1.4919242
10.1038/s41524-017-0048-5
10.1107/S0108768102006948
10.1038/nmat3568
10.1103/PhysRevB.41.7868
10.1017/CBO9780511755613
10.1103/PhysRevLett.118.026402
10.1103/PhysRevB.59.1758
10.1103/PhysRevB.44.943
10.1103/PhysRevB.90.054115
10.1139/p80-159
10.1021/jacs.7b09806
10.1063/1.464913
10.1002/9780470710609
10.1103/PhysRevB.86.245433
10.1038/am.2014.103
10.1016/S0081-1947(08)60639-6
10.1038/nmat1498
10.1116/1.4818426
10.1038/386351a0
10.1063/1.1724816
10.1088/0022-3719/18/5/005
10.1016/j.pmatsci.2008.07.002
10.1103/PhysRevB.66.125101
10.1103/PhysRevB.88.075319
10.1063/1.3548872
10.1002/pssb.200983195
10.1039/c3cs00007a
10.1063/1.1736034
10.1063/1.2764437
10.1063/1.4895623
10.1103/RevModPhys.82.1633
10.1038/srep19375
10.1063/1.3491271
10.1088/0953-8984/21/39/395502
10.1103/PhysRevB.85.033203
10.1103/PhysRevMaterials.1.035401
10.1103/PhysRevB.96.094102
10.1103/PhysRevX.5.021016
10.1103/PhysRevB.84.165116
10.1016/j.commatsci.2016.09.018
10.1063/1.1544643
10.1103/PhysRevB.74.165203
10.1103/PhysRevB.76.045209
10.1063/1.118061
10.1103/PhysRevB.26.3144
10.1109/JPROC.2010.2043330
10.1103/PhysRev.139.A796
10.1103/PhysRevB.75.104113
10.1103/PhysRevLett.78.475
10.1088/0953-8984/14/34/201
10.1088/0953-8984/26/36/365503
10.1103/PhysRevLett.91.146401
10.1103/PhysRevB.91.045104
10.1103/PhysRevLett.100.016401
10.1021/ja501614n
10.1103/PhysRevB.81.113201
10.1126/science.aaa6442
10.1063/1.3382344
10.1039/C4CP03010A
10.1103/PhysRevLett.95.225502
10.1103/PhysRevB.90.125202
10.1016/j.commatsci.2014.10.037
10.1103/PhysRevB.85.081109
10.1063/1.1682673
10.1002/9780470710609.ch2
10.1002/aenm.201200538
10.1002/pip.2909
10.1063/1.1564060
10.1063/1.1404994
10.1103/PhysRevMaterials.2.023802
10.1103/PhysRevB.30.4874
10.1103/PhysRevB.15.2884
10.1063/1.4950803
10.1002/adma.200390065
10.1103/PhysRevLett.102.226401
10.1103/PhysRevApplied.3.044008
10.1103/PhysRevB.33.7017
10.1021/cm5018135
10.1038/nchem.2207
10.1016/j.mser.2006.01.002
10.1103/PhysRevB.63.075205
10.1039/C1EE02717D
10.1021/acs.chemmater.5b03794
10.1103/RevModPhys.73.33
10.1016/j.cpc.2012.05.008
10.1103/PhysRevB.74.045102
10.2109/jcersj2.122.530
10.1038/nature03090
10.1103/PhysRevLett.105.265501
10.1103/PhysRevLett.85.1012
10.1103/PhysRevB.51.6868
10.1103/PhysRevLett.99.235504
10.1116/1.571684
10.1038/srep10428
10.1021/ic102031h
10.1103/PhysRevB.76.165202
10.1103/PhysRevB.89.195112
10.1103/PhysRevB.84.115205
10.1103/PhysRevLett.100.136406
10.1103/PhysRevX.4.031044
10.7567/APEX.9.051201
ContentType Journal Article
Copyright 2018 The Japan Society of Applied Physics
Copyright_xml – notice: 2018 The Japan Society of Applied Physics
DBID O3W
TSCCA
AAYXX
CITATION
DOI 10.7567/APEX.11.060101
DatabaseName Institute of Physics Open Access Journal Titles
IOPscience (Open Access)
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: O3W
  name: Institute of Physics Open Access Journal Titles
  url: http://iopscience.iop.org/
  sourceTypes:
    Enrichment Source
    Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1882-0786
ExternalDocumentID 10_7567_APEX_11_060101
APR002
GroupedDBID -~X
23M
4.4
5GY
6OB
AAGCD
AAGID
AAJIO
AALHV
AATNI
ABCXL
ABHWH
ABJNI
ABVAM
ACGFS
ACHIP
ACNCT
ADWVK
AEFHF
AENEX
AFYNE
AKPSB
ALMA_UNASSIGNED_HOLDINGS
AOAED
ASPBG
ATQHT
AVWKF
AZFZN
B.R
CEBXE
CJUJL
CRLBU
CS3
EBS
EJD
IIPPG
IJHAN
IOP
IZVLO
KOT
MC8
N5L
O3W
P2P
PJBAE
QTG
RIN
RNS
ROL
RPA
SJN
TSCCA
UPT
AAYXX
CITATION
ID FETCH-LOGICAL-c391t-c457673f74a2ea9060ff9b47b09af12c6054926c3484e9f4ad0bd81498a032fa3
IEDL.DBID O3W
ISSN 1882-0778
IngestDate Tue Jul 01 03:36:41 EDT 2025
Thu Apr 24 23:04:41 EDT 2025
Thu Jan 07 13:54:29 EST 2021
Wed Aug 21 03:41:49 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License Content from this work may be used under the terms of the Creative Commons Attribution 4.0 license. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c391t-c457673f74a2ea9060ff9b47b09af12c6054926c3484e9f4ad0bd81498a032fa3
OpenAccessLink https://iopscience.iop.org/article/10.7567/APEX.11.060101
PageCount 30
ParticipantIDs crossref_citationtrail_10_7567_APEX_11_060101
crossref_primary_10_7567_APEX_11_060101
iop_journals_10_7567_APEX_11_060101
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-06-01
PublicationDateYYYYMMDD 2018-06-01
PublicationDate_xml – month: 06
  year: 2018
  text: 2018-06-01
  day: 01
PublicationDecade 2010
PublicationTitle Applied physics express
PublicationTitleAlternate Appl. Phys. Express
PublicationYear 2018
Publisher The Japan Society of Applied Physics
Publisher_xml – name: The Japan Society of Applied Physics
References 350
230
351
110
231
352
111
232
353
112
233
354
113
234
355
114
235
Yanagi H. (262) 2016; 9
356
115
236
357
116
237
358
238
359
118
239
119
10
11
12
13
14
16
17
360
240
361
120
241
362
121
242
363
122
243
364
2
123
244
365
3
124
245
366
4
125
246
367
5
126
247
368
6
127
248
369
7
128
249
129
9
20
Yamamoto T. (254) 1999; 38
21
22
23
24
25
26
27
28
29
250
251
131
252
132
253
133
134
255
135
256
136
257
258
138
259
139
30
31
32
33
34
35
36
37
38
39
Lany S. (185) 2009; 17
140
261
141
142
263
143
264
265
145
266
146
267
147
268
148
269
149
40
41
42
43
44
45
Giannozzi P. (330) 2009; 21
46
47
48
49
270
150
271
151
272
152
273
153
274
154
275
155
276
156
277
157
278
158
279
159
50
51
52
53
54
55
56
57
58
Gerosa M. (69) 2018; 30
59
McQuarrie D. A. (195) 1997
280
160
281
161
282
162
283
163
284
164
285
165
286
166
287
167
288
168
289
169
60
Oba F. (97) 2011; 12
61
62
63
64
65
66
67
68
290
170
291
171
292
172
293
173
294
174
295
175
296
Lewis G. V. (15) 1985; 18
176
Zhang S. B. (181) 2002; 14
297
177
298
178
299
179
70
71
72
73
74
75
76
77
Janotti A. (227) 2009; 72
78
79
180
182
183
184
186
187
188
189
80
Kamiya T. (8) 2010; 11
81
82
83
84
85
86
87
88
89
190
191
192
193
194
196
198
199
Sanchez-Juarez A. (260) 2002; 17
90
91
92
93
94
95
98
99
Patrick C. E. (117) 2014; 26
Martin R. M. (18) 2008
Nieminen R. M. (204) 2009; 17
Yokoyama T. (130) 2013; 6
300
301
302
303
304
305
306
307
308
309
310
311
312
313
Giustino F. (19) 2014
Oba F. (96) 2010; 22
314
315
316
317
318
319
Giannozzi P. (331) 2017; 29
Ducastelle F. (137) 1994
320
200
321
201
322
202
323
203
324
325
205
326
206
327
207
328
208
329
209
210
211
332
212
333
213
334
214
335
215
336
216
337
217
338
218
339
219
Leslie M. (197) 1985; 18
Sze S. M. (1) 2002
340
220
341
100
221
342
101
222
343
102
223
344
103
Yu E. T. (144) 1992
224
345
104
225
346
105
226
106
348
107
228
349
108
229
109
Pickard C. J. (347) 2011; 23
References_xml – ident: 286
  doi: 10.1111/j.1151-2916.2002.tb00046.x
– ident: 289
  doi: 10.1103/PhysRevB.81.075125
– ident: 26
  doi: 10.1103/PhysRevB.23.5048
– ident: 240
  doi: 10.1103/PhysRevB.73.205203
– ident: 323
  doi: 10.1126/sciadv.1600225
– ident: 246
  doi: 10.1103/PhysRevB.92.224111
– ident: 172
  doi: 10.1103/PhysRevLett.100.186401
– ident: 76
  doi: 10.1103/PhysRevLett.112.096401
– ident: 170
  doi: 10.1111/j.1551-2916.2005.00118.x
– volume: 17
  issn: 0965-0393
  year: 2009
  ident: 185
  publication-title: Modelling Simulation Mater. Sci. Eng.
  doi: 10.1088/0965-0393/17/8/084002
– ident: 206
  doi: 10.1103/PhysRevB.87.094111
– ident: 192
  doi: 10.1103/PhysRevLett.105.026401
– ident: 353
  doi: 10.1016/j.chempr.2016.09.010
– ident: 67
  doi: 10.1103/PhysRevB.93.235106
– ident: 91
  doi: 10.1103/PhysRevB.80.035203
– ident: 310
  doi: 10.1021/ja507890u
– ident: 49
  doi: 10.1063/1.2187006
– ident: 35
  doi: 10.1002/jcc.21759
– ident: 350
  doi: 10.1039/C7SC03961A
– ident: 205
  doi: 10.1103/PhysRevB.86.045112
– ident: 31
  doi: 10.1103/PhysRevB.72.085108
– ident: 165
  doi: 10.1016/j.commatsci.2015.11.042
– ident: 259
  doi: 10.1039/C5TA08214E
– ident: 202
  doi: 10.1103/PhysRevB.77.115139
– ident: 276
  doi: 10.1103/PhysRevB.83.214107
– ident: 338
  doi: 10.1038/am.2015.57
– ident: 102
  doi: 10.1103/PhysRevB.81.115311
– ident: 253
  doi: 10.1103/PhysRevLett.102.086403
– ident: 210
  doi: 10.1103/PhysRevLett.114.196801
– volume: 38
  start-page: L166
  issn: 1347-4065
  year: 1999
  ident: 254
  publication-title: Jpn. J. Appl. Phys.
  doi: 10.1143/JJAP.38.L166
– ident: 314
  doi: 10.1103/PhysRevLett.108.246404
– ident: 54
  doi: 10.1103/PhysRevB.53.3764
– ident: 73
  doi: 10.1103/PhysRevLett.96.226402
– ident: 121
  doi: 10.1063/1.2364469
– ident: 180
  doi: 10.1116/1.585726
– ident: 233
  doi: 10.1103/PhysRevB.61.15019
– ident: 322
  doi: 10.1021/cm404079a
– year: 1994
  ident: 137
  publication-title: Order and Phase Stability in Alloys
– ident: 84
  doi: 10.1103/PhysRevB.93.085202
– ident: 166
  doi: 10.1038/nmat2321
– ident: 57
  doi: 10.1063/1.478401
– ident: 279
  doi: 10.1103/PhysRevLett.98.115503
– ident: 43
  doi: 10.1103/PhysRevA.51.1944
– ident: 351
  doi: 10.1038/srep20446
– ident: 48
  doi: 10.1063/1.2404663
– ident: 193
  doi: 10.1103/PhysRevLett.98.045501
– ident: 194
  doi: 10.1103/PhysRevB.84.035212
– ident: 203
  doi: 10.1103/PhysRevB.78.235104
– ident: 349
  doi: 10.1016/j.cpc.2016.02.011
– ident: 169
  doi: 10.1038/ncomms7327
– ident: 278
  doi: 10.1038/nature02756
– ident: 307
  doi: 10.1021/acs.chemmater.6b03306
– ident: 178
  doi: 10.1103/PhysRevB.46.13379
– ident: 258
  doi: 10.1016/j.jpowsour.2007.02.040
– ident: 352
  doi: 10.1039/C4CP02788D
– ident: 316
  doi: 10.1021/acs.nanolett.7b03490
– ident: 72
  doi: 10.1103/PhysRevLett.99.246403
– ident: 92
  doi: 10.1103/PhysRevB.37.8958
– ident: 135
  doi: 10.1016/0378-4371(84)90096-7
– ident: 242
  doi: 10.1103/PhysRevB.74.144432
– ident: 266
  doi: 10.1149/1.3505288
– ident: 20
  doi: 10.1126/science.aad3000
– ident: 95
  doi: 10.1103/PhysRevB.74.045202
– ident: 22
  doi: 10.1038/natrevmats.2015.4
– ident: 140
  doi: 10.1103/PhysRevLett.65.353
– ident: 23
  doi: 10.1103/PhysRev.136.B864
– ident: 139
  doi: 10.1063/1.121072
– ident: 105
  doi: 10.1103/PhysRevB.74.195128
– ident: 256
  doi: 10.1002/aenm.201400496
– ident: 145
  doi: 10.1016/0167-5729(95)00008-9
– ident: 324
  doi: 10.1021/acs.chemmater.6b04663
– ident: 214
  doi: 10.1103/PhysRevB.88.115104
– ident: 198
  doi: 10.1103/PhysRevB.51.4014
– ident: 24
  doi: 10.1103/PhysRev.140.A1133
– ident: 125
  doi: 10.1002/adma.201204718
– ident: 167
  doi: 10.1016/S0022-0248(74)80055-2
– ident: 32
  doi: 10.1063/1.1884601
– ident: 247
  doi: 10.1038/srep35148
– ident: 295
  doi: 10.1103/PhysRevApplied.6.044011
– ident: 107
  doi: 10.1038/sdata.2017.85
– ident: 311
  doi: 10.1103/PhysRevLett.88.066405
– ident: 149
  doi: 10.1103/PhysRevB.95.125309
– ident: 85
  doi: 10.1103/PhysRevB.31.2163
– ident: 272
  doi: 10.1103/PhysRevLett.104.197601
– ident: 318
  doi: 10.1038/nature11812
– ident: 282
  doi: 10.1103/PhysRevLett.110.065504
– ident: 300
  doi: 10.1103/PhysRevLett.100.045702
– ident: 80
  doi: 10.1021/jz401532q
– ident: 143
  doi: 10.1126/sciadv.1700270
– ident: 61
  doi: 10.1103/PhysRevB.83.035119
– ident: 133
  doi: 10.1021/acsenergylett.6b00471
– ident: 363
  doi: 10.1073/pnas.1619940114
– ident: 191
  doi: 10.1103/PhysRevB.72.035211
– ident: 129
  doi: 10.1002/adfm.201102546
– ident: 244
  doi: 10.1103/PhysRevLett.103.245501
– ident: 44
  doi: 10.1103/PhysRevB.82.115106
– ident: 158
  doi: 10.1103/PhysRevB.89.205309
– ident: 263
  doi: 10.1038/natrevmats.2015.7
– ident: 267
  doi: 10.1103/PhysRevLett.39.635
– ident: 321
  doi: 10.1103/PhysRevB.63.045410
– ident: 81
  doi: 10.1103/PhysRevB.89.155204
– ident: 265
  doi: 10.1063/1.1368865
– ident: 340
  doi: 10.1016/j.commatsci.2016.12.040
– ident: 101
  doi: 10.1103/PhysRevB.74.245115
– ident: 4
  doi: 10.1126/science.aad4424
– ident: 68
  doi: 10.1103/PhysRevB.95.075302
– ident: 275
  doi: 10.1063/1.3583460
– ident: 365
  doi: 10.1016/j.commatsci.2013.10.016
– ident: 251
  doi: 10.1038/nmat1795
– ident: 42
  doi: 10.1103/PhysRevB.87.075121
– ident: 29
  doi: 10.1103/PhysRevLett.77.3865
– ident: 179
  doi: 10.1116/1.585004
– ident: 211
  doi: 10.1103/PhysRevLett.110.166404
– ident: 75
  doi: 10.1103/PhysRevB.49.8024
– ident: 306
  doi: 10.1038/s41467-018-02838-4
– ident: 360
  doi: 10.1039/c2ee22341d
– ident: 122
  doi: 10.1103/PhysRevApplied.8.014015
– ident: 226
  doi: 10.1063/1.3216464
– ident: 38
  doi: 10.1103/PhysRevB.57.1505
– ident: 264
  doi: 10.1063/1.4864778
– ident: 104
  doi: 10.1063/1.2964197
– ident: 79
  doi: 10.1103/PhysRevApplied.6.014009
– ident: 358
  doi: 10.1039/C5TC04172D
– ident: 88
  doi: 10.1016/j.commatsci.2010.05.010
– ident: 186
  doi: 10.1002/9783527638529
– ident: 232
  doi: 10.1016/j.mssp.2016.10.032
– ident: 187
  doi: 10.1103/RevModPhys.86.253
– volume: 23
  issn: 0953-8984
  year: 2011
  ident: 347
  publication-title: J. Phys.: Condens. Matter
  doi: 10.1088/0953-8984/23/5/053201
– ident: 151
  doi: 10.1063/1.4816784
– ident: 161
  doi: 10.1039/c3cp54589j
– ident: 188
  doi: 10.1016/j.scriptamat.2015.07.021
– ident: 238
  doi: 10.1103/PhysRevB.72.035215
– ident: 3
  doi: 10.1038/nmat4676
– ident: 302
  doi: 10.1021/acs.jpcc.6b01696
– ident: 116
  doi: 10.1103/PhysRevLett.108.167402
– ident: 156
  doi: 10.1103/PhysRevB.35.8154
– ident: 9
  doi: 10.1002/adma.201103228
– ident: 124
  doi: 10.1103/PhysRevApplied.9.034019
– ident: 183
  doi: 10.1016/j.commatsci.2004.02.024
– ident: 100
  doi: 10.1103/PhysRevB.60.2340
– ident: 134
  doi: 10.1103/PhysRevApplied.8.024032
– ident: 152
  doi: 10.1039/C5TC04091D
– ident: 150
  doi: 10.1103/PhysRevB.88.035305
– year: 2008
  ident: 18
  publication-title: Electronic Structure: Basic Theory and Practical Methods
– ident: 344
  doi: 10.1063/1.2210932
– ident: 208
  doi: 10.1103/PhysRevB.89.205417
– ident: 106
  doi: 10.1016/j.physleta.2012.01.022
– ident: 237
  doi: 10.1103/PhysRevB.64.085120
– ident: 71
  doi: 10.1103/PhysRevB.34.5390
– ident: 283
  doi: 10.1038/srep03778
– ident: 78
  doi: 10.1103/PhysRevB.75.195211
– ident: 297
  doi: 10.1039/c1cs15098g
– year: 2002
  ident: 1
  publication-title: Semiconductor Devices: Physics and Technology
– ident: 27
  doi: 10.1103/PhysRevA.38.3098
– ident: 173
  doi: 10.1063/1.363899
– ident: 299
  doi: 10.1021/jz5001787
– ident: 82
  doi: 10.1103/PhysRevB.90.245145
– ident: 174
  doi: 10.1116/1.586491
– ident: 108
  doi: 10.1103/PhysRevB.82.205212
– ident: 342
  doi: 10.1016/j.cpc.2018.01.004
– ident: 118
  doi: 10.1103/PhysRevLett.100.167402
– ident: 367
  doi: 10.1103/PhysRevB.93.115104
– ident: 132
  doi: 10.1039/C6TA03376H
– ident: 90
  doi: 10.1103/PhysRevB.90.155405
– ident: 215
  doi: 10.1103/PhysRevB.88.115201
– volume: 6
  issn: 1882-0786
  year: 2013
  ident: 130
  publication-title: Appl. Phys. Express
  doi: 10.7567/APEX.6.061201
– ident: 332
  doi: 10.1016/j.commatsci.2014.05.014
– ident: 368
  doi: 10.1021/cm100795d
– ident: 94
  doi: 10.1103/PhysRevB.54.5495
– ident: 114
  doi: 10.1142/8480
– ident: 201
  doi: 10.1103/PhysRevLett.84.1942
– ident: 249
  doi: 10.1038/srep40907
– ident: 89
  doi: 10.1016/j.commatsci.2016.10.015
– ident: 40
  doi: 10.1103/PhysRevLett.115.036402
– ident: 176
  doi: 10.1063/1.336864
– ident: 277
  doi: 10.1002/adma.201203580
– ident: 284
  doi: 10.1063/1.4982255
– ident: 325
  doi: 10.1063/1.4812323
– ident: 56
  doi: 10.1063/1.478522
– ident: 255
  doi: 10.1063/1.3675880
– ident: 309
  doi: 10.1038/ncomms1484
– ident: 110
  doi: 10.1038/ncomms3292
– ident: 175
  doi: 10.1116/1.571130
– ident: 16
  doi: 10.1039/B408372P
– start-page: 1
  year: 1992
  ident: 144
  publication-title: Solid State Physics
– ident: 163
  doi: 10.1007/978-3-662-04459-9
– ident: 285
  doi: 10.1063/1.1354667
– ident: 369
  doi: 10.1103/PhysRevMaterials.2.013805
– ident: 199
  doi: 10.1103/PhysRevLett.102.016402
– ident: 113
  doi: 10.1103/PhysRevB.63.155107
– ident: 336
  doi: 10.1016/j.commatsci.2012.10.028
– ident: 13
  doi: 10.1103/RevModPhys.86.187
– ident: 53
  doi: 10.1103/PhysRevB.82.085208
– ident: 361
  doi: 10.1039/C2EE23482C
– volume: 72
  issn: 0034-4885
  year: 2009
  ident: 227
  publication-title: Rep. Prog. Phys.
  doi: 10.1088/0034-4885/72/12/126501
– ident: 59
  doi: 10.1063/1.2204597
– ident: 62
  doi: 10.1002/pssb.201046195
– ident: 131
  doi: 10.1039/C6CP03468C
– volume: 11
  issn: 1468-6996
  year: 2010
  ident: 8
  publication-title: Sci. Technol. Adv. Mater.
– ident: 326
  doi: 10.1103/PhysRevB.54.11169
– ident: 317
  doi: 10.1126/science.1083842
– ident: 115
  doi: 10.1103/RevModPhys.74.601
– ident: 207
  doi: 10.1103/PhysRevB.90.085435
– ident: 220
  doi: 10.1063/1.3106643
– ident: 296
  doi: 10.1038/40087
– ident: 280
  doi: 10.1103/PhysRev.155.796
– ident: 141
  doi: 10.1103/PhysRevB.90.115201
– ident: 83
  doi: 10.1038/srep04467
– ident: 216
  doi: 10.1103/PhysRevB.93.165206
– ident: 235
  doi: 10.1063/1.1380994
– year: 1997
  ident: 195
  publication-title: Physical Chemistry: A Molecular Approach
– ident: 45
  doi: 10.1002/aenm.201400915
– ident: 164
  doi: 10.1016/j.susc.2013.05.016
– ident: 50
  doi: 10.1103/PhysRevB.84.075205
– ident: 223
  doi: 10.1103/PhysRevLett.91.076403
– year: 2014
  ident: 19
  publication-title: Materials Modelling Using Density Functional Theory: Properties and Predictions
– ident: 55
  doi: 10.1063/1.472933
– ident: 127
  doi: 10.1103/PhysRevLett.108.068701
– ident: 303
  doi: 10.1039/C6TC00996D
– ident: 218
  doi: 10.1103/PhysRevB.80.085202
– ident: 33
  doi: 10.1103/PhysRevLett.102.073005
– ident: 248
  doi: 10.1103/PhysRevB.95.094105
– ident: 337
  doi: 10.1016/j.commatsci.2015.09.013
– ident: 274
  doi: 10.1103/PhysRevB.90.085202
– ident: 111
  doi: 10.1016/j.cpc.2006.03.007
– ident: 63
  doi: 10.1103/PhysRevB.77.245202
– ident: 196
  doi: 10.1002/anie.200462980
– ident: 334
  doi: 10.1016/j.commatsci.2008.07.016
– ident: 52
  doi: 10.1103/PhysRevB.59.7486
– ident: 190
  doi: 10.1038/ncomms11962
– ident: 319
  doi: 10.1021/jz100962n
– ident: 119
  doi: 10.1103/PhysRevB.77.155107
– ident: 154
  doi: 10.1103/PhysRevB.32.6968
– ident: 11
  doi: 10.1103/PhysRevLett.68.2664
– ident: 14
  doi: 10.1063/1.1730376
– volume: 17
  issn: 0965-0393
  year: 2009
  ident: 204
  publication-title: Modelling Simulation Mater. Sci. Eng.
  doi: 10.1088/0965-0393/17/8/084001
– ident: 224
  doi: 10.1103/PhysRevB.74.121102
– ident: 160
  doi: 10.1103/PhysRevB.90.165133
– ident: 155
  doi: 10.1038/nature01665
– ident: 213
  doi: 10.1103/PhysRevLett.107.216803
– ident: 28
  doi: 10.1103/PhysRevB.45.13244
– ident: 329
  doi: 10.1016/j.commatsci.2012.02.002
– volume: 18
  start-page: 1149
  issn: 0022-3719
  year: 1985
  ident: 15
  publication-title: J. Phys. C
  doi: 10.1088/0022-3719/18/6/010
– ident: 287
  doi: 10.1021/ja311599g
– ident: 217
  doi: 10.1038/s41524-017-0014-2
– volume: 17
  start-page: 931
  issn: 0268-1242
  year: 2002
  ident: 260
  publication-title: Semicond. Sci. Technol.
  doi: 10.1088/0268-1242/17/9/305
– ident: 157
  doi: 10.1063/1.3143626
– ident: 270
  doi: 10.1103/PhysRevLett.103.185502
– ident: 268
  doi: 10.1103/PhysRevLett.61.873
– ident: 219
  doi: 10.1103/PhysRevLett.102.026402
– volume: 29
  issn: 0953-8984
  year: 2017
  ident: 331
  publication-title: J. Phys.: Condens. Matter
  doi: 10.1088/1361-648X/aa8f79
– ident: 354
  doi: 10.1039/C5TA09446A
– ident: 239
  doi: 10.1063/1.2053360
– ident: 341
  doi: 10.1016/j.cplett.2017.01.001
– ident: 364
  doi: 10.1038/npjcompumats.2016.28
– ident: 10
  doi: 10.1016/j.spmi.2010.08.011
– ident: 357
  doi: 10.1021/acs.chemmater.5b02026
– ident: 362
  doi: 10.1002/advs.201600246
– ident: 66
  doi: 10.1103/PhysRevB.91.155201
– ident: 47
  doi: 10.1103/PhysRevLett.105.196403
– ident: 200
  doi: 10.1103/PhysRevB.89.195205
– ident: 243
  doi: 10.1039/B607406E
– ident: 333
  doi: 10.1038/npjcompumats.2015.10
– ident: 315
  doi: 10.1103/PhysRevLett.112.136403
– ident: 225
  doi: 10.1063/1.4919242
– ident: 335
  doi: 10.1038/s41524-017-0048-5
– ident: 356
  doi: 10.1107/S0108768102006948
– ident: 21
  doi: 10.1038/nmat3568
– ident: 51
  doi: 10.1103/PhysRevB.41.7868
– ident: 17
  doi: 10.1017/CBO9780511755613
– ident: 99
  doi: 10.1103/PhysRevLett.118.026402
– volume: 30
  issn: 0953-8984
  year: 2018
  ident: 69
  publication-title: J. Phys.: Condens. Matter
– ident: 327
  doi: 10.1103/PhysRevB.59.1758
– ident: 37
  doi: 10.1103/PhysRevB.44.943
– ident: 221
  doi: 10.1103/PhysRevB.90.054115
– ident: 25
  doi: 10.1139/p80-159
– ident: 305
  doi: 10.1021/jacs.7b09806
– ident: 60
  doi: 10.1063/1.464913
– ident: 6
  doi: 10.1002/9780470710609
– ident: 159
  doi: 10.1103/PhysRevB.86.245433
– ident: 293
  doi: 10.1038/am.2014.103
– ident: 136
  doi: 10.1016/S0081-1947(08)60639-6
– ident: 281
  doi: 10.1038/nmat1498
– ident: 146
  doi: 10.1116/1.4818426
– ident: 2
  doi: 10.1038/386351a0
– ident: 348
  doi: 10.1063/1.1724816
– volume: 18
  start-page: 973
  issn: 0022-3719
  year: 1985
  ident: 197
  publication-title: J. Phys. C
  doi: 10.1088/0022-3719/18/5/005
– ident: 228
  doi: 10.1016/j.pmatsci.2008.07.002
– ident: 93
  doi: 10.1103/PhysRevB.66.125101
– ident: 171
  doi: 10.1103/PhysRevB.88.075319
– ident: 162
  doi: 10.1063/1.3548872
– ident: 229
  doi: 10.1002/pssb.200983195
– ident: 148
  doi: 10.1039/c3cs00007a
– ident: 126
  doi: 10.1063/1.1736034
– ident: 271
  doi: 10.1063/1.2764437
– ident: 65
  doi: 10.1063/1.4895623
– ident: 291
  doi: 10.1103/RevModPhys.82.1633
– ident: 366
  doi: 10.1038/srep19375
– ident: 245
  doi: 10.1063/1.3491271
– volume: 21
  issn: 0953-8984
  year: 2009
  ident: 330
  publication-title: J. Phys.: Condens. Matter
  doi: 10.1088/0953-8984/21/39/395502
– ident: 138
  doi: 10.1103/PhysRevB.85.033203
– ident: 142
  doi: 10.1103/PhysRevMaterials.1.035401
– ident: 36
  doi: 10.1103/PhysRevB.96.094102
– ident: 308
  doi: 10.1103/PhysRevX.5.021016
– ident: 109
  doi: 10.1103/PhysRevB.84.165116
– ident: 339
  doi: 10.1016/j.commatsci.2016.09.018
– ident: 304
  doi: 10.1063/1.1544643
– ident: 86
  doi: 10.1103/PhysRevB.74.165203
– ident: 298
  doi: 10.1103/PhysRevB.76.045209
– ident: 12
  doi: 10.1063/1.118061
– ident: 98
  doi: 10.1103/PhysRevB.26.3144
– ident: 230
  doi: 10.1109/JPROC.2010.2043330
– ident: 70
  doi: 10.1103/PhysRev.139.A796
– ident: 345
  doi: 10.1103/PhysRevB.75.104113
– ident: 168
  doi: 10.1103/PhysRevLett.78.475
– volume: 14
  start-page: R881
  issn: 0953-8984
  year: 2002
  ident: 181
  publication-title: J. Phys.: Condens. Matter
  doi: 10.1088/0953-8984/14/34/201
– volume: 26
  issn: 0953-8984
  year: 2014
  ident: 117
  publication-title: J. Phys.: Condens. Matter
  doi: 10.1088/0953-8984/26/36/365503
– ident: 39
  doi: 10.1103/PhysRevLett.91.146401
– ident: 123
  doi: 10.1103/PhysRevB.91.045104
– volume: 12
  issn: 1468-6996
  year: 2011
  ident: 97
  publication-title: Sci. Technol. Adv. Mater.
– ident: 269
  doi: 10.1103/PhysRevLett.100.016401
– ident: 312
  doi: 10.1021/ja501614n
– ident: 212
  doi: 10.1103/PhysRevB.81.113201
– ident: 273
  doi: 10.1126/science.aaa6442
– ident: 34
  doi: 10.1063/1.3382344
– ident: 261
  doi: 10.1039/C4CP03010A
– ident: 252
  doi: 10.1103/PhysRevLett.95.225502
– ident: 189
  doi: 10.1103/PhysRevB.90.125202
– ident: 328
  doi: 10.1016/j.commatsci.2014.10.037
– ident: 290
  doi: 10.1103/PhysRevB.85.081109
– ident: 182
  doi: 10.1063/1.1682673
– ident: 103
  doi: 10.1002/9780470710609.ch2
– ident: 128
  doi: 10.1002/aenm.201200538
– ident: 5
  doi: 10.1002/pip.2909
– ident: 58
  doi: 10.1063/1.1564060
– ident: 236
  doi: 10.1063/1.1404994
– ident: 46
  doi: 10.1103/PhysRevMaterials.2.023802
– volume: 22
  issn: 0953-8984
  year: 2010
  ident: 96
  publication-title: J. Phys.: Condens. Matter
– ident: 153
  doi: 10.1103/PhysRevB.30.4874
– ident: 77
  doi: 10.1103/PhysRevB.15.2884
– ident: 120
  doi: 10.1063/1.4950803
– ident: 147
  doi: 10.1002/adma.200390065
– ident: 41
  doi: 10.1103/PhysRevLett.102.226401
– ident: 294
  doi: 10.1103/PhysRevApplied.3.044008
– ident: 112
  doi: 10.1103/PhysRevB.33.7017
– ident: 355
  doi: 10.1021/cm5018135
– ident: 288
  doi: 10.1038/nchem.2207
– ident: 184
  doi: 10.1016/j.mser.2006.01.002
– ident: 234
  doi: 10.1103/PhysRevB.63.075205
– ident: 359
  doi: 10.1039/C1EE02717D
– ident: 301
  doi: 10.1021/acs.chemmater.5b03794
– ident: 222
  doi: 10.1103/RevModPhys.73.33
– ident: 346
  doi: 10.1016/j.cpc.2012.05.008
– ident: 74
  doi: 10.1103/PhysRevB.74.045102
– ident: 231
  doi: 10.2109/jcersj2.122.530
– ident: 7
  doi: 10.1038/nature03090
– ident: 87
  doi: 10.1103/PhysRevLett.105.265501
– ident: 250
  doi: 10.1103/PhysRevLett.85.1012
– ident: 313
  doi: 10.1103/PhysRevB.51.6868
– ident: 320
  doi: 10.1103/PhysRevLett.99.235504
– ident: 177
  doi: 10.1116/1.571684
– ident: 257
  doi: 10.1038/srep10428
– ident: 343
  doi: 10.1021/ic102031h
– ident: 241
  doi: 10.1103/PhysRevB.76.165202
– ident: 64
  doi: 10.1103/PhysRevB.89.195112
– ident: 292
  doi: 10.1103/PhysRevB.84.115205
– ident: 30
  doi: 10.1103/PhysRevLett.100.136406
– ident: 209
  doi: 10.1103/PhysRevX.4.031044
– volume: 9
  issn: 1882-0786
  year: 2016
  ident: 262
  publication-title: Appl. Phys. Express
  doi: 10.7567/APEX.9.051201
SSID ssj0064316
Score 2.5513067
SecondaryResourceType review_article
Snippet Recent first-principles approaches to semiconductors are reviewed, with an emphasis on theoretical insight into emerging materials and in silico exploration of...
SourceID crossref
iop
SourceType Enrichment Source
Index Database
Publisher
StartPage 60101
Title Design and exploration of semiconductors from first principles: A review of recent advances
URI https://iopscience.iop.org/article/10.7567/APEX.11.060101
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bS8MwFA5uIvgiXnFeRkTBp862aZPUt6Eb0wfng8OBDyVNExjIWtYJ_nzPaTpxoOBbISe9fG2S86XnfIeQKyO0lrHMPWZNiLtV2ku44Z6WYB7mJpMuyveJjybR4zSe_ij1NSvKZurvwaETCnYQ4vgWMRc3_efBtIfKm8glgPhsMskl8q4xe11NwhwzvJFroQPpCyGdXuMv_dfWoxZc88fyMtwlO41fSPvuLvbIhpnvk606PlNXB-Ttvo60oMD7qanD5mpEaWFpheHtxRx1W4tFRTFfhNoZOHW0XG2kV7e0T12SCvaASQ6WGtr8_q8OyWQ4eLkbeU1dBE-zJFh6OgKSIJgVkQqNSuA5rE2ySGR-omwQamAoKAOoWSQjk9hI5X6WS6BCUvkstIodkfa8mJtjQhlPlIytiv3MYBFiFYSWKZ7DGwxswESHeCt0Ut2IhmPtivcUyAOimSKaQCNSh2aHXH_bl04u40_LSwA7bUZM9afVxZqVKs0ntvKmPS1ze_KvM52SbfB1pIvyOiPt5eLDnIM_scy6pPUwfu7W388XwQHEGA
linkProvider IOP Publishing
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bS8MwFA5uovgiXnFeIwo-1bVNm6S-Dd2YF6YPigMfSpomIMha1gn-fM9pOlFQ8K2Q07Q9zeV84TvfIeTUCK1lLHOPWRPiaZX2Em64pyWYh7nJpGP5jvjwKboZx-OGm1PnwhRls_Sfw6UTCnYuxPktYi66vYf--ByVNxFLBN0yty2yGDPOsXLDPXueL8Qcs7wRb2EQ6QshnWbjL3382JNa8NxvW8xgjaw2sSHtuTdZJwtmskGWao6mrjbJy1XNtqCA_ampqXO1V2lhaYUU92KC2q3FtKKYM0LtKwR2tJwfplcXtEddogreAQsdbDe0oQBUW-Rp0H-8HHpNbQRPsySYeToCoCCYFZEKjUrgO6xNskhkfqJsEGpAKSgFqFkkI5PYSOV-lkuAQ1L5LLSKbZP2pJiYHUIZT5SMrYr9zGAhYhWElimew18MbMBEh3hz76S6EQ7H-hVvKQAI9GaK3gQokTpvdsjZl33pJDP-tDwBZ6fNrKn-tDr-YaVK84GtvGlPYQTs_qunI7L8cDVI765Ht3tkBUIf6Uhf-6Q9m76bAwgvZtlhPYg-AVutxv4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Design+and+exploration+of+semiconductors+from+first+principles%3A+A+review+of+recent+advances&rft.jtitle=Applied+physics+express&rft.au=Oba%2C+Fumiyasu&rft.au=Kumagai%2C+Yu&rft.date=2018-06-01&rft.issn=1882-0778&rft.eissn=1882-0786&rft.volume=11&rft.issue=6&rft.spage=60101&rft_id=info:doi/10.7567%2FAPEX.11.060101&rft.externalDBID=n%2Fa&rft.externalDocID=10_7567_APEX_11_060101
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1882-0778&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1882-0778&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1882-0778&client=summon