Simulation-Optimization Model for Conjunctive Management of Surface Water and Groundwater for Agricultural Use

The conjunctive management of surface water and groundwater resources is essential to sustainably manage water resources. The target study is the Osan watershed, in which approximately 60–70% of rainfall occurs during the summer monsoon in Central South Korea. Surface water resources are overexploit...

Full description

Saved in:
Bibliographic Details
Published inWater (Basel) Vol. 13; no. 23; p. 3444
Main Authors Ashu, Agbortoko Bate, Lee, Sang-Il
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 04.12.2021
Subjects
Online AccessGet full text
ISSN2073-4441
2073-4441
DOI10.3390/w13233444

Cover

Loading…
Abstract The conjunctive management of surface water and groundwater resources is essential to sustainably manage water resources. The target study is the Osan watershed, in which approximately 60–70% of rainfall occurs during the summer monsoon in Central South Korea. Surface water resources are overexploited six times as much as groundwater resources in this region, leading to increasing pressure to satisfy the region’s growing agricultural water demand. Therefore, a simulation-optimization (S-O) model at the sub-basin scale is required to optimize water resource allocation in the Osan watershed. An S-O model based on an artificial neural network (ANN) model coupled with Jaya algorithm optimization (JA) was used to determine the yearly conjunctive supply of agricultural water. The objective was to minimize the water deficit in the watershed subject to constraints on the cumulative drawdown in each subarea. The ANN model could predict the behaviour of the groundwater level and facilitate decision making. The S-O model could minimize the water deficit by approximately 80% in response to the gross water demand, thereby proving to be suitable for a conjunctive management model for water resource management and planning.
AbstractList The conjunctive management of surface water and groundwater resources is essential to sustainably manage water resources. The target study is the Osan watershed, in which approximately 60–70% of rainfall occurs during the summer monsoon in Central South Korea. Surface water resources are overexploited six times as much as groundwater resources in this region, leading to increasing pressure to satisfy the region’s growing agricultural water demand. Therefore, a simulation-optimization (S-O) model at the sub-basin scale is required to optimize water resource allocation in the Osan watershed. An S-O model based on an artificial neural network (ANN) model coupled with Jaya algorithm optimization (JA) was used to determine the yearly conjunctive supply of agricultural water. The objective was to minimize the water deficit in the watershed subject to constraints on the cumulative drawdown in each subarea. The ANN model could predict the behaviour of the groundwater level and facilitate decision making. The S-O model could minimize the water deficit by approximately 80% in response to the gross water demand, thereby proving to be suitable for a conjunctive management model for water resource management and planning.
Author Ashu, Agbortoko Bate
Lee, Sang-Il
Author_xml – sequence: 1
  givenname: Agbortoko Bate
  orcidid: 0000-0003-4080-1403
  surname: Ashu
  fullname: Ashu, Agbortoko Bate
– sequence: 2
  givenname: Sang-Il
  surname: Lee
  fullname: Lee, Sang-Il
BookMark eNptkUtLBDEMx4souD4OfoOCFz2MtpPO6yiLL3DxoOJx6HRS6TLTrn0o-ukdVxERc0n-4fcPIdkhm9ZZJOSAsxOAhp2-csgBhBAbZJazCrKp5Ju_6m2yH8KSTSGaui7YjNg7M6ZBRuNsdruKZjTva0EXrseBaufp3NllsiqaF6QLaeUTjmgjdZreJa-lQvooI3oqbU8vvUu2f13rT-_ZkzcqDTF5OdCHgHtkS8sh4P533iUPF-f386vs5vbyen52kyloeMy6UuqiAODIctZrVRYVAgdVIheAVVcgTJ2uqMqqa3RZVaqX2IDU0DWiFhJ2ydHX3JV3zwlDbEcTFA6DtOhSaPMSSsFyyNmEHv5Bly55O203UazmoqyhmajTL0p5F4JH3SoT15eKXpqh5az9fEH784LJcfzHsfJmlP7tH_YDLgyIYQ
CitedBy_id crossref_primary_10_3390_su14052691
crossref_primary_10_1007_s43832_024_00070_4
crossref_primary_10_3390_w15020365
crossref_primary_10_1016_j_chemosphere_2022_136614
crossref_primary_10_2166_hydro_2024_220
crossref_primary_10_1016_j_gsd_2024_101101
crossref_primary_10_1016_j_jclepro_2022_133123
Cites_doi 10.3390/w8040169
10.1016/S0377-2217(01)00339-3
10.1111/j.1752-1688.1998.tb00951.x
10.1061/(ASCE)IR.1943-4774.0000620
10.1080/17538947.2012.687778
10.1016/j.jhydrol.2020.124804
10.1016/j.agwat.2016.05.001
10.3390/w8040168
10.1016/j.jhydrol.2004.12.001
10.1007/s10333-013-0358-2
10.1016/j.jhydrol.2013.10.052
10.1061/(ASCE)WR.1943-5452.0001339
10.1016/j.agwat.2015.08.022
10.1007/s11269-006-4007-z
10.1061/(ASCE)IR.1943-4774.0000977
10.1061/(ASCE)0733-9429(2006)132:12(1321)
10.1061/(ASCE)1084-0699(2000)5:2(115)
10.1007/s00477-011-0545-x
10.3390/ijerph17103521
10.1007/s40808-020-00833-7
10.1007/s00477-016-1369-5
10.1016/j.agwat.2020.106561
10.1080/02626669809492102
10.1061/(ASCE)HE.1943-5584.0000924
10.1007/s11269-009-9533-z
10.2166/aqua.2021.106
10.1029/2002WR001891
10.1007/s11269-010-9766-x
10.1007/s11269-013-0469-y
10.1061/(ASCE)1084-0699(2003)8:6(348)
10.1007/s11269-013-0307-2
10.3390/agronomy9010006
10.1007/s11269-019-02229-4
10.1029/WR015i003p00672
10.1016/S0022-1694(99)00195-X
10.3390/w13010051
10.1007/978-94-015-9341-0
10.1016/j.jhydrol.2010.11.002
10.1016/j.swevo.2017.04.008
10.1016/j.agwat.2014.04.003
10.1002/hyp.6819
10.1016/j.techfore.2006.05.021
10.1016/j.energy.2017.04.059
10.1016/j.enconman.2017.02.068
10.1017/S0376892911000087
10.1007/s40808-015-0042-1
10.1061/(ASCE)0733-9496(2003)129:1(35)
10.1061/(ASCE)0733-9496(1989)115:3(259)
10.3390/w12092564
10.1007/s11269-017-1807-2
10.1061/(ASCE)0733-9496(2005)131:2(89)
10.1016/j.jhydrol.2010.06.033
10.1016/j.jhydrol.2014.11.043
10.1007/s11269-008-9281-5
ContentType Journal Article
Copyright 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
7S9
L.6
DOI 10.3390/w13233444
DatabaseName CrossRef
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList Publicly Available Content Database
AGRICOLA
CrossRef
Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Agriculture
EISSN 2073-4441
ExternalDocumentID 10_3390_w13233444
GeographicLocations Iran
South Korea
GeographicLocations_xml – name: South Korea
– name: Iran
GroupedDBID 2XV
5VS
7XC
8CJ
8FE
8FH
A8Z
AADQD
AAFWJ
AAHBH
AAYXX
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BENPR
CCPQU
CITATION
D1J
E3Z
ECGQY
EDH
GX1
IAO
ITC
KQ8
MODMG
M~E
OK1
OZF
PHGZM
PHGZT
PIMPY
PROAC
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
7S9
L.6
PUEGO
ID FETCH-LOGICAL-c391t-b6af55331e020dfc657e313c6e143e7b5e357eb5767b9f677cdae93af3b9484a3
IEDL.DBID BENPR
ISSN 2073-4441
IngestDate Fri Sep 05 08:05:36 EDT 2025
Mon Jun 30 07:28:21 EDT 2025
Tue Jul 01 00:23:33 EDT 2025
Thu Apr 24 23:11:16 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 23
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c391t-b6af55331e020dfc657e313c6e143e7b5e357eb5767b9f677cdae93af3b9484a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-4080-1403
OpenAccessLink https://www.proquest.com/docview/2608146839?pq-origsite=%requestingapplication%
PQID 2608146839
PQPubID 2032318
ParticipantIDs proquest_miscellaneous_2636402320
proquest_journals_2608146839
crossref_citationtrail_10_3390_w13233444
crossref_primary_10_3390_w13233444
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20211204
PublicationDateYYYYMMDD 2021-12-04
PublicationDate_xml – month: 12
  year: 2021
  text: 20211204
  day: 04
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Water (Basel)
PublicationYear 2021
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Singh (ref_44) 2013; 28
ref_50
Hantush (ref_34) 1989; 115
Coppola (ref_58) 2003; 8
Liu (ref_16) 2013; 6
ref_11
Cosgrove (ref_15) 2005; 131
Kite (ref_35) 2000; 229
ref_51
Chakrae (ref_41) 2021; 147
Modaresi (ref_28) 2018; 32
Daliakopoulos (ref_57) 2005; 309
Azaiez (ref_14) 2002; 143
Mantoglou (ref_36) 2003; 39
Fischer (ref_3) 2007; 74
Portoghese (ref_13) 2021; 244
Yang (ref_43) 2009; 23
Singh (ref_38) 2016; 142
Govindaraju (ref_23) 2000; 5
Pathare (ref_10) 2016; 4
Sepahvand (ref_2) 2019; 33
Rao (ref_62) 2017; 128
Matanga (ref_32) 1979; 15
Singh (ref_17) 2014; 19
ref_63
Yoo (ref_9) 2014; 12
Liu (ref_37) 2013; 139
Vidyarthi (ref_29) 2020; 585
Rao (ref_60) 2017; 140
Kasiviswanathan (ref_27) 2017; 31
Wu (ref_45) 2016; 163
Belayneh (ref_55) 2014; 508
Vidyarthi (ref_30) 2020; 6
Shi (ref_20) 2012; 26
Singh (ref_19) 2014; 141
Soleimani (ref_40) 2021; 70
Babel (ref_25) 2011; 25
ref_33
ref_31
Javan (ref_26) 2015; 1
Safavi (ref_21) 2013; 27
ref_39
Tayfur (ref_52) 2006; 132
Safavi (ref_12) 2016; 173
Safavi (ref_64) 2010; 24
Yoon (ref_54) 2011; 396
Jain (ref_24) 2008; 22
Rao (ref_61) 2017; 37
ref_47
ref_46
Lee (ref_49) 2011; 38
Barlow (ref_18) 2003; 129
Dawson (ref_22) 1998; 43
Wang (ref_42) 1998; 34
Ketabchi (ref_56) 2015; 520
Ashu (ref_7) 2021; 2
ref_48
ref_8
Nayak (ref_1) 2006; 20
ref_5
Adamowski (ref_53) 2010; 390
ref_4
Rao (ref_59) 2016; 7
ref_6
References_xml – ident: ref_6
  doi: 10.3390/w8040169
– ident: ref_5
– volume: 143
  start-page: 611
  year: 2002
  ident: ref_14
  article-title: A model for conjunctive use of ground and surface water with opportunity costs
  publication-title: Eur. J. Oper. Res.
  doi: 10.1016/S0377-2217(01)00339-3
– volume: 34
  start-page: 519
  year: 1998
  ident: ref_42
  article-title: Ground water management optimization using genetic algorithms and simulated annealing: Formulation and comparison
  publication-title: J. Am. Water Resour. Assoc.
  doi: 10.1111/j.1752-1688.1998.tb00951.x
– ident: ref_51
– volume: 139
  start-page: 775
  year: 2013
  ident: ref_37
  article-title: Integrated modeling of conjunctive water use in a canal-well irrigation district in the lower Yellow River Basin, China
  publication-title: J. Irrig. Drain. Eng.
  doi: 10.1061/(ASCE)IR.1943-4774.0000620
– volume: 6
  start-page: 313
  year: 2013
  ident: ref_16
  article-title: Cloud computing for integrated stochastic groundwater uncertainty analysis
  publication-title: Int. J. Digit. Earth
  doi: 10.1080/17538947.2012.687778
– volume: 585
  start-page: 124804
  year: 2020
  ident: ref_29
  article-title: Knowledge extraction from trained ANN drought classification model
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2020.124804
– volume: 173
  start-page: 23
  year: 2016
  ident: ref_12
  article-title: Conjunctive use of surface and ground water resources using the ant system optimization
  publication-title: Agric. Water Manag.
  doi: 10.1016/j.agwat.2016.05.001
– ident: ref_48
  doi: 10.3390/w8040168
– volume: 309
  start-page: 229
  year: 2005
  ident: ref_57
  article-title: Groundwater level forecasting using artificial neural networks
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2004.12.001
– volume: 12
  start-page: 43
  year: 2014
  ident: ref_9
  article-title: Estimating water footprint of paddy rice in Korea
  publication-title: Paddy Water Environ.
  doi: 10.1007/s10333-013-0358-2
– volume: 508
  start-page: 418
  year: 2014
  ident: ref_55
  article-title: Long-term SPI drought forecasting in the Awash River Basin in Ethiopia using wavelet neural network and wavelet support vector regression models
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2013.10.052
– volume: 147
  start-page: 05021001
  year: 2021
  ident: ref_41
  article-title: Integrated simulation-optimization framework for water allocation based on sustainability of surface water and groundwater resources
  publication-title: J. Water Resour. Plan. Manag.
  doi: 10.1061/(ASCE)WR.1943-5452.0001339
– volume: 163
  start-page: 380
  year: 2016
  ident: ref_45
  article-title: Optimizing conjunctive use of surface water and groundwater for irrigation to address human-nature water conflicts: A surrogate modeling approach
  publication-title: Agric. Water Manag.
  doi: 10.1016/j.agwat.2015.08.022
– volume: 20
  start-page: 77
  year: 2006
  ident: ref_1
  article-title: Groundwater level forecasting in a shallow aquifer using artificial neural network approach
  publication-title: Water Resour. Manag.
  doi: 10.1007/s11269-006-4007-z
– volume: 142
  start-page: 1
  year: 2016
  ident: ref_38
  article-title: Optimization modeling for conjunctive use planning of surface water and groundwater for irrigation
  publication-title: J. Irrig. Drain. Eng.
  doi: 10.1061/(ASCE)IR.1943-4774.0000977
– volume: 132
  start-page: 1321
  year: 2006
  ident: ref_52
  article-title: ANN and fuzzy logic models for simulating event-based rainfall-runoff
  publication-title: J. Hydraul. Eng.
  doi: 10.1061/(ASCE)0733-9429(2006)132:12(1321)
– volume: 5
  start-page: 115
  year: 2000
  ident: ref_23
  article-title: Artificial neural networks in hydrology. I: Preliminary concepts
  publication-title: ASCE J. Hydrol. Eng.
  doi: 10.1061/(ASCE)1084-0699(2000)5:2(115)
– volume: 26
  start-page: 961
  year: 2012
  ident: ref_20
  article-title: Conjunctive use of surface and groundwater in central Asia area: A case study of the Tailan River Basin
  publication-title: Stoch. Environ. Res. Risk Assess.
  doi: 10.1007/s00477-011-0545-x
– ident: ref_8
– ident: ref_4
– ident: ref_39
  doi: 10.3390/ijerph17103521
– volume: 6
  start-page: 2177
  year: 2020
  ident: ref_30
  article-title: Modeling rainfall-runoff process using artificial neural network with emphasis on parameter sensitivity
  publication-title: Model. Earth Syst. Environ.
  doi: 10.1007/s40808-020-00833-7
– volume: 31
  start-page: 1659
  year: 2017
  ident: ref_27
  article-title: Methods used for quantifying the prediction uncertainty of artificial neural network based hydrologic models
  publication-title: Stoch. Environ. Res. Risk Assess.
  doi: 10.1007/s00477-016-1369-5
– volume: 244
  start-page: 106561
  year: 2021
  ident: ref_13
  article-title: Modeling the impacts of volumetric water pricing in irrigation districts with conjunctive use of surface and groundwater resources
  publication-title: Agric. Water Manag.
  doi: 10.1016/j.agwat.2020.106561
– volume: 43
  start-page: 47
  year: 1998
  ident: ref_22
  article-title: An artificial neural network approach to rainfall-runoff modeling
  publication-title: Hydrol. Sci. J.
  doi: 10.1080/02626669809492102
– volume: 19
  start-page: 1447
  year: 2014
  ident: ref_17
  article-title: Optimizing the use of land and water resources for maximizing farm income by mitigating the hydrological imbalances
  publication-title: J. Hydrol. Eng.
  doi: 10.1061/(ASCE)HE.1943-5584.0000924
– volume: 24
  start-page: 1965
  year: 2010
  ident: ref_64
  article-title: Simulation-optimization modeling of conjunctive use of surface water and groundwater
  publication-title: Water Resour. Manag.
  doi: 10.1007/s11269-009-9533-z
– volume: 70
  start-page: 239
  year: 2021
  ident: ref_40
  article-title: A review of conjunctive GW-SW management by simulation–optimization tools
  publication-title: J. Water Supply Res. Technol. AQUA
  doi: 10.2166/aqua.2021.106
– volume: 4
  start-page: 27
  year: 2016
  ident: ref_10
  article-title: Attributes of conjunctive use of surface water and sub-surface water
  publication-title: Int. J. Eng. Technol. Manag. Arts Sci.
– volume: 39
  start-page: 1
  year: 2003
  ident: ref_36
  article-title: Pumping management of coastal aquifers using analytical models of salt water intrusion
  publication-title: Water Resour. Res.
  doi: 10.1029/2002WR001891
– volume: 25
  start-page: 1653
  year: 2011
  ident: ref_25
  article-title: Identifying prominent explanatory variables for water demand prediction using artificial neural networks: A case study of Bangkok
  publication-title: Water Resour. Manag.
  doi: 10.1007/s11269-010-9766-x
– volume: 28
  start-page: 1
  year: 2013
  ident: ref_44
  article-title: Irrigation planning and management through optimization modeling
  publication-title: Water Resour. Manag.
  doi: 10.1007/s11269-013-0469-y
– volume: 8
  start-page: 348
  year: 2003
  ident: ref_58
  article-title: Artificial neural network approach for predicting transient water levels in a multi-layered groundwater system under variable state, pumping, and climate conditions
  publication-title: J. Hydrol. Eng.
  doi: 10.1061/(ASCE)1084-0699(2003)8:6(348)
– volume: 27
  start-page: 2623
  year: 2013
  ident: ref_21
  article-title: Conjunctive use of surface water and groundwater: Application of support vector machines (SVMs) and genetic algorithms
  publication-title: Water Resour. Manag.
  doi: 10.1007/s11269-013-0307-2
– ident: ref_46
  doi: 10.3390/agronomy9010006
– volume: 33
  start-page: 2123
  year: 2019
  ident: ref_2
  article-title: Multi-objective planning for conjunctive use of surface and ground water resources using genetic programming
  publication-title: Water Resour. Manag.
  doi: 10.1007/s11269-019-02229-4
– volume: 15
  start-page: 672
  year: 1979
  ident: ref_32
  article-title: Irrigation planning: 1. Cropping pattern
  publication-title: Water Resour. Res.
  doi: 10.1029/WR015i003p00672
– volume: 229
  start-page: 3
  year: 2000
  ident: ref_35
  article-title: Comparing evapotranspiration estimates from satellites, hydrological models, and field data
  publication-title: J. Hydrol.
  doi: 10.1016/S0022-1694(99)00195-X
– ident: ref_11
– ident: ref_63
  doi: 10.3390/w13010051
– ident: ref_31
  doi: 10.1007/978-94-015-9341-0
– volume: 396
  start-page: 128
  year: 2011
  ident: ref_54
  article-title: A comparative study of artificial neural networks and support vector machines for predicting groundwater levels in a coastal aquifer
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2010.11.002
– volume: 37
  start-page: 1
  year: 2017
  ident: ref_61
  article-title: A self-adaptive multi-population-based Jaya algorithm for engineering optimization
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2017.04.008
– volume: 2
  start-page: 51116
  year: 2021
  ident: ref_7
  article-title: The effects of climate change on the reuse of agricultural drainage water in irrigation
  publication-title: KSCE J. Civ. Eng.
– volume: 141
  start-page: 23
  year: 2014
  ident: ref_19
  article-title: Simulation–optimization modeling for conjunctive water use management
  publication-title: Agric. Water Manag.
  doi: 10.1016/j.agwat.2014.04.003
– volume: 22
  start-page: 2225
  year: 2008
  ident: ref_24
  article-title: Models for estimating evapotranspiration using artificial neural networks, and their physical interpretation
  publication-title: Hydrol. Process.
  doi: 10.1002/hyp.6819
– volume: 74
  start-page: 1083
  year: 2007
  ident: ref_3
  article-title: Climate change impacts on irrigation water requirements: Effects of mitigation, 1990–2080
  publication-title: Technol. Forecast. Soc. Chang.
  doi: 10.1016/j.techfore.2006.05.021
– ident: ref_50
– volume: 128
  start-page: 785
  year: 2017
  ident: ref_62
  article-title: Constrained economic optimization of shell-and-tube heat exchangers using elitist-Jaya algorithm
  publication-title: Energy
  doi: 10.1016/j.energy.2017.04.059
– ident: ref_33
– volume: 140
  start-page: 24
  year: 2017
  ident: ref_60
  article-title: Design optimization and analysis of selected thermal devices using self-adaptive Jaya algorithm
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2017.02.068
– volume: 38
  start-page: 64
  year: 2011
  ident: ref_49
  article-title: Environmental issues of groundwater in Korea: Implications for sustainable use
  publication-title: Environ. Conserv.
  doi: 10.1017/S0376892911000087
– volume: 1
  start-page: 41
  year: 2015
  ident: ref_26
  article-title: A comparison of ANN and HSPF models for runoff simulation in Gharehsoo River watershed, Iran
  publication-title: Model. Earth Syst. Environ.
  doi: 10.1007/s40808-015-0042-1
– volume: 129
  start-page: 35
  year: 2003
  ident: ref_18
  article-title: Conjunctive-management models for sustained yield of stream-aquifer systems
  publication-title: J. Water Resour. Plan. Manag.
  doi: 10.1061/(ASCE)0733-9496(2003)129:1(35)
– volume: 115
  start-page: 259
  year: 1989
  ident: ref_34
  article-title: Chance-constrained model for management of stream-aquifer system
  publication-title: J. Water Res. Plan. Manag.
  doi: 10.1061/(ASCE)0733-9496(1989)115:3(259)
– volume: 7
  start-page: 19
  year: 2016
  ident: ref_59
  article-title: Jaya: A simple and new optimization algorithm for solving constrained and unconstrained optimization problems
  publication-title: Int. J. Ind. Eng. Comput.
– ident: ref_47
  doi: 10.3390/w12092564
– volume: 32
  start-page: 243
  year: 2018
  ident: ref_28
  article-title: A comparative assessment of artificial neural network generalized regression neural network, least square support vector regression, and K-nearest neighbor regression for monthly streamflow forecasting in linear and nonlinear conditions
  publication-title: Water Resour. Manag.
  doi: 10.1007/s11269-017-1807-2
– volume: 131
  start-page: 89
  year: 2005
  ident: ref_15
  article-title: Aquifer management zones based on simulated surface-water response functions
  publication-title: J. Water Resour. Plan. Manag.
  doi: 10.1061/(ASCE)0733-9496(2005)131:2(89)
– volume: 390
  start-page: 85
  year: 2010
  ident: ref_53
  article-title: Development of a coupled wavelet transform and neural network method for flow forecasting of non-perennial rivers in semi-arid watersheds
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2010.06.033
– volume: 520
  start-page: 193
  year: 2015
  ident: ref_56
  article-title: Evolutionary algorithms for the optimal management of coastal groundwater: A comparative study toward future challenges
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2014.11.043
– volume: 23
  start-page: 417
  year: 2009
  ident: ref_43
  article-title: Multi-objective planning for conjunctive use of surface and subsurface water using genetic algorithm and dynamics programming
  publication-title: Water Resour. Manag.
  doi: 10.1007/s11269-008-9281-5
SSID ssj0000498850
Score 2.2578468
Snippet The conjunctive management of surface water and groundwater resources is essential to sustainably manage water resources. The target study is the Osan...
SourceID proquest
crossref
SourceType Aggregation Database
Enrichment Source
Index Database
StartPage 3444
SubjectTerms Agriculture
Algorithms
Aquifers
Creeks & streams
drawdown
Freshwater resources
Groundwater
Irrigation
monsoon season
neural networks
Optimization
Precipitation
rain
resource allocation
Rice
Seasons
Simulation
South Korea
summer
Surface water
water management
Water supply
water table
Watersheds
Title Simulation-Optimization Model for Conjunctive Management of Surface Water and Groundwater for Agricultural Use
URI https://www.proquest.com/docview/2608146839
https://www.proquest.com/docview/2636402320
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT8MwDLZgXOCAeIrBQAFx4FJBliZtT2ggHkLiIWBityoPF4GghT3E38fZsg0kxDGt20Z2Yn92XBtgnzC5yITzSWFNjOIMRWQKySNaKpLrTFo9DLhd36jLdnzVkZ0QcOuFtMqxThwqaldZHyM_JNzto1Vkz48_PiPfNcqfroYWGrMwRyo4lTWYOzm7ubufRFkI_6apPBqVFBLk3x9-kfslRBzHvw3Rbz08NC7nS7AYUCFrjcS4DDNYrsBC67kbKmMgjX5UDlyF8uHlPTTeim5p17-H3ymZ7232xgiJstOqfCWj5dUZmya5sKpgD4NuoS2yJ8KZXaZLx3wEqnRfw7F_dvplmlW7h2vQPj97PL2MQuuEyIqM9yOjdCEJyXEkOOgKq2SCggurkPARJkaioCuGnI3EZIVKEus0ZkIXwmRxGmuxDrWyKnEDGOeFQUxQZU6RtXc6Ndwom2CaGodG1eFgzMfchrrivr3FW07-hWd5PmF5HfYmpB-jYhp_ETXGwsjDfurlU-nXYXdym3aCP97QJVYDTyMUecOiebT5_yu2YL7pM1N8UkrcgFq_O8BtghZ9sxPWzw7MXnT4N8B30dA
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB5ROLQcKmiLWJ4uaiUuEZs4ceIDQjy1vLYVsGJvwY8JagUJ3YdW_Cl-I-PdZBekihtHJ45jjccz34zHMwA_CJNzya0LCgvQCyVyT2eR7xGrRL6SkVFDh9t5UzRa4Uk7ak_BU3UXxoVVVjJxKKhtYZyPfItwt_NWkT7fefjnuapR7nS1KqExYotTfByQydbdPj6g9f0ZBEeHV_sNr6wq4Bku_Z6nhcoiAjk-ElKymRFRjNznRiBBB4x1hJyeaMLhsZaZiGNjFUquMq5lmISK07gfYIZghqRdNLN32Px9MfbqEN5Okqg-SmHEuaxvDcjc4zwMw9eK77XcHyqzozn4XKJQtjtim3mYwvwLzO7edspMHEitF5kKv0J--ee-LPTl_SIpc19e32SultodI-TL9ov8LylJJz7ZJKiGFRm77HcyZZBdE67tMJVb5jxeuR0M2-7byZ9pVq0ufoPWuxB1AabzIsdFYL6facQYhbSC0IVVifa1MDEmibaoRQ02Kzqmpsxj7spp3KVkzziSp2OS12Bj3PVhlLzjf51WqsVIy_3bTSfcVoPv49e089xxisqx6Ls-XJD1zYP60ttDrMPHxtX5WXp23Dxdhk-Bi4pxATHhCkz3On1cJVjT02slLzG4eW_2fQa-RA4h
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrYTggCgPsVBag0DiEu0mTpz4gKq-Vi2FpaKs6C31Y4xAbVL2oVX_Gr-O8a6z20qotx6dOI41Hs98Mx7PALwjTM4ltz4oLMEolcgj7bI4IlbJYiUzo2YOty99cTBIP51mpyvwt7kL48MqG5k4E9S2Nt5H3iHc7b1VpM87LoRFHO_1ti7_RL6ClD9pbcppzFnkCK-mZL6NPh7u0Vq_T5Le_vfdgyhUGIgMl_E40kK5jABPjISarDMiy5HH3AgkGIG5zpDTE02YPNfSiTw3VqHkynEt0yJVnMa9B6s5acWiBas7-_3jbwsPD2Hvosi683RGnMtuZ0qmH-dpmt5Ugjd1wEyx9R7Do4BI2fachdZgBasn8HD75zBk5UBqXcta-BSqk18XoehX9JUkzkW4ysl8XbVzRiiY7dbVb1KYXpSyZYANqx07mQydMsh-EMYdMlVZ5r1flZ3O2v7b5Z9pVoMRPoPBnRD1ObSqusIXwOLYacQchbSCkIZVhY61MDkWhbaoRRs-NHQsTchp7ktrnJdk23iSlwuSt-HtouvlPJHH_zqtN4tRhr08Kpec14Y3i9e0C_3Riqqwnvg-XJAlzpPuy9uH2IT7xLbl58P-0St4kPgAGR8bk65Dazyc4GtCOGO9EViJwdldc-8_yL8STQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Simulation-Optimization+Model+for+Conjunctive+Management+of+Surface+Water+and+Groundwater+for+Agricultural+Use&rft.jtitle=Water+%28Basel%29&rft.au=Agbortoko+Bate+Ashu&rft.au=Lee%2C+Sang-Il&rft.date=2021-12-04&rft.pub=MDPI+AG&rft.eissn=2073-4441&rft.volume=13&rft.issue=23&rft.spage=3444&rft_id=info:doi/10.3390%2Fw13233444&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2073-4441&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2073-4441&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2073-4441&client=summon