LVTIA: A new method for keyphrase extraction from scientific video lectures
Due to the growth of technology, the expansion of communication infrastructure and crises of COVID-19 pandemic, e-learning and virtual education is expanding. One of the best ways to access and organize these information is indexing using automatic intelligent methods. Indexing requires assigning ke...
Saved in:
Published in | Information processing & management Vol. 59; no. 2; p. 102802 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Oxford
Elsevier Ltd
01.03.2022
Elsevier Science Ltd |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Due to the growth of technology, the expansion of communication infrastructure and crises of COVID-19 pandemic, e-learning and virtual education is expanding. One of the best ways to access and organize these information is indexing using automatic intelligent methods. Indexing requires assigning keywords or keyphrases to each video, to represent its content. The main focus of this research is to propose an approach by which appropriate keyphrases are assigned to scientific video lectures. For this purpose, a new algorithm called LVTIA, Lecture Video Text mining-base Indexing Algorithm, is proposed in which the textual content of video frames along with the text extracted from audio signal are merged together, and a new keyphrase extraction method is proposed. The proposed method considers new local and global features for each candidate phrases, along with a new feature reflecting the occurrence of each phrase in the audio signals or video frames. The method is implemented using five distinct data sets in English and Persian. The results are evaluated based on precision, recall, F1-measure and MAP@K metrics and compared with some of the well-known keyphrase extraction algorithms. Based on the results, the best MAP@K for English videos is related to LVTIA algorithm with the values of, 0.7912, 0.8069, 0.8069 for k=5,10,15, respectively. In addition, LVTIA is able to provide best MAP@K for Persian videos which are 0.6367, 0.6866, 0.6874 for k=5,10,15, respectively. According to Friedman nonparametric statistical test, the performance of different algorithms in precision, recall, F1-measure metrics, are statistically different from LVTIA as well.
•LVTIA is a new method for video lecture indexing using statistical features.•The text extracted from audio and video frames are considered to extract keyphrases.•LVTIA uses global and local features for candidate phrases, using video time intervals.•The proposed algorithm is evaluated based on precision, recall, f-measure and MAP@K.•LVTIA is tested on five datasets with different languages (English and Persian). |
---|---|
AbstractList | Due to the growth of technology, the expansion of communication infrastructure and crises of COVID-19 pandemic, e-learning and virtual education is expanding. One of the best ways to access and organize these information is indexing using automatic intelligent methods. Indexing requires assigning keywords or keyphrases to each video, to represent its content. The main focus of this research is to propose an approach by which appropriate keyphrases are assigned to scientific video lectures. For this purpose, a new algorithm called LVTIA, Lecture Video Text mining-base Indexing Algorithm, is proposed in which the textual content of video frames along with the text extracted from audio signal are merged together, and a new keyphrase extraction method is proposed. The proposed method considers new local and global features for each candidate phrases, along with a new feature reflecting the occurrence of each phrase in the audio signals or video frames. The method is implemented using five distinct data sets in English and Persian. The results are evaluated based on precision, recall, F1-measure and MAP@K metrics and compared with some of the well-known keyphrase extraction algorithms. Based on the results, the best MAP@K for English videos is related to LVTIA algorithm with the values of, 0.7912, 0.8069, 0.8069 for k = 5, 10, 15, respectively. In addition, LVTIA is able to provide best MAP@K for Persian videos which are 0.6367, 0.6866, 0.6874 for k = 5, 10, 15, respectively. According to Friedman nonparametric statistical test, the performance of different algorithms in precision, recall, F1-measure metrics, are statistically different from LVTIA as well. Due to the growth of technology, the expansion of communication infrastructure and crises of COVID-19 pandemic, e-learning and virtual education is expanding. One of the best ways to access and organize these information is indexing using automatic intelligent methods. Indexing requires assigning keywords or keyphrases to each video, to represent its content. The main focus of this research is to propose an approach by which appropriate keyphrases are assigned to scientific video lectures. For this purpose, a new algorithm called LVTIA, Lecture Video Text mining-base Indexing Algorithm, is proposed in which the textual content of video frames along with the text extracted from audio signal are merged together, and a new keyphrase extraction method is proposed. The proposed method considers new local and global features for each candidate phrases, along with a new feature reflecting the occurrence of each phrase in the audio signals or video frames. The method is implemented using five distinct data sets in English and Persian. The results are evaluated based on precision, recall, F1-measure and MAP@K metrics and compared with some of the well-known keyphrase extraction algorithms. Based on the results, the best MAP@K for English videos is related to LVTIA algorithm with the values of, 0.7912, 0.8069, 0.8069 for k=5,10,15, respectively. In addition, LVTIA is able to provide best MAP@K for Persian videos which are 0.6367, 0.6866, 0.6874 for k=5,10,15, respectively. According to Friedman nonparametric statistical test, the performance of different algorithms in precision, recall, F1-measure metrics, are statistically different from LVTIA as well. •LVTIA is a new method for video lecture indexing using statistical features.•The text extracted from audio and video frames are considered to extract keyphrases.•LVTIA uses global and local features for candidate phrases, using video time intervals.•The proposed algorithm is evaluated based on precision, recall, f-measure and MAP@K.•LVTIA is tested on five datasets with different languages (English and Persian). |
ArticleNumber | 102802 |
Author | Hassani, Hamid Ershadi, Mohammad Javad Mohebi, Azadeh |
Author_xml | – sequence: 1 givenname: Hamid surname: Hassani fullname: Hassani, Hamid – sequence: 2 givenname: Mohammad Javad surname: Ershadi fullname: Ershadi, Mohammad Javad – sequence: 3 givenname: Azadeh orcidid: 0000-0002-6443-7450 surname: Mohebi fullname: Mohebi, Azadeh email: mohebi@irandoc.ac.ir |
BookMark | eNp9kE1PAjEQhhuDiYD-AG9NPC9Ou-1-6IkQP4gkXtBrU7rTUGS32C4o_95FPHngNJnkfWbyPgPSa3yDhFwzGDFg2e1q5Db1iANn3c4L4Gekz4o8TWSasx7pQwpZImSeXpBBjCsAEJLxPnmZvc-n4zs6pg1-0Rrbpa-o9YF-4H6zDDoixe82aNM631AbfE2jcdi0zjpDd65CT9do2m3AeEnOrV5HvPqbQ_L2-DCfPCez16fpZDxLTFqyNllgwYU0GoQpbZlyFKhZYTNYGGmzQgqscqa5yDK50CAZCgYVaCt0nktMq3RIbo53N8F_bjG2auW3oeleKp4JJkuQkHWp_JgywccY0CrjWn2o0dVxa8VAHcyplerMqYM5dTTXkewfuQmu1mF_krk_MtgV3zkM6leTwcqFTo-qvDtB_wBlGIdh |
CitedBy_id | crossref_primary_10_25726_g4069_4282_8334_s crossref_primary_10_1002_pra2_1040 crossref_primary_10_1515_jisys_2023_0300 crossref_primary_10_1016_j_ipm_2022_103141 crossref_primary_10_1016_j_ipm_2023_103375 crossref_primary_10_1016_j_cie_2022_108940 crossref_primary_10_1016_j_jksuci_2023_101594 crossref_primary_10_1109_TLT_2022_3216535 crossref_primary_10_1016_j_ipm_2023_103614 crossref_primary_10_1108_LHT_02_2023_0074 crossref_primary_10_1016_j_ipm_2024_103877 |
Cites_doi | 10.1109/TASL.2010.2052119 10.3115/1119355.1119383 10.18653/v1/S15-1013 10.1016/j.patrec.2015.11.012 10.1080/13614568.2020.1745904 10.1016/j.chb.2019.08.004 10.3390/fi12060094 10.1016/j.ins.2019.09.013 10.1016/j.ipm.2008.12.001 10.1016/j.ipm.2009.10.006 10.1109/TIP.2003.819861 10.1016/j.engappai.2020.103557 10.1109/TLT.2014.2307305 10.1016/j.ipm.2020.102488 10.1016/j.ipm.2009.05.007 10.1145/1180639.1180740 10.1080/01621459.1937.10503522 10.1016/j.ipm.2020.102302 10.21437/Interspeech.2013-462 10.5120/19161-0607 |
ContentType | Journal Article |
Copyright | 2021 Copyright Elsevier Science Ltd. Mar 2022 |
Copyright_xml | – notice: 2021 – notice: Copyright Elsevier Science Ltd. Mar 2022 |
DBID | AAYXX CITATION E3H F2A |
DOI | 10.1016/j.ipm.2021.102802 |
DatabaseName | CrossRef Library & Information Sciences Abstracts (LISA) Library & Information Science Abstracts (LISA) |
DatabaseTitle | CrossRef Library and Information Science Abstracts (LISA) |
DatabaseTitleList | Library and Information Science Abstracts (LISA) |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Library & Information Science |
EISSN | 1873-5371 |
ExternalDocumentID | 10_1016_j_ipm_2021_102802 S030645732100279X |
GroupedDBID | --K --M -~X .DC .~1 0B8 0R~ 1B1 1RT 1~. 1~5 29I 4.4 41~ 457 4G. 5GY 5VS 7-5 71M 77K 8P~ 9JN 9JO AABNK AACTN AAEDT AAEDW AAFJI AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN AAYOK ABBOA ABFNM ABFRF ABJNI ABMAC ABMMH ABPPZ ABXDB ABYKQ ACDAQ ACGFS ACHQT ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD AEBSH AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV AKYCK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOMHK AOUOD ASPBG AVARZ AVWKF AXJTR AZFZN BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GBOLZ HLZ HMY HVGLF HZ~ H~9 IHE J1W KOM LG9 LPU LY1 M3Y M41 MO0 MS~ MVM N9A O-L O9- OAUVE OHT OZT P-8 P-9 P2P PC. PQQKQ PRBVW Q38 R2- RIG ROL RPZ SBC SDF SDG SDP SDS SES SEW SPC SPCBC SSB SSO SSS SSV SSZ T5K TN5 U5U UHB UHS UNMZH WUQ XFK ZMT ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADMHG ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH E3H EFKBS F2A |
ID | FETCH-LOGICAL-c391t-be8245ca04c9f932e4ea18f60bc5f6854ed71a24665ba051e410d0af4a775e3d3 |
IEDL.DBID | .~1 |
ISSN | 0306-4573 |
IngestDate | Mon Jul 14 10:46:38 EDT 2025 Tue Jul 01 00:44:34 EDT 2025 Thu Apr 24 22:52:25 EDT 2025 Fri Feb 23 02:41:53 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | Multimedia indexing Text mining Keyword extraction Keyphrase extraction Video lecture indexing |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c391t-be8245ca04c9f932e4ea18f60bc5f6854ed71a24665ba051e410d0af4a775e3d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-6443-7450 |
PQID | 2641590506 |
PQPubID | 46166 |
ParticipantIDs | proquest_journals_2641590506 crossref_citationtrail_10_1016_j_ipm_2021_102802 crossref_primary_10_1016_j_ipm_2021_102802 elsevier_sciencedirect_doi_10_1016_j_ipm_2021_102802 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | March 2022 2022-03-00 20220301 |
PublicationDateYYYYMMDD | 2022-03-01 |
PublicationDate_xml | – month: 03 year: 2022 text: March 2022 |
PublicationDecade | 2020 |
PublicationPlace | Oxford |
PublicationPlace_xml | – name: Oxford |
PublicationTitle | Information processing & management |
PublicationYear | 2022 |
Publisher | Elsevier Ltd Elsevier Science Ltd |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier Science Ltd |
References | Gayathri, Mahesh (b14) 2020 Mihalcea, R., & Tarau, P. (2004). Textrank: Bringing order into text. In Danesh, S., Sumner, T., & Martin, J. H. (2015). Sgrank: Combining statistical and graphical methods to improve the state of the art in unsupervised keyphrase extraction. In Mdhaffar, Estève, Hernandez, Laurent, Dufour, Quiniou (b26) 2019 Dorai, C., Farrell, R., Katriel, A., Kofman, G., Li, Y., & Park, Y. (2006). MAGICAL demonstration: System for automated metadata generation for instructional content. In Maree (b25) 2020; 26 Ebner, Schön, Braun, Ebner, Grigoriadis, Haas (b12) 2020; 12 Liu, Liu, Liu (b22) 2010; 19 (pp. 1–5). Yang, Meinel (b42) 2014; 57 Sandesh, Jirgi, Vidya, Eljer, Srinivasa (b33) 2017; 11 Spolaôr, Lee, Takaki, Ensina, Coy, Wu (b35) 2020; 90 Marchionini, Song, Farrell (b24) 2009; 45 Tuna (b38) 2015 (pp. 484–489). Campos, Mangaravite, Pasquali, Jorge, Nunes, Jatowt (b7) 2020; 509 Koka, Chowdhury, Rahman, Solorio, Subhlok (b21) 2020 (pp. 404–411). (pp. 1906–1910). Patwardhan, Das, Varshney, Desarkar, Dogra (b30) 2019 Chou, Tsai (b8) 2009; 45 Kaavya, LakshmiPriya (b19) 2015 Taguchi, G. (1978). Off-line and on-line quality control systems. In (pp. 491–492). Iyer, Parekh, Mohandoss, Ramsurat, Raj, Singh (b18) 2019 (pp. 117–126). Friedman (b13) 1937; 32 Awad, Le, Ngo, Nguyen, Quenot, Snoek (b4) 2017 Radha (b31) 2016 Nabati, Behrad (b28) 2020; 57 Lowe (b23) 1999 Siddiqi, Sharan (b34) 2015; 109 Hulth, A. (2004). Improved automatic keyword extraction given more linguistic knowledge. In Adcock, Cooper, Denoue, Pirsiavash, Rowe (b1) 2010 (pp. 216–23). Baidya, Goel (b5) 2014 Balagopalan, Balasubramanian, Balasubramanian, Chandrasekharan, Damodar (b6) 2012 Dias, Barrére, de Souza (b10) 2020 Wang, Bovik, Sheikh, Simoncelli (b40) 2004; 13 Zhao, Zhang, Li, Liu, Zhang, Wen (b45) 2021; 58 Parra, Escobar-Avila, Haiduc (b29) 2018 Hwang, Yang, Ting (b16) 2010; 46 Turcu, Mihaescu, Heras, Palanca, Turcu (b39) 2019 Zesch, T., & Gurevych, I. (2009). Approximate matching for evaluating keyphrase extraction. In Sreepathy (b36) 2020 Imran, Rahadianti, Cheikh, Yayilgan (b17) 2012 Rose, Engel, Cramer, Cowley (b32) 2010 Xi, Y. T., Paulik, M., Gadde, V. R. R., & Sankar, A. (2013). KPCatcher-a keyphrase extraction system for enterprise videos. In Albahr, Che, Albahar (b3) 2021 Al-Fraihat, Joy, Sinclair (b2) 2000; 102 Yang, Siebert, Luhne, Sack, Meinel (b43) 2011 Kanadje, Miller, Agarwal, Gaborski, Zanibbi, Ludi (b20) 2016; 71 Adcock (10.1016/j.ipm.2021.102802_b1) 2010 Zhao (10.1016/j.ipm.2021.102802_b45) 2021; 58 Gayathri (10.1016/j.ipm.2021.102802_b14) 2020 Marchionini (10.1016/j.ipm.2021.102802_b24) 2009; 45 Sreepathy (10.1016/j.ipm.2021.102802_b36) 2020 Yang (10.1016/j.ipm.2021.102802_b42) 2014; 57 10.1016/j.ipm.2021.102802_b15 10.1016/j.ipm.2021.102802_b37 Imran (10.1016/j.ipm.2021.102802_b17) 2012 Liu (10.1016/j.ipm.2021.102802_b22) 2010; 19 10.1016/j.ipm.2021.102802_b11 Ebner (10.1016/j.ipm.2021.102802_b12) 2020; 12 Balagopalan (10.1016/j.ipm.2021.102802_b6) 2012 Tuna (10.1016/j.ipm.2021.102802_b38) 2015 Iyer (10.1016/j.ipm.2021.102802_b18) 2019 Lowe (10.1016/j.ipm.2021.102802_b23) 1999 Albahr (10.1016/j.ipm.2021.102802_b3) 2021 Kanadje (10.1016/j.ipm.2021.102802_b20) 2016; 71 Al-Fraihat (10.1016/j.ipm.2021.102802_b2) 2000; 102 Hwang (10.1016/j.ipm.2021.102802_b16) 2010; 46 Yang (10.1016/j.ipm.2021.102802_b43) 2011 10.1016/j.ipm.2021.102802_b9 Dias (10.1016/j.ipm.2021.102802_b10) 2020 Mdhaffar (10.1016/j.ipm.2021.102802_b26) 2019 Baidya (10.1016/j.ipm.2021.102802_b5) 2014 Chou (10.1016/j.ipm.2021.102802_b8) 2009; 45 Wang (10.1016/j.ipm.2021.102802_b40) 2004; 13 10.1016/j.ipm.2021.102802_b27 Siddiqi (10.1016/j.ipm.2021.102802_b34) 2015; 109 Patwardhan (10.1016/j.ipm.2021.102802_b30) 2019 Awad (10.1016/j.ipm.2021.102802_b4) 2017 Parra (10.1016/j.ipm.2021.102802_b29) 2018 Sandesh (10.1016/j.ipm.2021.102802_b33) 2017; 11 Spolaôr (10.1016/j.ipm.2021.102802_b35) 2020; 90 10.1016/j.ipm.2021.102802_b44 10.1016/j.ipm.2021.102802_b41 Kaavya (10.1016/j.ipm.2021.102802_b19) 2015 Nabati (10.1016/j.ipm.2021.102802_b28) 2020; 57 Maree (10.1016/j.ipm.2021.102802_b25) 2020; 26 Radha (10.1016/j.ipm.2021.102802_b31) 2016 Campos (10.1016/j.ipm.2021.102802_b7) 2020; 509 Rose (10.1016/j.ipm.2021.102802_b32) 2010 Friedman (10.1016/j.ipm.2021.102802_b13) 1937; 32 Koka (10.1016/j.ipm.2021.102802_b21) 2020 Turcu (10.1016/j.ipm.2021.102802_b39) 2019 |
References_xml | – start-page: 701 year: 2020 end-page: 708 ident: b14 article-title: A generic approach for video indexing publication-title: Proceeding of the international conference on computer networks, big data and IoT – volume: 45 start-page: 615 year: 2009 end-page: 630 ident: b24 article-title: Multimedia surrogates for video gisting: Toward combining spoken words and imagery publication-title: Information Processing & Management – reference: Xi, Y. T., Paulik, M., Gadde, V. R. R., & Sankar, A. (2013). KPCatcher-a keyphrase extraction system for enterprise videos. In – reference: (pp. 117–126). – start-page: 3 year: 2017 end-page: 4 ident: b4 article-title: Video indexing, search, detection, and description with focus on TRECVID publication-title: Proceedings of the 2017 ACM on international conference on multimedia retrieval – reference: (pp. 404–411). – reference: (pp. 1–5). – volume: 12 start-page: 94 year: 2020 ident: b12 article-title: COVID-19 epidemic as E-learning boost? Chronological development and effects at an Austrian university against the background of the concept of E-learning readiness publication-title: Future Internet – start-page: 222 year: 2018 end-page: 232 ident: b29 article-title: Automatic tag recommendation for software development video tutorials publication-title: Proceedings of the 26th conference on program comprehension – year: 2019 ident: b39 article-title: Video transcript indexing and retrieval procedure publication-title: International conference on software, telecommunications and computer networks – year: 2020 ident: b36 article-title: Automated analysis and indexing of lecture videos – start-page: 54 year: 2011 end-page: 61 ident: b43 article-title: Lecture video indexing and analysis using video ocr technology publication-title: 2011 Seventh international conference on signal image technology & internet-based systems – reference: Zesch, T., & Gurevych, I. (2009). Approximate matching for evaluating keyphrase extraction. In – start-page: 1 year: 2010 end-page: 20 ident: b32 article-title: Automatic keyword extraction from individual documents publication-title: Text mining – volume: 13 start-page: 600 year: 2004 end-page: 612 ident: b40 article-title: Image quality assessment: from error visibility to structural similarity publication-title: IEEE Transactions on Image Processing – start-page: 162 year: 2020 end-page: 165 ident: b21 article-title: Automatic identification of keywords in lecture video segments publication-title: 2020 IEEE international symposium on multimedia – start-page: 117 year: 2012 end-page: 120 ident: b17 article-title: Semantic tags for lecture videos publication-title: 2012 IEEE sixth international conference on semantic computing – start-page: 37 year: 2014 end-page: 43 ident: b5 article-title: LectureKhoj: automatic tagging and semantic segmentation of online lecture videos publication-title: 2014 Seventh international conference on contemporary computing – volume: 46 start-page: 295 year: 2010 end-page: 307 ident: b16 article-title: Automatic index construction for multimedia digital libraries publication-title: Information Processing & Management – year: 2015 ident: b38 article-title: Automated lecture video indexing with text analysis and machine learning – year: 2019 ident: b18 article-title: Content-based video indexing and retrieval using Corr-LDA – volume: 57 start-page: 142 year: 2014 end-page: 154 ident: b42 article-title: Content based lecture video retrieval using speech and video text information publication-title: IEEE Transactions on Learning Technologies – volume: 26 start-page: 24 year: 2020 end-page: 54 ident: b25 article-title: Multimedia context interpretation: a semantics-based cooperative indexing approach publication-title: New Review of Hypermedia and Multimedia – reference: (pp. 1906–1910). – volume: 90 year: 2020 ident: b35 article-title: A systematic review on content-based video retrieval publication-title: Engineering Applications of Artificial Intelligence – start-page: 1 year: 2015 end-page: 5 ident: b19 article-title: Multimedia indexing and retrieval: Recent research work and their challenges publication-title: 2015 3rd international conference on signal processing, communication and networking – reference: Danesh, S., Sumner, T., & Martin, J. H. (2015). Sgrank: Combining statistical and graphical methods to improve the state of the art in unsupervised keyphrase extraction. In – reference: Dorai, C., Farrell, R., Katriel, A., Kofman, G., Li, Y., & Park, Y. (2006). MAGICAL demonstration: System for automated metadata generation for instructional content. In – reference: (pp. 491–492). – start-page: 271 year: 2019 end-page: 276 ident: b30 article-title: Vitag: Automatic video tagging using segmentation and conceptual inference publication-title: 2019 IEEE fifth international conference on multimedia big data – volume: 45 start-page: 200 year: 2009 end-page: 215 ident: b8 article-title: On-line learning performance and computer anxiety measure for unemployed adult novices using a grey relation entropy method publication-title: Information Processing & Management – volume: 509 start-page: 257 year: 2020 end-page: 289 ident: b7 article-title: YAKE! keyword extraction from single documents using multiple local features publication-title: Information Sciences – volume: 102 start-page: 67 year: 2000 end-page: 86 ident: b2 article-title: Evaluating E-learning systems success: An empirical study publication-title: Computers in Human Behavior – reference: Mihalcea, R., & Tarau, P. (2004). Textrank: Bringing order into text. In – start-page: 1150 year: 1999 end-page: 1157 ident: b23 article-title: Object recognition from local scale-invariant features publication-title: Proceedings of the seventh ieee international conference on computer vision, Vol. 2 – start-page: 1 year: 2016 end-page: 6 ident: b31 article-title: Video retrieval using speech and text in video publication-title: 2016 International conference on inventive computation technologies, vol. 2 – volume: 32 start-page: 675 year: 1937 end-page: 701 ident: b13 article-title: The use of ranks to avoid the assumption of normality implicit in the analysis of variance publication-title: Journal of the American Statistical Association – volume: 11 start-page: 1024 year: 2017 end-page: 1028 ident: b33 article-title: Lecture video indexing and retrieval using topic keywords publication-title: International Journal of Computer and Information Engineering – volume: 109 year: 2015 ident: b34 article-title: Keyword and keyphrase extraction techniques: a literature review publication-title: International Journal of Computer Applications – year: 2020 ident: b10 article-title: The impact of semantic annotation techniques on content-based video lecture recommendation publication-title: Journal of Information Science – reference: Hulth, A. (2004). Improved automatic keyword extraction given more linguistic knowledge. In – start-page: 569 year: 2019 end-page: 573 ident: b26 article-title: Qualitative evaluation of ASR adaptation in a lecture context: Application to the PASTEL corpus publication-title: INTERSPEECH – start-page: 1 year: 2021 end-page: 24 ident: b3 article-title: A novel cluster-based approach for keyphrase extraction from MOOC video lectures publication-title: Knowledge and Information Systems – start-page: 241 year: 2010 end-page: 250 ident: b1 article-title: Talkminer: a lecture webcast search engine publication-title: Proceedings of the 18th ACM international conference on multimedia – volume: 58 year: 2021 ident: b45 article-title: Pyramid regional graph representation learning for content-based video retrieval publication-title: Information Processing & Management – reference: (pp. 216–23). – volume: 71 start-page: 8 year: 2016 end-page: 15 ident: b20 article-title: Assisted keyword indexing for lecture videos using unsupervised keyword spotting publication-title: Pattern Recognition Letters – reference: Taguchi, G. (1978). Off-line and on-line quality control systems. In – reference: (pp. 484–489). – volume: 57 year: 2020 ident: b28 article-title: Multi-sentence video captioning using content-oriented beam searching and multi-stage refining algorithm publication-title: Information Processing & Management – start-page: 1 year: 2012 end-page: 10 ident: b6 article-title: Automatic keyphrase extraction and segmentation of video lectures publication-title: In 2012 IEEE international conference on technology enhanced education – volume: 19 start-page: 538 year: 2010 end-page: 548 ident: b22 article-title: A supervised framework for keyword extraction from meeting transcripts publication-title: IEEE Transactions on Audio, Speech, and Language Processing – start-page: 162 year: 2020 ident: 10.1016/j.ipm.2021.102802_b21 article-title: Automatic identification of keywords in lecture video segments – year: 2020 ident: 10.1016/j.ipm.2021.102802_b10 article-title: The impact of semantic annotation techniques on content-based video lecture recommendation publication-title: Journal of Information Science – start-page: 701 year: 2020 ident: 10.1016/j.ipm.2021.102802_b14 article-title: A generic approach for video indexing – start-page: 37 year: 2014 ident: 10.1016/j.ipm.2021.102802_b5 article-title: LectureKhoj: automatic tagging and semantic segmentation of online lecture videos – volume: 19 start-page: 538 issue: 3 year: 2010 ident: 10.1016/j.ipm.2021.102802_b22 article-title: A supervised framework for keyword extraction from meeting transcripts publication-title: IEEE Transactions on Audio, Speech, and Language Processing doi: 10.1109/TASL.2010.2052119 – start-page: 1 year: 2012 ident: 10.1016/j.ipm.2021.102802_b6 article-title: Automatic keyphrase extraction and segmentation of video lectures – ident: 10.1016/j.ipm.2021.102802_b15 doi: 10.3115/1119355.1119383 – start-page: 1 year: 2015 ident: 10.1016/j.ipm.2021.102802_b19 article-title: Multimedia indexing and retrieval: Recent research work and their challenges – ident: 10.1016/j.ipm.2021.102802_b9 doi: 10.18653/v1/S15-1013 – volume: 11 start-page: 1024 issue: 9 year: 2017 ident: 10.1016/j.ipm.2021.102802_b33 article-title: Lecture video indexing and retrieval using topic keywords publication-title: International Journal of Computer and Information Engineering – volume: 71 start-page: 8 year: 2016 ident: 10.1016/j.ipm.2021.102802_b20 article-title: Assisted keyword indexing for lecture videos using unsupervised keyword spotting publication-title: Pattern Recognition Letters doi: 10.1016/j.patrec.2015.11.012 – volume: 26 start-page: 24 issue: 1–2 year: 2020 ident: 10.1016/j.ipm.2021.102802_b25 article-title: Multimedia context interpretation: a semantics-based cooperative indexing approach publication-title: New Review of Hypermedia and Multimedia doi: 10.1080/13614568.2020.1745904 – ident: 10.1016/j.ipm.2021.102802_b27 – volume: 102 start-page: 67 year: 2000 ident: 10.1016/j.ipm.2021.102802_b2 article-title: Evaluating E-learning systems success: An empirical study publication-title: Computers in Human Behavior doi: 10.1016/j.chb.2019.08.004 – start-page: 569 year: 2019 ident: 10.1016/j.ipm.2021.102802_b26 article-title: Qualitative evaluation of ASR adaptation in a lecture context: Application to the PASTEL corpus – start-page: 54 year: 2011 ident: 10.1016/j.ipm.2021.102802_b43 article-title: Lecture video indexing and analysis using video ocr technology – volume: 12 start-page: 94 year: 2020 ident: 10.1016/j.ipm.2021.102802_b12 article-title: COVID-19 epidemic as E-learning boost? Chronological development and effects at an Austrian university against the background of the concept of E-learning readiness publication-title: Future Internet doi: 10.3390/fi12060094 – start-page: 3 year: 2017 ident: 10.1016/j.ipm.2021.102802_b4 article-title: Video indexing, search, detection, and description with focus on TRECVID – year: 2019 ident: 10.1016/j.ipm.2021.102802_b39 article-title: Video transcript indexing and retrieval procedure – start-page: 117 year: 2012 ident: 10.1016/j.ipm.2021.102802_b17 article-title: Semantic tags for lecture videos – volume: 509 start-page: 257 year: 2020 ident: 10.1016/j.ipm.2021.102802_b7 article-title: YAKE! keyword extraction from single documents using multiple local features publication-title: Information Sciences doi: 10.1016/j.ins.2019.09.013 – start-page: 1150 year: 1999 ident: 10.1016/j.ipm.2021.102802_b23 article-title: Object recognition from local scale-invariant features – year: 2020 ident: 10.1016/j.ipm.2021.102802_b36 – volume: 45 start-page: 200 issue: 2 year: 2009 ident: 10.1016/j.ipm.2021.102802_b8 article-title: On-line learning performance and computer anxiety measure for unemployed adult novices using a grey relation entropy method publication-title: Information Processing & Management doi: 10.1016/j.ipm.2008.12.001 – volume: 46 start-page: 295 issue: 3 year: 2010 ident: 10.1016/j.ipm.2021.102802_b16 article-title: Automatic index construction for multimedia digital libraries publication-title: Information Processing & Management doi: 10.1016/j.ipm.2009.10.006 – year: 2015 ident: 10.1016/j.ipm.2021.102802_b38 – volume: 13 start-page: 600 issue: 4 year: 2004 ident: 10.1016/j.ipm.2021.102802_b40 article-title: Image quality assessment: from error visibility to structural similarity publication-title: IEEE Transactions on Image Processing doi: 10.1109/TIP.2003.819861 – year: 2019 ident: 10.1016/j.ipm.2021.102802_b18 – start-page: 1 year: 2016 ident: 10.1016/j.ipm.2021.102802_b31 article-title: Video retrieval using speech and text in video – start-page: 1 year: 2021 ident: 10.1016/j.ipm.2021.102802_b3 article-title: A novel cluster-based approach for keyphrase extraction from MOOC video lectures publication-title: Knowledge and Information Systems – ident: 10.1016/j.ipm.2021.102802_b44 – volume: 90 year: 2020 ident: 10.1016/j.ipm.2021.102802_b35 article-title: A systematic review on content-based video retrieval publication-title: Engineering Applications of Artificial Intelligence doi: 10.1016/j.engappai.2020.103557 – volume: 57 start-page: 142 issue: 2 year: 2014 ident: 10.1016/j.ipm.2021.102802_b42 article-title: Content based lecture video retrieval using speech and video text information publication-title: IEEE Transactions on Learning Technologies doi: 10.1109/TLT.2014.2307305 – volume: 58 issue: 3 year: 2021 ident: 10.1016/j.ipm.2021.102802_b45 article-title: Pyramid regional graph representation learning for content-based video retrieval publication-title: Information Processing & Management doi: 10.1016/j.ipm.2020.102488 – volume: 45 start-page: 615 issue: 6 year: 2009 ident: 10.1016/j.ipm.2021.102802_b24 article-title: Multimedia surrogates for video gisting: Toward combining spoken words and imagery publication-title: Information Processing & Management doi: 10.1016/j.ipm.2009.05.007 – start-page: 1 year: 2010 ident: 10.1016/j.ipm.2021.102802_b32 article-title: Automatic keyword extraction from individual documents – ident: 10.1016/j.ipm.2021.102802_b11 doi: 10.1145/1180639.1180740 – volume: 32 start-page: 675 issue: 200 year: 1937 ident: 10.1016/j.ipm.2021.102802_b13 article-title: The use of ranks to avoid the assumption of normality implicit in the analysis of variance publication-title: Journal of the American Statistical Association doi: 10.1080/01621459.1937.10503522 – volume: 57 issue: 6 year: 2020 ident: 10.1016/j.ipm.2021.102802_b28 article-title: Multi-sentence video captioning using content-oriented beam searching and multi-stage refining algorithm publication-title: Information Processing & Management doi: 10.1016/j.ipm.2020.102302 – start-page: 222 year: 2018 ident: 10.1016/j.ipm.2021.102802_b29 article-title: Automatic tag recommendation for software development video tutorials – ident: 10.1016/j.ipm.2021.102802_b41 doi: 10.21437/Interspeech.2013-462 – start-page: 241 year: 2010 ident: 10.1016/j.ipm.2021.102802_b1 article-title: Talkminer: a lecture webcast search engine – start-page: 271 year: 2019 ident: 10.1016/j.ipm.2021.102802_b30 article-title: Vitag: Automatic video tagging using segmentation and conceptual inference – volume: 109 issue: 2 year: 2015 ident: 10.1016/j.ipm.2021.102802_b34 article-title: Keyword and keyphrase extraction techniques: a literature review publication-title: International Journal of Computer Applications doi: 10.5120/19161-0607 – ident: 10.1016/j.ipm.2021.102802_b37 |
SSID | ssj0004512 |
Score | 2.391117 |
Snippet | Due to the growth of technology, the expansion of communication infrastructure and crises of COVID-19 pandemic, e-learning and virtual education is expanding.... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 102802 |
SubjectTerms | Algorithms Audio signals COVID-19 Data mining Distance learning Frames (data processing) Indexing Information processing Keyphrase extraction Keyword extraction Multimedia indexing Recall Statistical tests Text mining Video Video lecture indexing |
Title | LVTIA: A new method for keyphrase extraction from scientific video lectures |
URI | https://dx.doi.org/10.1016/j.ipm.2021.102802 https://www.proquest.com/docview/2641590506 |
Volume | 59 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PT8IwFG4IXrwYf0YUSA_Gg8mk3dqu80aIBMRwEQy3pl27BEOAAF79223XzqgxHLwubbN8fe_12_q-9wC4Kct0c2WinFAaWf5PIskVjVhcZBphzbgusy3GbDAlTzM6q4FepYVxaZUh9vuYXkbr8KQT0Oys5_POi2O7hKZOhGK_rbKZU7CT1Fn5_Qf-VjEch5sEFrnR1c1mmeM1XzsxeoxdAQMe_qz8cTb9itLl0dM_BkeBM8Kuf60TUDPLU9AKigN4C4OkyEEMg6-egdHz62TYfYBdaIkz9I2ioR0HrdfaDbSHF7RxeeN1DdCpTKAXR7rcIejUeSu48BcM23Mw7T9OeoModE6I8iTDu0gZHhOaS0TyrLAMzRAjMS8YUjktGKfE6BTLmDBGlbRuaQhGGsmCyDSlJtHJBagvV0tzCSDXOTZM09jIlHDGpMyUZqlKmEJJmugGQBVmIg9lxV13i4Wo8sfehIVZOJiFh7kB7r6mrH1NjX2DSbUR4odhCBvz901rVpsmglduhSV_lr0hitjV_1a9Boexkz-UOWhNUN9t3k3LkpKdapdW1wYH3eFoMP4Eywve0Q |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLbGdoAL4ikeG-SAOCBVS9skTblNE2hjYxc2tFuUNKk0hLZpG_-fpE0RILQD1yqJKju2v9b-bICbok03VybICKWBxf8kkFzRgEV5qnGoGddFtcWI9SbkaUqnNehWXBhXVul9f-nTC2_tn7S9NNvL2az94tAuoYkjodhvq3S6Aw3XnYrWodHpD3qjb03DQ59MYIHbUCU3izKv2dLx0aPQ9TDg_ufKH-Hpl6Muos_jAex72Ig65ZsdQs3Mj6DlSQfoFnlWkZMy8uZ6DIPh67jfuUcdZLEzKmdFI7sOWcO1OrTxC1nXvCqpDcgRTVDJj3TlQ8gR9BbovcwxrE9g8vgw7vYCPzwhyOI03ATK8IjQTGKSpbkFaYYYGfKcYZXRnHFKjE5CGRHGqJLWMg0JscYyJzJJqIl1fAr1-WJuzgBxnYWGaRoZmRDOmJSp0ixRMVM4TmJ9DriSmch8Z3E34OJdVCVkb8KKWTgxi1LM53D3tWVZttXYtphUihA_7oawbn_btmalNOENcy0s_rMADlPMLv536jXs9sbPQzHsjwaXsBc5NkRRktaE-mb1YVoWo2zUlb-Dn3ww4YI |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=LVTIA%3A+A+new+method+for+keyphrase+extraction+from+scientific+video+lectures&rft.jtitle=Information+processing+%26+management&rft.au=Hassani%2C+Hamid&rft.au=Ershadi%2C+Mohammad+Javad&rft.au=Mohebi%2C+Azadeh&rft.date=2022-03-01&rft.pub=Elsevier+Science+Ltd&rft.issn=0306-4573&rft.eissn=1873-5371&rft.volume=59&rft.issue=2&rft.spage=1&rft_id=info:doi/10.1016%2Fj.ipm.2021.102802&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0306-4573&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0306-4573&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0306-4573&client=summon |