Simulation-Optimization Model for Conjunctive Management of Surface Water and Groundwater for Agricultural Use
The conjunctive management of surface water and groundwater resources is essential to sustainably manage water resources. The target study is the Osan watershed, in which approximately 60–70% of rainfall occurs during the summer monsoon in Central South Korea. Surface water resources are overexploit...
Saved in:
Published in | Water (Basel) Vol. 13; no. 23; p. 3444 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
04.12.2021
|
Subjects | |
Online Access | Get full text |
ISSN | 2073-4441 2073-4441 |
DOI | 10.3390/w13233444 |
Cover
Loading…
Abstract | The conjunctive management of surface water and groundwater resources is essential to sustainably manage water resources. The target study is the Osan watershed, in which approximately 60–70% of rainfall occurs during the summer monsoon in Central South Korea. Surface water resources are overexploited six times as much as groundwater resources in this region, leading to increasing pressure to satisfy the region’s growing agricultural water demand. Therefore, a simulation-optimization (S-O) model at the sub-basin scale is required to optimize water resource allocation in the Osan watershed. An S-O model based on an artificial neural network (ANN) model coupled with Jaya algorithm optimization (JA) was used to determine the yearly conjunctive supply of agricultural water. The objective was to minimize the water deficit in the watershed subject to constraints on the cumulative drawdown in each subarea. The ANN model could predict the behaviour of the groundwater level and facilitate decision making. The S-O model could minimize the water deficit by approximately 80% in response to the gross water demand, thereby proving to be suitable for a conjunctive management model for water resource management and planning. |
---|---|
AbstractList | The conjunctive management of surface water and groundwater resources is essential to sustainably manage water resources. The target study is the Osan watershed, in which approximately 60–70% of rainfall occurs during the summer monsoon in Central South Korea. Surface water resources are overexploited six times as much as groundwater resources in this region, leading to increasing pressure to satisfy the region’s growing agricultural water demand. Therefore, a simulation-optimization (S-O) model at the sub-basin scale is required to optimize water resource allocation in the Osan watershed. An S-O model based on an artificial neural network (ANN) model coupled with Jaya algorithm optimization (JA) was used to determine the yearly conjunctive supply of agricultural water. The objective was to minimize the water deficit in the watershed subject to constraints on the cumulative drawdown in each subarea. The ANN model could predict the behaviour of the groundwater level and facilitate decision making. The S-O model could minimize the water deficit by approximately 80% in response to the gross water demand, thereby proving to be suitable for a conjunctive management model for water resource management and planning. |
Author | Ashu, Agbortoko Bate Lee, Sang-Il |
Author_xml | – sequence: 1 givenname: Agbortoko Bate orcidid: 0000-0003-4080-1403 surname: Ashu fullname: Ashu, Agbortoko Bate – sequence: 2 givenname: Sang-Il surname: Lee fullname: Lee, Sang-Il |
BookMark | eNptkUtLBDEMx4souD4OfoOCFz2MtpPO6yiLL3DxoOJx6HRS6TLTrn0o-ukdVxERc0n-4fcPIdkhm9ZZJOSAsxOAhp2-csgBhBAbZJazCrKp5Ju_6m2yH8KSTSGaui7YjNg7M6ZBRuNsdruKZjTva0EXrseBaufp3NllsiqaF6QLaeUTjmgjdZreJa-lQvooI3oqbU8vvUu2f13rT-_ZkzcqDTF5OdCHgHtkS8sh4P533iUPF-f386vs5vbyen52kyloeMy6UuqiAODIctZrVRYVAgdVIheAVVcgTJ2uqMqqa3RZVaqX2IDU0DWiFhJ2ydHX3JV3zwlDbEcTFA6DtOhSaPMSSsFyyNmEHv5Bly55O203UazmoqyhmajTL0p5F4JH3SoT15eKXpqh5az9fEH784LJcfzHsfJmlP7tH_YDLgyIYQ |
CitedBy_id | crossref_primary_10_3390_su14052691 crossref_primary_10_1007_s43832_024_00070_4 crossref_primary_10_3390_w15020365 crossref_primary_10_1016_j_chemosphere_2022_136614 crossref_primary_10_2166_hydro_2024_220 crossref_primary_10_1016_j_gsd_2024_101101 crossref_primary_10_1016_j_jclepro_2022_133123 |
Cites_doi | 10.3390/w8040169 10.1016/S0377-2217(01)00339-3 10.1111/j.1752-1688.1998.tb00951.x 10.1061/(ASCE)IR.1943-4774.0000620 10.1080/17538947.2012.687778 10.1016/j.jhydrol.2020.124804 10.1016/j.agwat.2016.05.001 10.3390/w8040168 10.1016/j.jhydrol.2004.12.001 10.1007/s10333-013-0358-2 10.1016/j.jhydrol.2013.10.052 10.1061/(ASCE)WR.1943-5452.0001339 10.1016/j.agwat.2015.08.022 10.1007/s11269-006-4007-z 10.1061/(ASCE)IR.1943-4774.0000977 10.1061/(ASCE)0733-9429(2006)132:12(1321) 10.1061/(ASCE)1084-0699(2000)5:2(115) 10.1007/s00477-011-0545-x 10.3390/ijerph17103521 10.1007/s40808-020-00833-7 10.1007/s00477-016-1369-5 10.1016/j.agwat.2020.106561 10.1080/02626669809492102 10.1061/(ASCE)HE.1943-5584.0000924 10.1007/s11269-009-9533-z 10.2166/aqua.2021.106 10.1029/2002WR001891 10.1007/s11269-010-9766-x 10.1007/s11269-013-0469-y 10.1061/(ASCE)1084-0699(2003)8:6(348) 10.1007/s11269-013-0307-2 10.3390/agronomy9010006 10.1007/s11269-019-02229-4 10.1029/WR015i003p00672 10.1016/S0022-1694(99)00195-X 10.3390/w13010051 10.1007/978-94-015-9341-0 10.1016/j.jhydrol.2010.11.002 10.1016/j.swevo.2017.04.008 10.1016/j.agwat.2014.04.003 10.1002/hyp.6819 10.1016/j.techfore.2006.05.021 10.1016/j.energy.2017.04.059 10.1016/j.enconman.2017.02.068 10.1017/S0376892911000087 10.1007/s40808-015-0042-1 10.1061/(ASCE)0733-9496(2003)129:1(35) 10.1061/(ASCE)0733-9496(1989)115:3(259) 10.3390/w12092564 10.1007/s11269-017-1807-2 10.1061/(ASCE)0733-9496(2005)131:2(89) 10.1016/j.jhydrol.2010.06.033 10.1016/j.jhydrol.2014.11.043 10.1007/s11269-008-9281-5 |
ContentType | Journal Article |
Copyright | 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION ABUWG AFKRA AZQEC BENPR CCPQU DWQXO PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS 7S9 L.6 |
DOI | 10.3390/w13233444 |
DatabaseName | CrossRef ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central Korea ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | Publicly Available Content Database AGRICOLA CrossRef |
Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Agriculture |
EISSN | 2073-4441 |
ExternalDocumentID | 10_3390_w13233444 |
GeographicLocations | Iran South Korea |
GeographicLocations_xml | – name: South Korea – name: Iran |
GroupedDBID | 2XV 5VS 7XC 8CJ 8FE 8FH A8Z AADQD AAFWJ AAHBH AAYXX ADBBV ADMLS AENEX AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS BCNDV BENPR CCPQU CITATION D1J E3Z ECGQY EDH GX1 IAO ITC KQ8 MODMG M~E OK1 OZF PHGZM PHGZT PIMPY PROAC ABUWG AZQEC DWQXO PKEHL PQEST PQQKQ PQUKI PRINS 7S9 L.6 PUEGO |
ID | FETCH-LOGICAL-c391t-b6af55331e020dfc657e313c6e143e7b5e357eb5767b9f677cdae93af3b9484a3 |
IEDL.DBID | BENPR |
ISSN | 2073-4441 |
IngestDate | Fri Sep 05 08:05:36 EDT 2025 Mon Jun 30 07:28:21 EDT 2025 Tue Jul 01 00:23:33 EDT 2025 Thu Apr 24 23:11:16 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 23 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c391t-b6af55331e020dfc657e313c6e143e7b5e357eb5767b9f677cdae93af3b9484a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-4080-1403 |
OpenAccessLink | https://www.proquest.com/docview/2608146839?pq-origsite=%requestingapplication% |
PQID | 2608146839 |
PQPubID | 2032318 |
ParticipantIDs | proquest_miscellaneous_2636402320 proquest_journals_2608146839 crossref_citationtrail_10_3390_w13233444 crossref_primary_10_3390_w13233444 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20211204 |
PublicationDateYYYYMMDD | 2021-12-04 |
PublicationDate_xml | – month: 12 year: 2021 text: 20211204 day: 04 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Water (Basel) |
PublicationYear | 2021 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Singh (ref_44) 2013; 28 ref_50 Hantush (ref_34) 1989; 115 Coppola (ref_58) 2003; 8 Liu (ref_16) 2013; 6 ref_11 Cosgrove (ref_15) 2005; 131 Kite (ref_35) 2000; 229 ref_51 Chakrae (ref_41) 2021; 147 Modaresi (ref_28) 2018; 32 Daliakopoulos (ref_57) 2005; 309 Azaiez (ref_14) 2002; 143 Mantoglou (ref_36) 2003; 39 Fischer (ref_3) 2007; 74 Portoghese (ref_13) 2021; 244 Yang (ref_43) 2009; 23 Singh (ref_38) 2016; 142 Govindaraju (ref_23) 2000; 5 Pathare (ref_10) 2016; 4 Sepahvand (ref_2) 2019; 33 Rao (ref_62) 2017; 128 Matanga (ref_32) 1979; 15 Singh (ref_17) 2014; 19 ref_63 Yoo (ref_9) 2014; 12 Liu (ref_37) 2013; 139 Vidyarthi (ref_29) 2020; 585 Rao (ref_60) 2017; 140 Kasiviswanathan (ref_27) 2017; 31 Wu (ref_45) 2016; 163 Belayneh (ref_55) 2014; 508 Vidyarthi (ref_30) 2020; 6 Shi (ref_20) 2012; 26 Singh (ref_19) 2014; 141 Soleimani (ref_40) 2021; 70 Babel (ref_25) 2011; 25 ref_33 ref_31 Javan (ref_26) 2015; 1 Safavi (ref_21) 2013; 27 ref_39 Tayfur (ref_52) 2006; 132 Safavi (ref_12) 2016; 173 Safavi (ref_64) 2010; 24 Yoon (ref_54) 2011; 396 Jain (ref_24) 2008; 22 Rao (ref_61) 2017; 37 ref_47 ref_46 Lee (ref_49) 2011; 38 Barlow (ref_18) 2003; 129 Dawson (ref_22) 1998; 43 Wang (ref_42) 1998; 34 Ketabchi (ref_56) 2015; 520 Ashu (ref_7) 2021; 2 ref_48 ref_8 Nayak (ref_1) 2006; 20 ref_5 Adamowski (ref_53) 2010; 390 ref_4 Rao (ref_59) 2016; 7 ref_6 |
References_xml | – ident: ref_6 doi: 10.3390/w8040169 – ident: ref_5 – volume: 143 start-page: 611 year: 2002 ident: ref_14 article-title: A model for conjunctive use of ground and surface water with opportunity costs publication-title: Eur. J. Oper. Res. doi: 10.1016/S0377-2217(01)00339-3 – volume: 34 start-page: 519 year: 1998 ident: ref_42 article-title: Ground water management optimization using genetic algorithms and simulated annealing: Formulation and comparison publication-title: J. Am. Water Resour. Assoc. doi: 10.1111/j.1752-1688.1998.tb00951.x – ident: ref_51 – volume: 139 start-page: 775 year: 2013 ident: ref_37 article-title: Integrated modeling of conjunctive water use in a canal-well irrigation district in the lower Yellow River Basin, China publication-title: J. Irrig. Drain. Eng. doi: 10.1061/(ASCE)IR.1943-4774.0000620 – volume: 6 start-page: 313 year: 2013 ident: ref_16 article-title: Cloud computing for integrated stochastic groundwater uncertainty analysis publication-title: Int. J. Digit. Earth doi: 10.1080/17538947.2012.687778 – volume: 585 start-page: 124804 year: 2020 ident: ref_29 article-title: Knowledge extraction from trained ANN drought classification model publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2020.124804 – volume: 173 start-page: 23 year: 2016 ident: ref_12 article-title: Conjunctive use of surface and ground water resources using the ant system optimization publication-title: Agric. Water Manag. doi: 10.1016/j.agwat.2016.05.001 – ident: ref_48 doi: 10.3390/w8040168 – volume: 309 start-page: 229 year: 2005 ident: ref_57 article-title: Groundwater level forecasting using artificial neural networks publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2004.12.001 – volume: 12 start-page: 43 year: 2014 ident: ref_9 article-title: Estimating water footprint of paddy rice in Korea publication-title: Paddy Water Environ. doi: 10.1007/s10333-013-0358-2 – volume: 508 start-page: 418 year: 2014 ident: ref_55 article-title: Long-term SPI drought forecasting in the Awash River Basin in Ethiopia using wavelet neural network and wavelet support vector regression models publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2013.10.052 – volume: 147 start-page: 05021001 year: 2021 ident: ref_41 article-title: Integrated simulation-optimization framework for water allocation based on sustainability of surface water and groundwater resources publication-title: J. Water Resour. Plan. Manag. doi: 10.1061/(ASCE)WR.1943-5452.0001339 – volume: 163 start-page: 380 year: 2016 ident: ref_45 article-title: Optimizing conjunctive use of surface water and groundwater for irrigation to address human-nature water conflicts: A surrogate modeling approach publication-title: Agric. Water Manag. doi: 10.1016/j.agwat.2015.08.022 – volume: 20 start-page: 77 year: 2006 ident: ref_1 article-title: Groundwater level forecasting in a shallow aquifer using artificial neural network approach publication-title: Water Resour. Manag. doi: 10.1007/s11269-006-4007-z – volume: 142 start-page: 1 year: 2016 ident: ref_38 article-title: Optimization modeling for conjunctive use planning of surface water and groundwater for irrigation publication-title: J. Irrig. Drain. Eng. doi: 10.1061/(ASCE)IR.1943-4774.0000977 – volume: 132 start-page: 1321 year: 2006 ident: ref_52 article-title: ANN and fuzzy logic models for simulating event-based rainfall-runoff publication-title: J. Hydraul. Eng. doi: 10.1061/(ASCE)0733-9429(2006)132:12(1321) – volume: 5 start-page: 115 year: 2000 ident: ref_23 article-title: Artificial neural networks in hydrology. I: Preliminary concepts publication-title: ASCE J. Hydrol. Eng. doi: 10.1061/(ASCE)1084-0699(2000)5:2(115) – volume: 26 start-page: 961 year: 2012 ident: ref_20 article-title: Conjunctive use of surface and groundwater in central Asia area: A case study of the Tailan River Basin publication-title: Stoch. Environ. Res. Risk Assess. doi: 10.1007/s00477-011-0545-x – ident: ref_8 – ident: ref_4 – ident: ref_39 doi: 10.3390/ijerph17103521 – volume: 6 start-page: 2177 year: 2020 ident: ref_30 article-title: Modeling rainfall-runoff process using artificial neural network with emphasis on parameter sensitivity publication-title: Model. Earth Syst. Environ. doi: 10.1007/s40808-020-00833-7 – volume: 31 start-page: 1659 year: 2017 ident: ref_27 article-title: Methods used for quantifying the prediction uncertainty of artificial neural network based hydrologic models publication-title: Stoch. Environ. Res. Risk Assess. doi: 10.1007/s00477-016-1369-5 – volume: 244 start-page: 106561 year: 2021 ident: ref_13 article-title: Modeling the impacts of volumetric water pricing in irrigation districts with conjunctive use of surface and groundwater resources publication-title: Agric. Water Manag. doi: 10.1016/j.agwat.2020.106561 – volume: 43 start-page: 47 year: 1998 ident: ref_22 article-title: An artificial neural network approach to rainfall-runoff modeling publication-title: Hydrol. Sci. J. doi: 10.1080/02626669809492102 – volume: 19 start-page: 1447 year: 2014 ident: ref_17 article-title: Optimizing the use of land and water resources for maximizing farm income by mitigating the hydrological imbalances publication-title: J. Hydrol. Eng. doi: 10.1061/(ASCE)HE.1943-5584.0000924 – volume: 24 start-page: 1965 year: 2010 ident: ref_64 article-title: Simulation-optimization modeling of conjunctive use of surface water and groundwater publication-title: Water Resour. Manag. doi: 10.1007/s11269-009-9533-z – volume: 70 start-page: 239 year: 2021 ident: ref_40 article-title: A review of conjunctive GW-SW management by simulation–optimization tools publication-title: J. Water Supply Res. Technol. AQUA doi: 10.2166/aqua.2021.106 – volume: 4 start-page: 27 year: 2016 ident: ref_10 article-title: Attributes of conjunctive use of surface water and sub-surface water publication-title: Int. J. Eng. Technol. Manag. Arts Sci. – volume: 39 start-page: 1 year: 2003 ident: ref_36 article-title: Pumping management of coastal aquifers using analytical models of salt water intrusion publication-title: Water Resour. Res. doi: 10.1029/2002WR001891 – volume: 25 start-page: 1653 year: 2011 ident: ref_25 article-title: Identifying prominent explanatory variables for water demand prediction using artificial neural networks: A case study of Bangkok publication-title: Water Resour. Manag. doi: 10.1007/s11269-010-9766-x – volume: 28 start-page: 1 year: 2013 ident: ref_44 article-title: Irrigation planning and management through optimization modeling publication-title: Water Resour. Manag. doi: 10.1007/s11269-013-0469-y – volume: 8 start-page: 348 year: 2003 ident: ref_58 article-title: Artificial neural network approach for predicting transient water levels in a multi-layered groundwater system under variable state, pumping, and climate conditions publication-title: J. Hydrol. Eng. doi: 10.1061/(ASCE)1084-0699(2003)8:6(348) – volume: 27 start-page: 2623 year: 2013 ident: ref_21 article-title: Conjunctive use of surface water and groundwater: Application of support vector machines (SVMs) and genetic algorithms publication-title: Water Resour. Manag. doi: 10.1007/s11269-013-0307-2 – ident: ref_46 doi: 10.3390/agronomy9010006 – volume: 33 start-page: 2123 year: 2019 ident: ref_2 article-title: Multi-objective planning for conjunctive use of surface and ground water resources using genetic programming publication-title: Water Resour. Manag. doi: 10.1007/s11269-019-02229-4 – volume: 15 start-page: 672 year: 1979 ident: ref_32 article-title: Irrigation planning: 1. Cropping pattern publication-title: Water Resour. Res. doi: 10.1029/WR015i003p00672 – volume: 229 start-page: 3 year: 2000 ident: ref_35 article-title: Comparing evapotranspiration estimates from satellites, hydrological models, and field data publication-title: J. Hydrol. doi: 10.1016/S0022-1694(99)00195-X – ident: ref_11 – ident: ref_63 doi: 10.3390/w13010051 – ident: ref_31 doi: 10.1007/978-94-015-9341-0 – volume: 396 start-page: 128 year: 2011 ident: ref_54 article-title: A comparative study of artificial neural networks and support vector machines for predicting groundwater levels in a coastal aquifer publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2010.11.002 – volume: 37 start-page: 1 year: 2017 ident: ref_61 article-title: A self-adaptive multi-population-based Jaya algorithm for engineering optimization publication-title: Swarm Evol. Comput. doi: 10.1016/j.swevo.2017.04.008 – volume: 2 start-page: 51116 year: 2021 ident: ref_7 article-title: The effects of climate change on the reuse of agricultural drainage water in irrigation publication-title: KSCE J. Civ. Eng. – volume: 141 start-page: 23 year: 2014 ident: ref_19 article-title: Simulation–optimization modeling for conjunctive water use management publication-title: Agric. Water Manag. doi: 10.1016/j.agwat.2014.04.003 – volume: 22 start-page: 2225 year: 2008 ident: ref_24 article-title: Models for estimating evapotranspiration using artificial neural networks, and their physical interpretation publication-title: Hydrol. Process. doi: 10.1002/hyp.6819 – volume: 74 start-page: 1083 year: 2007 ident: ref_3 article-title: Climate change impacts on irrigation water requirements: Effects of mitigation, 1990–2080 publication-title: Technol. Forecast. Soc. Chang. doi: 10.1016/j.techfore.2006.05.021 – ident: ref_50 – volume: 128 start-page: 785 year: 2017 ident: ref_62 article-title: Constrained economic optimization of shell-and-tube heat exchangers using elitist-Jaya algorithm publication-title: Energy doi: 10.1016/j.energy.2017.04.059 – ident: ref_33 – volume: 140 start-page: 24 year: 2017 ident: ref_60 article-title: Design optimization and analysis of selected thermal devices using self-adaptive Jaya algorithm publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2017.02.068 – volume: 38 start-page: 64 year: 2011 ident: ref_49 article-title: Environmental issues of groundwater in Korea: Implications for sustainable use publication-title: Environ. Conserv. doi: 10.1017/S0376892911000087 – volume: 1 start-page: 41 year: 2015 ident: ref_26 article-title: A comparison of ANN and HSPF models for runoff simulation in Gharehsoo River watershed, Iran publication-title: Model. Earth Syst. Environ. doi: 10.1007/s40808-015-0042-1 – volume: 129 start-page: 35 year: 2003 ident: ref_18 article-title: Conjunctive-management models for sustained yield of stream-aquifer systems publication-title: J. Water Resour. Plan. Manag. doi: 10.1061/(ASCE)0733-9496(2003)129:1(35) – volume: 115 start-page: 259 year: 1989 ident: ref_34 article-title: Chance-constrained model for management of stream-aquifer system publication-title: J. Water Res. Plan. Manag. doi: 10.1061/(ASCE)0733-9496(1989)115:3(259) – volume: 7 start-page: 19 year: 2016 ident: ref_59 article-title: Jaya: A simple and new optimization algorithm for solving constrained and unconstrained optimization problems publication-title: Int. J. Ind. Eng. Comput. – ident: ref_47 doi: 10.3390/w12092564 – volume: 32 start-page: 243 year: 2018 ident: ref_28 article-title: A comparative assessment of artificial neural network generalized regression neural network, least square support vector regression, and K-nearest neighbor regression for monthly streamflow forecasting in linear and nonlinear conditions publication-title: Water Resour. Manag. doi: 10.1007/s11269-017-1807-2 – volume: 131 start-page: 89 year: 2005 ident: ref_15 article-title: Aquifer management zones based on simulated surface-water response functions publication-title: J. Water Resour. Plan. Manag. doi: 10.1061/(ASCE)0733-9496(2005)131:2(89) – volume: 390 start-page: 85 year: 2010 ident: ref_53 article-title: Development of a coupled wavelet transform and neural network method for flow forecasting of non-perennial rivers in semi-arid watersheds publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2010.06.033 – volume: 520 start-page: 193 year: 2015 ident: ref_56 article-title: Evolutionary algorithms for the optimal management of coastal groundwater: A comparative study toward future challenges publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2014.11.043 – volume: 23 start-page: 417 year: 2009 ident: ref_43 article-title: Multi-objective planning for conjunctive use of surface and subsurface water using genetic algorithm and dynamics programming publication-title: Water Resour. Manag. doi: 10.1007/s11269-008-9281-5 |
SSID | ssj0000498850 |
Score | 2.2578468 |
Snippet | The conjunctive management of surface water and groundwater resources is essential to sustainably manage water resources. The target study is the Osan... |
SourceID | proquest crossref |
SourceType | Aggregation Database Enrichment Source Index Database |
StartPage | 3444 |
SubjectTerms | Agriculture Algorithms Aquifers Creeks & streams drawdown Freshwater resources Groundwater Irrigation monsoon season neural networks Optimization Precipitation rain resource allocation Rice Seasons Simulation South Korea summer Surface water water management Water supply water table Watersheds |
Title | Simulation-Optimization Model for Conjunctive Management of Surface Water and Groundwater for Agricultural Use |
URI | https://www.proquest.com/docview/2608146839 https://www.proquest.com/docview/2636402320 |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT8MwDLZgXOCAeIrBQAFx4FJBliZtT2ggHkLiIWBityoPF4GghT3E38fZsg0kxDGt20Z2Yn92XBtgnzC5yITzSWFNjOIMRWQKySNaKpLrTFo9DLhd36jLdnzVkZ0QcOuFtMqxThwqaldZHyM_JNzto1Vkz48_PiPfNcqfroYWGrMwRyo4lTWYOzm7ubufRFkI_6apPBqVFBLk3x9-kfslRBzHvw3Rbz08NC7nS7AYUCFrjcS4DDNYrsBC67kbKmMgjX5UDlyF8uHlPTTeim5p17-H3ymZ7232xgiJstOqfCWj5dUZmya5sKpgD4NuoS2yJ8KZXaZLx3wEqnRfw7F_dvplmlW7h2vQPj97PL2MQuuEyIqM9yOjdCEJyXEkOOgKq2SCggurkPARJkaioCuGnI3EZIVKEus0ZkIXwmRxGmuxDrWyKnEDGOeFQUxQZU6RtXc6Ndwom2CaGodG1eFgzMfchrrivr3FW07-hWd5PmF5HfYmpB-jYhp_ETXGwsjDfurlU-nXYXdym3aCP97QJVYDTyMUecOiebT5_yu2YL7pM1N8UkrcgFq_O8BtghZ9sxPWzw7MXnT4N8B30dA |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB5ROLQcKmiLWJ4uaiUuEZs4ceIDQjy1vLYVsGJvwY8JagUJ3YdW_Cl-I-PdZBekihtHJ45jjccz34zHMwA_CJNzya0LCgvQCyVyT2eR7xGrRL6SkVFDh9t5UzRa4Uk7ak_BU3UXxoVVVjJxKKhtYZyPfItwt_NWkT7fefjnuapR7nS1KqExYotTfByQydbdPj6g9f0ZBEeHV_sNr6wq4Bku_Z6nhcoiAjk-ElKymRFRjNznRiBBB4x1hJyeaMLhsZaZiGNjFUquMq5lmISK07gfYIZghqRdNLN32Px9MfbqEN5Okqg-SmHEuaxvDcjc4zwMw9eK77XcHyqzozn4XKJQtjtim3mYwvwLzO7edspMHEitF5kKv0J--ee-LPTl_SIpc19e32SultodI-TL9ov8LylJJz7ZJKiGFRm77HcyZZBdE67tMJVb5jxeuR0M2-7byZ9pVq0ufoPWuxB1AabzIsdFYL6facQYhbSC0IVVifa1MDEmibaoRQ02Kzqmpsxj7spp3KVkzziSp2OS12Bj3PVhlLzjf51WqsVIy_3bTSfcVoPv49e089xxisqx6Ls-XJD1zYP60ttDrMPHxtX5WXp23Dxdhk-Bi4pxATHhCkz3On1cJVjT02slLzG4eW_2fQa-RA4h |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrYTggCgPsVBag0DiEu0mTpz4gKq-Vi2FpaKs6C31Y4xAbVL2oVX_Gr-O8a6z20qotx6dOI41Hs98Mx7PALwjTM4ltz4oLMEolcgj7bI4IlbJYiUzo2YOty99cTBIP51mpyvwt7kL48MqG5k4E9S2Nt5H3iHc7b1VpM87LoRFHO_1ti7_RL6ClD9pbcppzFnkCK-mZL6NPh7u0Vq_T5Le_vfdgyhUGIgMl_E40kK5jABPjISarDMiy5HH3AgkGIG5zpDTE02YPNfSiTw3VqHkynEt0yJVnMa9B6s5acWiBas7-_3jbwsPD2Hvosi683RGnMtuZ0qmH-dpmt5Ugjd1wEyx9R7Do4BI2fachdZgBasn8HD75zBk5UBqXcta-BSqk18XoehX9JUkzkW4ysl8XbVzRiiY7dbVb1KYXpSyZYANqx07mQydMsh-EMYdMlVZ5r1flZ3O2v7b5Z9pVoMRPoPBnRD1ObSqusIXwOLYacQchbSCkIZVhY61MDkWhbaoRRs-NHQsTchp7ktrnJdk23iSlwuSt-HtouvlPJHH_zqtN4tRhr08Kpec14Y3i9e0C_3Riqqwnvg-XJAlzpPuy9uH2IT7xLbl58P-0St4kPgAGR8bk65Dazyc4GtCOGO9EViJwdldc-8_yL8STQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Simulation-Optimization+Model+for+Conjunctive+Management+of+Surface+Water+and+Groundwater+for+Agricultural+Use&rft.jtitle=Water+%28Basel%29&rft.au=Agbortoko+Bate+Ashu&rft.au=Lee%2C+Sang-Il&rft.date=2021-12-04&rft.pub=MDPI+AG&rft.eissn=2073-4441&rft.volume=13&rft.issue=23&rft.spage=3444&rft_id=info:doi/10.3390%2Fw13233444&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2073-4441&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2073-4441&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2073-4441&client=summon |