The key principles of optimal train control—Part 2: Existence of an optimal strategy, the local energy minimization principle, uniqueness, computational techniques

•We consider an extended analysis of the classic train control problem.•We establish a fundamental local energy minimization principle.•We find general bounds on the positions of the optimal switching points.•We prove that an optimal strategy always exists and is unique.•We discuss realistic example...

Full description

Saved in:
Bibliographic Details
Published inTransportation research. Part B: methodological Vol. 94; pp. 509 - 538
Main Authors Albrecht, Amie, Howlett, Phil, Pudney, Peter, Vu, Xuan, Zhou, Peng
Format Journal Article
LanguageEnglish
Published Oxford Elsevier Ltd 01.12.2016
Elsevier Science Ltd
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •We consider an extended analysis of the classic train control problem.•We establish a fundamental local energy minimization principle.•We find general bounds on the positions of the optimal switching points.•We prove that an optimal strategy always exists and is unique.•We discuss realistic examples with steep grades and applications to real journeys. We discuss the problem of finding an energy-efficient driving strategy for a train journey on an undulating track with steep grades subject to a maximum prescribed journey time. In Part 1 of this paper we reviewed the state-of-the-art and established the key principles of optimal train control for a general model with continuous control. We assumed only that the tractive and braking control forces were bounded by non-increasing speed-dependent magnitude constraints and that the rate of energy dissipation from frictional resistance was given by a non-negative strictly convex function of speed. Partial cost recovery from regenerative braking was allowed. Our aim was to minimize the mechanical energy required to drive the train. We examined the characteristic optimal control modes, studied allowable control transitions and established the existence of optimal switching points. We found algebraic formulae for the adjoint variables in terms of speed on track with piecewise-constant gradient and drew phase plots of the associated optimal evolutionary lines for the state and adjoint variables. In Part 2 we will establish integral forms of the necessary conditions for optimal switching, find general bounds on the positions of the optimal switching points, justify an extended local energy minimization principle and show how these ideas can be used to calculate the optimal strategy. We prove that an optimal strategy always exists and use a perturbation analysis to show that the optimal strategy is unique. Finally we discuss computation of optimal switching points in two realistic examples with steep grades and describe the optimal control strategies and corresponding speed profiles for a complete journey with several different allowed journey times. In practice the strategies described here have been shown to reduce the costs of energy used by as much as 20%.
AbstractList We discuss the problem of finding an energy-efficient driving strategy for a train journey on an undulating track with steep grades subject to a maximum prescribed journey time. In Part 1 of this paper we reviewed the state-of-the-art and established the key principles of optimal train control for a general model with continuous control. We assumed only that the tractive and braking control forces were bounded by non-increasing speed-dependent magnitude constraints and that the rate of energy dissipation from frictional resistance was given by a non-negative strictly convex function of speed. Partial cost recovery from regenerative braking was allowed. Our aim was to minimize the mechanical energy required to drive the train. We examined the characteristic optimal control modes, studied allowable control transitions and established the existence of optimal switching points. We found algebraic formulae for the adjoint variables in terms of speed on track with piecewise-constant gradient and drew phase plots of the associated optimal evolutionary lines for the state and adjoint variables. In Part 2 we will establish integral forms of the necessary conditions for optimal switching, find general bounds on the positions of the optimal switching points, justify an extended local energy minimization principle and show how these ideas can be used to calculate the optimal strategy. We prove that an optimal strategy always exists and use a perturbation analysis to show that the optimal strategy is unique. Finally we discuss computation of optimal switching points in two realistic examples with steep grades and describe the optimal control strategies and corresponding speed profiles for a complete journey with several different allowed journey times. In practice the strategies described here have been shown to reduce the costs of energy used by as much as 20%.
•We consider an extended analysis of the classic train control problem.•We establish a fundamental local energy minimization principle.•We find general bounds on the positions of the optimal switching points.•We prove that an optimal strategy always exists and is unique.•We discuss realistic examples with steep grades and applications to real journeys. We discuss the problem of finding an energy-efficient driving strategy for a train journey on an undulating track with steep grades subject to a maximum prescribed journey time. In Part 1 of this paper we reviewed the state-of-the-art and established the key principles of optimal train control for a general model with continuous control. We assumed only that the tractive and braking control forces were bounded by non-increasing speed-dependent magnitude constraints and that the rate of energy dissipation from frictional resistance was given by a non-negative strictly convex function of speed. Partial cost recovery from regenerative braking was allowed. Our aim was to minimize the mechanical energy required to drive the train. We examined the characteristic optimal control modes, studied allowable control transitions and established the existence of optimal switching points. We found algebraic formulae for the adjoint variables in terms of speed on track with piecewise-constant gradient and drew phase plots of the associated optimal evolutionary lines for the state and adjoint variables. In Part 2 we will establish integral forms of the necessary conditions for optimal switching, find general bounds on the positions of the optimal switching points, justify an extended local energy minimization principle and show how these ideas can be used to calculate the optimal strategy. We prove that an optimal strategy always exists and use a perturbation analysis to show that the optimal strategy is unique. Finally we discuss computation of optimal switching points in two realistic examples with steep grades and describe the optimal control strategies and corresponding speed profiles for a complete journey with several different allowed journey times. In practice the strategies described here have been shown to reduce the costs of energy used by as much as 20%.
Author Howlett, Phil
Pudney, Peter
Albrecht, Amie
Vu, Xuan
Zhou, Peng
Author_xml – sequence: 1
  givenname: Amie
  orcidid: 0000-0001-7302-0369
  surname: Albrecht
  fullname: Albrecht, Amie
  email: amie.albrecht@unisa.edu.au
– sequence: 2
  givenname: Phil
  surname: Howlett
  fullname: Howlett, Phil
  email: phil.howlett@unisa.edu.au
– sequence: 3
  givenname: Peter
  surname: Pudney
  fullname: Pudney, Peter
  email: peter.pudney@unisa.edu.au
– sequence: 4
  givenname: Xuan
  surname: Vu
  fullname: Vu, Xuan
  email: xuan.vu@unisa.edu.au
– sequence: 5
  givenname: Peng
  surname: Zhou
  fullname: Zhou, Peng
  email: peng.zhou@unisa.edu.au
BookMark eNqNkc1u1DAUhS3USkxbHoCdJTYsJsE_iT2BFarKj1SJLsracpyb1kNiB9upGFY8BK_Ai_EkODMIpC6qrixff-ee63tO0JHzDhB6TklJCRWvtmUKbckIrUsiS8KqJ2hFN7IpGBfyCK0IbWjBBK2fopMYt4QQXhG6Qr-ubwF_gR2egnXGTgNE7Hvsp2RHPeAUtHXYeJeCH37_-HmlQ8LsNb74ZmMCZ2CBtfvHxyxIcLNb45T7Dt7kGjgINzs8WmdH-10n691_tzWenf06ZybGdTYapzntkcUczO3-MZ6h414PEZ79PU_R53cX1-cfistP7z-ev70sDG9oKlrJTMUrChsOLddt0xsqGi3yTdO21a0ADrqrmrruCOkaDqztqWaakVyAhp-il4e-U_CLb1KjjQaGQTvwc1R0I6pabASrHoHWREpJOMnoi3vo1s8h_zAqlplaCl4vlDxQJvgYA_TK2MMqlhAGRYlaklZblZNWS9KKSEX2o9B7yrzeUYfdg5o3Bw3kdd5ZCCoauwTa2QAmqc7bB9R_ALOCyAU
CitedBy_id crossref_primary_10_1016_j_tra_2017_01_019
crossref_primary_10_1007_s42524_021_0173_1
crossref_primary_10_1016_j_conengprac_2022_105430
crossref_primary_10_1049_itr2_12458
crossref_primary_10_1109_TII_2022_3195888
crossref_primary_10_1109_TITS_2018_2855748
crossref_primary_10_1016_j_trc_2024_104626
crossref_primary_10_1016_j_tre_2021_102323
crossref_primary_10_1049_iet_its_2018_5152
crossref_primary_10_1109_TITS_2020_2980556
crossref_primary_10_3390_en9100762
crossref_primary_10_1109_TVT_2022_3211979
crossref_primary_10_1016_j_trc_2020_102680
crossref_primary_10_1007_s12555_020_0189_z
crossref_primary_10_1016_j_jrtpm_2023_100391
crossref_primary_10_1016_j_tbs_2024_100796
crossref_primary_10_1016_j_trc_2016_06_008
crossref_primary_10_1016_j_trc_2021_103249
crossref_primary_10_1016_j_jrtpm_2023_100393
crossref_primary_10_1016_j_trc_2020_102852
crossref_primary_10_1109_ACCESS_2018_2815643
crossref_primary_10_1109_TTE_2024_3389960
crossref_primary_10_1016_j_jrtpm_2018_02_003
crossref_primary_10_1080_23249935_2023_2270330
crossref_primary_10_1016_j_jclepro_2019_03_037
crossref_primary_10_1109_TITS_2018_2850741
crossref_primary_10_1016_j_energy_2022_124853
crossref_primary_10_1016_j_future_2023_11_012
crossref_primary_10_1080_21680566_2017_1320775
crossref_primary_10_1016_j_trc_2024_104756
crossref_primary_10_1016_j_trb_2018_06_011
crossref_primary_10_1016_j_knosys_2019_105173
crossref_primary_10_1177_0954409718772133
crossref_primary_10_1016_j_trb_2021_10_010
crossref_primary_10_1080_00423114_2024_2393354
crossref_primary_10_1155_2019_7258986
crossref_primary_10_1016_j_trb_2017_05_012
crossref_primary_10_3390_en10060794
crossref_primary_10_1002_er_5958
crossref_primary_10_1177_09544097221103351
crossref_primary_10_1049_itr2_12239
crossref_primary_10_1109_TITS_2019_2939358
crossref_primary_10_1109_TTE_2021_3059111
crossref_primary_10_1049_itr2_12482
crossref_primary_10_1016_j_isatra_2021_04_036
crossref_primary_10_1016_j_trc_2023_104202
crossref_primary_10_1109_TITS_2023_3264795
crossref_primary_10_1155_2023_1217352
crossref_primary_10_1109_TCYB_2019_2915191
crossref_primary_10_3390_a12080173
crossref_primary_10_1049_itr2_12509
crossref_primary_10_1080_23248378_2023_2194684
crossref_primary_10_1080_23249935_2023_2267685
crossref_primary_10_1109_TITS_2018_2846480
crossref_primary_10_1109_TITS_2019_2912038
crossref_primary_10_1109_TITS_2022_3174265
crossref_primary_10_1016_j_ejor_2020_10_018
crossref_primary_10_1049_itr2_12351
crossref_primary_10_1109_TITS_2020_3010245
crossref_primary_10_1109_TITS_2023_3345739
crossref_primary_10_1049_iet_rpg_2020_0142
crossref_primary_10_2139_ssrn_4115428
crossref_primary_10_1109_TTE_2024_3392765
crossref_primary_10_1007_s12555_024_0215_7
crossref_primary_10_1287_trsc_2022_1170
crossref_primary_10_1016_j_asoc_2021_107627
crossref_primary_10_1109_TITS_2020_3040730
crossref_primary_10_1016_j_conengprac_2021_104935
crossref_primary_10_1016_j_engappai_2022_105756
crossref_primary_10_1016_j_tre_2020_102007
crossref_primary_10_1016_j_enconman_2022_115735
crossref_primary_10_1177_0954409721993632
crossref_primary_10_1016_j_trc_2021_103171
crossref_primary_10_1109_TITS_2018_2881156
crossref_primary_10_1016_j_tre_2023_103212
crossref_primary_10_15802_stp2019_171774
crossref_primary_10_1016_j_ins_2021_04_088
crossref_primary_10_1016_j_ejor_2024_03_015
crossref_primary_10_1016_j_jclepro_2018_12_039
crossref_primary_10_48084_etasr_3856
crossref_primary_10_1155_2024_5964428
crossref_primary_10_1016_j_trc_2017_09_009
crossref_primary_10_1016_j_ejtl_2020_100013
crossref_primary_10_3390_en13184933
crossref_primary_10_15802_stp2018_154641
crossref_primary_10_1016_j_conengprac_2021_104825
crossref_primary_10_1016_j_ifacol_2024_07_329
crossref_primary_10_1017_S1446181118000214
crossref_primary_10_1155_2022_8674538
crossref_primary_10_1049_itr2_12093
crossref_primary_10_1016_j_trb_2017_09_012
crossref_primary_10_3390_en11123302
crossref_primary_10_1049_cth2_12123
crossref_primary_10_1007_s40864_021_00151_w
crossref_primary_10_1109_TITS_2022_3155628
crossref_primary_10_1016_j_jrtpm_2025_100515
crossref_primary_10_1016_j_trc_2021_103167
crossref_primary_10_1016_j_apenergy_2020_114770
crossref_primary_10_1016_j_jallcom_2024_178154
crossref_primary_10_1016_j_jrtpm_2020_100180
crossref_primary_10_1016_j_jrtpm_2019_100163
crossref_primary_10_1016_j_trpro_2022_02_006
crossref_primary_10_1177_0361198120937307
crossref_primary_10_1049_itr2_12164
crossref_primary_10_1177_16878132241233753
crossref_primary_10_1016_j_trb_2018_03_012
crossref_primary_10_1016_j_trb_2020_01_001
crossref_primary_10_1109_TTE_2021_3059433
crossref_primary_10_1109_TITS_2020_3043577
crossref_primary_10_3390_pr7020077
crossref_primary_10_1016_j_seta_2023_103360
crossref_primary_10_1080_23249935_2023_2294267
crossref_primary_10_3390_en15082891
crossref_primary_10_1049_itr2_12149
crossref_primary_10_3390_en12142686
crossref_primary_10_1109_TITS_2022_3218705
crossref_primary_10_1016_j_jclepro_2021_127163
crossref_primary_10_1016_j_trc_2017_06_011
crossref_primary_10_2174_2212797616666230622143121
crossref_primary_10_1016_j_energy_2018_03_111
crossref_primary_10_3390_app13042454
crossref_primary_10_1016_j_tre_2021_102492
crossref_primary_10_37367_jpi_v8i1_296
crossref_primary_10_1007_s40534_023_00322_4
crossref_primary_10_1016_j_etran_2021_100130
crossref_primary_10_23919_cje_2022_00_174
Cites_doi 10.1023/A:1019235819716
10.1109/9.867018
10.1016/j.automatica.2009.07.028
10.1016/j.automatica.2013.07.008
10.1137/1037043
ContentType Journal Article
Copyright 2015
Copyright Elsevier Science Ltd. Dec 2016
Copyright_xml – notice: 2015
– notice: Copyright Elsevier Science Ltd. Dec 2016
DBID AAYXX
CITATION
7ST
8FD
C1K
FR3
KR7
SOI
DOI 10.1016/j.trb.2015.07.024
DatabaseName CrossRef
Environment Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Civil Engineering Abstracts
Environment Abstracts
DatabaseTitle CrossRef
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Environment Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList Civil Engineering Abstracts
Technology Research Database
Environment Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Economics
Engineering
EISSN 1879-2367
EndPage 538
ExternalDocumentID 10_1016_j_trb_2015_07_024
S0191261515002076
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
123
1B1
1RT
1~.
1~5
29Q
4.4
457
4G.
5VS
7-5
71M
8P~
9JO
AAAKF
AAAKG
AACTN
AAEDT
AAEDW
AAFJI
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARIN
AAXUO
ABDEX
ABDMP
ABFNM
ABLJU
ABMAC
ABMMH
ABPPZ
ABUCO
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNCT
ACRLP
ADBBV
ADEZE
ADMUD
AEBSH
AEKER
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHRSL
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKYCK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOMHK
APLSM
ASPBG
AVARZ
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HAMUX
HMY
HVGLF
HZ~
H~9
IHE
J1W
KOM
LY1
LY7
M3Y
M41
MO0
MS~
N9A
O-L
O9-
OAUVE
OHT
OZT
P-8
P-9
P2P
PC.
PRBVW
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SDP
SDS
SES
SET
SEW
SPCBC
SSB
SSD
SSO
SSS
SSZ
T5K
WUQ
XPP
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ADNMO
AEIPS
AFJKZ
AFXIZ
AGCQF
AGQPQ
AGRNS
AIIUN
ANKPU
APXCP
BNPGV
CITATION
SSH
7ST
8FD
C1K
EFKBS
FR3
KR7
SOI
ID FETCH-LOGICAL-c391t-b72c4341e83eb3ab9fc169a63eba1bbab6e3ead4955d00d93e2bf1a2a205d0e93
IEDL.DBID .~1
ISSN 0191-2615
IngestDate Fri Jul 11 16:40:38 EDT 2025
Tue Aug 05 11:17:49 EDT 2025
Wed Aug 13 11:14:52 EDT 2025
Thu Apr 24 23:04:46 EDT 2025
Tue Jul 01 03:50:09 EDT 2025
Fri Feb 23 02:33:22 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Train control
Optimal driving strategies
Maximum principle
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c391t-b72c4341e83eb3ab9fc169a63eba1bbab6e3ead4955d00d93e2bf1a2a205d0e93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-7302-0369
PQID 2077576350
PQPubID 2047452
PageCount 30
ParticipantIDs proquest_miscellaneous_1864568624
proquest_miscellaneous_1850777030
proquest_journals_2077576350
crossref_citationtrail_10_1016_j_trb_2015_07_024
crossref_primary_10_1016_j_trb_2015_07_024
elsevier_sciencedirect_doi_10_1016_j_trb_2015_07_024
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate December 2016
2016-12-00
20161201
PublicationDateYYYYMMDD 2016-12-01
PublicationDate_xml – month: 12
  year: 2016
  text: December 2016
PublicationDecade 2010
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Transportation research. Part B: methodological
PublicationYear 2016
Publisher Elsevier Ltd
Elsevier Science Ltd
Publisher_xml – name: Elsevier Ltd
– name: Elsevier Science Ltd
References Howlett (bib0008) 2000; 98
Howlett, Pudney (bib0010) 1998; 4
Albrecht, Howlett, Pudney, Vu, Zhou (bib0003) 2014
Albrecht, Howlett, Pudney, Vu (bib0001) 2011
Girsanov (bib0006) 1972; 67
Albrecht, Howlett, Pudney, Vu (bib0002) 2013; 49
Yosida (bib0013) 1978
Hartl, Sethi, Vickson (bib0007) 1995; 37
Davis (bib0005) 1926; 29
Brent (bib0004) 1973
Khmelnitsky (bib0011) 2000; 45
Liu, Golovitcher (bib0012) 2003; 37
Howlett, Pudney, Vu (bib0009) 2009; 45
Brent (10.1016/j.trb.2015.07.024_bib0004) 1973
Khmelnitsky (10.1016/j.trb.2015.07.024_bib0011) 2000; 45
Yosida (10.1016/j.trb.2015.07.024_bib0013) 1978
Howlett (10.1016/j.trb.2015.07.024_bib0008) 2000; 98
Albrecht (10.1016/j.trb.2015.07.024_sbref0002) 2013; 49
Girsanov (10.1016/j.trb.2015.07.024_bib0006) 1972; 67
Hartl (10.1016/j.trb.2015.07.024_bib0007) 1995; 37
Davis (10.1016/j.trb.2015.07.024_bib0005) 1926; 29
Albrecht (10.1016/j.trb.2015.07.024_sbref0001) 2011
Liu (10.1016/j.trb.2015.07.024_bib0012) 2003; 37
Albrecht (10.1016/j.trb.2015.07.024_sbref0003) 2014
Howlett (10.1016/j.trb.2015.07.024_bib0010) 1998; 4
Howlett (10.1016/j.trb.2015.07.024_bib0009) 2009; 45
References_xml – volume: 45
  start-page: 2692
  year: 2009
  end-page: 2698
  ident: bib0009
  article-title: Local energy minimization in optimal train control
  publication-title: Automatica
– year: 2014
  ident: bib0003
  article-title: The key principles of optimal train control—Part 1: Formulation of the model, strategies of optimal type, evolutionary lines, location of optimal switching points
  publication-title: Transportation Research Part B
– volume: 37
  start-page: 181
  year: 1995
  end-page: 218
  ident: bib0007
  article-title: A survey of the maximum principles for optimal control problems with state constraints
  publication-title: SIAM Review
– volume: 49
  start-page: 3072
  year: 2013
  end-page: 3078
  ident: bib0002
  article-title: Energy-efficient train control: from local convexity to global optimization and uniqueness
  publication-title: Automatica
– volume: 37
  start-page: 917
  year: 2003
  end-page: 932
  ident: bib0012
  article-title: Energy-efficient operation of rail vehicles
  publication-title: Transportation Research Part A
– volume: 67
  year: 1972
  ident: bib0006
  publication-title: Lectures on Mathematical Theory of Extremum Problems
– volume: 4
  start-page: 553
  year: 1998
  end-page: 567
  ident: bib0010
  article-title: An optimal driving strategy for a solar powered car on an undulating road
  publication-title: Dynamics continuous discrete and impulsive systems
– year: 1978
  ident: bib0013
  publication-title: Functional Analysis
– volume: 29
  start-page: 2
  year: 1926
  end-page: 24
  ident: bib0005
  article-title: The tractive resistance of electric locomotives and cars
  publication-title: General Electric Review
– volume: 98
  start-page: 65
  year: 2000
  end-page: 87
  ident: bib0008
  article-title: The optimal control of a train
  publication-title: Annals of Operations Research
– volume: 45
  start-page: 1257
  year: 2000
  end-page: 1266
  ident: bib0011
  article-title: On an optimal control problem of train operation
  publication-title: IEEE Transactions on Automatic Control
– year: 2011
  ident: bib0001
  article-title: Optimal train control: analysis of a new local optimization principle
  publication-title: Proceedings of the American Control Conference 2011, San Francisco, June 29–July 1, 1928–1933
– year: 1973
  ident: bib0004
  article-title: Chapter 4: An algorithm with guaranteed convergence for finding a zero of a function
  publication-title: Algorithms for Minimization without Derivatives
– volume: 98
  start-page: 65
  year: 2000
  ident: 10.1016/j.trb.2015.07.024_bib0008
  article-title: The optimal control of a train
  publication-title: Annals of Operations Research
  doi: 10.1023/A:1019235819716
– year: 2014
  ident: 10.1016/j.trb.2015.07.024_sbref0003
  article-title: The key principles of optimal train control—Part 1: Formulation of the model, strategies of optimal type, evolutionary lines, location of optimal switching points
  publication-title: Transportation Research Part B
– year: 1978
  ident: 10.1016/j.trb.2015.07.024_bib0013
– year: 1973
  ident: 10.1016/j.trb.2015.07.024_bib0004
  article-title: Chapter 4: An algorithm with guaranteed convergence for finding a zero of a function
– volume: 29
  start-page: 2
  year: 1926
  ident: 10.1016/j.trb.2015.07.024_bib0005
  article-title: The tractive resistance of electric locomotives and cars
  publication-title: General Electric Review
– year: 2011
  ident: 10.1016/j.trb.2015.07.024_sbref0001
  article-title: Optimal train control: analysis of a new local optimization principle
– volume: 45
  start-page: 1257
  issue: 7
  year: 2000
  ident: 10.1016/j.trb.2015.07.024_bib0011
  article-title: On an optimal control problem of train operation
  publication-title: IEEE Transactions on Automatic Control
  doi: 10.1109/9.867018
– volume: 4
  start-page: 553
  year: 1998
  ident: 10.1016/j.trb.2015.07.024_bib0010
  article-title: An optimal driving strategy for a solar powered car on an undulating road
  publication-title: Dynamics continuous discrete and impulsive systems
– volume: 37
  start-page: 917
  year: 2003
  ident: 10.1016/j.trb.2015.07.024_bib0012
  article-title: Energy-efficient operation of rail vehicles
  publication-title: Transportation Research Part A
– volume: 45
  start-page: 2692
  issue: 11
  year: 2009
  ident: 10.1016/j.trb.2015.07.024_bib0009
  article-title: Local energy minimization in optimal train control
  publication-title: Automatica
  doi: 10.1016/j.automatica.2009.07.028
– volume: 49
  start-page: 3072
  year: 2013
  ident: 10.1016/j.trb.2015.07.024_sbref0002
  article-title: Energy-efficient train control: from local convexity to global optimization and uniqueness
  publication-title: Automatica
  doi: 10.1016/j.automatica.2013.07.008
– volume: 67
  year: 1972
  ident: 10.1016/j.trb.2015.07.024_bib0006
– volume: 37
  start-page: 181
  issue: 2
  year: 1995
  ident: 10.1016/j.trb.2015.07.024_bib0007
  article-title: A survey of the maximum principles for optimal control problems with state constraints
  publication-title: SIAM Review
  doi: 10.1137/1037043
SSID ssj0003401
Score 2.5734625
Snippet •We consider an extended analysis of the classic train control problem.•We establish a fundamental local energy minimization principle.•We find general bounds...
We discuss the problem of finding an energy-efficient driving strategy for a train journey on an undulating track with steep grades subject to a maximum...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 509
SubjectTerms Braking
Computer applications
Cost recovery
Energy conservation
Energy costs
Energy dissipation
Energy efficiency
Friction resistance
Journeys
Mathematical models
Maximum principle
Minimization
Optimal control
Optimal driving strategies
Optimization
Perturbation methods
Regenerative braking
State-of-the-art reviews
Strategy
Studies
Switching
Train control
Transitions
Title The key principles of optimal train control—Part 2: Existence of an optimal strategy, the local energy minimization principle, uniqueness, computational techniques
URI https://dx.doi.org/10.1016/j.trb.2015.07.024
https://www.proquest.com/docview/2077576350
https://www.proquest.com/docview/1850777030
https://www.proquest.com/docview/1864568624
Volume 94
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NTtwwEB6t4ND2UAFt1W23yJV6qjbd_NjOpjeEWC0gUKUWiZtlZx0JVJIVyUrtBfEQvAIvxpMw4zgLVOoekHJJMklsz3hmYs98A_DFiFwkOtbBLM9EwCNrAy0TSuNCe1PoLOQFLQ0cHcvpCT84Fac92O1yYSis0uv-Vqc7be2vjPxojuZnZ6Of6JxEsTPI5POkBLvNeUpS_u3qIcwj4aGvSRgFRN3tbLoYr-bSUHSXcPidMf-fbfpHSzvTM9mA195nZDttszahZ8steNGlFNdb8OoRquAbuEXWM5ybbN4tpNesKliFyuECX-OKQjAfon53ffMDu8vi72zvD3Ec-0_EulzS1y1-7d8hQ1-ROdvHrMsYZIRLcuETOR--NmQLhwpLSnTIclc2wi85siVkbP0WTiZ7v3anga_GEORJFjWBSeOco82z4wR_wLXJijySGTLWGh0Zo420CYol_nCJWRjOssTGpohQDOIQL9gseQdrZVXa98CEHkttYmFMZjke2qCW0PgWGVlTSN6HsOODyj1UOQ3Ob9XFpJ0rZJ0i1qkwVci6PnxdPjJvcTpWEfOOueqJsCm0I6seG3SCoPxMr_F-mgpC9Qv78Hl5G-cobbzo0laLWqFPhFSkW1fRSPRlKV3nw_Na9xFe4plsQ20GsNZcLuwndJgas-1mxDas7-wfTo_vAUhIGlU
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NTtwwEB7R5UB7qAq0YtttMVJPaKPNj-1sekMItBRYIRUkbpaddSQQZFdkV4JbH6Kv0Bfrk3TGcUJBYg-VcrLH-fHY30zsmc8AX43IRaJjHUzyTAQ8sjbQMqE0LrQ3hc5CXtDSwOlYji7490txuQL7TS4MhVV67K8x3aG1Lxn43hzMrq4GP9A5iWJnkMnnSeUrWCV2KtGB1b2j49G4BeSEh_5YwiigBs3mpgvzmt8ZCvASjsIz5i-Zp2dA7azP4Tt4691Gtle_2Tqs2HID1pqs4moD3vxDLLgJv1H7DKcnmzVr6RWbFmyK-HCLt3HnQjAfpf7n568z_GIWf2MH96R07AIS1mUrX9UUtg99hu4ic-aPWZc0yIia5Nbncj4-rc8WjhiWcLTPcndyhF91ZC1rbPUeLg4PzvdHgT-QIciTLJoHJo1zjmbPDhP8B9cmK_JIZqhba3RkjDbSJjgy8Z9LTMJwkiU2NkWEIyEOscBmyQfolNPSbgETeii1iYUxmeV4aYNAofEuMrKmkLwLYaMHlXu2cuqcG9WEpV0rVJ0i1akwVai6Luy2TWY1VccyYd4oVz0ZbwpNybJmvWYgKD_ZK6xPU0HEfmEXdtpqnKa096JLO11UCt0ilCJ4XSYj0Z2ljJ2P__d227A2Oj89USdH4-NP8BprZB1504PO_G5hP6P_NDdf_Pz4C9ckHQY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+key+principles+of+optimal+train+control-Part+2%3A+Existence+of+an+optimal+strategy%2C+the+local+energy+minimization+principle%2C+uniqueness%2C+computational+techniques&rft.jtitle=Transportation+research.+Part+B%3A+methodological&rft.au=Albrecht%2C+Amie&rft.au=Howlett%2C+Phil&rft.au=Pudney%2C+Peter&rft.au=Vu%2C+Xuan&rft.date=2016-12-01&rft.issn=0191-2615&rft.volume=94&rft.spage=509&rft.epage=538&rft_id=info:doi/10.1016%2Fj.trb.2015.07.024&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0191-2615&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0191-2615&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0191-2615&client=summon