Influence of extrafloral nectary phenology on ant-plant mutualistic networks in a neotropical savanna
Temporal variation has been one remarkable feature of ecological interactions. In ant–plant mutualism, this variation is widely known, although little is understood about the mechanisms that shape these variations. This study tested whether or not the phenology of extrafloral nectaries (EFNs) influe...
Saved in:
Published in | Ecological entomology Vol. 38; no. 5; pp. 463 - 469 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Oxford, UK
Blackwell Publishing Ltd
01.10.2013
Blackwell Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Temporal variation has been one remarkable feature of ecological interactions. In ant–plant mutualism, this variation is widely known, although little is understood about the mechanisms that shape these variations.
This study tested whether or not the phenology of extrafloral nectaries (EFNs) influences the temporal variation of two properties of an ant–plant interaction network.
The network under investigation exhibited a nested pattern and low specialisation over most months. Monthly nestedness and specialisation in the network were negatively correlated, both being influenced by temporal variations in extrafloral nectar production of the plant community. The months of highest activity in the nectaries (August–November) were those when the level of generalisation in the network was at its highest. Although there were temporal variations in the properties of the network, the generalist core of the species remained the same over time.
The stable core enhances the coevolutionary importance of ant–plant interactions for the community. Thus, it can be concluded that the phenology of EFNs is one effective mechanism shaping the temporal variation in ant–plant interaction. |
---|---|
AbstractList | Temporal variation has been one remarkable feature of ecological interactions. In ant–plant mutualism, this variation is widely known, although little is understood about the mechanisms that shape these variations. This study tested whether or not the phenology of extrafloral nectaries (EFNs) influences the temporal variation of two properties of an ant–plant interaction network. The network under investigation exhibited a nested pattern and low specialisation over most months. Monthly nestedness and specialisation in the network were negatively correlated, both being influenced by temporal variations in extrafloral nectar production of the plant community. The months of highest activity in the nectaries (August–November) were those when the level of generalisation in the network was at its highest. Although there were temporal variations in the properties of the network, the generalist core of the species remained the same over time. The stable core enhances the coevolutionary importance of ant–plant interactions for the community. Thus, it can be concluded that the phenology of EFNs is one effective mechanism shaping the temporal variation in ant–plant interaction. Temporal variation has been one remarkable feature of ecological interactions. In ant-plant mutualism, this variation is widely known, although little is understood about the mechanisms that shape these variations. This study tested whether or not the phenology of extrafloral nectaries (EFNs) influences the temporal variation of two properties of an ant-plant interaction network. The network under investigation exhibited a nested pattern and low specialisation over most months. Monthly nestedness and specialisation in the network were negatively correlated, both being influenced by temporal variations in extrafloral nectar production of the plant community. The months of highest activity in the nectaries (August-November) were those when the level of generalisation in the network was at its highest. Although there were temporal variations in the properties of the network, the generalist core of the species remained the same over time. The stable core enhances the coevolutionary importance of ant-plant interactions for the community. Thus, it can be concluded that the phenology of EFNs is one effective mechanism shaping the temporal variation in ant-plant interaction. [PUBLICATION ABSTRACT] Temporal variation has been one remarkable feature of ecological interactions. In ant–plant mutualism, this variation is widely known, although little is understood about the mechanisms that shape these variations. This study tested whether or not the phenology of extrafloral nectaries (EFNs) influences the temporal variation of two properties of an ant–plant interaction network. The network under investigation exhibited a nested pattern and low specialisation over most months. Monthly nestedness and specialisation in the network were negatively correlated, both being influenced by temporal variations in extrafloral nectar production of the plant community. The months of highest activity in the nectaries (August–November) were those when the level of generalisation in the network was at its highest. Although there were temporal variations in the properties of the network, the generalist core of the species remained the same over time. The stable core enhances the coevolutionary importance of ant–plant interactions for the community. Thus, it can be concluded that the phenology of EFNs is one effective mechanism shaping the temporal variation in ant–plant interaction. Temporal variation has been one remarkable feature of ecological interactions. In ant-plant mutualism, this variation is widely known, although little is understood about the mechanisms that shape these variations. |
Author | LANGE, DENISE DEL-CLARO, KLEBER DÁTTILO, WESLEY |
Author_xml | – sequence: 1 givenname: DENISE surname: LANGE fullname: LANGE, DENISE organization: Laboratório de Ecologia Comportamental e Interações, Instituto de Biologia, Universidade Federal de Uberlândia, Uberlândia, Brazil – sequence: 2 givenname: WESLEY surname: DÁTTILO fullname: DÁTTILO, WESLEY organization: Instituto de Neuroetología, Universidad Veracruzana, Xalapa, Mexico – sequence: 3 givenname: KLEBER surname: DEL-CLARO fullname: DEL-CLARO, KLEBER email: delclaro@ufu.br organization: Laboratório de Ecologia Comportamental e Interações, Instituto de Biologia, Universidade Federal de Uberlândia, Uberlândia, Brazil |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27748880$$DView record in Pascal Francis |
BookMark | eNqFkUtv1TAQhS1UJG4LC_5BJIQEi7R-JHa8RLf0Id3CBlR2luuMwW2uHWwH2n_fgVtYVEh44Yf8zdHMOftkL6YIhLxk9JDhOgKIh4xTIZ-QFROyb7lgbI-sqKCqlbqTz8h-KdeUMq6lXhE4j35aIDpokm_gtmbrp5Tt1ERw1ea7Zv4GMU3p612TYmNjbecJ92a71MVOodTgEK0_U74pTUACX6nmNAeHIsX-sDHa5-Spt1OBFw_nAfl88v7T-qzdfDw9X7_btE5oVtur3nsHUsIVUMBeuRdWWasU9aOj0NNuHIViAx38yHvne93ZHqiXo8cL_h2QNzvdOafvC5RqtqE4mLBjSEsxrKdoCpOd-D_aCc0516pD9NUj9DotOeIgSHHda60GhdTrB8oWHN1nG10oZs5hizYarlQ3DANF7mjHuZxKyeCNC9XWkCJ6HybDqPmVpMEkze8kseLto4o_ov9i2x2LycDtX9DmGyOVUL25_HBqji_XFxcnX5jZiHtJOrE3 |
CODEN | EENTDT |
CitedBy_id | crossref_primary_10_1016_j_actao_2017_06_007 crossref_primary_10_1111_oik_10084 crossref_primary_10_1016_j_ecocom_2018_12_006 crossref_primary_10_1111_een_12764 crossref_primary_10_1111_een_13018 crossref_primary_10_1371_journal_pone_0138157 crossref_primary_10_1111_j_1600_0706_2013_00562_x crossref_primary_10_29267_mxjb_2017_2_1_65 crossref_primary_10_1007_s42965_025_00371_2 crossref_primary_10_1007_s00442_024_05625_9 crossref_primary_10_1007_s10841_020_00216_4 crossref_primary_10_1111_jzo_13144 crossref_primary_10_3389_fpls_2018_01063 crossref_primary_10_1016_j_flora_2014_04_004 crossref_primary_10_1111_1365_2745_13469 crossref_primary_10_1007_s00040_016_0466_2 crossref_primary_10_1371_journal_pone_0158283 crossref_primary_10_1007_s00442_020_04727_4 crossref_primary_10_1016_j_flora_2015_02_001 crossref_primary_10_7717_peerj_8314 crossref_primary_10_1111_1365_2745_13340 crossref_primary_10_1590_s2179_975x10919 crossref_primary_10_1111_1442_1984_12373 crossref_primary_10_13102_sociobiology_v60i3_329_336 crossref_primary_10_1016_j_ecolind_2018_05_001 crossref_primary_10_1007_s10980_018_0747_4 crossref_primary_10_1086_692735 crossref_primary_10_1111_geb_12932 crossref_primary_10_1111_een_12317 crossref_primary_10_1017_S0266467418000263 crossref_primary_10_1007_s00114_019_1614_0 crossref_primary_10_1371_journal_pone_0283480 crossref_primary_10_1111_1365_2656_13477 crossref_primary_10_1111_aec_12446 crossref_primary_10_1111_btp_12363 crossref_primary_10_35759_JAnmPlSci_v42_2_6 crossref_primary_10_1111_1365_2656_12820 crossref_primary_10_1371_journal_pone_0102604 crossref_primary_10_1371_journal_pone_0169492 crossref_primary_10_1111_1365_2745_13492 crossref_primary_10_1002_ajp_22261 crossref_primary_10_1016_j_jaridenv_2018_04_003 crossref_primary_10_1017_S0266467419000245 crossref_primary_10_1016_j_fooweb_2024_e00383 crossref_primary_10_1111_btp_12925 crossref_primary_10_1007_s00442_022_05286_6 crossref_primary_10_1007_s11829_017_9586_5 crossref_primary_10_1111_een_12862 crossref_primary_10_1371_journal_pone_0105574 crossref_primary_10_1007_s13744_014_0239_4 crossref_primary_10_1111_aec_12652 crossref_primary_10_1007_s00442_024_05522_1 crossref_primary_10_1111_aec_12612 crossref_primary_10_1111_een_12780 crossref_primary_10_1111_btp_12991 crossref_primary_10_1093_biolinnean_blx059 crossref_primary_10_1890_12_1647_1 crossref_primary_10_12741_2675_9276_v4_e063 crossref_primary_10_1590_0102_33062021abb0187 crossref_primary_10_1007_s13592_022_00923_8 crossref_primary_10_1017_S0266467423000044 crossref_primary_10_1111_icad_12466 crossref_primary_10_1371_journal_pone_0099838 crossref_primary_10_1080_11956860_2024_2303190 crossref_primary_10_1007_s11829_024_10118_w crossref_primary_10_1371_journal_pone_0188445 crossref_primary_10_3389_fpls_2020_00627 crossref_primary_10_1111_bij_12350 crossref_primary_10_1017_S0266467416000183 crossref_primary_10_1111_btp_13158 crossref_primary_10_1111_een_13146 crossref_primary_10_1007_s11829_016_9428_x crossref_primary_10_1007_s11829_017_9573_x crossref_primary_10_1016_j_ecocom_2016_01_001 crossref_primary_10_1111_een_12138 crossref_primary_10_1111_een_12457 crossref_primary_10_1016_j_actao_2018_11_001 crossref_primary_10_1093_biolinnean_blae090 crossref_primary_10_1111_btp_12625 crossref_primary_10_7717_peerj_10435 crossref_primary_10_1016_j_jaridenv_2014_12_001 crossref_primary_10_1111_icad_12605 crossref_primary_10_1111_een_13189 crossref_primary_10_1111_ecog_04531 crossref_primary_10_1007_s13744_021_00933_8 crossref_primary_10_1590_1519_6984_07213 crossref_primary_10_1093_ee_nvaa164 crossref_primary_10_1007_s00114_014_1159_1 crossref_primary_10_1007_s00442_024_05646_4 crossref_primary_10_1016_j_baae_2019_05_001 crossref_primary_10_1007_s11829_021_09856_y crossref_primary_10_1371_journal_pone_0131843 crossref_primary_10_1371_journal_pone_0201117 crossref_primary_10_1007_s11829_016_9423_2 crossref_primary_10_1016_j_ecolind_2020_106094 |
Cites_doi | 10.1126/science.1194255 10.7312/oliv12042 10.1111/j.1744-7429.2006.00200.x 10.1073/pnas.1633576100 10.1111/j.0030-1299.2008.16644.x 10.1007/s00114-013-1048-z 10.1890/08-1883.1 10.1111/j.1461-0248.2011.01688.x 10.1111/j.1461-0248.2011.01649.x 10.1007/s10211-010-0071-8 10.1016/j.envsoft.2006.04.002 10.1007/s10144-010-0240-7 10.1126/science.1123412 10.1016/j.cub.2007.09.059 10.2307/2388736 10.1016/j.tree.2007.05.006 10.1126/science.1170749 10.1111/j.1744-7429.1998.tb00050.x 10.1007/s11829-011-9170-3 10.2174/1874213000902010007 10.1016/j.cub.2006.12.039 10.1890/07-1139.1 10.1080/00222933.2011.651649 10.1007/s00114-004-0585-x 10.1007/s00442-009-1309-x 10.1111/j.1438-8677.2008.00068.x 10.1890/0012-9658(2002)083[2416:GPIPPM]2.0.CO;2 10.1890/07-0451.1 10.1111/j.0030-1299.2007.15828.x 10.1111/j.1365-2656.2008.01460.x 10.1111/j.1744-7429.2011.00850.x 10.7208/chicago/9780226118697.001.0001 10.1111/j.1469-8137.2006.01864.x 10.1111/j.1600-0706.2013.00562.x 10.1007/s12052-009-0197-1 10.1111/j.1461-0248.2010.01557.x 10.7208/chicago/9780226713540.001.0001 10.1007/s004420000605 10.1098/rspb.2009.2086 10.1007/s004420050002 10.1007/BF00379363 10.1007/s00442-011-1984-2 10.1007/s00442-002-0874-z 10.1007/s00442-010-1673-6 10.1098/rspb.2006.3548 10.1111/j.1365-2745.2011.01892.x 10.1016/j.flora.2009.12.040 10.1038/nature07950 10.1007/s004420000449 10.1111/j.1365-2745.2009.01566.x 10.1590/S1519-566X2005000300001 |
ContentType | Journal Article |
Copyright | 2015 INIST-CNRS 2013 The Royal Entomological Society |
Copyright_xml | – notice: 2015 INIST-CNRS – notice: 2013 The Royal Entomological Society |
DBID | BSCLL AAYXX CITATION IQODW 7QG 7QR 7SN 7SS 8FD C1K FR3 P64 RC3 7S9 L.6 |
DOI | 10.1111/een.12036 |
DatabaseName | Istex CrossRef Pascal-Francis Animal Behavior Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Biotechnology and BioEngineering Abstracts Genetics Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef Entomology Abstracts Genetics Abstracts Technology Research Database Animal Behavior Abstracts Chemoreception Abstracts Engineering Research Database Ecology Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA Entomology Abstracts CrossRef Entomology Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Zoology |
EISSN | 1365-2311 |
EndPage | 469 |
ExternalDocumentID | 3061720941 27748880 10_1111_een_12036 ark_67375_WNG_DWCMMFX1_L |
GroupedDBID | -~X .3N .GA .Y3 05W 0R~ 10A 1OB 1OC 29G 31~ 33P 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5HH 5LA 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHBH AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABEML ABJNI ABLJU ABPPZ ABPVW ABTAH ACAHQ ACBTR ACBWZ ACCFJ ACCZN ACFBH ACGFS ACIWK ACNCT ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFEBI AFFPM AFGKR AFPWT AFRAH AFZJQ AHBTC AHEFC AI. AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BIYOS BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 CAG COF CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS ECGQY EJD ESX F00 F01 F04 F5P FEDTE FZ0 G-S G.N GODZA H.T H.X HF~ HGLYW HVGLF HZI HZ~ H~9 IHE IX1 J0M K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MVM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG P2P P2W P2X P4D PALCI Q.N Q11 QB0 R.K RIWAO RJQFR ROL RX1 SAMSI SUPJJ TN5 TWZ UB1 VH1 W8V W99 WBKPD WH7 WIH WIK WNSPC WOHZO WQJ WRC WXSBR WYISQ XG1 XOL ZY4 ZZTAW ~IA ~KM ~WT AAHQN AAMNL AANHP AAYCA AAYXX ACRPL ACYXJ ADNMO AEYWJ AFWVQ AGHNM AGQPQ AGYGG ALVPJ CITATION IQODW 7QG 7QR 7SN 7SS 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY C1K FR3 P64 RC3 7S9 L.6 |
ID | FETCH-LOGICAL-c391t-b5ffce66ebe0e9462f3a7aa770fdc0e504dd371808fd25cf594a5e0f6df4a5dd3 |
ISSN | 0307-6946 |
IngestDate | Fri Jul 11 18:35:16 EDT 2025 Thu Jul 10 18:45:35 EDT 2025 Fri Jul 25 10:40:17 EDT 2025 Wed Apr 02 07:20:30 EDT 2025 Thu Apr 24 22:57:10 EDT 2025 Tue Jul 01 04:24:20 EDT 2025 Wed Oct 30 09:51:54 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | Formicidae Savannah Insecta Interaction temporal variation Nectary Ant―plant interactions Coevolution Formicoidea Mutualism Time variation ecological networks Phenology Arthropoda coevolutionary process Hymenoptera Invertebrata Neotropical Region generalist core Aculeata |
Language | English |
License | CC BY 4.0 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c391t-b5ffce66ebe0e9462f3a7aa770fdc0e504dd371808fd25cf594a5e0f6df4a5dd3 |
Notes | ArticleID:EEN12036 ark:/67375/WNG-DWCMMFX1-L Conselho Nacional de Desenvolvimento Científico e Tecnológico istex:59CF59D367A59B91F336C02C9238B38EF5191007 ObjectType-Article-1 SourceType-Scholarly Journals-1 content type line 14 ObjectType-Feature-2 content type line 23 |
PQID | 1429599787 |
PQPubID | 1006512 |
PageCount | 7 |
ParticipantIDs | proquest_miscellaneous_1501361643 proquest_miscellaneous_1439222974 proquest_journals_1429599787 pascalfrancis_primary_27748880 crossref_citationtrail_10_1111_een_12036 crossref_primary_10_1111_een_12036 istex_primary_ark_67375_WNG_DWCMMFX1_L |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2013-10-01 |
PublicationDateYYYYMMDD | 2013-10-01 |
PublicationDate_xml | – month: 10 year: 2013 text: 2013-10-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Oxford, UK |
PublicationPlace_xml | – name: Oxford, UK – name: Oxford |
PublicationTitle | Ecological entomology |
PublicationTitleAlternate | Ecol Entomol |
PublicationYear | 2013 |
Publisher | Blackwell Publishing Ltd Blackwell Wiley Subscription Services, Inc |
Publisher_xml | – name: Blackwell Publishing Ltd – name: Blackwell – name: Wiley Subscription Services, Inc |
References | Bascompte, J., Jordano, P., Melián, C.J. & Olesen, J.M. (2003) The nested assembly of plant-animal mutualistic networks. Proceedings of the National Academy of Sciences, 100, 9383-9387. Byk, J. & Del-Claro, K. (2011) Ant-plant interaction in the Neotropical savanna: direct beneficial effects of extrafloral nectar on ant colony fitness. Population Ecology, 53, 327-332. Davidson, D.W. & McKey, D. (1993) The evolutionary ecology of symbiotic ant-plant relationship. Journal of Hymenoptera Research, 2, 13-83. Guimarães, P.R. Jr., Rico-Gray, V., Reis, S.F. & Thompson, J.N. (2006) Asymmetries in specialization in ant-plant mutualistic networks. Proceedings of the Royal Society B, 273, 2041-2047. Almeida-Neto, M., Guimarães, P.R. Jr., Guimarães, P., Loyola, R.D. & Ulrich, W. (2008) A consistent metric for nestedness analysis in ecological systems: reconciling concept and measurement. Oikos, 117, 1227-1239. Bascompte, J. (2010) Structure and dynamics of ecological networks. Science, 329, 765-766. Baker-Méio, B. & Marquis, R.J. (2012) Context-dependent benefits from ant-plant mutualism in three sympatric varieties of Chamaecrista desvauxii. Journal of Ecology, 100, 242-252. Chamberlain, S.A., Kilpatrick, J.R. & Holland, J.N. (2010) Do extrafloral nectar resources, species abundances and body sizes contribute to the structure of ant-plant mutualistic networks? Oecologia, 164, 741-750. Del-Claro, K. & Oliveira, P.S. (2000) Conditional outcomes in a neotropical ant-homoptera mutualistic association. Oecologia, 124, 156-165. Réu, W.F. & Del-Claro, K. (2005) Natural history and biology of Chlamisus minax Lacordaire (Chrysomelidae: Chlamisinae). Neotropical Entomology, 34, 357-362. Bronstein, J.L. (1998) The contribution of ant-plant protection studies to our understanding of mutualism. Biotropica, 30, 150-161. Byk, J. & Del-Claro, K. (2010) Nectar- and pollen-gathering Cephalotes ants provide no protection against herbivory: a new manipulative experiment to test ant protective capabilities. Acta Ethologica, 13, 33-38. Blüthgen, N., Verhaagh, M., Goitia, W., Jaffe, K., Morawetz, W. & Barthlott, W. (2000) How plants shape the ant community in the Amazonian rainforest canopy: the key role of extrafloral nectaries and homopteran honeydew. Oecologia, 125, 229-240. Jordano, P. (2010) Coevolution in multispecific interactions among free-living species. Evolution: Education and Outreach, 3, 40-46. Dormann, C.F., Fründ, J., Blüthgen, N. & Gruber, B. (2009) Indices, graphs and null models: analyzing bipartite ecological networks. The Open Ecology Journal, 2, 7-24. Guimarães, P.R. Jr., Jordano, P. & Thompson, J.N. (2011) Evolution and coevolution in mutualistic networks. Ecology Letters, 14, 877-888. Dáttilo, W., Guimaraes, P.R. & Izzo, T.J. (2013) Spatial structure of ant-plant mutualistic networks. Oikos, in press. Olesen, J.M., Bascompte, J., Elberling, H. & Jordano, P. (2008) Temporal dynamics in a pollination network. Ecology, 89, 1573-1582. Thompson, J.N. (2005) The Geographic Mosaic of Coevolution. University of Chicago Press, Chicago, Illinois. Blüthgen, N., Menzel, F., Hovestadt, T., Fiala, B. & Blüthgen, N. (2007) Specialization, constraints, and conflicting interests in mutualistic networks. Current Biology, 17, 341-346. Guimarães, P.R. Jr. & Guimarães, P. (2006) Improving the analyses of nestedness for large sets of matrices. Environmental Modelling and Software, 21, 1512-1513. Rosumek, F.B., Silveira, F.A.O., Neves, F.S., Barbosa, N.P., Diniz, L., Oki, Y., et al. (2009) Ants on plants: a meta-analysis of the role of ants as plant biotic defenses. Oecologia, 160, 537-549. Rico-Gray, V., Díaz-Castelazo, C., Ramírez-Hernández, A., Gui-marães, P.R. Jr. & Holland, J.N. (2012) Abiotic factors shape temporal variation in the structure of an ant-plant network. Arthropod-Plant Interactions, 6, 289-295. Alves-Silva, E. & Del-Claro, K. (2013) Effect of post-fire resprouting on leaf fluctuating asymmetry, extrafloral nectar quality, and ant-plant-herbivore interactions. Naturwissenschaften. DOI: 10.1007/s00114-013-1048-z. Bächtold, A., Del-Claro, K., Kaminski, L.A., Freitas, A.V.L. & Oliveira, P.S. (2012) Natural history of an ant-plant-butterfly interaction in a Neotropical Savanna. Journal of Natural History, 46, 943-954. Korndörfer, A.P. & Del-Claro, K. (2006) Ant defense versus induced defense in Lafoensia pacari (Lythraceae), a myrmecophilous tree of the Brazilian cerrado. Biotropica, 38, 786-788. Motulsky, H. (1999) Analyzing Data with Graph Pad Prism Software. GraphPad Soft, San Diego, California Vázquez, D.P., Melián, C.J., Williams, N.M., Blüthgen, N., Krasnov, B.R. & Poulin, R. (2007) Species abundance and asymmetric interaction strength in ecological networks. Oikos, 16, 1120-1127. Blüthgen, N., Menzel, F. & Blüthgen, N. (2006) Measuring specialization in species interactions networks. Ecology, 6, 9-12. Olesen, J.M. & Jordano, P. (2002) Geographic patterns in plant-pollinator mutualistic networks. Ecology, 83, 2416-2424. Bronstein, J.L., Alarcón, R. & Geber, M. (2006) The evolution of plant-insect mutualism. New Phytologist, 172, 412-428. Nahas, L., Gonzaga, M.O. & Del-Claro, K. (2012) Intraguild interactions between ants and spiders reduce herbivory in an extrafloral nectaried tree of tropical savanna. Biotropica, 44, 498-505. Fontaine, C., Guimarães, P.R. Jr., Kéfi, S., Loeuille, N., Memmott, J., van der Putten, W.H., et al. (2011) The ecological and evolutionary implications of merging different types of networks. Ecology Letters, 14, 1170-1181. Bascompte, J. (2009) Disentangling the web of life. Science, 325, 416-419. Rico-Gray, V. & Oliveira, P.S. (2007) The Ecology and Evolution of Ant-Plant Interactions. The University of Chicago Press, Chicago, Illinois. Dáttilo, W. (2012) Different tolerances of symbiotic and nonsymbiotic ant-plant networks to species extinctions. Network Biology, 2, 127-138. Nascimento, E.A. & Del-Claro, K. (2010) Ant visitation to extrafloral nectaries decreases herbivory and increases fruit set in Chamaecrista debilis (Fabaceae) in a Neotropical savanna. Flora, 205, 754-756. Rafferty, N.E. & Ives, A.R. (2011) Effects of experimental shifts in flowering phenology on plant-pollinator interactions. Ecology Letters, 14, 69-74. Oliveira, P.S., da Silva, A.F. & Martins, A.B. (1987) Ant foraging on extrafloral nectaries of Qualea grandiflora (Vochysiaceae) in cerrado vegetation: ants as potential antiherbivore agents. Oecologia, 74, 228-230. Elzinga, J.A., Atlan, A., Biere, A., Gigord, L., Weis, A.E. & Bernasconi, G. (2007) Time after time: flowering phenology and biotic interactions. Trends in Ecology & Evolution, 22, 432-439. Apple, J.L. & Feener, D.H. Jr. (2001) Ant visitation of extrafloral nectaries of Passiflora: the effects of nectary attributes and ant behavior on patterns in facultative ant-plant mutualisms. Oecologia, 127, 409-416. Bastolla, U., Fortuna, M.A., Pascual-Garcia, A., Ferrera, A., Luque, B. & Bascompte, J. (2009) The architecture of mutualistic networks minimizes competition and increases biodiversity. Nature, 458, 1018-1021. Mello, M.A.R., Santos, G.M.M., Mechi, M.R. & Hermes, M.G. (2011) High generalization in flower-visiting networks of social wasps. Acta Oecologica, 167, 131-140. Machado, S.R., Morellato, L.P.C., Sajo, M.G. & Oliveira, P.S. (2008) Morphological patterns of extrafloral nectaries in woody plant species of the Brazilian cerrado. Plant Biology, 10, 660-673. Oliveira, P.S. & Marquis, R.J. (2002) The Cerrados of Brazil: Ecology and Natural History of a Neotropical Savanna. Columbia University Press, New York, New York. Ings, T.C., Montoya, J.M., Bascompte, J., Bluthgen, N., Brown, L. & Dormann, C.F. (2009) Ecological networks: beyond food webs. Journal of Animal Ecology, 78, 253-269. Oliveira, P.S. & Leitão-Filho, H.F. (1987) Extrafloral nectaries: their taxonomic distribution and abundance in the woody flora of cerrado vegetation in Southeast Brazil. Biotropica, 19, 140-148. Bronstein, J.L. (2009) The evolution of facilitation and mutualism. Journal of Ecology, 97, 1160-1170. Guimarães, P.R. Jr., Rico-Gray, V., Oliveira, P.S., Izzo, T.J., dos Reis, S.F. & Thompson, J.N. (2007) Interaction intimacy affects structure and coevolutionary dynamics in mutualistic networks. Current Biology, 17, 1-7. Chamberlain, S.A. & Holland, J.N. (2008) Density-mediated, context-dependent consumer-resource interactions between ants and extrafloral nectar plants. Ecology, 89, 1364-1374. Floren, A., Biun, A. & Linsenmair, E.K. (2002) Arboreal ants as key predators in tropical lowland forest trees. Oecologia, 131, 137-144. Oliveira, P.S. & Freitas, A.V.L. (2004) Ant-plant-herbivore interactions in the neotropical cerrado savanna. Naturwissenschaften, 91, 557-570. Sugiura, S. (2010) Species interactions-area relationships: biological invasions and network structure in relation to island area. Proceedings of the Royal Society B, 277, 1807-1817. Díaz-Castelazo, C., Guimarães, P.R. Jr., Jordano, P., Thompson, J.N., Marquis, R.J. & Rico-Gray, V. (2010) Changes of a mutualistic network over time: reanalysis over a 10-year period. Ecology, 91, 793-801. Bascompte, J., Jordano, P. & Olesen, J.M. (2006) Asymmetric coevolutionary networks facilitate biodiversity maintenance. Science, 312, 431-433. Elias T.S. (e_1_2_6_29_1) 1983 e_1_2_6_53_1 e_1_2_6_32_1 e_1_2_6_30_1 e_1_2_6_19_1 e_1_2_6_13_1 e_1_2_6_36_1 e_1_2_6_11_1 e_1_2_6_34_1 e_1_2_6_17_1 e_1_2_6_55_1 e_1_2_6_15_1 e_1_2_6_38_1 e_1_2_6_57_1 e_1_2_6_43_1 e_1_2_6_20_1 e_1_2_6_41_1 Blüthgen N. (e_1_2_6_12_1) 2012 e_1_2_6_9_1 e_1_2_6_5_1 e_1_2_6_7_1 e_1_2_6_24_1 e_1_2_6_49_1 e_1_2_6_3_1 e_1_2_6_22_1 Davidson D.W. (e_1_2_6_25_1) 1993; 2 e_1_2_6_28_1 e_1_2_6_45_1 e_1_2_6_26_1 e_1_2_6_47_1 Dáttilo W. (e_1_2_6_23_1) 2012; 2 R Development Core Team (e_1_2_6_51_1) 2005 e_1_2_6_52_1 e_1_2_6_54_1 e_1_2_6_10_1 e_1_2_6_31_1 Blüthgen N. (e_1_2_6_14_1) 2006; 6 Vázquez D.P. (e_1_2_6_59_1) 2007; 16 e_1_2_6_50_1 Motulsky H. (e_1_2_6_42_1) 1999 e_1_2_6_33_1 e_1_2_6_18_1 e_1_2_6_39_1 e_1_2_6_56_1 Guimarães P.R. (e_1_2_6_35_1) 2007; 17 e_1_2_6_16_1 e_1_2_6_37_1 e_1_2_6_58_1 e_1_2_6_21_1 e_1_2_6_40_1 e_1_2_6_8_1 e_1_2_6_4_1 e_1_2_6_6_1 e_1_2_6_48_1 e_1_2_6_2_1 e_1_2_6_44_1 e_1_2_6_27_1 e_1_2_6_46_1 |
References_xml | – reference: Dormann, C.F., Fründ, J., Blüthgen, N. & Gruber, B. (2009) Indices, graphs and null models: analyzing bipartite ecological networks. The Open Ecology Journal, 2, 7-24. – reference: Mello, M.A.R., Santos, G.M.M., Mechi, M.R. & Hermes, M.G. (2011) High generalization in flower-visiting networks of social wasps. Acta Oecologica, 167, 131-140. – reference: Dáttilo, W., Guimaraes, P.R. & Izzo, T.J. (2013) Spatial structure of ant-plant mutualistic networks. Oikos, in press. – reference: Oliveira, P.S. & Marquis, R.J. (2002) The Cerrados of Brazil: Ecology and Natural History of a Neotropical Savanna. Columbia University Press, New York, New York. – reference: Guimarães, P.R. Jr., Rico-Gray, V., Oliveira, P.S., Izzo, T.J., dos Reis, S.F. & Thompson, J.N. (2007) Interaction intimacy affects structure and coevolutionary dynamics in mutualistic networks. Current Biology, 17, 1-7. – reference: Blüthgen, N., Menzel, F., Hovestadt, T., Fiala, B. & Blüthgen, N. (2007) Specialization, constraints, and conflicting interests in mutualistic networks. Current Biology, 17, 341-346. – reference: Dáttilo, W. (2012) Different tolerances of symbiotic and nonsymbiotic ant-plant networks to species extinctions. Network Biology, 2, 127-138. – reference: Bascompte, J., Jordano, P. & Olesen, J.M. (2006) Asymmetric coevolutionary networks facilitate biodiversity maintenance. Science, 312, 431-433. – reference: Díaz-Castelazo, C., Guimarães, P.R. Jr., Jordano, P., Thompson, J.N., Marquis, R.J. & Rico-Gray, V. (2010) Changes of a mutualistic network over time: reanalysis over a 10-year period. Ecology, 91, 793-801. – reference: Nascimento, E.A. & Del-Claro, K. (2010) Ant visitation to extrafloral nectaries decreases herbivory and increases fruit set in Chamaecrista debilis (Fabaceae) in a Neotropical savanna. Flora, 205, 754-756. – reference: Oliveira, P.S., da Silva, A.F. & Martins, A.B. (1987) Ant foraging on extrafloral nectaries of Qualea grandiflora (Vochysiaceae) in cerrado vegetation: ants as potential antiherbivore agents. Oecologia, 74, 228-230. – reference: Vázquez, D.P., Melián, C.J., Williams, N.M., Blüthgen, N., Krasnov, B.R. & Poulin, R. (2007) Species abundance and asymmetric interaction strength in ecological networks. Oikos, 16, 1120-1127. – reference: Oliveira, P.S. & Leitão-Filho, H.F. (1987) Extrafloral nectaries: their taxonomic distribution and abundance in the woody flora of cerrado vegetation in Southeast Brazil. Biotropica, 19, 140-148. – reference: Bastolla, U., Fortuna, M.A., Pascual-Garcia, A., Ferrera, A., Luque, B. & Bascompte, J. (2009) The architecture of mutualistic networks minimizes competition and increases biodiversity. Nature, 458, 1018-1021. – reference: Fontaine, C., Guimarães, P.R. Jr., Kéfi, S., Loeuille, N., Memmott, J., van der Putten, W.H., et al. (2011) The ecological and evolutionary implications of merging different types of networks. Ecology Letters, 14, 1170-1181. – reference: Thompson, J.N. (2005) The Geographic Mosaic of Coevolution. University of Chicago Press, Chicago, Illinois. – reference: Bächtold, A., Del-Claro, K., Kaminski, L.A., Freitas, A.V.L. & Oliveira, P.S. (2012) Natural history of an ant-plant-butterfly interaction in a Neotropical Savanna. Journal of Natural History, 46, 943-954. – reference: Ings, T.C., Montoya, J.M., Bascompte, J., Bluthgen, N., Brown, L. & Dormann, C.F. (2009) Ecological networks: beyond food webs. Journal of Animal Ecology, 78, 253-269. – reference: Chamberlain, S.A., Kilpatrick, J.R. & Holland, J.N. (2010) Do extrafloral nectar resources, species abundances and body sizes contribute to the structure of ant-plant mutualistic networks? Oecologia, 164, 741-750. – reference: Bascompte, J., Jordano, P., Melián, C.J. & Olesen, J.M. (2003) The nested assembly of plant-animal mutualistic networks. Proceedings of the National Academy of Sciences, 100, 9383-9387. – reference: Davidson, D.W. & McKey, D. (1993) The evolutionary ecology of symbiotic ant-plant relationship. Journal of Hymenoptera Research, 2, 13-83. – reference: Elzinga, J.A., Atlan, A., Biere, A., Gigord, L., Weis, A.E. & Bernasconi, G. (2007) Time after time: flowering phenology and biotic interactions. Trends in Ecology & Evolution, 22, 432-439. – reference: Almeida-Neto, M., Guimarães, P.R. Jr., Guimarães, P., Loyola, R.D. & Ulrich, W. (2008) A consistent metric for nestedness analysis in ecological systems: reconciling concept and measurement. Oikos, 117, 1227-1239. – reference: Guimarães, P.R. Jr., Jordano, P. & Thompson, J.N. (2011) Evolution and coevolution in mutualistic networks. Ecology Letters, 14, 877-888. – reference: Byk, J. & Del-Claro, K. (2010) Nectar- and pollen-gathering Cephalotes ants provide no protection against herbivory: a new manipulative experiment to test ant protective capabilities. Acta Ethologica, 13, 33-38. – reference: Blüthgen, N., Menzel, F. & Blüthgen, N. (2006) Measuring specialization in species interactions networks. Ecology, 6, 9-12. – reference: Sugiura, S. (2010) Species interactions-area relationships: biological invasions and network structure in relation to island area. Proceedings of the Royal Society B, 277, 1807-1817. – reference: Guimarães, P.R. Jr. & Guimarães, P. (2006) Improving the analyses of nestedness for large sets of matrices. Environmental Modelling and Software, 21, 1512-1513. – reference: Korndörfer, A.P. & Del-Claro, K. (2006) Ant defense versus induced defense in Lafoensia pacari (Lythraceae), a myrmecophilous tree of the Brazilian cerrado. Biotropica, 38, 786-788. – reference: Baker-Méio, B. & Marquis, R.J. (2012) Context-dependent benefits from ant-plant mutualism in three sympatric varieties of Chamaecrista desvauxii. Journal of Ecology, 100, 242-252. – reference: Blüthgen, N., Verhaagh, M., Goitia, W., Jaffe, K., Morawetz, W. & Barthlott, W. (2000) How plants shape the ant community in the Amazonian rainforest canopy: the key role of extrafloral nectaries and homopteran honeydew. Oecologia, 125, 229-240. – reference: Rico-Gray, V., Díaz-Castelazo, C., Ramírez-Hernández, A., Gui-marães, P.R. Jr. & Holland, J.N. (2012) Abiotic factors shape temporal variation in the structure of an ant-plant network. Arthropod-Plant Interactions, 6, 289-295. – reference: Guimarães, P.R. Jr., Rico-Gray, V., Reis, S.F. & Thompson, J.N. (2006) Asymmetries in specialization in ant-plant mutualistic networks. Proceedings of the Royal Society B, 273, 2041-2047. – reference: Rico-Gray, V. & Oliveira, P.S. (2007) The Ecology and Evolution of Ant-Plant Interactions. The University of Chicago Press, Chicago, Illinois. – reference: Machado, S.R., Morellato, L.P.C., Sajo, M.G. & Oliveira, P.S. (2008) Morphological patterns of extrafloral nectaries in woody plant species of the Brazilian cerrado. Plant Biology, 10, 660-673. – reference: Bronstein, J.L. (2009) The evolution of facilitation and mutualism. Journal of Ecology, 97, 1160-1170. – reference: Olesen, J.M., Bascompte, J., Elberling, H. & Jordano, P. (2008) Temporal dynamics in a pollination network. Ecology, 89, 1573-1582. – reference: Rafferty, N.E. & Ives, A.R. (2011) Effects of experimental shifts in flowering phenology on plant-pollinator interactions. Ecology Letters, 14, 69-74. – reference: Floren, A., Biun, A. & Linsenmair, E.K. (2002) Arboreal ants as key predators in tropical lowland forest trees. Oecologia, 131, 137-144. – reference: Byk, J. & Del-Claro, K. (2011) Ant-plant interaction in the Neotropical savanna: direct beneficial effects of extrafloral nectar on ant colony fitness. Population Ecology, 53, 327-332. – reference: Bascompte, J. (2009) Disentangling the web of life. Science, 325, 416-419. – reference: Bronstein, J.L., Alarcón, R. & Geber, M. (2006) The evolution of plant-insect mutualism. New Phytologist, 172, 412-428. – reference: Bronstein, J.L. (1998) The contribution of ant-plant protection studies to our understanding of mutualism. Biotropica, 30, 150-161. – reference: Jordano, P. (2010) Coevolution in multispecific interactions among free-living species. Evolution: Education and Outreach, 3, 40-46. – reference: Del-Claro, K. & Oliveira, P.S. (2000) Conditional outcomes in a neotropical ant-homoptera mutualistic association. Oecologia, 124, 156-165. – reference: Motulsky, H. (1999) Analyzing Data with Graph Pad Prism Software. GraphPad Soft, San Diego, California – reference: Olesen, J.M. & Jordano, P. (2002) Geographic patterns in plant-pollinator mutualistic networks. Ecology, 83, 2416-2424. – reference: Chamberlain, S.A. & Holland, J.N. (2008) Density-mediated, context-dependent consumer-resource interactions between ants and extrafloral nectar plants. Ecology, 89, 1364-1374. – reference: Rosumek, F.B., Silveira, F.A.O., Neves, F.S., Barbosa, N.P., Diniz, L., Oki, Y., et al. (2009) Ants on plants: a meta-analysis of the role of ants as plant biotic defenses. Oecologia, 160, 537-549. – reference: Alves-Silva, E. & Del-Claro, K. (2013) Effect of post-fire resprouting on leaf fluctuating asymmetry, extrafloral nectar quality, and ant-plant-herbivore interactions. Naturwissenschaften. DOI: 10.1007/s00114-013-1048-z. – reference: Apple, J.L. & Feener, D.H. Jr. (2001) Ant visitation of extrafloral nectaries of Passiflora: the effects of nectary attributes and ant behavior on patterns in facultative ant-plant mutualisms. Oecologia, 127, 409-416. – reference: Nahas, L., Gonzaga, M.O. & Del-Claro, K. (2012) Intraguild interactions between ants and spiders reduce herbivory in an extrafloral nectaried tree of tropical savanna. Biotropica, 44, 498-505. – reference: Réu, W.F. & Del-Claro, K. (2005) Natural history and biology of Chlamisus minax Lacordaire (Chrysomelidae: Chlamisinae). Neotropical Entomology, 34, 357-362. – reference: Bascompte, J. (2010) Structure and dynamics of ecological networks. Science, 329, 765-766. – reference: Oliveira, P.S. & Freitas, A.V.L. (2004) Ant-plant-herbivore interactions in the neotropical cerrado savanna. Naturwissenschaften, 91, 557-570. – ident: e_1_2_6_8_1 doi: 10.1126/science.1194255 – ident: e_1_2_6_49_1 doi: 10.7312/oliv12042 – ident: e_1_2_6_39_1 doi: 10.1111/j.1744-7429.2006.00200.x – ident: e_1_2_6_9_1 doi: 10.1073/pnas.1633576100 – ident: e_1_2_6_2_1 doi: 10.1111/j.0030-1299.2008.16644.x – ident: e_1_2_6_3_1 doi: 10.1007/s00114-013-1048-z – volume-title: Analyzing Data with Graph Pad Prism Software year: 1999 ident: e_1_2_6_42_1 – ident: e_1_2_6_27_1 doi: 10.1890/08-1883.1 – ident: e_1_2_6_32_1 doi: 10.1111/j.1461-0248.2011.01688.x – ident: e_1_2_6_36_1 doi: 10.1111/j.1461-0248.2011.01649.x – ident: e_1_2_6_19_1 doi: 10.1007/s10211-010-0071-8 – ident: e_1_2_6_33_1 doi: 10.1016/j.envsoft.2006.04.002 – ident: e_1_2_6_20_1 doi: 10.1007/s10144-010-0240-7 – ident: e_1_2_6_10_1 doi: 10.1126/science.1123412 – volume: 17 start-page: 1 year: 2007 ident: e_1_2_6_35_1 article-title: Interaction intimacy affects structure and coevolutionary dynamics in mutualistic networks publication-title: Current Biology doi: 10.1016/j.cub.2007.09.059 – volume-title: R: A Language and Environment for Statistical Computing year: 2005 ident: e_1_2_6_51_1 – ident: e_1_2_6_48_1 doi: 10.2307/2388736 – ident: e_1_2_6_30_1 doi: 10.1016/j.tree.2007.05.006 – ident: e_1_2_6_7_1 doi: 10.1126/science.1170749 – ident: e_1_2_6_16_1 doi: 10.1111/j.1744-7429.1998.tb00050.x – volume: 2 start-page: 127 year: 2012 ident: e_1_2_6_23_1 article-title: Different tolerances of symbiotic and nonsymbiotic ant–plant networks to species extinctions publication-title: Network Biology – ident: e_1_2_6_55_1 doi: 10.1007/s11829-011-9170-3 – ident: e_1_2_6_28_1 doi: 10.2174/1874213000902010007 – ident: e_1_2_6_15_1 doi: 10.1016/j.cub.2006.12.039 – volume: 6 start-page: 9 year: 2006 ident: e_1_2_6_14_1 article-title: Measuring specialization in species interactions networks publication-title: Ecology – ident: e_1_2_6_21_1 doi: 10.1890/07-1139.1 – ident: e_1_2_6_5_1 doi: 10.1080/00222933.2011.651649 – ident: e_1_2_6_47_1 doi: 10.1007/s00114-004-0585-x – ident: e_1_2_6_56_1 doi: 10.1007/s00442-009-1309-x – ident: e_1_2_6_40_1 doi: 10.1111/j.1438-8677.2008.00068.x – ident: e_1_2_6_45_1 doi: 10.1890/0012-9658(2002)083[2416:GPIPPM]2.0.CO;2 – ident: e_1_2_6_46_1 doi: 10.1890/07-0451.1 – volume: 16 start-page: 1120 year: 2007 ident: e_1_2_6_59_1 article-title: Species abundance and asymmetric interaction strength in ecological networks publication-title: Oikos doi: 10.1111/j.0030-1299.2007.15828.x – ident: e_1_2_6_37_1 doi: 10.1111/j.1365-2656.2008.01460.x – start-page: 174 volume-title: The Biology of Nectaries year: 1983 ident: e_1_2_6_29_1 – ident: e_1_2_6_43_1 doi: 10.1111/j.1744-7429.2011.00850.x – ident: e_1_2_6_58_1 doi: 10.7208/chicago/9780226118697.001.0001 – ident: e_1_2_6_18_1 doi: 10.1111/j.1469-8137.2006.01864.x – ident: e_1_2_6_24_1 doi: 10.1111/j.1600-0706.2013.00562.x – ident: e_1_2_6_38_1 doi: 10.1007/s12052-009-0197-1 – ident: e_1_2_6_52_1 doi: 10.1111/j.1461-0248.2010.01557.x – ident: e_1_2_6_54_1 doi: 10.7208/chicago/9780226713540.001.0001 – ident: e_1_2_6_4_1 doi: 10.1007/s004420000605 – ident: e_1_2_6_57_1 doi: 10.1098/rspb.2009.2086 – ident: e_1_2_6_26_1 doi: 10.1007/s004420050002 – ident: e_1_2_6_50_1 doi: 10.1007/BF00379363 – ident: e_1_2_6_41_1 doi: 10.1007/s00442-011-1984-2 – ident: e_1_2_6_31_1 doi: 10.1007/s00442-002-0874-z – ident: e_1_2_6_22_1 doi: 10.1007/s00442-010-1673-6 – ident: e_1_2_6_34_1 doi: 10.1098/rspb.2006.3548 – ident: e_1_2_6_6_1 doi: 10.1111/j.1365-2745.2011.01892.x – ident: e_1_2_6_44_1 doi: 10.1016/j.flora.2009.12.040 – volume: 2 start-page: 13 year: 1993 ident: e_1_2_6_25_1 article-title: The evolutionary ecology of symbiotic ant‐plant relationship publication-title: Journal of Hymenoptera Research – ident: e_1_2_6_11_1 doi: 10.1038/nature07950 – ident: e_1_2_6_13_1 doi: 10.1007/s004420000449 – start-page: 261 volume-title: Ecologia das interações Animais‐Plantas: Interações Planta‐Animais e a importância funcional da biodiversidade year: 2012 ident: e_1_2_6_12_1 – ident: e_1_2_6_17_1 doi: 10.1111/j.1365-2745.2009.01566.x – ident: e_1_2_6_53_1 doi: 10.1590/S1519-566X2005000300001 |
SSID | ssj0012969 |
Score | 2.3742068 |
Snippet | Temporal variation has been one remarkable feature of ecological interactions. In ant–plant mutualism, this variation is widely known, although little is... Temporal variation has been one remarkable feature of ecological interactions. In ant-plant mutualism, this variation is widely known, although little is... |
SourceID | proquest pascalfrancis crossref istex |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 463 |
SubjectTerms | Animal and plant ecology Animal, plant and microbial ecology Ant-plant interactions Biological and medical sciences coevolutionary process correlation ecological networks Fundamental and applied biological sciences. Psychology generalist core Herbivores Mutualism nectar secretion nectaries Phenology Plant communities savannas Synecology temporal variation Terrestrial ecosystems |
Title | Influence of extrafloral nectary phenology on ant-plant mutualistic networks in a neotropical savanna |
URI | https://api.istex.fr/ark:/67375/WNG-DWCMMFX1-L/fulltext.pdf https://www.proquest.com/docview/1429599787 https://www.proquest.com/docview/1439222974 https://www.proquest.com/docview/1501361643 |
Volume | 38 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbKJiReEFdRGJNBCCFNmXJzLo-ja9lQ2kkl1SoeiBzHRhNdUnWphHjiP_AP-SUcO46bimkavESJfRK1Pp-Pz7HPBaE3nhsyEUSeRSNKLJ9FhUUJCy0KjbwgNGZqM2c8CU5m_sc5mfd6XzpeS-s6P2Q_ro0r-R-uQhvwVUbJ_gNnzUehAe6Bv3AFDsP1Vjw-bSuMSJUPpOyKioWKuC9BjEl3OOnA1SRZUk7Hdeva4C0X8HRwuZbRIypVM7yi_MGVeyyFp6peVcsmZpKCtt0U2TZ7-MzITFi0qsutvflExis0sqy82Jz9HMsz-chJ09PkTHn2DT-1yrHsHW78LgbJ0VSRgPb8fjjtbkw4Gxc3E5Blh1YQ6x1GLWy9qAMqcrA89APP8ptqLVqG-lricf0U3yDpwdY_dORZ6mY5a4_wJ2fZaJYkWTqcp3fQrgtmhDK5pya9GKg6quSh-aE685T09DIf3tJXduXU-y79Z-kVDLFoap_8tYwr3SR9gO5rowIfNQh5iHq8fITufq4UWx6jrwYnuBK4gxOscYINTnBVYkDG75-_FEJwByG4RQi-ABrcQQjWCHmCZqNhOjixdIENi3mxU1s5EYLxIICJbHP4_67waEhpGNqiYDYntl8UHigvdiQKlzBBYp8SbougEHADfU_RTlmV_BnChHMRsFAeEvt-7pMYukks7CD3HD-nvI_etcOYMZ19XhZBWWStFQojnqkR76PXhnTZpFy5juit4oWhoKtv0kcxJNn55EN2fD4Yj0dzJ0v6aH-LWeYFAAQsXpHdR3st9zI9t6_AIHZjEsewmvXRK9MNklcep1EY4bWkAdvCdcEgv4GGyJyIDqj9z29B8wLd20ykPbRTr9b8Jei8db6vgPsH3Juvww |
linkProvider | Wiley-Blackwell |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Influence+of+extrafloral+nectary+phenology+on+ant%E2%80%93plant+mutualistic+networks+in+a+neotropical+savanna&rft.jtitle=Ecological+entomology&rft.au=Lange%2C+Denise&rft.au=D%C3%81TTILO%2C+WESLEY&rft.au=DEL%E2%80%90CLARO%2C+KLEBER&rft.date=2013-10-01&rft.issn=0307-6946&rft.volume=38&rft.issue=5+p.463-469&rft.spage=463&rft.epage=469&rft_id=info:doi/10.1111%2Feen.12036&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0307-6946&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0307-6946&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0307-6946&client=summon |