The key principles of optimal train control—Part 2: Existence of an optimal strategy, the local energy minimization principle, uniqueness, computational techniques
•We consider an extended analysis of the classic train control problem.•We establish a fundamental local energy minimization principle.•We find general bounds on the positions of the optimal switching points.•We prove that an optimal strategy always exists and is unique.•We discuss realistic example...
Saved in:
Published in | Transportation research. Part B: methodological Vol. 94; pp. 509 - 538 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Oxford
Elsevier Ltd
01.12.2016
Elsevier Science Ltd |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •We consider an extended analysis of the classic train control problem.•We establish a fundamental local energy minimization principle.•We find general bounds on the positions of the optimal switching points.•We prove that an optimal strategy always exists and is unique.•We discuss realistic examples with steep grades and applications to real journeys.
We discuss the problem of finding an energy-efficient driving strategy for a train journey on an undulating track with steep grades subject to a maximum prescribed journey time. In Part 1 of this paper we reviewed the state-of-the-art and established the key principles of optimal train control for a general model with continuous control. We assumed only that the tractive and braking control forces were bounded by non-increasing speed-dependent magnitude constraints and that the rate of energy dissipation from frictional resistance was given by a non-negative strictly convex function of speed. Partial cost recovery from regenerative braking was allowed. Our aim was to minimize the mechanical energy required to drive the train. We examined the characteristic optimal control modes, studied allowable control transitions and established the existence of optimal switching points. We found algebraic formulae for the adjoint variables in terms of speed on track with piecewise-constant gradient and drew phase plots of the associated optimal evolutionary lines for the state and adjoint variables. In Part 2 we will establish integral forms of the necessary conditions for optimal switching, find general bounds on the positions of the optimal switching points, justify an extended local energy minimization principle and show how these ideas can be used to calculate the optimal strategy. We prove that an optimal strategy always exists and use a perturbation analysis to show that the optimal strategy is unique. Finally we discuss computation of optimal switching points in two realistic examples with steep grades and describe the optimal control strategies and corresponding speed profiles for a complete journey with several different allowed journey times. In practice the strategies described here have been shown to reduce the costs of energy used by as much as 20%. |
---|---|
AbstractList | We discuss the problem of finding an energy-efficient driving strategy for a train journey on an undulating track with steep grades subject to a maximum prescribed journey time. In Part 1 of this paper we reviewed the state-of-the-art and established the key principles of optimal train control for a general model with continuous control. We assumed only that the tractive and braking control forces were bounded by non-increasing speed-dependent magnitude constraints and that the rate of energy dissipation from frictional resistance was given by a non-negative strictly convex function of speed. Partial cost recovery from regenerative braking was allowed. Our aim was to minimize the mechanical energy required to drive the train. We examined the characteristic optimal control modes, studied allowable control transitions and established the existence of optimal switching points. We found algebraic formulae for the adjoint variables in terms of speed on track with piecewise-constant gradient and drew phase plots of the associated optimal evolutionary lines for the state and adjoint variables. In Part 2 we will establish integral forms of the necessary conditions for optimal switching, find general bounds on the positions of the optimal switching points, justify an extended local energy minimization principle and show how these ideas can be used to calculate the optimal strategy. We prove that an optimal strategy always exists and use a perturbation analysis to show that the optimal strategy is unique. Finally we discuss computation of optimal switching points in two realistic examples with steep grades and describe the optimal control strategies and corresponding speed profiles for a complete journey with several different allowed journey times. In practice the strategies described here have been shown to reduce the costs of energy used by as much as 20%. •We consider an extended analysis of the classic train control problem.•We establish a fundamental local energy minimization principle.•We find general bounds on the positions of the optimal switching points.•We prove that an optimal strategy always exists and is unique.•We discuss realistic examples with steep grades and applications to real journeys. We discuss the problem of finding an energy-efficient driving strategy for a train journey on an undulating track with steep grades subject to a maximum prescribed journey time. In Part 1 of this paper we reviewed the state-of-the-art and established the key principles of optimal train control for a general model with continuous control. We assumed only that the tractive and braking control forces were bounded by non-increasing speed-dependent magnitude constraints and that the rate of energy dissipation from frictional resistance was given by a non-negative strictly convex function of speed. Partial cost recovery from regenerative braking was allowed. Our aim was to minimize the mechanical energy required to drive the train. We examined the characteristic optimal control modes, studied allowable control transitions and established the existence of optimal switching points. We found algebraic formulae for the adjoint variables in terms of speed on track with piecewise-constant gradient and drew phase plots of the associated optimal evolutionary lines for the state and adjoint variables. In Part 2 we will establish integral forms of the necessary conditions for optimal switching, find general bounds on the positions of the optimal switching points, justify an extended local energy minimization principle and show how these ideas can be used to calculate the optimal strategy. We prove that an optimal strategy always exists and use a perturbation analysis to show that the optimal strategy is unique. Finally we discuss computation of optimal switching points in two realistic examples with steep grades and describe the optimal control strategies and corresponding speed profiles for a complete journey with several different allowed journey times. In practice the strategies described here have been shown to reduce the costs of energy used by as much as 20%. |
Author | Howlett, Phil Pudney, Peter Albrecht, Amie Vu, Xuan Zhou, Peng |
Author_xml | – sequence: 1 givenname: Amie orcidid: 0000-0001-7302-0369 surname: Albrecht fullname: Albrecht, Amie email: amie.albrecht@unisa.edu.au – sequence: 2 givenname: Phil surname: Howlett fullname: Howlett, Phil email: phil.howlett@unisa.edu.au – sequence: 3 givenname: Peter surname: Pudney fullname: Pudney, Peter email: peter.pudney@unisa.edu.au – sequence: 4 givenname: Xuan surname: Vu fullname: Vu, Xuan email: xuan.vu@unisa.edu.au – sequence: 5 givenname: Peng surname: Zhou fullname: Zhou, Peng email: peng.zhou@unisa.edu.au |
BookMark | eNqNkc1u1DAUhS3USkxbHoCdJTYsJsE_iT2BFarKj1SJLsracpyb1kNiB9upGFY8BK_Ai_EkODMIpC6qrixff-ee63tO0JHzDhB6TklJCRWvtmUKbckIrUsiS8KqJ2hFN7IpGBfyCK0IbWjBBK2fopMYt4QQXhG6Qr-ubwF_gR2egnXGTgNE7Hvsp2RHPeAUtHXYeJeCH37_-HmlQ8LsNb74ZmMCZ2CBtfvHxyxIcLNb45T7Dt7kGjgINzs8WmdH-10n691_tzWenf06ZybGdTYapzntkcUczO3-MZ6h414PEZ79PU_R53cX1-cfistP7z-ev70sDG9oKlrJTMUrChsOLddt0xsqGi3yTdO21a0ADrqrmrruCOkaDqztqWaakVyAhp-il4e-U_CLb1KjjQaGQTvwc1R0I6pabASrHoHWREpJOMnoi3vo1s8h_zAqlplaCl4vlDxQJvgYA_TK2MMqlhAGRYlaklZblZNWS9KKSEX2o9B7yrzeUYfdg5o3Bw3kdd5ZCCoauwTa2QAmqc7bB9R_ALOCyAU |
CitedBy_id | crossref_primary_10_1016_j_tra_2017_01_019 crossref_primary_10_1007_s42524_021_0173_1 crossref_primary_10_1016_j_conengprac_2022_105430 crossref_primary_10_1049_itr2_12458 crossref_primary_10_1109_TII_2022_3195888 crossref_primary_10_1109_TITS_2018_2855748 crossref_primary_10_1016_j_trc_2024_104626 crossref_primary_10_1016_j_tre_2021_102323 crossref_primary_10_1049_iet_its_2018_5152 crossref_primary_10_1109_TITS_2020_2980556 crossref_primary_10_3390_en9100762 crossref_primary_10_1109_TVT_2022_3211979 crossref_primary_10_1016_j_trc_2020_102680 crossref_primary_10_1007_s12555_020_0189_z crossref_primary_10_1016_j_jrtpm_2023_100391 crossref_primary_10_1016_j_tbs_2024_100796 crossref_primary_10_1016_j_trc_2016_06_008 crossref_primary_10_1016_j_trc_2021_103249 crossref_primary_10_1016_j_jrtpm_2023_100393 crossref_primary_10_1016_j_trc_2020_102852 crossref_primary_10_1109_ACCESS_2018_2815643 crossref_primary_10_1109_TTE_2024_3389960 crossref_primary_10_1016_j_jrtpm_2018_02_003 crossref_primary_10_1080_23249935_2023_2270330 crossref_primary_10_1016_j_jclepro_2019_03_037 crossref_primary_10_1109_TITS_2018_2850741 crossref_primary_10_1016_j_energy_2022_124853 crossref_primary_10_1016_j_future_2023_11_012 crossref_primary_10_1080_21680566_2017_1320775 crossref_primary_10_1016_j_trc_2024_104756 crossref_primary_10_1016_j_trb_2018_06_011 crossref_primary_10_1016_j_knosys_2019_105173 crossref_primary_10_1177_0954409718772133 crossref_primary_10_1016_j_trb_2021_10_010 crossref_primary_10_1080_00423114_2024_2393354 crossref_primary_10_1155_2019_7258986 crossref_primary_10_1016_j_trb_2017_05_012 crossref_primary_10_3390_en10060794 crossref_primary_10_1002_er_5958 crossref_primary_10_1177_09544097221103351 crossref_primary_10_1049_itr2_12239 crossref_primary_10_1109_TITS_2019_2939358 crossref_primary_10_1109_TTE_2021_3059111 crossref_primary_10_1049_itr2_12482 crossref_primary_10_1016_j_isatra_2021_04_036 crossref_primary_10_1016_j_trc_2023_104202 crossref_primary_10_1109_TITS_2023_3264795 crossref_primary_10_1155_2023_1217352 crossref_primary_10_1109_TCYB_2019_2915191 crossref_primary_10_3390_a12080173 crossref_primary_10_1049_itr2_12509 crossref_primary_10_1080_23248378_2023_2194684 crossref_primary_10_1080_23249935_2023_2267685 crossref_primary_10_1109_TITS_2018_2846480 crossref_primary_10_1109_TITS_2019_2912038 crossref_primary_10_1109_TITS_2022_3174265 crossref_primary_10_1016_j_ejor_2020_10_018 crossref_primary_10_1049_itr2_12351 crossref_primary_10_1109_TITS_2020_3010245 crossref_primary_10_1109_TITS_2023_3345739 crossref_primary_10_1049_iet_rpg_2020_0142 crossref_primary_10_2139_ssrn_4115428 crossref_primary_10_1109_TTE_2024_3392765 crossref_primary_10_1007_s12555_024_0215_7 crossref_primary_10_1287_trsc_2022_1170 crossref_primary_10_1016_j_asoc_2021_107627 crossref_primary_10_1109_TITS_2020_3040730 crossref_primary_10_1016_j_conengprac_2021_104935 crossref_primary_10_1016_j_engappai_2022_105756 crossref_primary_10_1016_j_tre_2020_102007 crossref_primary_10_1016_j_enconman_2022_115735 crossref_primary_10_1177_0954409721993632 crossref_primary_10_1016_j_trc_2021_103171 crossref_primary_10_1109_TITS_2018_2881156 crossref_primary_10_1016_j_tre_2023_103212 crossref_primary_10_15802_stp2019_171774 crossref_primary_10_1016_j_ins_2021_04_088 crossref_primary_10_1016_j_ejor_2024_03_015 crossref_primary_10_1016_j_jclepro_2018_12_039 crossref_primary_10_48084_etasr_3856 crossref_primary_10_1155_2024_5964428 crossref_primary_10_1016_j_trc_2017_09_009 crossref_primary_10_1016_j_ejtl_2020_100013 crossref_primary_10_3390_en13184933 crossref_primary_10_15802_stp2018_154641 crossref_primary_10_1016_j_conengprac_2021_104825 crossref_primary_10_1016_j_ifacol_2024_07_329 crossref_primary_10_1017_S1446181118000214 crossref_primary_10_1155_2022_8674538 crossref_primary_10_1049_itr2_12093 crossref_primary_10_1016_j_trb_2017_09_012 crossref_primary_10_3390_en11123302 crossref_primary_10_1049_cth2_12123 crossref_primary_10_1007_s40864_021_00151_w crossref_primary_10_1109_TITS_2022_3155628 crossref_primary_10_1016_j_jrtpm_2025_100515 crossref_primary_10_1016_j_trc_2021_103167 crossref_primary_10_1016_j_apenergy_2020_114770 crossref_primary_10_1016_j_jallcom_2024_178154 crossref_primary_10_1016_j_jrtpm_2020_100180 crossref_primary_10_1016_j_jrtpm_2019_100163 crossref_primary_10_1016_j_trpro_2022_02_006 crossref_primary_10_1177_0361198120937307 crossref_primary_10_1049_itr2_12164 crossref_primary_10_1177_16878132241233753 crossref_primary_10_1016_j_trb_2018_03_012 crossref_primary_10_1016_j_trb_2020_01_001 crossref_primary_10_1109_TTE_2021_3059433 crossref_primary_10_1109_TITS_2020_3043577 crossref_primary_10_3390_pr7020077 crossref_primary_10_1016_j_seta_2023_103360 crossref_primary_10_1080_23249935_2023_2294267 crossref_primary_10_3390_en15082891 crossref_primary_10_1049_itr2_12149 crossref_primary_10_3390_en12142686 crossref_primary_10_1109_TITS_2022_3218705 crossref_primary_10_1016_j_jclepro_2021_127163 crossref_primary_10_1016_j_trc_2017_06_011 crossref_primary_10_2174_2212797616666230622143121 crossref_primary_10_1016_j_energy_2018_03_111 crossref_primary_10_3390_app13042454 crossref_primary_10_1016_j_tre_2021_102492 crossref_primary_10_37367_jpi_v8i1_296 crossref_primary_10_1007_s40534_023_00322_4 crossref_primary_10_1016_j_etran_2021_100130 crossref_primary_10_23919_cje_2022_00_174 |
Cites_doi | 10.1023/A:1019235819716 10.1109/9.867018 10.1016/j.automatica.2009.07.028 10.1016/j.automatica.2013.07.008 10.1137/1037043 |
ContentType | Journal Article |
Copyright | 2015 Copyright Elsevier Science Ltd. Dec 2016 |
Copyright_xml | – notice: 2015 – notice: Copyright Elsevier Science Ltd. Dec 2016 |
DBID | AAYXX CITATION 7ST 8FD C1K FR3 KR7 SOI |
DOI | 10.1016/j.trb.2015.07.024 |
DatabaseName | CrossRef Environment Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Civil Engineering Abstracts Environment Abstracts |
DatabaseTitle | CrossRef Civil Engineering Abstracts Engineering Research Database Technology Research Database Environment Abstracts Environmental Sciences and Pollution Management |
DatabaseTitleList | Civil Engineering Abstracts Technology Research Database Environment Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Economics Engineering |
EISSN | 1879-2367 |
EndPage | 538 |
ExternalDocumentID | 10_1016_j_trb_2015_07_024 S0191261515002076 |
GroupedDBID | --K --M -~X .DC .~1 0R~ 123 1B1 1RT 1~. 1~5 29Q 4.4 457 4G. 5VS 7-5 71M 8P~ 9JO AAAKF AAAKG AACTN AAEDT AAEDW AAFJI AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARIN AAXUO ABDEX ABDMP ABFNM ABLJU ABMAC ABMMH ABPPZ ABUCO ABXDB ABYKQ ACDAQ ACGFS ACNCT ACRLP ADBBV ADEZE ADMUD AEBSH AEKER AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHRSL AIEXJ AIKHN AITUG AJBFU AJOXV AKYCK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOMHK APLSM ASPBG AVARZ AVWKF AXJTR AZFZN BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HAMUX HMY HVGLF HZ~ H~9 IHE J1W KOM LY1 LY7 M3Y M41 MO0 MS~ N9A O-L O9- OAUVE OHT OZT P-8 P-9 P2P PC. PRBVW Q38 R2- RIG ROL RPZ SDF SDG SDP SDS SES SET SEW SPCBC SSB SSD SSO SSS SSZ T5K WUQ XPP ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ADNMO AEIPS AFJKZ AFXIZ AGCQF AGQPQ AGRNS AIIUN ANKPU APXCP BNPGV CITATION SSH 7ST 8FD C1K EFKBS FR3 KR7 SOI |
ID | FETCH-LOGICAL-c391t-b72c4341e83eb3ab9fc169a63eba1bbab6e3ead4955d00d93e2bf1a2a205d0e93 |
IEDL.DBID | .~1 |
ISSN | 0191-2615 |
IngestDate | Fri Jul 11 16:40:38 EDT 2025 Tue Aug 05 11:17:49 EDT 2025 Wed Aug 13 11:14:52 EDT 2025 Thu Apr 24 23:04:46 EDT 2025 Tue Jul 01 03:50:09 EDT 2025 Fri Feb 23 02:33:22 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Train control Optimal driving strategies Maximum principle |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c391t-b72c4341e83eb3ab9fc169a63eba1bbab6e3ead4955d00d93e2bf1a2a205d0e93 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-7302-0369 |
PQID | 2077576350 |
PQPubID | 2047452 |
PageCount | 30 |
ParticipantIDs | proquest_miscellaneous_1864568624 proquest_miscellaneous_1850777030 proquest_journals_2077576350 crossref_citationtrail_10_1016_j_trb_2015_07_024 crossref_primary_10_1016_j_trb_2015_07_024 elsevier_sciencedirect_doi_10_1016_j_trb_2015_07_024 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | December 2016 2016-12-00 20161201 |
PublicationDateYYYYMMDD | 2016-12-01 |
PublicationDate_xml | – month: 12 year: 2016 text: December 2016 |
PublicationDecade | 2010 |
PublicationPlace | Oxford |
PublicationPlace_xml | – name: Oxford |
PublicationTitle | Transportation research. Part B: methodological |
PublicationYear | 2016 |
Publisher | Elsevier Ltd Elsevier Science Ltd |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier Science Ltd |
References | Howlett (bib0008) 2000; 98 Howlett, Pudney (bib0010) 1998; 4 Albrecht, Howlett, Pudney, Vu, Zhou (bib0003) 2014 Albrecht, Howlett, Pudney, Vu (bib0001) 2011 Girsanov (bib0006) 1972; 67 Albrecht, Howlett, Pudney, Vu (bib0002) 2013; 49 Yosida (bib0013) 1978 Hartl, Sethi, Vickson (bib0007) 1995; 37 Davis (bib0005) 1926; 29 Brent (bib0004) 1973 Khmelnitsky (bib0011) 2000; 45 Liu, Golovitcher (bib0012) 2003; 37 Howlett, Pudney, Vu (bib0009) 2009; 45 Brent (10.1016/j.trb.2015.07.024_bib0004) 1973 Khmelnitsky (10.1016/j.trb.2015.07.024_bib0011) 2000; 45 Yosida (10.1016/j.trb.2015.07.024_bib0013) 1978 Howlett (10.1016/j.trb.2015.07.024_bib0008) 2000; 98 Albrecht (10.1016/j.trb.2015.07.024_sbref0002) 2013; 49 Girsanov (10.1016/j.trb.2015.07.024_bib0006) 1972; 67 Hartl (10.1016/j.trb.2015.07.024_bib0007) 1995; 37 Davis (10.1016/j.trb.2015.07.024_bib0005) 1926; 29 Albrecht (10.1016/j.trb.2015.07.024_sbref0001) 2011 Liu (10.1016/j.trb.2015.07.024_bib0012) 2003; 37 Albrecht (10.1016/j.trb.2015.07.024_sbref0003) 2014 Howlett (10.1016/j.trb.2015.07.024_bib0010) 1998; 4 Howlett (10.1016/j.trb.2015.07.024_bib0009) 2009; 45 |
References_xml | – volume: 45 start-page: 2692 year: 2009 end-page: 2698 ident: bib0009 article-title: Local energy minimization in optimal train control publication-title: Automatica – year: 2014 ident: bib0003 article-title: The key principles of optimal train control—Part 1: Formulation of the model, strategies of optimal type, evolutionary lines, location of optimal switching points publication-title: Transportation Research Part B – volume: 37 start-page: 181 year: 1995 end-page: 218 ident: bib0007 article-title: A survey of the maximum principles for optimal control problems with state constraints publication-title: SIAM Review – volume: 49 start-page: 3072 year: 2013 end-page: 3078 ident: bib0002 article-title: Energy-efficient train control: from local convexity to global optimization and uniqueness publication-title: Automatica – volume: 37 start-page: 917 year: 2003 end-page: 932 ident: bib0012 article-title: Energy-efficient operation of rail vehicles publication-title: Transportation Research Part A – volume: 67 year: 1972 ident: bib0006 publication-title: Lectures on Mathematical Theory of Extremum Problems – volume: 4 start-page: 553 year: 1998 end-page: 567 ident: bib0010 article-title: An optimal driving strategy for a solar powered car on an undulating road publication-title: Dynamics continuous discrete and impulsive systems – year: 1978 ident: bib0013 publication-title: Functional Analysis – volume: 29 start-page: 2 year: 1926 end-page: 24 ident: bib0005 article-title: The tractive resistance of electric locomotives and cars publication-title: General Electric Review – volume: 98 start-page: 65 year: 2000 end-page: 87 ident: bib0008 article-title: The optimal control of a train publication-title: Annals of Operations Research – volume: 45 start-page: 1257 year: 2000 end-page: 1266 ident: bib0011 article-title: On an optimal control problem of train operation publication-title: IEEE Transactions on Automatic Control – year: 2011 ident: bib0001 article-title: Optimal train control: analysis of a new local optimization principle publication-title: Proceedings of the American Control Conference 2011, San Francisco, June 29–July 1, 1928–1933 – year: 1973 ident: bib0004 article-title: Chapter 4: An algorithm with guaranteed convergence for finding a zero of a function publication-title: Algorithms for Minimization without Derivatives – volume: 98 start-page: 65 year: 2000 ident: 10.1016/j.trb.2015.07.024_bib0008 article-title: The optimal control of a train publication-title: Annals of Operations Research doi: 10.1023/A:1019235819716 – year: 2014 ident: 10.1016/j.trb.2015.07.024_sbref0003 article-title: The key principles of optimal train control—Part 1: Formulation of the model, strategies of optimal type, evolutionary lines, location of optimal switching points publication-title: Transportation Research Part B – year: 1978 ident: 10.1016/j.trb.2015.07.024_bib0013 – year: 1973 ident: 10.1016/j.trb.2015.07.024_bib0004 article-title: Chapter 4: An algorithm with guaranteed convergence for finding a zero of a function – volume: 29 start-page: 2 year: 1926 ident: 10.1016/j.trb.2015.07.024_bib0005 article-title: The tractive resistance of electric locomotives and cars publication-title: General Electric Review – year: 2011 ident: 10.1016/j.trb.2015.07.024_sbref0001 article-title: Optimal train control: analysis of a new local optimization principle – volume: 45 start-page: 1257 issue: 7 year: 2000 ident: 10.1016/j.trb.2015.07.024_bib0011 article-title: On an optimal control problem of train operation publication-title: IEEE Transactions on Automatic Control doi: 10.1109/9.867018 – volume: 4 start-page: 553 year: 1998 ident: 10.1016/j.trb.2015.07.024_bib0010 article-title: An optimal driving strategy for a solar powered car on an undulating road publication-title: Dynamics continuous discrete and impulsive systems – volume: 37 start-page: 917 year: 2003 ident: 10.1016/j.trb.2015.07.024_bib0012 article-title: Energy-efficient operation of rail vehicles publication-title: Transportation Research Part A – volume: 45 start-page: 2692 issue: 11 year: 2009 ident: 10.1016/j.trb.2015.07.024_bib0009 article-title: Local energy minimization in optimal train control publication-title: Automatica doi: 10.1016/j.automatica.2009.07.028 – volume: 49 start-page: 3072 year: 2013 ident: 10.1016/j.trb.2015.07.024_sbref0002 article-title: Energy-efficient train control: from local convexity to global optimization and uniqueness publication-title: Automatica doi: 10.1016/j.automatica.2013.07.008 – volume: 67 year: 1972 ident: 10.1016/j.trb.2015.07.024_bib0006 – volume: 37 start-page: 181 issue: 2 year: 1995 ident: 10.1016/j.trb.2015.07.024_bib0007 article-title: A survey of the maximum principles for optimal control problems with state constraints publication-title: SIAM Review doi: 10.1137/1037043 |
SSID | ssj0003401 |
Score | 2.5734625 |
Snippet | •We consider an extended analysis of the classic train control problem.•We establish a fundamental local energy minimization principle.•We find general bounds... We discuss the problem of finding an energy-efficient driving strategy for a train journey on an undulating track with steep grades subject to a maximum... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 509 |
SubjectTerms | Braking Computer applications Cost recovery Energy conservation Energy costs Energy dissipation Energy efficiency Friction resistance Journeys Mathematical models Maximum principle Minimization Optimal control Optimal driving strategies Optimization Perturbation methods Regenerative braking State-of-the-art reviews Strategy Studies Switching Train control Transitions |
Title | The key principles of optimal train control—Part 2: Existence of an optimal strategy, the local energy minimization principle, uniqueness, computational techniques |
URI | https://dx.doi.org/10.1016/j.trb.2015.07.024 https://www.proquest.com/docview/2077576350 https://www.proquest.com/docview/1850777030 https://www.proquest.com/docview/1864568624 |
Volume | 94 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NTtwwEB6t4ND2UAFt1W23yJV6qjbd_NjOpjeEWC0gUKUWiZtlZx0JVJIVyUrtBfEQvAIvxpMw4zgLVOoekHJJMklsz3hmYs98A_DFiFwkOtbBLM9EwCNrAy0TSuNCe1PoLOQFLQ0cHcvpCT84Fac92O1yYSis0uv-Vqc7be2vjPxojuZnZ6Of6JxEsTPI5POkBLvNeUpS_u3qIcwj4aGvSRgFRN3tbLoYr-bSUHSXcPidMf-fbfpHSzvTM9mA195nZDttszahZ8steNGlFNdb8OoRquAbuEXWM5ybbN4tpNesKliFyuECX-OKQjAfon53ffMDu8vi72zvD3Ec-0_EulzS1y1-7d8hQ1-ROdvHrMsYZIRLcuETOR--NmQLhwpLSnTIclc2wi85siVkbP0WTiZ7v3anga_GEORJFjWBSeOco82z4wR_wLXJijySGTLWGh0Zo420CYol_nCJWRjOssTGpohQDOIQL9gseQdrZVXa98CEHkttYmFMZjke2qCW0PgWGVlTSN6HsOODyj1UOQ3Ob9XFpJ0rZJ0i1qkwVci6PnxdPjJvcTpWEfOOueqJsCm0I6seG3SCoPxMr_F-mgpC9Qv78Hl5G-cobbzo0laLWqFPhFSkW1fRSPRlKV3nw_Na9xFe4plsQ20GsNZcLuwndJgas-1mxDas7-wfTo_vAUhIGlU |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NTtwwEB7R5UB7qAq0YtttMVJPaKPNj-1sekMItBRYIRUkbpaddSQQZFdkV4JbH6Kv0Bfrk3TGcUJBYg-VcrLH-fHY30zsmc8AX43IRaJjHUzyTAQ8sjbQMqE0LrQ3hc5CXtDSwOlYji7490txuQL7TS4MhVV67K8x3aG1Lxn43hzMrq4GP9A5iWJnkMnnSeUrWCV2KtGB1b2j49G4BeSEh_5YwiigBs3mpgvzmt8ZCvASjsIz5i-Zp2dA7azP4Tt4691Gtle_2Tqs2HID1pqs4moD3vxDLLgJv1H7DKcnmzVr6RWbFmyK-HCLt3HnQjAfpf7n568z_GIWf2MH96R07AIS1mUrX9UUtg99hu4ic-aPWZc0yIia5Nbncj4-rc8WjhiWcLTPcndyhF91ZC1rbPUeLg4PzvdHgT-QIciTLJoHJo1zjmbPDhP8B9cmK_JIZqhba3RkjDbSJjgy8Z9LTMJwkiU2NkWEIyEOscBmyQfolNPSbgETeii1iYUxmeV4aYNAofEuMrKmkLwLYaMHlXu2cuqcG9WEpV0rVJ0i1akwVai6Luy2TWY1VccyYd4oVz0ZbwpNybJmvWYgKD_ZK6xPU0HEfmEXdtpqnKa096JLO11UCt0ilCJ4XSYj0Z2ljJ2P__d227A2Oj89USdH4-NP8BprZB1504PO_G5hP6P_NDdf_Pz4C9ckHQY |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+key+principles+of+optimal+train+control-Part+2%3A+Existence+of+an+optimal+strategy%2C+the+local+energy+minimization+principle%2C+uniqueness%2C+computational+techniques&rft.jtitle=Transportation+research.+Part+B%3A+methodological&rft.au=Albrecht%2C+Amie&rft.au=Howlett%2C+Phil&rft.au=Pudney%2C+Peter&rft.au=Vu%2C+Xuan&rft.date=2016-12-01&rft.issn=0191-2615&rft.volume=94&rft.spage=509&rft.epage=538&rft_id=info:doi/10.1016%2Fj.trb.2015.07.024&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0191-2615&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0191-2615&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0191-2615&client=summon |