LVTIA: A new method for keyphrase extraction from scientific video lectures

Due to the growth of technology, the expansion of communication infrastructure and crises of COVID-19 pandemic, e-learning and virtual education is expanding. One of the best ways to access and organize these information is indexing using automatic intelligent methods. Indexing requires assigning ke...

Full description

Saved in:
Bibliographic Details
Published inInformation processing & management Vol. 59; no. 2; p. 102802
Main Authors Hassani, Hamid, Ershadi, Mohammad Javad, Mohebi, Azadeh
Format Journal Article
LanguageEnglish
Published Oxford Elsevier Ltd 01.03.2022
Elsevier Science Ltd
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Due to the growth of technology, the expansion of communication infrastructure and crises of COVID-19 pandemic, e-learning and virtual education is expanding. One of the best ways to access and organize these information is indexing using automatic intelligent methods. Indexing requires assigning keywords or keyphrases to each video, to represent its content. The main focus of this research is to propose an approach by which appropriate keyphrases are assigned to scientific video lectures. For this purpose, a new algorithm called LVTIA, Lecture Video Text mining-base Indexing Algorithm, is proposed in which the textual content of video frames along with the text extracted from audio signal are merged together, and a new keyphrase extraction method is proposed. The proposed method considers new local and global features for each candidate phrases, along with a new feature reflecting the occurrence of each phrase in the audio signals or video frames. The method is implemented using five distinct data sets in English and Persian. The results are evaluated based on precision, recall, F1-measure and MAP@K metrics and compared with some of the well-known keyphrase extraction algorithms. Based on the results, the best MAP@K for English videos is related to LVTIA algorithm with the values of, 0.7912, 0.8069, 0.8069 for k=5,10,15, respectively. In addition, LVTIA is able to provide best MAP@K for Persian videos which are 0.6367, 0.6866, 0.6874 for k=5,10,15, respectively. According to Friedman nonparametric statistical test, the performance of different algorithms in precision, recall, F1-measure metrics, are statistically different from LVTIA as well. •LVTIA is a new method for video lecture indexing using statistical features.•The text extracted from audio and video frames are considered to extract keyphrases.•LVTIA uses global and local features for candidate phrases, using video time intervals.•The proposed algorithm is evaluated based on precision, recall, f-measure and MAP@K.•LVTIA is tested on five datasets with different languages (English and Persian).
AbstractList Due to the growth of technology, the expansion of communication infrastructure and crises of COVID-19 pandemic, e-learning and virtual education is expanding. One of the best ways to access and organize these information is indexing using automatic intelligent methods. Indexing requires assigning keywords or keyphrases to each video, to represent its content. The main focus of this research is to propose an approach by which appropriate keyphrases are assigned to scientific video lectures. For this purpose, a new algorithm called LVTIA, Lecture Video Text mining-base Indexing Algorithm, is proposed in which the textual content of video frames along with the text extracted from audio signal are merged together, and a new keyphrase extraction method is proposed. The proposed method considers new local and global features for each candidate phrases, along with a new feature reflecting the occurrence of each phrase in the audio signals or video frames. The method is implemented using five distinct data sets in English and Persian. The results are evaluated based on precision, recall, F1-measure and MAP@K metrics and compared with some of the well-known keyphrase extraction algorithms. Based on the results, the best MAP@K for English videos is related to LVTIA algorithm with the values of, 0.7912, 0.8069, 0.8069 for k = 5, 10, 15, respectively. In addition, LVTIA is able to provide best MAP@K for Persian videos which are 0.6367, 0.6866, 0.6874 for k = 5, 10, 15, respectively. According to Friedman nonparametric statistical test, the performance of different algorithms in precision, recall, F1-measure metrics, are statistically different from LVTIA as well.
Due to the growth of technology, the expansion of communication infrastructure and crises of COVID-19 pandemic, e-learning and virtual education is expanding. One of the best ways to access and organize these information is indexing using automatic intelligent methods. Indexing requires assigning keywords or keyphrases to each video, to represent its content. The main focus of this research is to propose an approach by which appropriate keyphrases are assigned to scientific video lectures. For this purpose, a new algorithm called LVTIA, Lecture Video Text mining-base Indexing Algorithm, is proposed in which the textual content of video frames along with the text extracted from audio signal are merged together, and a new keyphrase extraction method is proposed. The proposed method considers new local and global features for each candidate phrases, along with a new feature reflecting the occurrence of each phrase in the audio signals or video frames. The method is implemented using five distinct data sets in English and Persian. The results are evaluated based on precision, recall, F1-measure and MAP@K metrics and compared with some of the well-known keyphrase extraction algorithms. Based on the results, the best MAP@K for English videos is related to LVTIA algorithm with the values of, 0.7912, 0.8069, 0.8069 for k=5,10,15, respectively. In addition, LVTIA is able to provide best MAP@K for Persian videos which are 0.6367, 0.6866, 0.6874 for k=5,10,15, respectively. According to Friedman nonparametric statistical test, the performance of different algorithms in precision, recall, F1-measure metrics, are statistically different from LVTIA as well. •LVTIA is a new method for video lecture indexing using statistical features.•The text extracted from audio and video frames are considered to extract keyphrases.•LVTIA uses global and local features for candidate phrases, using video time intervals.•The proposed algorithm is evaluated based on precision, recall, f-measure and MAP@K.•LVTIA is tested on five datasets with different languages (English and Persian).
ArticleNumber 102802
Author Hassani, Hamid
Ershadi, Mohammad Javad
Mohebi, Azadeh
Author_xml – sequence: 1
  givenname: Hamid
  surname: Hassani
  fullname: Hassani, Hamid
– sequence: 2
  givenname: Mohammad Javad
  surname: Ershadi
  fullname: Ershadi, Mohammad Javad
– sequence: 3
  givenname: Azadeh
  orcidid: 0000-0002-6443-7450
  surname: Mohebi
  fullname: Mohebi, Azadeh
  email: mohebi@irandoc.ac.ir
BookMark eNp9kE1PAjEQhhuDiYD-AG9NPC9Ou-1-6IkQP4gkXtBrU7rTUGS32C4o_95FPHngNJnkfWbyPgPSa3yDhFwzGDFg2e1q5Db1iANn3c4L4Gekz4o8TWSasx7pQwpZImSeXpBBjCsAEJLxPnmZvc-n4zs6pg1-0Rrbpa-o9YF-4H6zDDoixe82aNM631AbfE2jcdi0zjpDd65CT9do2m3AeEnOrV5HvPqbQ_L2-DCfPCez16fpZDxLTFqyNllgwYU0GoQpbZlyFKhZYTNYGGmzQgqscqa5yDK50CAZCgYVaCt0nktMq3RIbo53N8F_bjG2auW3oeleKp4JJkuQkHWp_JgywccY0CrjWn2o0dVxa8VAHcyplerMqYM5dTTXkewfuQmu1mF_krk_MtgV3zkM6leTwcqFTo-qvDtB_wBlGIdh
CitedBy_id crossref_primary_10_25726_g4069_4282_8334_s
crossref_primary_10_1002_pra2_1040
crossref_primary_10_1515_jisys_2023_0300
crossref_primary_10_1016_j_ipm_2022_103141
crossref_primary_10_1016_j_ipm_2023_103375
crossref_primary_10_1016_j_cie_2022_108940
crossref_primary_10_1016_j_jksuci_2023_101594
crossref_primary_10_1109_TLT_2022_3216535
crossref_primary_10_1016_j_ipm_2023_103614
crossref_primary_10_1108_LHT_02_2023_0074
crossref_primary_10_1016_j_ipm_2024_103877
Cites_doi 10.1109/TASL.2010.2052119
10.3115/1119355.1119383
10.18653/v1/S15-1013
10.1016/j.patrec.2015.11.012
10.1080/13614568.2020.1745904
10.1016/j.chb.2019.08.004
10.3390/fi12060094
10.1016/j.ins.2019.09.013
10.1016/j.ipm.2008.12.001
10.1016/j.ipm.2009.10.006
10.1109/TIP.2003.819861
10.1016/j.engappai.2020.103557
10.1109/TLT.2014.2307305
10.1016/j.ipm.2020.102488
10.1016/j.ipm.2009.05.007
10.1145/1180639.1180740
10.1080/01621459.1937.10503522
10.1016/j.ipm.2020.102302
10.21437/Interspeech.2013-462
10.5120/19161-0607
ContentType Journal Article
Copyright 2021
Copyright Elsevier Science Ltd. Mar 2022
Copyright_xml – notice: 2021
– notice: Copyright Elsevier Science Ltd. Mar 2022
DBID AAYXX
CITATION
E3H
F2A
DOI 10.1016/j.ipm.2021.102802
DatabaseName CrossRef
Library & Information Sciences Abstracts (LISA)
Library & Information Science Abstracts (LISA)
DatabaseTitle CrossRef
Library and Information Science Abstracts (LISA)
DatabaseTitleList Library and Information Science Abstracts (LISA)

DeliveryMethod fulltext_linktorsrc
Discipline Library & Information Science
EISSN 1873-5371
ExternalDocumentID 10_1016_j_ipm_2021_102802
S030645732100279X
GroupedDBID --K
--M
-~X
.DC
.~1
0B8
0R~
1B1
1RT
1~.
1~5
29I
4.4
41~
457
4G.
5GY
5VS
7-5
71M
77K
8P~
9JN
9JO
AABNK
AACTN
AAEDT
AAEDW
AAFJI
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
AAYOK
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABMMH
ABPPZ
ABXDB
ABYKQ
ACDAQ
ACGFS
ACHQT
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
AEBSH
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKYCK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOMHK
AOUOD
ASPBG
AVARZ
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HLZ
HMY
HVGLF
HZ~
H~9
IHE
J1W
KOM
LG9
LPU
LY1
M3Y
M41
MO0
MS~
MVM
N9A
O-L
O9-
OAUVE
OHT
OZT
P-8
P-9
P2P
PC.
PQQKQ
PRBVW
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SDP
SDS
SES
SEW
SPC
SPCBC
SSB
SSO
SSS
SSV
SSZ
T5K
TN5
U5U
UHB
UHS
UNMZH
WUQ
XFK
ZMT
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADMHG
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
E3H
EFKBS
F2A
ID FETCH-LOGICAL-c391t-be8245ca04c9f932e4ea18f60bc5f6854ed71a24665ba051e410d0af4a775e3d3
IEDL.DBID .~1
ISSN 0306-4573
IngestDate Mon Jul 14 10:46:38 EDT 2025
Tue Jul 01 00:44:34 EDT 2025
Thu Apr 24 22:52:25 EDT 2025
Fri Feb 23 02:41:53 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Multimedia indexing
Text mining
Keyword extraction
Keyphrase extraction
Video lecture indexing
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c391t-be8245ca04c9f932e4ea18f60bc5f6854ed71a24665ba051e410d0af4a775e3d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-6443-7450
PQID 2641590506
PQPubID 46166
ParticipantIDs proquest_journals_2641590506
crossref_citationtrail_10_1016_j_ipm_2021_102802
crossref_primary_10_1016_j_ipm_2021_102802
elsevier_sciencedirect_doi_10_1016_j_ipm_2021_102802
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate March 2022
2022-03-00
20220301
PublicationDateYYYYMMDD 2022-03-01
PublicationDate_xml – month: 03
  year: 2022
  text: March 2022
PublicationDecade 2020
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Information processing & management
PublicationYear 2022
Publisher Elsevier Ltd
Elsevier Science Ltd
Publisher_xml – name: Elsevier Ltd
– name: Elsevier Science Ltd
References Gayathri, Mahesh (b14) 2020
Mihalcea, R., & Tarau, P. (2004). Textrank: Bringing order into text. In
Danesh, S., Sumner, T., & Martin, J. H. (2015). Sgrank: Combining statistical and graphical methods to improve the state of the art in unsupervised keyphrase extraction. In
Mdhaffar, Estève, Hernandez, Laurent, Dufour, Quiniou (b26) 2019
Dorai, C., Farrell, R., Katriel, A., Kofman, G., Li, Y., & Park, Y. (2006). MAGICAL demonstration: System for automated metadata generation for instructional content. In
Maree (b25) 2020; 26
Ebner, Schön, Braun, Ebner, Grigoriadis, Haas (b12) 2020; 12
Liu, Liu, Liu (b22) 2010; 19
(pp. 1–5).
Yang, Meinel (b42) 2014; 57
Sandesh, Jirgi, Vidya, Eljer, Srinivasa (b33) 2017; 11
Spolaôr, Lee, Takaki, Ensina, Coy, Wu (b35) 2020; 90
Marchionini, Song, Farrell (b24) 2009; 45
Tuna (b38) 2015
(pp. 484–489).
Campos, Mangaravite, Pasquali, Jorge, Nunes, Jatowt (b7) 2020; 509
Koka, Chowdhury, Rahman, Solorio, Subhlok (b21) 2020
(pp. 404–411).
(pp. 1906–1910).
Patwardhan, Das, Varshney, Desarkar, Dogra (b30) 2019
Chou, Tsai (b8) 2009; 45
Kaavya, LakshmiPriya (b19) 2015
Taguchi, G. (1978). Off-line and on-line quality control systems. In
(pp. 491–492).
Iyer, Parekh, Mohandoss, Ramsurat, Raj, Singh (b18) 2019
(pp. 117–126).
Friedman (b13) 1937; 32
Awad, Le, Ngo, Nguyen, Quenot, Snoek (b4) 2017
Radha (b31) 2016
Nabati, Behrad (b28) 2020; 57
Lowe (b23) 1999
Siddiqi, Sharan (b34) 2015; 109
Hulth, A. (2004). Improved automatic keyword extraction given more linguistic knowledge. In
Adcock, Cooper, Denoue, Pirsiavash, Rowe (b1) 2010
(pp. 216–23).
Baidya, Goel (b5) 2014
Balagopalan, Balasubramanian, Balasubramanian, Chandrasekharan, Damodar (b6) 2012
Dias, Barrére, de Souza (b10) 2020
Wang, Bovik, Sheikh, Simoncelli (b40) 2004; 13
Zhao, Zhang, Li, Liu, Zhang, Wen (b45) 2021; 58
Parra, Escobar-Avila, Haiduc (b29) 2018
Hwang, Yang, Ting (b16) 2010; 46
Turcu, Mihaescu, Heras, Palanca, Turcu (b39) 2019
Zesch, T., & Gurevych, I. (2009). Approximate matching for evaluating keyphrase extraction. In
Sreepathy (b36) 2020
Imran, Rahadianti, Cheikh, Yayilgan (b17) 2012
Rose, Engel, Cramer, Cowley (b32) 2010
Xi, Y. T., Paulik, M., Gadde, V. R. R., & Sankar, A. (2013). KPCatcher-a keyphrase extraction system for enterprise videos. In
Albahr, Che, Albahar (b3) 2021
Al-Fraihat, Joy, Sinclair (b2) 2000; 102
Yang, Siebert, Luhne, Sack, Meinel (b43) 2011
Kanadje, Miller, Agarwal, Gaborski, Zanibbi, Ludi (b20) 2016; 71
Adcock (10.1016/j.ipm.2021.102802_b1) 2010
Zhao (10.1016/j.ipm.2021.102802_b45) 2021; 58
Gayathri (10.1016/j.ipm.2021.102802_b14) 2020
Marchionini (10.1016/j.ipm.2021.102802_b24) 2009; 45
Sreepathy (10.1016/j.ipm.2021.102802_b36) 2020
Yang (10.1016/j.ipm.2021.102802_b42) 2014; 57
10.1016/j.ipm.2021.102802_b15
10.1016/j.ipm.2021.102802_b37
Imran (10.1016/j.ipm.2021.102802_b17) 2012
Liu (10.1016/j.ipm.2021.102802_b22) 2010; 19
10.1016/j.ipm.2021.102802_b11
Ebner (10.1016/j.ipm.2021.102802_b12) 2020; 12
Balagopalan (10.1016/j.ipm.2021.102802_b6) 2012
Tuna (10.1016/j.ipm.2021.102802_b38) 2015
Iyer (10.1016/j.ipm.2021.102802_b18) 2019
Lowe (10.1016/j.ipm.2021.102802_b23) 1999
Albahr (10.1016/j.ipm.2021.102802_b3) 2021
Kanadje (10.1016/j.ipm.2021.102802_b20) 2016; 71
Al-Fraihat (10.1016/j.ipm.2021.102802_b2) 2000; 102
Hwang (10.1016/j.ipm.2021.102802_b16) 2010; 46
Yang (10.1016/j.ipm.2021.102802_b43) 2011
10.1016/j.ipm.2021.102802_b9
Dias (10.1016/j.ipm.2021.102802_b10) 2020
Mdhaffar (10.1016/j.ipm.2021.102802_b26) 2019
Baidya (10.1016/j.ipm.2021.102802_b5) 2014
Chou (10.1016/j.ipm.2021.102802_b8) 2009; 45
Wang (10.1016/j.ipm.2021.102802_b40) 2004; 13
10.1016/j.ipm.2021.102802_b27
Siddiqi (10.1016/j.ipm.2021.102802_b34) 2015; 109
Patwardhan (10.1016/j.ipm.2021.102802_b30) 2019
Awad (10.1016/j.ipm.2021.102802_b4) 2017
Parra (10.1016/j.ipm.2021.102802_b29) 2018
Sandesh (10.1016/j.ipm.2021.102802_b33) 2017; 11
Spolaôr (10.1016/j.ipm.2021.102802_b35) 2020; 90
10.1016/j.ipm.2021.102802_b44
10.1016/j.ipm.2021.102802_b41
Kaavya (10.1016/j.ipm.2021.102802_b19) 2015
Nabati (10.1016/j.ipm.2021.102802_b28) 2020; 57
Maree (10.1016/j.ipm.2021.102802_b25) 2020; 26
Radha (10.1016/j.ipm.2021.102802_b31) 2016
Campos (10.1016/j.ipm.2021.102802_b7) 2020; 509
Rose (10.1016/j.ipm.2021.102802_b32) 2010
Friedman (10.1016/j.ipm.2021.102802_b13) 1937; 32
Koka (10.1016/j.ipm.2021.102802_b21) 2020
Turcu (10.1016/j.ipm.2021.102802_b39) 2019
References_xml – start-page: 701
  year: 2020
  end-page: 708
  ident: b14
  article-title: A generic approach for video indexing
  publication-title: Proceeding of the international conference on computer networks, big data and IoT
– volume: 45
  start-page: 615
  year: 2009
  end-page: 630
  ident: b24
  article-title: Multimedia surrogates for video gisting: Toward combining spoken words and imagery
  publication-title: Information Processing & Management
– reference: Xi, Y. T., Paulik, M., Gadde, V. R. R., & Sankar, A. (2013). KPCatcher-a keyphrase extraction system for enterprise videos. In
– reference: (pp. 117–126).
– start-page: 3
  year: 2017
  end-page: 4
  ident: b4
  article-title: Video indexing, search, detection, and description with focus on TRECVID
  publication-title: Proceedings of the 2017 ACM on international conference on multimedia retrieval
– reference: (pp. 404–411).
– reference: (pp. 1–5).
– volume: 12
  start-page: 94
  year: 2020
  ident: b12
  article-title: COVID-19 epidemic as E-learning boost? Chronological development and effects at an Austrian university against the background of the concept of E-learning readiness
  publication-title: Future Internet
– start-page: 222
  year: 2018
  end-page: 232
  ident: b29
  article-title: Automatic tag recommendation for software development video tutorials
  publication-title: Proceedings of the 26th conference on program comprehension
– year: 2019
  ident: b39
  article-title: Video transcript indexing and retrieval procedure
  publication-title: International conference on software, telecommunications and computer networks
– year: 2020
  ident: b36
  article-title: Automated analysis and indexing of lecture videos
– start-page: 54
  year: 2011
  end-page: 61
  ident: b43
  article-title: Lecture video indexing and analysis using video ocr technology
  publication-title: 2011 Seventh international conference on signal image technology & internet-based systems
– reference: Zesch, T., & Gurevych, I. (2009). Approximate matching for evaluating keyphrase extraction. In
– start-page: 1
  year: 2010
  end-page: 20
  ident: b32
  article-title: Automatic keyword extraction from individual documents
  publication-title: Text mining
– volume: 13
  start-page: 600
  year: 2004
  end-page: 612
  ident: b40
  article-title: Image quality assessment: from error visibility to structural similarity
  publication-title: IEEE Transactions on Image Processing
– start-page: 162
  year: 2020
  end-page: 165
  ident: b21
  article-title: Automatic identification of keywords in lecture video segments
  publication-title: 2020 IEEE international symposium on multimedia
– start-page: 117
  year: 2012
  end-page: 120
  ident: b17
  article-title: Semantic tags for lecture videos
  publication-title: 2012 IEEE sixth international conference on semantic computing
– start-page: 37
  year: 2014
  end-page: 43
  ident: b5
  article-title: LectureKhoj: automatic tagging and semantic segmentation of online lecture videos
  publication-title: 2014 Seventh international conference on contemporary computing
– volume: 46
  start-page: 295
  year: 2010
  end-page: 307
  ident: b16
  article-title: Automatic index construction for multimedia digital libraries
  publication-title: Information Processing & Management
– year: 2015
  ident: b38
  article-title: Automated lecture video indexing with text analysis and machine learning
– year: 2019
  ident: b18
  article-title: Content-based video indexing and retrieval using Corr-LDA
– volume: 57
  start-page: 142
  year: 2014
  end-page: 154
  ident: b42
  article-title: Content based lecture video retrieval using speech and video text information
  publication-title: IEEE Transactions on Learning Technologies
– volume: 26
  start-page: 24
  year: 2020
  end-page: 54
  ident: b25
  article-title: Multimedia context interpretation: a semantics-based cooperative indexing approach
  publication-title: New Review of Hypermedia and Multimedia
– reference: (pp. 1906–1910).
– volume: 90
  year: 2020
  ident: b35
  article-title: A systematic review on content-based video retrieval
  publication-title: Engineering Applications of Artificial Intelligence
– start-page: 1
  year: 2015
  end-page: 5
  ident: b19
  article-title: Multimedia indexing and retrieval: Recent research work and their challenges
  publication-title: 2015 3rd international conference on signal processing, communication and networking
– reference: Danesh, S., Sumner, T., & Martin, J. H. (2015). Sgrank: Combining statistical and graphical methods to improve the state of the art in unsupervised keyphrase extraction. In
– reference: Dorai, C., Farrell, R., Katriel, A., Kofman, G., Li, Y., & Park, Y. (2006). MAGICAL demonstration: System for automated metadata generation for instructional content. In
– reference: (pp. 491–492).
– start-page: 271
  year: 2019
  end-page: 276
  ident: b30
  article-title: Vitag: Automatic video tagging using segmentation and conceptual inference
  publication-title: 2019 IEEE fifth international conference on multimedia big data
– volume: 45
  start-page: 200
  year: 2009
  end-page: 215
  ident: b8
  article-title: On-line learning performance and computer anxiety measure for unemployed adult novices using a grey relation entropy method
  publication-title: Information Processing & Management
– volume: 509
  start-page: 257
  year: 2020
  end-page: 289
  ident: b7
  article-title: YAKE! keyword extraction from single documents using multiple local features
  publication-title: Information Sciences
– volume: 102
  start-page: 67
  year: 2000
  end-page: 86
  ident: b2
  article-title: Evaluating E-learning systems success: An empirical study
  publication-title: Computers in Human Behavior
– reference: Mihalcea, R., & Tarau, P. (2004). Textrank: Bringing order into text. In
– start-page: 1150
  year: 1999
  end-page: 1157
  ident: b23
  article-title: Object recognition from local scale-invariant features
  publication-title: Proceedings of the seventh ieee international conference on computer vision, Vol. 2
– start-page: 1
  year: 2016
  end-page: 6
  ident: b31
  article-title: Video retrieval using speech and text in video
  publication-title: 2016 International conference on inventive computation technologies, vol. 2
– volume: 32
  start-page: 675
  year: 1937
  end-page: 701
  ident: b13
  article-title: The use of ranks to avoid the assumption of normality implicit in the analysis of variance
  publication-title: Journal of the American Statistical Association
– volume: 11
  start-page: 1024
  year: 2017
  end-page: 1028
  ident: b33
  article-title: Lecture video indexing and retrieval using topic keywords
  publication-title: International Journal of Computer and Information Engineering
– volume: 109
  year: 2015
  ident: b34
  article-title: Keyword and keyphrase extraction techniques: a literature review
  publication-title: International Journal of Computer Applications
– year: 2020
  ident: b10
  article-title: The impact of semantic annotation techniques on content-based video lecture recommendation
  publication-title: Journal of Information Science
– reference: Hulth, A. (2004). Improved automatic keyword extraction given more linguistic knowledge. In
– start-page: 569
  year: 2019
  end-page: 573
  ident: b26
  article-title: Qualitative evaluation of ASR adaptation in a lecture context: Application to the PASTEL corpus
  publication-title: INTERSPEECH
– start-page: 1
  year: 2021
  end-page: 24
  ident: b3
  article-title: A novel cluster-based approach for keyphrase extraction from MOOC video lectures
  publication-title: Knowledge and Information Systems
– start-page: 241
  year: 2010
  end-page: 250
  ident: b1
  article-title: Talkminer: a lecture webcast search engine
  publication-title: Proceedings of the 18th ACM international conference on multimedia
– volume: 58
  year: 2021
  ident: b45
  article-title: Pyramid regional graph representation learning for content-based video retrieval
  publication-title: Information Processing & Management
– reference: (pp. 216–23).
– volume: 71
  start-page: 8
  year: 2016
  end-page: 15
  ident: b20
  article-title: Assisted keyword indexing for lecture videos using unsupervised keyword spotting
  publication-title: Pattern Recognition Letters
– reference: Taguchi, G. (1978). Off-line and on-line quality control systems. In
– reference: (pp. 484–489).
– volume: 57
  year: 2020
  ident: b28
  article-title: Multi-sentence video captioning using content-oriented beam searching and multi-stage refining algorithm
  publication-title: Information Processing & Management
– start-page: 1
  year: 2012
  end-page: 10
  ident: b6
  article-title: Automatic keyphrase extraction and segmentation of video lectures
  publication-title: In 2012 IEEE international conference on technology enhanced education
– volume: 19
  start-page: 538
  year: 2010
  end-page: 548
  ident: b22
  article-title: A supervised framework for keyword extraction from meeting transcripts
  publication-title: IEEE Transactions on Audio, Speech, and Language Processing
– start-page: 162
  year: 2020
  ident: 10.1016/j.ipm.2021.102802_b21
  article-title: Automatic identification of keywords in lecture video segments
– year: 2020
  ident: 10.1016/j.ipm.2021.102802_b10
  article-title: The impact of semantic annotation techniques on content-based video lecture recommendation
  publication-title: Journal of Information Science
– start-page: 701
  year: 2020
  ident: 10.1016/j.ipm.2021.102802_b14
  article-title: A generic approach for video indexing
– start-page: 37
  year: 2014
  ident: 10.1016/j.ipm.2021.102802_b5
  article-title: LectureKhoj: automatic tagging and semantic segmentation of online lecture videos
– volume: 19
  start-page: 538
  issue: 3
  year: 2010
  ident: 10.1016/j.ipm.2021.102802_b22
  article-title: A supervised framework for keyword extraction from meeting transcripts
  publication-title: IEEE Transactions on Audio, Speech, and Language Processing
  doi: 10.1109/TASL.2010.2052119
– start-page: 1
  year: 2012
  ident: 10.1016/j.ipm.2021.102802_b6
  article-title: Automatic keyphrase extraction and segmentation of video lectures
– ident: 10.1016/j.ipm.2021.102802_b15
  doi: 10.3115/1119355.1119383
– start-page: 1
  year: 2015
  ident: 10.1016/j.ipm.2021.102802_b19
  article-title: Multimedia indexing and retrieval: Recent research work and their challenges
– ident: 10.1016/j.ipm.2021.102802_b9
  doi: 10.18653/v1/S15-1013
– volume: 11
  start-page: 1024
  issue: 9
  year: 2017
  ident: 10.1016/j.ipm.2021.102802_b33
  article-title: Lecture video indexing and retrieval using topic keywords
  publication-title: International Journal of Computer and Information Engineering
– volume: 71
  start-page: 8
  year: 2016
  ident: 10.1016/j.ipm.2021.102802_b20
  article-title: Assisted keyword indexing for lecture videos using unsupervised keyword spotting
  publication-title: Pattern Recognition Letters
  doi: 10.1016/j.patrec.2015.11.012
– volume: 26
  start-page: 24
  issue: 1–2
  year: 2020
  ident: 10.1016/j.ipm.2021.102802_b25
  article-title: Multimedia context interpretation: a semantics-based cooperative indexing approach
  publication-title: New Review of Hypermedia and Multimedia
  doi: 10.1080/13614568.2020.1745904
– ident: 10.1016/j.ipm.2021.102802_b27
– volume: 102
  start-page: 67
  year: 2000
  ident: 10.1016/j.ipm.2021.102802_b2
  article-title: Evaluating E-learning systems success: An empirical study
  publication-title: Computers in Human Behavior
  doi: 10.1016/j.chb.2019.08.004
– start-page: 569
  year: 2019
  ident: 10.1016/j.ipm.2021.102802_b26
  article-title: Qualitative evaluation of ASR adaptation in a lecture context: Application to the PASTEL corpus
– start-page: 54
  year: 2011
  ident: 10.1016/j.ipm.2021.102802_b43
  article-title: Lecture video indexing and analysis using video ocr technology
– volume: 12
  start-page: 94
  year: 2020
  ident: 10.1016/j.ipm.2021.102802_b12
  article-title: COVID-19 epidemic as E-learning boost? Chronological development and effects at an Austrian university against the background of the concept of E-learning readiness
  publication-title: Future Internet
  doi: 10.3390/fi12060094
– start-page: 3
  year: 2017
  ident: 10.1016/j.ipm.2021.102802_b4
  article-title: Video indexing, search, detection, and description with focus on TRECVID
– year: 2019
  ident: 10.1016/j.ipm.2021.102802_b39
  article-title: Video transcript indexing and retrieval procedure
– start-page: 117
  year: 2012
  ident: 10.1016/j.ipm.2021.102802_b17
  article-title: Semantic tags for lecture videos
– volume: 509
  start-page: 257
  year: 2020
  ident: 10.1016/j.ipm.2021.102802_b7
  article-title: YAKE! keyword extraction from single documents using multiple local features
  publication-title: Information Sciences
  doi: 10.1016/j.ins.2019.09.013
– start-page: 1150
  year: 1999
  ident: 10.1016/j.ipm.2021.102802_b23
  article-title: Object recognition from local scale-invariant features
– year: 2020
  ident: 10.1016/j.ipm.2021.102802_b36
– volume: 45
  start-page: 200
  issue: 2
  year: 2009
  ident: 10.1016/j.ipm.2021.102802_b8
  article-title: On-line learning performance and computer anxiety measure for unemployed adult novices using a grey relation entropy method
  publication-title: Information Processing & Management
  doi: 10.1016/j.ipm.2008.12.001
– volume: 46
  start-page: 295
  issue: 3
  year: 2010
  ident: 10.1016/j.ipm.2021.102802_b16
  article-title: Automatic index construction for multimedia digital libraries
  publication-title: Information Processing & Management
  doi: 10.1016/j.ipm.2009.10.006
– year: 2015
  ident: 10.1016/j.ipm.2021.102802_b38
– volume: 13
  start-page: 600
  issue: 4
  year: 2004
  ident: 10.1016/j.ipm.2021.102802_b40
  article-title: Image quality assessment: from error visibility to structural similarity
  publication-title: IEEE Transactions on Image Processing
  doi: 10.1109/TIP.2003.819861
– year: 2019
  ident: 10.1016/j.ipm.2021.102802_b18
– start-page: 1
  year: 2016
  ident: 10.1016/j.ipm.2021.102802_b31
  article-title: Video retrieval using speech and text in video
– start-page: 1
  year: 2021
  ident: 10.1016/j.ipm.2021.102802_b3
  article-title: A novel cluster-based approach for keyphrase extraction from MOOC video lectures
  publication-title: Knowledge and Information Systems
– ident: 10.1016/j.ipm.2021.102802_b44
– volume: 90
  year: 2020
  ident: 10.1016/j.ipm.2021.102802_b35
  article-title: A systematic review on content-based video retrieval
  publication-title: Engineering Applications of Artificial Intelligence
  doi: 10.1016/j.engappai.2020.103557
– volume: 57
  start-page: 142
  issue: 2
  year: 2014
  ident: 10.1016/j.ipm.2021.102802_b42
  article-title: Content based lecture video retrieval using speech and video text information
  publication-title: IEEE Transactions on Learning Technologies
  doi: 10.1109/TLT.2014.2307305
– volume: 58
  issue: 3
  year: 2021
  ident: 10.1016/j.ipm.2021.102802_b45
  article-title: Pyramid regional graph representation learning for content-based video retrieval
  publication-title: Information Processing & Management
  doi: 10.1016/j.ipm.2020.102488
– volume: 45
  start-page: 615
  issue: 6
  year: 2009
  ident: 10.1016/j.ipm.2021.102802_b24
  article-title: Multimedia surrogates for video gisting: Toward combining spoken words and imagery
  publication-title: Information Processing & Management
  doi: 10.1016/j.ipm.2009.05.007
– start-page: 1
  year: 2010
  ident: 10.1016/j.ipm.2021.102802_b32
  article-title: Automatic keyword extraction from individual documents
– ident: 10.1016/j.ipm.2021.102802_b11
  doi: 10.1145/1180639.1180740
– volume: 32
  start-page: 675
  issue: 200
  year: 1937
  ident: 10.1016/j.ipm.2021.102802_b13
  article-title: The use of ranks to avoid the assumption of normality implicit in the analysis of variance
  publication-title: Journal of the American Statistical Association
  doi: 10.1080/01621459.1937.10503522
– volume: 57
  issue: 6
  year: 2020
  ident: 10.1016/j.ipm.2021.102802_b28
  article-title: Multi-sentence video captioning using content-oriented beam searching and multi-stage refining algorithm
  publication-title: Information Processing & Management
  doi: 10.1016/j.ipm.2020.102302
– start-page: 222
  year: 2018
  ident: 10.1016/j.ipm.2021.102802_b29
  article-title: Automatic tag recommendation for software development video tutorials
– ident: 10.1016/j.ipm.2021.102802_b41
  doi: 10.21437/Interspeech.2013-462
– start-page: 241
  year: 2010
  ident: 10.1016/j.ipm.2021.102802_b1
  article-title: Talkminer: a lecture webcast search engine
– start-page: 271
  year: 2019
  ident: 10.1016/j.ipm.2021.102802_b30
  article-title: Vitag: Automatic video tagging using segmentation and conceptual inference
– volume: 109
  issue: 2
  year: 2015
  ident: 10.1016/j.ipm.2021.102802_b34
  article-title: Keyword and keyphrase extraction techniques: a literature review
  publication-title: International Journal of Computer Applications
  doi: 10.5120/19161-0607
– ident: 10.1016/j.ipm.2021.102802_b37
SSID ssj0004512
Score 2.391117
Snippet Due to the growth of technology, the expansion of communication infrastructure and crises of COVID-19 pandemic, e-learning and virtual education is expanding....
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 102802
SubjectTerms Algorithms
Audio signals
COVID-19
Data mining
Distance learning
Frames (data processing)
Indexing
Information processing
Keyphrase extraction
Keyword extraction
Multimedia indexing
Recall
Statistical tests
Text mining
Video
Video lecture indexing
Title LVTIA: A new method for keyphrase extraction from scientific video lectures
URI https://dx.doi.org/10.1016/j.ipm.2021.102802
https://www.proquest.com/docview/2641590506
Volume 59
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PT8IwFG4IXrwYf0YUSA_Gg8mk3dqu80aIBMRwEQy3pl27BEOAAF79223XzqgxHLwubbN8fe_12_q-9wC4Kct0c2WinFAaWf5PIskVjVhcZBphzbgusy3GbDAlTzM6q4FepYVxaZUh9vuYXkbr8KQT0Oys5_POi2O7hKZOhGK_rbKZU7CT1Fn5_Qf-VjEch5sEFrnR1c1mmeM1XzsxeoxdAQMe_qz8cTb9itLl0dM_BkeBM8Kuf60TUDPLU9AKigN4C4OkyEEMg6-egdHz62TYfYBdaIkz9I2ioR0HrdfaDbSHF7RxeeN1DdCpTKAXR7rcIejUeSu48BcM23Mw7T9OeoModE6I8iTDu0gZHhOaS0TyrLAMzRAjMS8YUjktGKfE6BTLmDBGlbRuaQhGGsmCyDSlJtHJBagvV0tzCSDXOTZM09jIlHDGpMyUZqlKmEJJmugGQBVmIg9lxV13i4Wo8sfehIVZOJiFh7kB7r6mrH1NjX2DSbUR4odhCBvz901rVpsmglduhSV_lr0hitjV_1a9Boexkz-UOWhNUN9t3k3LkpKdapdW1wYH3eFoMP4Eywve0Q
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLbGdoAL4ikeG-SAOCBVS9skTblNE2hjYxc2tFuUNKk0hLZpG_-fpE0RILQD1yqJKju2v9b-bICbok03VybICKWBxf8kkFzRgEV5qnGoGddFtcWI9SbkaUqnNehWXBhXVul9f-nTC2_tn7S9NNvL2az94tAuoYkjodhvq3S6Aw3XnYrWodHpD3qjb03DQ59MYIHbUCU3izKv2dLx0aPQ9TDg_ufKH-Hpl6Muos_jAex72Ig65ZsdQs3Mj6DlSQfoFnlWkZMy8uZ6DIPh67jfuUcdZLEzKmdFI7sOWcO1OrTxC1nXvCqpDcgRTVDJj3TlQ8gR9BbovcwxrE9g8vgw7vYCPzwhyOI03ATK8IjQTGKSpbkFaYYYGfKcYZXRnHFKjE5CGRHGqJLWMg0JscYyJzJJqIl1fAr1-WJuzgBxnYWGaRoZmRDOmJSp0ixRMVM4TmJ9DriSmch8Z3E34OJdVCVkb8KKWTgxi1LM53D3tWVZttXYtphUihA_7oawbn_btmalNOENcy0s_rMADlPMLv536jXs9sbPQzHsjwaXsBc5NkRRktaE-mb1YVoWo2zUlb-Dn3ww4YI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=LVTIA%3A+A+new+method+for+keyphrase+extraction+from+scientific+video+lectures&rft.jtitle=Information+processing+%26+management&rft.au=Hassani%2C+Hamid&rft.au=Ershadi%2C+Mohammad+Javad&rft.au=Mohebi%2C+Azadeh&rft.date=2022-03-01&rft.pub=Elsevier+Science+Ltd&rft.issn=0306-4573&rft.eissn=1873-5371&rft.volume=59&rft.issue=2&rft.spage=1&rft_id=info:doi/10.1016%2Fj.ipm.2021.102802&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0306-4573&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0306-4573&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0306-4573&client=summon