Bidirectional and efficient conversion between microwave and optical light

Converting low-frequency electrical signals into much higher-frequency optical signals has enabled modern communication networks to leverage the strengths of both microfabricated electrical circuits and optical fibre transmission, enabling information networks to grow in size and complexity. A micro...

Full description

Saved in:
Bibliographic Details
Published inNature physics Vol. 10; no. 4; pp. 321 - 326
Main Authors Andrews, R. W., Peterson, R. W., Purdy, T. P., Cicak, K., Simmonds, R. W., Regal, C. A., Lehnert, K. W.
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 01.04.2014
Nature Publishing Group
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Converting low-frequency electrical signals into much higher-frequency optical signals has enabled modern communication networks to leverage the strengths of both microfabricated electrical circuits and optical fibre transmission, enabling information networks to grow in size and complexity. A microwave-to-optical converter in a quantum information network could provide similar gains by linking quantum processors through low-loss optical fibres and enabling a large-scale quantum network. However, no current technology can convert low-frequency microwave signals into high-frequency optical signals while preserving their fragile quantum state. Here we demonstrate a converter that provides a bidirectional, coherent and efficient link between the microwave and optical portions of the electromagnetic spectrum. We use our converter to transfer classical signals between microwave and optical light with conversion efficiencies of ∼10%, and achieve performance sufficient to transfer quantum states if the device were further precooled from its current 4 K operating temperature to temperatures below 40 mK. An optomechanical system that converts microwaves to optical frequency light and vice versa is demonstrated. The technique achieves a conversion efficiency of approximately 10%. The results indicate that the device could work at the quantum level, up- and down-converting individual photons, if it were cooled to millikelvin temperatures. It could, therefore, form an integral part of quantum-processor networks.
AbstractList Converting low-frequency electrical signals into much higher-frequency optical signals has enabled modern communication networks to leverage the strengths of both microfabricated electrical circuits and optical bre transmission, enabling information networks to grow in size and complexity. A microwave-to-optical converter in a quantum information network could provide similar gains by linking quantum processors through low-loss optical bres and enabling a large-scale quantum network. However, no current technology can convert low-frequency microwave signals into high-frequency optical signals while preserving their fragile quantum state.
Converting low-frequency electrical signals into much higher-frequency optical signals has enabled modern communication networks to leverage the strengths of both microfabricated electrical circuits and optical fibre transmission, enabling information networks to grow in size and complexity. A microwave-to-optical converter in a quantum information network could provide similar gains by linking quantum processors through low-loss optical fibres and enabling a large-scale quantum network. However, no current technology can convert low-frequency microwave signals into high-frequency optical signals while preserving their fragile quantum state. Here we demonstrate a converter that provides a bidirectional, coherent and efficient link between the microwave and optical portions of the electromagnetic spectrum. We use our converter to transfer classical signals between microwave and optical light with conversion efficiencies of 10%, and achieve performance sufficient to transfer quantum states if the device were further precooled from its current 4 K operating temperature to temperatures below 40 mK.
Converting low-frequency electrical signals into much higher-frequency optical signals has enabled modern communication networks to leverage the strengths of both microfabricated electrical circuits and optical fibre transmission, enabling information networks to grow in size and complexity. A microwave-to-optical converter in a quantum information network could provide similar gains by linking quantum processors through low-loss optical fibres and enabling a large-scale quantum network. However, no current technology can convert low-frequency microwave signals into high-frequency optical signals while preserving their fragile quantum state. Here we demonstrate a converter that provides a bidirectional, coherent and efficient link between the microwave and optical portions of the electromagnetic spectrum. We use our converter to transfer classical signals between microwave and optical light with conversion efficiencies of ∼10%, and achieve performance sufficient to transfer quantum states if the device were further precooled from its current 4 K operating temperature to temperatures below 40 mK. An optomechanical system that converts microwaves to optical frequency light and vice versa is demonstrated. The technique achieves a conversion efficiency of approximately 10%. The results indicate that the device could work at the quantum level, up- and down-converting individual photons, if it were cooled to millikelvin temperatures. It could, therefore, form an integral part of quantum-processor networks.
Author Lehnert, K. W.
Regal, C. A.
Cicak, K.
Purdy, T. P.
Simmonds, R. W.
Andrews, R. W.
Peterson, R. W.
Author_xml – sequence: 1
  givenname: R. W.
  surname: Andrews
  fullname: Andrews, R. W.
  email: reed.andrews@colorado.edu
  organization: JILA, University of Colorado and NIST, Department of Physics, University of Colorado
– sequence: 2
  givenname: R. W.
  surname: Peterson
  fullname: Peterson, R. W.
  organization: JILA, University of Colorado and NIST, Department of Physics, University of Colorado
– sequence: 3
  givenname: T. P.
  surname: Purdy
  fullname: Purdy, T. P.
  organization: JILA, University of Colorado and NIST, Department of Physics, University of Colorado
– sequence: 4
  givenname: K.
  surname: Cicak
  fullname: Cicak, K.
  organization: National Institute of Standards and Technology (NIST)
– sequence: 5
  givenname: R. W.
  surname: Simmonds
  fullname: Simmonds, R. W.
  organization: National Institute of Standards and Technology (NIST)
– sequence: 6
  givenname: C. A.
  surname: Regal
  fullname: Regal, C. A.
  organization: JILA, University of Colorado and NIST, Department of Physics, University of Colorado
– sequence: 7
  givenname: K. W.
  surname: Lehnert
  fullname: Lehnert, K. W.
  organization: JILA, University of Colorado and NIST, Department of Physics, University of Colorado, National Institute of Standards and Technology (NIST)
BookMark eNpl0EtLAzEQAOAgFWyrB__BghcVVjNJ9nXU4pOCFz0v2exsm7JN1mTb0n9vaqWInmZgvhlmZkQGxhok5BzoDVCe35puvvWsADgiQ8hEEjORw-CQZ_yEjLxfUCpYCnxIXu91rR2qXlsj20iaOsKm0Uqj6SNlzRqdD6Wown6DaKKlVs5u5Bq_qe16rUJbq2fz_pQcN7L1ePYTx-Tj8eF98hxP355eJnfTWPEC-rjilUhTUBWjBRXIacZogshzVtcCK85Uw3OaJEklU1XktSowRxYWbjgTgjE-Jpf7uZ2znyv0fbnUXmHbSoN25UtIBAhOWUYDvfhDF3blwqE7BZAnwAse1NVehdO8d9iUndNL6bYl0HL31fLw1WCv99YHY2bofk38h78Ae1h6Yw
CitedBy_id crossref_primary_10_1103_PhysRevA_100_042330
crossref_primary_10_1103_PhysRevX_11_031027
crossref_primary_10_1103_PhysRevA_98_043804
crossref_primary_10_1063_1_4919113
crossref_primary_10_1088_2399_6528_ab4430
crossref_primary_10_1103_PhysRevA_96_013833
crossref_primary_10_1088_1361_6455_abe395
crossref_primary_10_1088_1402_4896_ab68bb
crossref_primary_10_1038_d41586_018_05336_1
crossref_primary_10_1038_s41567_020_0987_5
crossref_primary_10_1103_PhysRevA_110_012415
crossref_primary_10_1103_PhysRevLett_132_153602
crossref_primary_10_1364_OPTICA_6_001498
crossref_primary_10_1126_sciadv_aav0582
crossref_primary_10_1002_andp_201400100
crossref_primary_10_1103_PhysRevA_92_013822
crossref_primary_10_1103_PhysRevA_93_033835
crossref_primary_10_1364_OE_25_006076
crossref_primary_10_1073_pnas_1608412114
crossref_primary_10_1103_PhysRevA_100_023804
crossref_primary_10_1088_2040_8986_aa7b3c
crossref_primary_10_1364_OL_514659
crossref_primary_10_1038_s41467_017_01840_6
crossref_primary_10_1063_1_5000973
crossref_primary_10_1038_s41567_023_02135_y
crossref_primary_10_1103_PhysRevLett_115_240501
crossref_primary_10_1364_OPTICA_397513
crossref_primary_10_1103_PhysRevB_97_024109
crossref_primary_10_1088_1367_2630_ab51f5
crossref_primary_10_1007_s11432_023_3773_4
crossref_primary_10_1063_1_4930149
crossref_primary_10_1103_PhysRevX_10_021058
crossref_primary_10_1038_nature16536
crossref_primary_10_1038_nphoton_2016_46
crossref_primary_10_1038_s41467_023_44490_7
crossref_primary_10_3788_CJL220630
crossref_primary_10_1103_PhysRevApplied_14_014041
crossref_primary_10_1103_PhysRevB_93_174427
crossref_primary_10_1063_1_4945741
crossref_primary_10_1103_PhysRevB_96_165312
crossref_primary_10_3390_mi15040485
crossref_primary_10_1103_PhysRevLett_129_243601
crossref_primary_10_1038_nphys2923
crossref_primary_10_1038_s42005_020_00412_3
crossref_primary_10_1016_j_physrep_2017_10_002
crossref_primary_10_1103_PhysRevA_92_061801
crossref_primary_10_1103_PhysRevB_98_024404
crossref_primary_10_1038_s41567_018_0090_3
crossref_primary_10_1103_PhysRevX_5_041002
crossref_primary_10_1038_srep46313
crossref_primary_10_1103_PhysRevA_93_033817
crossref_primary_10_3390_nano12152675
crossref_primary_10_1088_2040_8978_18_8_084004
crossref_primary_10_1103_PhysRevA_96_013808
crossref_primary_10_1103_PhysRevApplied_15_L021001
crossref_primary_10_1103_PhysRevApplied_14_014054
crossref_primary_10_1103_PhysRevApplied_15_034063
crossref_primary_10_1515_nanoph_2021_0082
crossref_primary_10_1103_PhysRevApplied_14_061001
crossref_primary_10_1103_PhysRevA_94_053815
crossref_primary_10_7498_aps_66_107101
crossref_primary_10_1103_PhysRevA_94_053812
crossref_primary_10_1364_OPTICA_3_000597
crossref_primary_10_1103_PhysRevA_107_013528
crossref_primary_10_1088_0031_8949_90_7_074055
crossref_primary_10_1002_andp_201400116
crossref_primary_10_1002_que2_62
crossref_primary_10_1038_nnano_2016_86
crossref_primary_10_1103_RevModPhys_89_021001
crossref_primary_10_1103_PhysRevA_97_033806
crossref_primary_10_1002_andp_201400110
crossref_primary_10_1073_pnas_1419326112
crossref_primary_10_1038_s41567_018_0210_0
crossref_primary_10_1038_s41467_023_39493_3
crossref_primary_10_1364_JOSAB_36_001252
crossref_primary_10_1016_j_aop_2021_168553
crossref_primary_10_1038_ncomms15886
crossref_primary_10_1103_PhysRevA_94_063853
crossref_primary_10_1364_JOSAB_36_000168
crossref_primary_10_1039_D1NA00794G
crossref_primary_10_1364_OE_23_023167
crossref_primary_10_1103_PhysRevA_92_022346
crossref_primary_10_1088_1361_6455_aaa2d9
crossref_primary_10_1016_j_jlumin_2024_120647
crossref_primary_10_1126_science_1260180
crossref_primary_10_1007_s00340_022_07770_6
crossref_primary_10_1016_j_jmmm_2019_04_013
crossref_primary_10_1038_s41534_022_00581_9
crossref_primary_10_1063_1_4932137
crossref_primary_10_1088_1402_4896_abb327
crossref_primary_10_1103_PhysRevLett_118_253603
crossref_primary_10_1103_PhysRevA_109_043515
crossref_primary_10_1007_s12045_022_1465_4
crossref_primary_10_1038_srep20463
crossref_primary_10_1103_PhysRevApplied_7_024008
crossref_primary_10_1364_OPTICA_474022
crossref_primary_10_7498_aps_72_20230985
crossref_primary_10_1103_PhysRevB_99_054107
crossref_primary_10_1103_PhysRevApplied_12_044027
crossref_primary_10_1103_PhysRevApplied_18_034067
crossref_primary_10_1103_PhysRevX_10_031057
crossref_primary_10_1103_PhysRevLett_117_133602
crossref_primary_10_1126_science_abk3106
crossref_primary_10_1038_s41928_021_00570_4
crossref_primary_10_1088_1361_6455_ab2478
crossref_primary_10_1038_s41467_017_01304_x
crossref_primary_10_1088_1367_2630_ace3eb
crossref_primary_10_1103_PhysRevX_7_011035
crossref_primary_10_1038_s41467_017_00968_9
crossref_primary_10_1103_PhysRevA_98_052308
crossref_primary_10_1088_1367_2630_17_2_023024
crossref_primary_10_1007_s11128_016_1350_8
crossref_primary_10_1038_ncomms12396
crossref_primary_10_1063_1_5042428
crossref_primary_10_1103_PRXQuantum_1_020315
crossref_primary_10_3390_nano12152543
crossref_primary_10_1038_s41467_017_01063_9
crossref_primary_10_1038_s41586_022_04720_2
crossref_primary_10_1364_OE_382254
crossref_primary_10_1364_OE_402031
crossref_primary_10_1364_OPTICA_397967
crossref_primary_10_1103_PhysRevB_90_174307
crossref_primary_10_1038_s41565_023_01597_8
crossref_primary_10_1007_s12648_019_01476_w
crossref_primary_10_1103_PhysRevApplied_11_034010
crossref_primary_10_1103_PhysRevLett_128_094301
crossref_primary_10_1103_PhysRevLett_116_043601
crossref_primary_10_1088_1361_6633_aa7e1a
crossref_primary_10_1103_PhysRevA_96_023860
crossref_primary_10_1103_PhysRevResearch_6_013204
crossref_primary_10_1038_s41586_022_05367_9
crossref_primary_10_1103_PhysRevB_101_184430
crossref_primary_10_1038_s41467_023_37138_z
crossref_primary_10_1103_PhysRevA_97_023805
crossref_primary_10_1364_OPTICA_430821
crossref_primary_10_1103_PhysRevA_96_032342
crossref_primary_10_1021_acsami_7b09372
crossref_primary_10_1103_PhysRevA_103_013719
crossref_primary_10_1103_PhysRevApplied_9_054024
crossref_primary_10_1103_PhysRevLett_114_080503
crossref_primary_10_1103_PhysRevA_99_063830
crossref_primary_10_1103_PhysRevA_96_063811
crossref_primary_10_1016_j_physrep_2023_10_007
crossref_primary_10_1364_OE_25_017364
crossref_primary_10_1088_1361_6455_ac86b1
crossref_primary_10_1103_PhysRevX_13_011017
crossref_primary_10_1038_s41598_020_58554_x
crossref_primary_10_1103_PhysRevApplied_20_054062
crossref_primary_10_1103_PhysRevX_6_041024
crossref_primary_10_1038_srep11278
crossref_primary_10_1103_PhysRevLett_126_047404
crossref_primary_10_1063_1_5137900
crossref_primary_10_1364_AOP_479017
crossref_primary_10_1103_PhysRevApplied_13_014027
crossref_primary_10_1364_OE_27_005945
crossref_primary_10_1038_s41534_022_00526_2
crossref_primary_10_1016_j_optcom_2016_05_008
crossref_primary_10_1038_nphys4251
crossref_primary_10_1103_PhysRevResearch_5_043056
crossref_primary_10_1088_1367_2630_abf535
crossref_primary_10_1103_PhysRevA_101_042320
crossref_primary_10_1103_PhysRevA_95_043815
crossref_primary_10_1103_PhysRevApplied_15_044006
crossref_primary_10_1038_s41467_020_14863_3
crossref_primary_10_1103_PhysRevApplied_18_064016
crossref_primary_10_1038_nphys4143
crossref_primary_10_1063_1_5004261
crossref_primary_10_1103_PhysRevA_106_053503
crossref_primary_10_1103_PhysRevA_92_033843
crossref_primary_10_1103_PhysRevA_95_053855
crossref_primary_10_1002_lpor_202200866
crossref_primary_10_1016_j_rinp_2020_103176
crossref_primary_10_1103_PhysRevA_94_033846
crossref_primary_10_1364_OE_419385
crossref_primary_10_1364_JOSAB_32_000588
crossref_primary_10_1002_advs_202005041
crossref_primary_10_1088_2040_8986_aa52cd
crossref_primary_10_1016_j_physleta_2015_12_003
crossref_primary_10_1038_s41598_019_52050_7
crossref_primary_10_1103_PhysRevApplied_6_014013
crossref_primary_10_1515_nanoph_2019_0314
crossref_primary_10_1103_PhysRevApplied_10_024002
crossref_primary_10_1007_s11128_018_1980_0
crossref_primary_10_1103_PhysRevLett_120_093201
crossref_primary_10_1021_acsanm_2c00987
crossref_primary_10_1103_PhysRevLett_113_203601
crossref_primary_10_1007_s11433_017_9039_0
crossref_primary_10_1063_1_4934699
crossref_primary_10_1103_PhysRevA_95_053821
crossref_primary_10_1038_s41467_020_18269_z
crossref_primary_10_1103_PhysRevA_99_053825
crossref_primary_10_1103_PhysRevLett_117_100001
crossref_primary_10_1126_science_aaa3693
crossref_primary_10_1038_s41567_022_01612_0
crossref_primary_10_1103_PhysRevA_89_063805
crossref_primary_10_1063_1_5083647
crossref_primary_10_1364_OE_517001
crossref_primary_10_1364_OL_42_001341
crossref_primary_10_1063_1_5108788
crossref_primary_10_1088_1572_9494_ac64f4
crossref_primary_10_1103_PhysRevA_101_033829
crossref_primary_10_1103_PhysRevA_100_033807
crossref_primary_10_1016_j_rinma_2022_100357
crossref_primary_10_1063_1_4994661
crossref_primary_10_1103_PhysRevA_91_032121
crossref_primary_10_1063_5_0152543
crossref_primary_10_1103_PhysRevA_109_043103
crossref_primary_10_3390_mi8040108
crossref_primary_10_1109_JSAC_2020_2968973
crossref_primary_10_1103_PhysRevA_94_043842
crossref_primary_10_1103_PhysRevA_93_023838
crossref_primary_10_1103_PhysRevApplied_10_044036
crossref_primary_10_1103_PhysRevResearch_5_043121
crossref_primary_10_1038_s41467_020_17182_9
crossref_primary_10_1209_0295_5075_131_14001
crossref_primary_10_3390_app7070656
crossref_primary_10_1103_PhysRevApplied_11_064048
crossref_primary_10_1103_PhysRevApplied_16_064044
crossref_primary_10_1364_JOSAB_36_001363
crossref_primary_10_1088_1674_1056_27_2_024204
crossref_primary_10_1038_s41567_020_0797_9
crossref_primary_10_3390_e25071087
crossref_primary_10_1038_s41598_017_00428_w
crossref_primary_10_1103_PhysRevA_104_023509
crossref_primary_10_1103_PhysRevA_100_023843
crossref_primary_10_1103_PhysRevA_93_023827
crossref_primary_10_1515_nanoph_2020_0176
crossref_primary_10_1364_OE_26_015255
crossref_primary_10_1103_PhysRevA_105_013707
crossref_primary_10_1088_1367_2630_ac6dfc
crossref_primary_10_1063_5_0197437
crossref_primary_10_1063_1_4938747
crossref_primary_10_1103_PhysRevB_105_064405
crossref_primary_10_1002_andp_201800271
crossref_primary_10_7498_aps_71_20211803
crossref_primary_10_1088_0256_307X_41_1_014203
crossref_primary_10_1103_PhysRevApplied_16_044025
crossref_primary_10_35848_1882_0786_ac3e15
crossref_primary_10_1038_532169a
crossref_primary_10_1103_PhysRevA_94_043840
crossref_primary_10_1063_1_4967496
crossref_primary_10_1016_j_physleta_2022_127966
crossref_primary_10_1103_PhysRevA_93_023816
crossref_primary_10_1140_epjqt_s40507_024_00229_x
crossref_primary_10_1088_2058_9565_ab788a
crossref_primary_10_1103_PhysRevApplied_19_034093
crossref_primary_10_1364_OL_42_001277
crossref_primary_10_1103_PhysRevA_89_053803
crossref_primary_10_1364_JOSAB_35_002237
crossref_primary_10_3390_app9224845
crossref_primary_10_1038_s41534_019_0219_y
crossref_primary_10_1103_PhysRevA_98_013807
crossref_primary_10_1364_JOSAB_484943
crossref_primary_10_1103_PhysRevLett_126_163604
crossref_primary_10_1093_nsr_nwv048
crossref_primary_10_1103_PhysRevLett_113_063603
crossref_primary_10_1103_PhysRevA_107_063505
crossref_primary_10_1088_2053_1583_abe777
crossref_primary_10_1063_1_5039640
crossref_primary_10_1038_s41567_019_0673_7
crossref_primary_10_1103_PhysRevX_9_021056
crossref_primary_10_1038_s41467_018_08038_4
crossref_primary_10_1038_s41467_022_29115_9
crossref_primary_10_1103_PhysRevA_105_033514
crossref_primary_10_1103_PhysRevA_91_012333
crossref_primary_10_1109_JPHOT_2020_3011427
crossref_primary_10_1038_s41565_017_0039_1
crossref_primary_10_1103_PhysRevA_106_032606
crossref_primary_10_3390_cryst12070890
crossref_primary_10_1103_PhysRevLett_131_067001
crossref_primary_10_1103_PhysRevX_5_041037
crossref_primary_10_1364_OE_24_013850
crossref_primary_10_1103_PhysRevLett_116_147202
crossref_primary_10_1364_OE_27_024393
crossref_primary_10_1103_PhysRevA_93_033846
crossref_primary_10_1038_srep46764
crossref_primary_10_1002_andp_202000608
crossref_primary_10_1038_s41467_023_43745_7
crossref_primary_10_1088_1367_2630_aabb8d
crossref_primary_10_1038_s44172_023_00056_5
crossref_primary_10_1103_PhysRevX_12_021062
crossref_primary_10_1088_1674_1056_abea8f
crossref_primary_10_1103_PhysRevApplied_3_054009
crossref_primary_10_1126_sciadv_abq1690
crossref_primary_10_1007_s10773_020_04655_2
crossref_primary_10_1038_s41467_020_18358_z
crossref_primary_10_1103_PhysRevApplied_10_054036
crossref_primary_10_1364_OE_25_018974
crossref_primary_10_1103_PhysRevA_91_033834
crossref_primary_10_1364_OPTICA_468590
crossref_primary_10_1103_PhysRevA_103_053504
crossref_primary_10_1103_PhysRevA_96_043808
crossref_primary_10_1088_1612_202X_aa9b22
crossref_primary_10_1103_PhysRevLett_129_123603
crossref_primary_10_1103_PhysRevA_90_013824
crossref_primary_10_1103_PhysRevApplied_6_034005
crossref_primary_10_1038_s41586_018_0717_7
crossref_primary_10_1016_j_optcom_2018_08_079
crossref_primary_10_1088_2058_9565_ab8962
crossref_primary_10_1103_PhysRevLett_131_220802
crossref_primary_10_1063_5_0054965
crossref_primary_10_1364_OE_24_020400
crossref_primary_10_1103_PhysRevA_92_062313
crossref_primary_10_1002_advs_202103403
crossref_primary_10_1038_nphoton_2016_107
crossref_primary_10_1038_s41586_023_05740_2
crossref_primary_10_1063_1_4976831
crossref_primary_10_1063_5_0031626
crossref_primary_10_1103_PhysRevX_6_021012
crossref_primary_10_1088_1367_2630_18_10_103036
crossref_primary_10_1103_PhysRevA_106_033518
crossref_primary_10_1103_PhysRevApplied_14_054052
crossref_primary_10_1364_OPTICA_6_000832
crossref_primary_10_1088_1367_2630_ab307c
crossref_primary_10_1103_PhysRevA_96_053831
crossref_primary_10_1103_PhysRevLett_116_070405
crossref_primary_10_1103_PhysRevApplied_19_L031006
crossref_primary_10_1103_PhysRevA_94_013812
crossref_primary_10_3788_CJL221046
crossref_primary_10_1016_j_ymssp_2023_110331
crossref_primary_10_1063_1_4995008
crossref_primary_10_1038_s41467_022_34373_8
crossref_primary_10_1140_epjd_s10053_023_00654_0
crossref_primary_10_1103_PhysRevB_101_085108
crossref_primary_10_3390_s22030804
crossref_primary_10_1103_PhysRevA_105_013711
crossref_primary_10_1103_PhysRevB_92_115407
crossref_primary_10_1088_2058_9565_aaf5a6
crossref_primary_10_1364_OPTICA_1_000425
crossref_primary_10_1140_epjp_s13360_019_00001_6
crossref_primary_10_1103_PhysRevB_98_155316
crossref_primary_10_1103_PhysRevB_105_064418
crossref_primary_10_1016_j_physe_2016_02_021
crossref_primary_10_1088_1361_6528_abc44e
crossref_primary_10_1088_2058_9565_ab2c87
crossref_primary_10_1103_PhysRevApplied_17_044057
crossref_primary_10_1103_PhysRevA_104_052601
crossref_primary_10_1002_andp_202100599
crossref_primary_10_1103_PhysRevApplied_21_054044
crossref_primary_10_1140_epjd_e2019_100447_8
crossref_primary_10_1103_PhysRevA_93_063822
crossref_primary_10_1364_OE_27_025731
crossref_primary_10_1063_5_0055954
crossref_primary_10_1007_s11433_015_5657_8
crossref_primary_10_1126_sciadv_add2811
crossref_primary_10_1063_5_0002160
crossref_primary_10_3390_nano12162807
crossref_primary_10_1038_s41586_020_3038_6
crossref_primary_10_1140_epjqt_s40507_023_00191_0
crossref_primary_10_1038_s41598_017_04225_3
crossref_primary_10_1364_OE_25_015456
crossref_primary_10_1103_PhysRevA_96_053853
crossref_primary_10_1103_PhysRevLett_121_110505
crossref_primary_10_1103_PhysRevLett_119_063601
crossref_primary_10_1088_1674_1056_25_5_054204
crossref_primary_10_1103_PhysRevLett_121_110506
crossref_primary_10_1103_PhysRevX_7_031001
crossref_primary_10_1038_s41467_019_12964_2
crossref_primary_10_1103_PhysRevA_101_032345
crossref_primary_10_1103_PhysRevA_103_053501
crossref_primary_10_1126_sciadv_1603150
crossref_primary_10_1103_PhysRevLett_124_010511
crossref_primary_10_1103_PhysRevA_94_023837
crossref_primary_10_1103_PhysRevLett_124_033602
crossref_primary_10_1063_5_0009848
crossref_primary_10_1103_Physics_8_18
crossref_primary_10_1126_sciadv_1501286
crossref_primary_10_1088_0957_4484_27_36_364003
crossref_primary_10_1088_1367_2630_16_11_113004
crossref_primary_10_1088_1367_2630_aa7f5d
crossref_primary_10_1038_s41467_021_24809_y
crossref_primary_10_1103_PhysRevLett_117_173602
crossref_primary_10_1103_PhysRevApplied_18_064045
crossref_primary_10_1364_OE_416983
crossref_primary_10_1038_s41566_022_00959_3
crossref_primary_10_1126_science_1257219
crossref_primary_10_1038_s41467_022_28670_5
crossref_primary_10_1103_PhysRevA_102_043513
crossref_primary_10_1126_science_aaf2941
crossref_primary_10_3390_photonics9110818
crossref_primary_10_1021_nl500879k
crossref_primary_10_1002_qute_202100095
crossref_primary_10_1103_PhysRevA_93_053811
crossref_primary_10_1016_j_physleta_2023_128829
crossref_primary_10_1038_s41534_022_00664_7
crossref_primary_10_1103_PhysRevA_109_012611
crossref_primary_10_1103_PhysRevLett_122_153601
crossref_primary_10_1038_s41467_023_40894_7
crossref_primary_10_1038_s41467_017_01158_3
crossref_primary_10_1038_s41534_021_00438_7
crossref_primary_10_1103_PhysRevLett_126_133601
crossref_primary_10_1103_PhysRevResearch_4_043119
crossref_primary_10_1109_JPHOT_2019_2958980
crossref_primary_10_1088_1674_1056_28_7_074204
crossref_primary_10_1063_5_0015166
crossref_primary_10_1103_PhysRevLett_121_183601
crossref_primary_10_1364_JOSAB_36_000306
crossref_primary_10_1103_PhysRevA_92_043845
crossref_primary_10_1126_science_aao0763
crossref_primary_10_1007_s11128_021_03269_9
crossref_primary_10_1063_1_4953805
crossref_primary_10_1103_PhysRevApplied_20_044037
crossref_primary_10_1103_PhysRevX_6_031006
crossref_primary_10_1364_OL_44_003777
crossref_primary_10_1103_PhysRevApplied_20_044031
crossref_primary_10_1103_PhysRevLett_114_123602
crossref_primary_10_1088_0953_4075_48_10_105501
crossref_primary_10_1103_PhysRevA_100_053843
crossref_primary_10_1103_PhysRevX_6_021001
crossref_primary_10_1038_s41566_017_0032_0
crossref_primary_10_1088_1674_1056_24_5_054206
crossref_primary_10_1103_PhysRevA_92_012124
crossref_primary_10_1103_PhysRevA_95_053870
crossref_primary_10_1088_1367_2630_18_5_053030
crossref_primary_10_1063_5_0155213
crossref_primary_10_1038_s41467_017_00447_1
crossref_primary_10_1039_C8RE00254A
crossref_primary_10_1103_PhysRevB_92_060406
crossref_primary_10_1088_1402_4896_ad3384
crossref_primary_10_1103_PRXQuantum_3_020201
crossref_primary_10_7498_aps_64_164211
crossref_primary_10_1038_s41567_021_01402_0
crossref_primary_10_1103_PhysRevA_91_013807
crossref_primary_10_1007_s11433_016_0015_3
crossref_primary_10_1103_PhysRevLett_117_123603
crossref_primary_10_1103_PhysRevB_94_121403
crossref_primary_10_1002_qute_201900077
crossref_primary_10_1038_ncomms9491
crossref_primary_10_1103_PhysRevApplied_12_014052
crossref_primary_10_1088_2633_4356_acaba4
crossref_primary_10_1103_PhysRevLett_113_227201
crossref_primary_10_1103_PhysRevLett_119_030502
crossref_primary_10_1103_PRXQuantum_5_010330
crossref_primary_10_1364_OL_43_001163
crossref_primary_10_1016_j_pquantelec_2023_100495
crossref_primary_10_1016_j_cjph_2022_07_010
crossref_primary_10_1038_s41467_020_17053_3
crossref_primary_10_1103_PhysRevLett_123_023602
crossref_primary_10_1002_adfm_202301770
crossref_primary_10_1103_PhysRevLett_124_103602
crossref_primary_10_1364_OE_22_013773
crossref_primary_10_1038_s41598_021_81136_4
crossref_primary_10_1016_j_optcom_2023_129639
crossref_primary_10_1109_COMST_2023_3294240
crossref_primary_10_1103_PhysRevA_91_053849
crossref_primary_10_1103_PhysRevResearch_5_013075
crossref_primary_10_1038_s41534_019_0143_1
crossref_primary_10_1103_PhysRevApplied_11_024067
crossref_primary_10_1364_OE_23_003196
crossref_primary_10_1002_andp_201800402
crossref_primary_10_1088_2058_9565_ac0f36
crossref_primary_10_1088_2058_9565_ab8dce
crossref_primary_10_1007_s11433_019_1434_6
crossref_primary_10_1103_PhysRevLett_125_023601
crossref_primary_10_1088_1367_2630_ab6522
crossref_primary_10_1103_PhysRevA_94_012340
crossref_primary_10_1007_s11467_015_0456_2
crossref_primary_10_1088_1612_202X_aa7d2f
crossref_primary_10_1007_s11433_015_5651_1
crossref_primary_10_1103_PhysRevResearch_3_033118
crossref_primary_10_1063_1_4985260
crossref_primary_10_1103_PhysRevA_109_022619
crossref_primary_10_1016_j_rinp_2022_105347
crossref_primary_10_1103_PhysRevA_96_042305
crossref_primary_10_1007_s10773_018_3990_1
crossref_primary_10_1364_OPTICA_397235
crossref_primary_10_1038_s41534_023_00749_x
crossref_primary_10_1038_s41567_020_0812_1
crossref_primary_10_1016_j_rinp_2022_105592
crossref_primary_10_1063_5_0028395
crossref_primary_10_1103_PhysRevA_95_013843
crossref_primary_10_1016_j_fmre_2022_12_017
crossref_primary_10_1103_PhysRevB_102_064418
crossref_primary_10_1364_OL_44_000033
crossref_primary_10_1002_andp_202000233
crossref_primary_10_1002_eng2_12658
crossref_primary_10_1103_PhysRevB_97_205443
crossref_primary_10_1109_MMM_2020_2993478
crossref_primary_10_1016_j_jallcom_2019_03_167
crossref_primary_10_1038_s41467_020_16996_x
crossref_primary_10_1063_5_0065102
crossref_primary_10_1088_1367_2630_ab117a
crossref_primary_10_1103_PhysRevLett_127_040503
crossref_primary_10_1063_1_5116533
crossref_primary_10_1103_PhysRevLett_116_063601
crossref_primary_10_1126_sciadv_aar4994
crossref_primary_10_2139_ssrn_4197089
crossref_primary_10_1088_0953_4075_48_18_185501
crossref_primary_10_1103_PhysRevA_90_033818
crossref_primary_10_1103_PhysRevA_95_022327
crossref_primary_10_1103_PhysRevLett_114_113601
crossref_primary_10_1016_j_cma_2019_112692
crossref_primary_10_1021_acsphotonics_1c01614
crossref_primary_10_1021_acsphotonics_1c01857
crossref_primary_10_1038_ncomms9206
crossref_primary_10_1007_s44214_023_00044_y
crossref_primary_10_1103_PhysRevB_103_174106
crossref_primary_10_1038_srep22705
crossref_primary_10_1103_PhysRevLett_127_014304
crossref_primary_10_1088_1367_2630_aadbb7
crossref_primary_10_1364_OE_451550
crossref_primary_10_1007_s11433_015_5652_0
crossref_primary_10_1038_s41467_018_04202_y
crossref_primary_10_1364_JOSAB_464113
crossref_primary_10_1103_PhysRevLett_131_033603
crossref_primary_10_1088_0253_6102_68_1_57
crossref_primary_10_1364_JOSAB_35_000652
crossref_primary_10_1103_PhysRevA_103_023706
crossref_primary_10_1038_s41586_021_03268_x
crossref_primary_10_1364_OL_40_000174
crossref_primary_10_1103_PhysRevLett_112_143602
crossref_primary_10_1103_PhysRevLett_119_127401
crossref_primary_10_1063_5_0007451
crossref_primary_10_1088_2058_9565_ab7eed
crossref_primary_10_1088_2058_9565_ab84c1
crossref_primary_10_1088_2058_9565_ad5abb
crossref_primary_10_1364_OPTICA_6_000213
crossref_primary_10_1364_OPTICA_6_000577
crossref_primary_10_7498_aps_65_124202
crossref_primary_10_1103_PhysRevA_102_012407
crossref_primary_10_1103_PhysRevA_103_033516
crossref_primary_10_1007_s11128_024_04408_8
crossref_primary_10_1364_OE_431955
crossref_primary_10_1126_science_aam9288
crossref_primary_10_1103_PhysRevA_95_022322
crossref_primary_10_1063_1_4955408
crossref_primary_10_1038_s41598_024_57816_2
crossref_primary_10_1038_s42005_022_00808_3
crossref_primary_10_1103_PhysRevLett_131_183602
crossref_primary_10_1088_2058_9565_aada1d
crossref_primary_10_1103_PhysRevA_109_033701
crossref_primary_10_1103_PhysRevA_97_063857
crossref_primary_10_1038_s41567_023_02129_w
crossref_primary_10_1038_s41534_019_0220_5
crossref_primary_10_1038_s41566_020_00711_9
crossref_primary_10_1038_s41467_024_48167_7
crossref_primary_10_1088_1367_2630_18_9_093030
crossref_primary_10_1103_PhysRevLett_122_154301
crossref_primary_10_1121_10_0020831
crossref_primary_10_1103_PhysRevA_92_063845
crossref_primary_10_1364_OPTICA_425414
crossref_primary_10_1103_PhysRevA_106_023107
crossref_primary_10_1038_s41566_021_00896_7
crossref_primary_10_1116_5_0128487
crossref_primary_10_1103_PhysRevA_104_063508
crossref_primary_10_1103_PhysRevResearch_4_L042023
crossref_primary_10_1140_epjp_s13360_020_00789_8
crossref_primary_10_1016_j_physleta_2017_03_017
crossref_primary_10_1103_PhysRevApplied_5_044012
crossref_primary_10_1038_s41566_023_01295_w
crossref_primary_10_1088_1572_9494_acce27
crossref_primary_10_1103_PhysRevLett_126_250507
crossref_primary_10_1063_1_5055887
crossref_primary_10_1039_D2AN00220E
crossref_primary_10_1002_lpor_201900252
crossref_primary_10_1038_s41565_019_0377_2
crossref_primary_10_1103_PhysRevA_97_053812
crossref_primary_10_1088_2040_8978_18_8_085703
crossref_primary_10_1103_PhysRevA_91_043829
crossref_primary_10_1103_RevModPhys_86_1391
crossref_primary_10_1103_PhysRevA_108_043501
crossref_primary_10_1088_1367_2630_ab90d2
crossref_primary_10_1038_nnano_2015_264
crossref_primary_10_1103_PhysRevResearch_4_L042013
crossref_primary_10_1103_PhysRevLett_118_140501
crossref_primary_10_1109_JSTQE_2014_2376966
crossref_primary_10_1103_PhysRevA_90_023812
crossref_primary_10_1103_PhysRevE_96_012404
crossref_primary_10_1364_OE_382770
crossref_primary_10_1103_PhysRevLett_120_020502
crossref_primary_10_1364_OE_26_013783
crossref_primary_10_1103_PhysRevApplied_18_054061
crossref_primary_10_1103_PhysRevApplied_18_044059
crossref_primary_10_1364_PRJ_446226
crossref_primary_10_1088_2058_9565_ad3f47
crossref_primary_10_1038_ncomms10021
crossref_primary_10_1103_PhysRevLett_129_104301
crossref_primary_10_1016_j_physe_2015_10_028
crossref_primary_10_1088_1361_6463_ab1b04
crossref_primary_10_1103_PhysRevApplied_9_034031
crossref_primary_10_1007_s11128_020_02721_6
crossref_primary_10_1038_ncomms7232
crossref_primary_10_22331_q_2021_03_23_416
crossref_primary_10_1103_PhysRevApplied_12_034042
crossref_primary_10_1364_JOSAB_439497
crossref_primary_10_1364_JOSAB_399097
crossref_primary_10_1038_lsa_2016_190
crossref_primary_10_1155_2023_8993363
crossref_primary_10_1103_PhysRevB_98_214303
crossref_primary_10_1103_PRXQuantum_4_020351
crossref_primary_10_1088_2058_9565_ab043d
crossref_primary_10_1103_PhysRevLett_123_093603
crossref_primary_10_1038_srep05571
crossref_primary_10_1038_s41586_021_03617_w
crossref_primary_10_1103_PhysRevLett_129_107701
crossref_primary_10_1109_MAES_2020_2977851
Cites_doi 10.1103/PhysRevA.81.063837
10.1038/ncomms2201
10.1103/PhysRevLett.108.083603
10.1038/nature11023
10.1049/el:20010220
10.1103/PhysRevLett.105.210501
10.1038/nature11915
10.1038/nature10261
10.1038/nature08812
10.1038/nphoton.2009.229
10.1038/nature07128
10.1126/science.1231282
10.1088/0034-4885/74/10/104401
10.1364/JOSAB.2.001841
10.1103/PhysRevLett.103.043603
10.1103/PhysRevA.87.053818
10.1088/1367-2630/12/8/083030
10.1088/1367-2630/14/11/115021
10.1063/1.2884191
10.1038/nphys2385
10.1038/nature10786
10.1103/PhysRevLett.108.153604
10.1038/nature06715
10.1103/PhysRevA.84.043845
10.1103/PhysRevLett.45.75
10.1103/PhysRevLett.95.060502
10.1103/PhysRevLett.110.233602
10.1103/PhysRevA.51.2537
10.1103/PhysRevLett.110.253601
10.1364/JOSAB.20.000333
10.1038/nature10461
10.1126/science.1231930
10.1103/PhysRevA.82.053806
10.1103/PhysRevLett.109.130503
10.1038/nphys2748
10.1103/PhysRevLett.51.1550
10.1103/PhysRevA.88.062341
10.1038/451664a
10.1103/PhysRevD.26.1817
10.1038/nature07127
10.1364/OL.34.001300
10.1103/PhysRevA.85.020302
10.1103/PhysRevA.68.013808
10.1038/nature10787
10.1103/PhysRevLett.102.083602
10.1103/PhysRevLett.108.153603
10.1088/1367-2630/13/1/013017
10.1364/FIO.2014.FW1C.2
ContentType Journal Article
Copyright Springer Nature Limited 2014
Copyright Nature Publishing Group Apr 2014
Copyright_xml – notice: Springer Nature Limited 2014
– notice: Copyright Nature Publishing Group Apr 2014
DBID AAYXX
CITATION
3V.
7U5
7XB
88I
8FD
8FE
8FG
8FK
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
DWQXO
GNUQQ
HCIFZ
L7M
M2P
P5Z
P62
PCBAR
PQEST
PQQKQ
PQUKI
Q9U
DOI 10.1038/nphys2911
DatabaseName CrossRef
ProQuest Central (Corporate)
Solid State and Superconductivity Abstracts
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
Advanced Technologies Database with Aerospace
ProQuest Science Journals
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Earth, Atmospheric & Aquatic Science Database
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central Basic
DatabaseTitle CrossRef
ProQuest Central Student
Technology Collection
Technology Research Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
Natural Science Collection
ProQuest Central Korea
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Collection
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Solid State and Superconductivity Abstracts
ProQuest One Academic
ProQuest Central (Alumni)
DatabaseTitleList ProQuest Central Student
Technology Research Database

Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1745-2481
EndPage 326
ExternalDocumentID 3262994681
10_1038_nphys2911
Genre Feature
GroupedDBID 0R~
123
29M
39C
3V.
4.4
5BI
5M7
6OB
70F
88I
8FE
8FG
8FH
8R4
8R5
AAEEF
AARCD
AAZLF
ABAWZ
ABDBF
ABJNI
ABLJU
ABUWG
ABVXF
ABZEH
ACGFO
ACGFS
ACGOD
ACMJI
ADBBV
ADFRT
AENEX
AFBBN
AFKRA
AFSHS
AFWHJ
AGAYW
AGEZK
AGHTU
AHBCP
AHOSX
AHSBF
AIBTJ
ALFFA
ALMA_UNASSIGNED_HOLDINGS
AMTXH
ARAPS
ARMCB
ASPBG
AVWKF
AXYYD
AZFZN
AZQEC
BENPR
BGLVJ
BHPHI
BKKNO
BKSAR
BPHCQ
CCPQU
DB5
DU5
DWQXO
EBS
EE.
EJD
ESX
EXGXG
F5P
FEDTE
FQGFK
FSGXE
GNUQQ
HCIFZ
HVGLF
HZ~
I-F
LGEZI
LK5
LOTEE
M2P
M7R
N9A
NADUK
NNMJJ
NXXTH
O9-
ODYON
P2P
P62
PCBAR
PQQKQ
PROAC
Q2X
RNS
RNT
RNTTT
SHXYY
SIXXV
SJN
SNYQT
TAOOD
TBHMF
TDRGL
TSG
TUS
~8M
AAYXX
AAYZH
ACBWK
CITATION
7U5
7XB
8FD
8FK
L7M
PQEST
PQUKI
Q9U
ID FETCH-LOGICAL-c391t-b3b4661cb20904e307205ee382dd4eb32cf380555ba6c98dc9e8e2004f3244223
IEDL.DBID 8FG
ISSN 1745-2473
IngestDate Wed Dec 04 14:11:59 EST 2024
Tue Nov 19 06:46:17 EST 2024
Fri Dec 06 04:52:44 EST 2024
Fri Oct 11 20:46:51 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License http://www.springer.com/tdm
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c391t-b3b4661cb20904e307205ee382dd4eb32cf380555ba6c98dc9e8e2004f3244223
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
PQID 1511851393
PQPubID 27545
PageCount 6
ParticipantIDs proquest_miscellaneous_1541430270
proquest_journals_1511851393
crossref_primary_10_1038_nphys2911
springer_journals_10_1038_nphys2911
PublicationCentury 2000
PublicationDate 2014-04-01
PublicationDateYYYYMMDD 2014-04-01
PublicationDate_xml – month: 04
  year: 2014
  text: 2014-04-01
  day: 01
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle Nature physics
PublicationTitleAbbrev Nature Phys
PublicationYear 2014
Publisher Nature Publishing Group UK
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
References Braginsky, Manukin (CR27) 1967; 25
Palomaki, Harlow, Teufel, Simmonds, Lehnert (CR32) 2013; 495
Thompson (CR38) 2008; 452
Teufel (CR29) 2011; 475
Schoelkopf, Girvin (CR2) 2008; 451
Purdy, Peterson, Yu, Regal (CR47) 2012; 14
Barzanjeh, Abdi, Milburn, Tombesi, Vitali (CR36) 2012; 109
O’Brien, Furusawa, Vuckovic (CR4) 2009; 3
Verhagen, Deleglise, Weis, Schliesser, Kippenberg (CR31) 2012; 482
Tsang (CR13) 2011; 84
Caves (CR28) 1980; 45
Gozzini, Maccarrone, Mango, Longo, Barbarino (CR25) 1985; 2
Tian (CR35) 2012; 108
Tsang (CR12) 2010; 81
Dorsel, McCullen, Meystre, Vignes, Walther (CR26) 1983; 51
Ladd (CR11) 2010; 464
McGee, Meiser, Regal, Lehnert, Holland (CR37) 2013; 87
Bochmann, Vainsencher, Awschalom, Cleland (CR23) 2013; 9
Kuzyk, van Enk, Wang (CR50) 2013; 88
CR41
Regal, Lehnert (CR22) 2011; 264
Langer (CR6) 2005; 95
Zhang, Peng, Braunstein (CR43) 2003; 68
Wang, Clerk (CR34) 2012; 108
Buluta, Ashhab, Nori (CR5) 2011; 74
Lucero (CR9) 2012; 8
Cohen, Hossein-Zadeh, Levi (CR14) 2001; 37
Yu, Purdy, Regal (CR40) 2012; 108
Hill, Safavi-Naeini, Chan, Painter (CR44) 2012; 3
Zwickl (CR51) 2008; 92
Clarke, Wilhelm (CR1) 2008; 453
Hafezi (CR17) 2012; 85
Tian (CR49) 2013; 110
Savchenkov (CR16) 2009; 34
Caves (CR46) 1982; 26
Akram, Kiesel, Aspelmeyer, Milburn (CR42) 2010; 12
Chan (CR30) 2011; 478
Marcos (CR20) 2010; 105
Ilchenko, Savchenkov, Matsko, Maleki (CR15) 2003; 20
Ritter (CR7) 2012; 484
Tian, Wang (CR33) 2010; 82
Devoret, Schoelkopf (CR3) 2013; 339
Purdy, Peterson, Regal (CR39) 2013; 339
Braginsky, Manukin, Tikhonov (CR24) 1970; 31
Imamoğlu (CR19) 2009; 102
Law (CR45) 1995; 51
Reed (CR8) 2012; 482
Verdú (CR18) 2009; 103
Kimble (CR10) 2008; 453
Safavi-Naeini, Painter (CR21) 2011; 13
Wang, Clerk (CR48) 2013; 110
J Clarke (BFnphys2911_CR1) 2008; 453
V Braginsky (BFnphys2911_CR27) 1967; 25
J Verdú (BFnphys2911_CR18) 2009; 103
MC Kuzyk (BFnphys2911_CR50) 2013; 88
J Chan (BFnphys2911_CR30) 2011; 478
CM Caves (BFnphys2911_CR46) 1982; 26
BFnphys2911_CR41
VS Ilchenko (BFnphys2911_CR15) 2003; 20
E Verhagen (BFnphys2911_CR31) 2012; 482
AA Savchenkov (BFnphys2911_CR16) 2009; 34
JD Thompson (BFnphys2911_CR38) 2008; 452
TP Purdy (BFnphys2911_CR39) 2013; 339
U Akram (BFnphys2911_CR42) 2010; 12
TP Purdy (BFnphys2911_CR47) 2012; 14
A Gozzini (BFnphys2911_CR25) 1985; 2
CK Law (BFnphys2911_CR45) 1995; 51
E Lucero (BFnphys2911_CR9) 2012; 8
DA Cohen (BFnphys2911_CR14) 2001; 37
S Ritter (BFnphys2911_CR7) 2012; 484
MH Devoret (BFnphys2911_CR3) 2013; 339
SA McGee (BFnphys2911_CR37) 2013; 87
AH Safavi-Naeini (BFnphys2911_CR21) 2011; 13
V Braginsky (BFnphys2911_CR24) 1970; 31
C Langer (BFnphys2911_CR6) 2005; 95
L Tian (BFnphys2911_CR49) 2013; 110
Y-D Wang (BFnphys2911_CR34) 2012; 108
JL O’Brien (BFnphys2911_CR4) 2009; 3
M Hafezi (BFnphys2911_CR17) 2012; 85
RJ Schoelkopf (BFnphys2911_CR2) 2008; 451
MD Reed (BFnphys2911_CR8) 2012; 482
J Zhang (BFnphys2911_CR43) 2003; 68
TA Palomaki (BFnphys2911_CR32) 2013; 495
M Tsang (BFnphys2911_CR13) 2011; 84
BM Zwickl (BFnphys2911_CR51) 2008; 92
CA Regal (BFnphys2911_CR22) 2011; 264
JT Hill (BFnphys2911_CR44) 2012; 3
CM Caves (BFnphys2911_CR28) 1980; 45
A Imamoğlu (BFnphys2911_CR19) 2009; 102
I Buluta (BFnphys2911_CR5) 2011; 74
HJ Kimble (BFnphys2911_CR10) 2008; 453
L Tian (BFnphys2911_CR35) 2012; 108
Sh Barzanjeh (BFnphys2911_CR36) 2012; 109
L Tian (BFnphys2911_CR33) 2010; 82
J Bochmann (BFnphys2911_CR23) 2013; 9
Y-D Wang (BFnphys2911_CR48) 2013; 110
M Tsang (BFnphys2911_CR12) 2010; 81
P-L Yu (BFnphys2911_CR40) 2012; 108
TD Ladd (BFnphys2911_CR11) 2010; 464
A Dorsel (BFnphys2911_CR26) 1983; 51
JD Teufel (BFnphys2911_CR29) 2011; 475
D Marcos (BFnphys2911_CR20) 2010; 105
References_xml – volume: 81
  start-page: 063837
  year: 2010
  ident: CR12
  article-title: Cavity quantum electro-optics
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.81.063837
  contributor:
    fullname: Tsang
– volume: 3
  start-page: 1196
  year: 2012
  ident: CR44
  article-title: Coherent optical wavelength conversion via cavity optomechanics
  publication-title: Nature Commun.
  doi: 10.1038/ncomms2201
  contributor:
    fullname: Painter
– volume: 108
  start-page: 083603
  year: 2012
  ident: CR40
  article-title: Control of material damping in high- membrane microresonators
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.108.083603
  contributor:
    fullname: Regal
– volume: 484
  start-page: 195
  year: 2012
  end-page: 200
  ident: CR7
  article-title: An elementary quantum network of single atoms in optical cavities
  publication-title: Nature
  doi: 10.1038/nature11023
  contributor:
    fullname: Ritter
– volume: 37
  start-page: 300
  year: 2001
  end-page: 301
  ident: CR14
  article-title: Microphotonic modulator for microwave receiver
  publication-title: Electron. Lett.
  doi: 10.1049/el:20010220
  contributor:
    fullname: Levi
– volume: 105
  start-page: 210501
  year: 2010
  ident: CR20
  article-title: Coupling nitrogen-vacancy centers in diamond to superconducting flux qubits
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.105.210501
  contributor:
    fullname: Marcos
– volume: 495
  start-page: 210
  year: 2013
  end-page: 214
  ident: CR32
  article-title: Coherent state transfer between itinerant microwave fields and a mechanical oscillator
  publication-title: Nature
  doi: 10.1038/nature11915
  contributor:
    fullname: Lehnert
– volume: 475
  start-page: 359
  year: 2011
  end-page: 363
  ident: CR29
  article-title: Sideband cooling of micromechanical motion to the quantum ground state
  publication-title: Nature
  doi: 10.1038/nature10261
  contributor:
    fullname: Teufel
– volume: 464
  start-page: 45
  year: 2010
  end-page: 53
  ident: CR11
  article-title: Quantum computers
  publication-title: Nature
  doi: 10.1038/nature08812
  contributor:
    fullname: Ladd
– volume: 3
  start-page: 687
  year: 2009
  end-page: 695
  ident: CR4
  article-title: Photonic quantum technologies
  publication-title: Nature Photon.
  doi: 10.1038/nphoton.2009.229
  contributor:
    fullname: Vuckovic
– volume: 453
  start-page: 1031
  year: 2008
  end-page: 1042
  ident: CR1
  article-title: Superconducting quantum bits
  publication-title: Nature
  doi: 10.1038/nature07128
  contributor:
    fullname: Wilhelm
– volume: 339
  start-page: 801
  year: 2013
  end-page: 804
  ident: CR39
  article-title: Observation of radiation pressure shot noise on a macroscopic object
  publication-title: Science
  doi: 10.1126/science.1231282
  contributor:
    fullname: Regal
– volume: 74
  start-page: 104401
  year: 2011
  ident: CR5
  article-title: Natural and artificial atoms for quantum computation
  publication-title: Rep. Prog. Phys.
  doi: 10.1088/0034-4885/74/10/104401
  contributor:
    fullname: Nori
– volume: 2
  start-page: 1841
  year: 1985
  end-page: 1845
  ident: CR25
  article-title: Light-pressure bistability at microwave frequencies
  publication-title: J. Opt. Soc. Am. B
  doi: 10.1364/JOSAB.2.001841
  contributor:
    fullname: Barbarino
– volume: 103
  start-page: 043603
  year: 2009
  ident: CR18
  article-title: Strong magnetic coupling of an ultracold gas to a superconducting waveguide cavity
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.103.043603
  contributor:
    fullname: Verdú
– volume: 87
  start-page: 053818
  year: 2013
  ident: CR37
  article-title: Mechanical resonators for storage and transfer of electrical and optical quantum states
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.87.053818
  contributor:
    fullname: Holland
– volume: 12
  start-page: 083030
  year: 2010
  ident: CR42
  article-title: Single-photon opto-mechanics in the strong coupling regime
  publication-title: New J. Phys.
  doi: 10.1088/1367-2630/12/8/083030
  contributor:
    fullname: Milburn
– volume: 14
  start-page: 115021
  year: 2012
  ident: CR47
  article-title: Cavity optomechanics with Si N membranes at cryogenic temperatures
  publication-title: New J. Phys.
  doi: 10.1088/1367-2630/14/11/115021
  contributor:
    fullname: Regal
– volume: 92
  start-page: 103125
  year: 2008
  ident: CR51
  article-title: High quality mechanical and optical properties of commercial silicon nitride membranes
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.2884191
  contributor:
    fullname: Zwickl
– volume: 8
  start-page: 719
  year: 2012
  end-page: 723
  ident: CR9
  article-title: Computing prime factors with a Josephson phase qubit quantum processor
  publication-title: Nature Phys.
  doi: 10.1038/nphys2385
  contributor:
    fullname: Lucero
– volume: 482
  start-page: 382
  year: 2012
  end-page: 385
  ident: CR8
  article-title: Realization of three-qubit quantum error correction with superconducting circuits
  publication-title: Nature
  doi: 10.1038/nature10786
  contributor:
    fullname: Reed
– volume: 108
  start-page: 153604
  year: 2012
  ident: CR35
  article-title: Adiabatic state conversion and pulse transmission in optomechanical systems
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.108.153604
  contributor:
    fullname: Tian
– volume: 452
  start-page: 72
  year: 2008
  end-page: 75
  ident: CR38
  article-title: Strong dispersive coupling of a high-finesse cavity to a micromechanical membrane
  publication-title: Nature
  doi: 10.1038/nature06715
  contributor:
    fullname: Thompson
– volume: 31
  start-page: 829
  year: 1970
  end-page: 830
  ident: CR24
  article-title: Investigation of dissipative ponderomotive effects of electromagnetic radiation
  publication-title: J. Exp. Theor. Phys.
  contributor:
    fullname: Tikhonov
– volume: 84
  start-page: 043845
  year: 2011
  ident: CR13
  article-title: Cavity quantum electro-optics. II. input–output relations between traveling optical and microwave fields
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.84.043845
  contributor:
    fullname: Tsang
– volume: 45
  start-page: 75
  year: 1980
  end-page: 79
  ident: CR28
  article-title: Quantum-mechanical radiation-pressure fluctuations in an interferometer
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.45.75
  contributor:
    fullname: Caves
– volume: 95
  start-page: 060502
  year: 2005
  ident: CR6
  article-title: Long-lived qubit memory using atomic ions
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.95.060502
  contributor:
    fullname: Langer
– volume: 110
  start-page: 233602
  year: 2013
  ident: CR49
  article-title: Robust photon entanglement via quantum interference in optomechanical interfaces
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.110.233602
  contributor:
    fullname: Tian
– volume: 51
  start-page: 2537
  year: 1995
  end-page: 2541
  ident: CR45
  article-title: Interaction between a moving mirror and radiation pressure: A Hamiltonian formulation
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.51.2537
  contributor:
    fullname: Law
– volume: 110
  start-page: 253601
  year: 2013
  ident: CR48
  article-title: Reservoir-engineered entanglement in optomechanical systems
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.110.253601
  contributor:
    fullname: Clerk
– volume: 20
  start-page: 333
  year: 2003
  end-page: 342
  ident: CR15
  article-title: Whispering-gallery-mode electro-optic modulator and photonic microwave receiver
  publication-title: J. Opt. Soc. Am. B
  doi: 10.1364/JOSAB.20.000333
  contributor:
    fullname: Maleki
– volume: 478
  start-page: 89
  year: 2011
  end-page: 92
  ident: CR30
  article-title: Laser cooling of a nanomechanical oscillator into its quantum ground state
  publication-title: Nature
  doi: 10.1038/nature10461
  contributor:
    fullname: Chan
– volume: 264
  start-page: 012025
  year: 2011
  ident: CR22
  article-title: From cavity electromechanics to cavity optomechanics
  publication-title: J. Phys.: Conf. Ser.
  contributor:
    fullname: Lehnert
– volume: 339
  start-page: 1169
  year: 2013
  end-page: 1174
  ident: CR3
  article-title: Superconducting circuits for quantum information: An outlook
  publication-title: Science
  doi: 10.1126/science.1231930
  contributor:
    fullname: Schoelkopf
– volume: 82
  start-page: 053806
  year: 2010
  ident: CR33
  article-title: Optical wavelength conversion of quantum states with optomechanics
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.82.053806
  contributor:
    fullname: Wang
– volume: 109
  start-page: 130503
  year: 2012
  ident: CR36
  article-title: Reversible optical-to-microwave quantum interface
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.109.130503
  contributor:
    fullname: Vitali
– volume: 9
  start-page: 712
  year: 2013
  end-page: 716
  ident: CR23
  article-title: Nanomechanical coupling between microwave and optical photons
  publication-title: Nature Phys.
  doi: 10.1038/nphys2748
  contributor:
    fullname: Cleland
– volume: 25
  start-page: 563
  year: 1967
  end-page: 655
  ident: CR27
  article-title: Ponderomotive effects of electromagnetic radiation
  publication-title: J. Exp. Theor. Phys.
  contributor:
    fullname: Manukin
– volume: 51
  start-page: 1550
  year: 1983
  end-page: 1553
  ident: CR26
  article-title: Optical bistability and mirror confinement induced by radiation pressure
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.51.1550
  contributor:
    fullname: Walther
– volume: 88
  start-page: 062341
  year: 2013
  ident: CR50
  article-title: Generating robust optical entanglement in weak-coupling optomechanical systems
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.88.062341
  contributor:
    fullname: Wang
– volume: 451
  start-page: 664
  year: 2008
  end-page: 669
  ident: CR2
  article-title: Wiring up quantum systems
  publication-title: Nature
  doi: 10.1038/451664a
  contributor:
    fullname: Girvin
– volume: 26
  start-page: 1817
  year: 1982
  end-page: 1839
  ident: CR46
  article-title: Quantum limits on noise in linear amplifiers
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.26.1817
  contributor:
    fullname: Caves
– volume: 453
  start-page: 1023
  year: 2008
  end-page: 1030
  ident: CR10
  article-title: The quantum internet
  publication-title: Nature
  doi: 10.1038/nature07127
  contributor:
    fullname: Kimble
– volume: 34
  start-page: 1300
  year: 2009
  end-page: 1302
  ident: CR16
  article-title: Tunable optical single-sideband modulator with complete sideband suppression
  publication-title: Opt. Lett.
  doi: 10.1364/OL.34.001300
  contributor:
    fullname: Savchenkov
– volume: 85
  start-page: 020302
  year: 2012
  ident: CR17
  article-title: Atomic interface between microwave and optical photons
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.85.020302
  contributor:
    fullname: Hafezi
– volume: 68
  start-page: 013808
  year: 2003
  ident: CR43
  article-title: Quantum-state transfer from light to macroscopic oscillators
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.68.013808
  contributor:
    fullname: Braunstein
– volume: 482
  start-page: 63
  year: 2012
  end-page: 67
  ident: CR31
  article-title: Quantum-coherent coupling of a mechanical oscillator to an optical cavity mode
  publication-title: Nature
  doi: 10.1038/nature10787
  contributor:
    fullname: Kippenberg
– volume: 102
  start-page: 083602
  year: 2009
  ident: CR19
  article-title: Cavity QED based on collective magnetic dipole coupling: Spin ensembles as hybrid two-level systems
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.102.083602
  contributor:
    fullname: Imamoğlu
– volume: 108
  start-page: 153603
  year: 2012
  ident: CR34
  article-title: Using interference for high fidelity quantum state transfer in optomechanics
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.108.153603
  contributor:
    fullname: Clerk
– ident: CR41
– volume: 13
  start-page: 013017
  year: 2011
  ident: CR21
  article-title: Proposal for an optomechanical traveling wave phonon-photon translator
  publication-title: New J. Phys.
  doi: 10.1088/1367-2630/13/1/013017
  contributor:
    fullname: Painter
– volume: 95
  start-page: 060502
  year: 2005
  ident: BFnphys2911_CR6
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.95.060502
  contributor:
    fullname: C Langer
– volume: 484
  start-page: 195
  year: 2012
  ident: BFnphys2911_CR7
  publication-title: Nature
  doi: 10.1038/nature11023
  contributor:
    fullname: S Ritter
– volume: 495
  start-page: 210
  year: 2013
  ident: BFnphys2911_CR32
  publication-title: Nature
  doi: 10.1038/nature11915
  contributor:
    fullname: TA Palomaki
– volume: 2
  start-page: 1841
  year: 1985
  ident: BFnphys2911_CR25
  publication-title: J. Opt. Soc. Am. B
  doi: 10.1364/JOSAB.2.001841
  contributor:
    fullname: A Gozzini
– volume: 478
  start-page: 89
  year: 2011
  ident: BFnphys2911_CR30
  publication-title: Nature
  doi: 10.1038/nature10461
  contributor:
    fullname: J Chan
– volume: 453
  start-page: 1023
  year: 2008
  ident: BFnphys2911_CR10
  publication-title: Nature
  doi: 10.1038/nature07127
  contributor:
    fullname: HJ Kimble
– volume: 339
  start-page: 1169
  year: 2013
  ident: BFnphys2911_CR3
  publication-title: Science
  doi: 10.1126/science.1231930
  contributor:
    fullname: MH Devoret
– volume: 451
  start-page: 664
  year: 2008
  ident: BFnphys2911_CR2
  publication-title: Nature
  doi: 10.1038/451664a
  contributor:
    fullname: RJ Schoelkopf
– volume: 37
  start-page: 300
  year: 2001
  ident: BFnphys2911_CR14
  publication-title: Electron. Lett.
  doi: 10.1049/el:20010220
  contributor:
    fullname: DA Cohen
– volume: 475
  start-page: 359
  year: 2011
  ident: BFnphys2911_CR29
  publication-title: Nature
  doi: 10.1038/nature10261
  contributor:
    fullname: JD Teufel
– volume: 108
  start-page: 153603
  year: 2012
  ident: BFnphys2911_CR34
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.108.153603
  contributor:
    fullname: Y-D Wang
– volume: 110
  start-page: 253601
  year: 2013
  ident: BFnphys2911_CR48
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.110.253601
  contributor:
    fullname: Y-D Wang
– volume: 92
  start-page: 103125
  year: 2008
  ident: BFnphys2911_CR51
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.2884191
  contributor:
    fullname: BM Zwickl
– volume: 3
  start-page: 1196
  year: 2012
  ident: BFnphys2911_CR44
  publication-title: Nature Commun.
  doi: 10.1038/ncomms2201
  contributor:
    fullname: JT Hill
– volume: 25
  start-page: 563
  year: 1967
  ident: BFnphys2911_CR27
  publication-title: J. Exp. Theor. Phys.
  contributor:
    fullname: V Braginsky
– volume: 264
  start-page: 012025
  year: 2011
  ident: BFnphys2911_CR22
  publication-title: J. Phys.: Conf. Ser.
  contributor:
    fullname: CA Regal
– volume: 108
  start-page: 083603
  year: 2012
  ident: BFnphys2911_CR40
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.108.083603
  contributor:
    fullname: P-L Yu
– volume: 12
  start-page: 083030
  year: 2010
  ident: BFnphys2911_CR42
  publication-title: New J. Phys.
  doi: 10.1088/1367-2630/12/8/083030
  contributor:
    fullname: U Akram
– volume: 482
  start-page: 63
  year: 2012
  ident: BFnphys2911_CR31
  publication-title: Nature
  doi: 10.1038/nature10787
  contributor:
    fullname: E Verhagen
– volume: 102
  start-page: 083602
  year: 2009
  ident: BFnphys2911_CR19
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.102.083602
  contributor:
    fullname: A Imamoğlu
– volume: 110
  start-page: 233602
  year: 2013
  ident: BFnphys2911_CR49
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.110.233602
  contributor:
    fullname: L Tian
– volume: 87
  start-page: 053818
  year: 2013
  ident: BFnphys2911_CR37
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.87.053818
  contributor:
    fullname: SA McGee
– volume: 105
  start-page: 210501
  year: 2010
  ident: BFnphys2911_CR20
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.105.210501
  contributor:
    fullname: D Marcos
– volume: 88
  start-page: 062341
  year: 2013
  ident: BFnphys2911_CR50
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.88.062341
  contributor:
    fullname: MC Kuzyk
– volume: 51
  start-page: 2537
  year: 1995
  ident: BFnphys2911_CR45
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.51.2537
  contributor:
    fullname: CK Law
– volume: 85
  start-page: 020302
  year: 2012
  ident: BFnphys2911_CR17
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.85.020302
  contributor:
    fullname: M Hafezi
– volume: 68
  start-page: 013808
  year: 2003
  ident: BFnphys2911_CR43
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.68.013808
  contributor:
    fullname: J Zhang
– volume: 26
  start-page: 1817
  year: 1982
  ident: BFnphys2911_CR46
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.26.1817
  contributor:
    fullname: CM Caves
– volume: 31
  start-page: 829
  year: 1970
  ident: BFnphys2911_CR24
  publication-title: J. Exp. Theor. Phys.
  contributor:
    fullname: V Braginsky
– volume: 339
  start-page: 801
  year: 2013
  ident: BFnphys2911_CR39
  publication-title: Science
  doi: 10.1126/science.1231282
  contributor:
    fullname: TP Purdy
– volume: 103
  start-page: 043603
  year: 2009
  ident: BFnphys2911_CR18
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.103.043603
  contributor:
    fullname: J Verdú
– volume: 84
  start-page: 043845
  year: 2011
  ident: BFnphys2911_CR13
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.84.043845
  contributor:
    fullname: M Tsang
– volume: 9
  start-page: 712
  year: 2013
  ident: BFnphys2911_CR23
  publication-title: Nature Phys.
  doi: 10.1038/nphys2748
  contributor:
    fullname: J Bochmann
– ident: BFnphys2911_CR41
  doi: 10.1364/FIO.2014.FW1C.2
– volume: 108
  start-page: 153604
  year: 2012
  ident: BFnphys2911_CR35
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.108.153604
  contributor:
    fullname: L Tian
– volume: 452
  start-page: 72
  year: 2008
  ident: BFnphys2911_CR38
  publication-title: Nature
  doi: 10.1038/nature06715
  contributor:
    fullname: JD Thompson
– volume: 14
  start-page: 115021
  year: 2012
  ident: BFnphys2911_CR47
  publication-title: New J. Phys.
  doi: 10.1088/1367-2630/14/11/115021
  contributor:
    fullname: TP Purdy
– volume: 20
  start-page: 333
  year: 2003
  ident: BFnphys2911_CR15
  publication-title: J. Opt. Soc. Am. B
  doi: 10.1364/JOSAB.20.000333
  contributor:
    fullname: VS Ilchenko
– volume: 51
  start-page: 1550
  year: 1983
  ident: BFnphys2911_CR26
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.51.1550
  contributor:
    fullname: A Dorsel
– volume: 8
  start-page: 719
  year: 2012
  ident: BFnphys2911_CR9
  publication-title: Nature Phys.
  doi: 10.1038/nphys2385
  contributor:
    fullname: E Lucero
– volume: 81
  start-page: 063837
  year: 2010
  ident: BFnphys2911_CR12
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.81.063837
  contributor:
    fullname: M Tsang
– volume: 3
  start-page: 687
  year: 2009
  ident: BFnphys2911_CR4
  publication-title: Nature Photon.
  doi: 10.1038/nphoton.2009.229
  contributor:
    fullname: JL O’Brien
– volume: 482
  start-page: 382
  year: 2012
  ident: BFnphys2911_CR8
  publication-title: Nature
  doi: 10.1038/nature10786
  contributor:
    fullname: MD Reed
– volume: 34
  start-page: 1300
  year: 2009
  ident: BFnphys2911_CR16
  publication-title: Opt. Lett.
  doi: 10.1364/OL.34.001300
  contributor:
    fullname: AA Savchenkov
– volume: 45
  start-page: 75
  year: 1980
  ident: BFnphys2911_CR28
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.45.75
  contributor:
    fullname: CM Caves
– volume: 109
  start-page: 130503
  year: 2012
  ident: BFnphys2911_CR36
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.109.130503
  contributor:
    fullname: Sh Barzanjeh
– volume: 82
  start-page: 053806
  year: 2010
  ident: BFnphys2911_CR33
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.82.053806
  contributor:
    fullname: L Tian
– volume: 453
  start-page: 1031
  year: 2008
  ident: BFnphys2911_CR1
  publication-title: Nature
  doi: 10.1038/nature07128
  contributor:
    fullname: J Clarke
– volume: 13
  start-page: 013017
  year: 2011
  ident: BFnphys2911_CR21
  publication-title: New J. Phys.
  doi: 10.1088/1367-2630/13/1/013017
  contributor:
    fullname: AH Safavi-Naeini
– volume: 464
  start-page: 45
  year: 2010
  ident: BFnphys2911_CR11
  publication-title: Nature
  doi: 10.1038/nature08812
  contributor:
    fullname: TD Ladd
– volume: 74
  start-page: 104401
  year: 2011
  ident: BFnphys2911_CR5
  publication-title: Rep. Prog. Phys.
  doi: 10.1088/0034-4885/74/10/104401
  contributor:
    fullname: I Buluta
SSID ssj0042613
Score 2.6736243
Snippet Converting low-frequency electrical signals into much higher-frequency optical signals has enabled modern communication networks to leverage the strengths of...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Publisher
StartPage 321
SubjectTerms 639/624/1075/1081
639/766/1130/2799
639/766/1130/2800
Atomic
Bidirectional
Classical and Continuum Physics
Complex Systems
Condensed Matter Physics
Conversion
Converters
Electric circuits
Electric currents
Frequency distribution
Mathematical and Computational Physics
Microwave communications
Microwaves
Molecular
Networks
Optical and Plasma Physics
Optical communication
Optical fibers
Optical properties
Physics
Signaling
Theoretical
Title Bidirectional and efficient conversion between microwave and optical light
URI https://link.springer.com/article/10.1038/nphys2911
https://www.proquest.com/docview/1511851393
https://search.proquest.com/docview/1541430270
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8NAEB60RfAiPjFaS3xcQzfZTbI5iZXWUrCIWOgtZB8FQZNqW_37zm6SVnvwnCULszsz38x8OwNww4lE_dPaUyoiHtNRiDpHMi9iQqlpwsPYN4-TH0fRYMyGk3BSJdzmFa2ytonWUKtCmhx5xzdQOES8Qm9nH56ZGmWqq9UIjW1o-kEcGUof7z_UlthEB7R8EBl6AYtp3VmI8k5uEgdB4vt__dEaZG7URa276e_DXoUT3bvyYA9gS-eHsGP5mnJ-BMPua-mMbCbPzXLlatsMAn2Ia5nkNg3mVjQs993w7r6zL22XFjObwXbfTGR-DON-7-V-4FVjETxJE3_hCSoYelUpApIQplFJAxJqTXmgFMPYOJBTyk0fL5FFMuFKJpprowxTBE8M4cAJNPIi16fgRkEmIsk1oSpjGJhlQk1jIhASIOzhvnbgqhZOOiu7X6S2ak15upKgA61abGmlAPN0fVwOXK4-49U19Ygs18XSrGGI1jAuJg5c1-L-9YvNjc7-3-gcdhHNVLSaFjQWn0t9gYhhIdr2WrSh2e2Nnp5_AADiwfQ
link.rule.ids 314,780,784,12765,21388,27924,27925,33373,33374,33744,33745,43600,43805,74035,74302
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT8MwDLZgCMEF8RSFAeVxrZY2aZeeECDGGNtOm7Rb1TwqIUE72AZ_HydrN9iBc6NGcmL7s_3ZAbjhRKL-ae0pFRGP6ShEnSOpFzGhVBbzsOmb5uReP2oPWWcUjsqE26SkVVY20RpqVUiTI2_4BgqHiFfo7fjDM69Gmepq-YTGOmwwiq7bdIq3nipLbKIDOm-IDL2ANWk1WYjyRm4SB0Hs-3_90RJkrtRFrbtp7cJOiRPdu_nB7sGazvdh0_I15eQAOvevc2dkM3lumitX22EQ6ENcyyS3aTC3pGG574Z3951-abu0GNsMtvtmIvNDGLYeBw9tr3wWwZM09qeeoIKhV5UiIDFhGpU0IKHWlAdKMYyNA5lRbuZ4iTSSMVcy1lwbZcgQPDGEA0dQy4tcH4MbBamIJNeEqpRhYJYKlTWJQEiAsIf72oGrSjjJeD79IrFVa8qThQQdqFdiS0oFmCTL43LgcvEZr66pR6S5LmZmDUO0hnExceC6EvevX6xudPL_Rhew1R70ukn3uf9yCtuIbEqKTR1q08-ZPkP0MBXn9or8AA38wzw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT8MwDLZgE4gL4inGszyu1dImbdMTYsDEc0KISdyq5lEJCdrBBvx9nCzdYAfOjRrJsePP9hcb4IQTifanta9UTHym4whtjuR-zIRSRcqjJDCPk-978VWf3TxHz47_NHS0yvpOtBe1qqTJkbcDA4UjxCu0XThaxMNF93Tw7psJUqbS6sZpzEMTvSIJG9DsXPYeHut72cQKdPw8MvJDltC6zxDl7dKkEcI0CP56pynknKmSWufTXYFlhxq9s_Exr8KcLtdgwbI35XAdbjovY9dk83peXipP29YQ6FE8yyu3STHPkbK8N8PC-86_tF1aDWw-23s1cfoG9LuXT-dXvhuS4EuaBiNfUMHQx0oRkpQwjSYbkkhrykOlGEbKoSwoN129RB7LlCuZaq6NaRQIpRiCg01olFWpt8CLw1zEkmtCVc4wTMuFKhIiECAgCOKBbsFRLZxsMO6FkdkaNuXZRIIt2K3FljlzGGbTw2vB4eQzKrKpTuSlrj7NGhaYc0tIC45rcf_6xexG2_9vdACLqB_Z3XXvdgeWEOY4vs0uNEYfn3oPocRI7Dsd-QFl1cjY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bidirectional+and+efficient+conversion+between+microwave+and+optical+light&rft.jtitle=Nature+physics&rft.au=Andrews%2C+R+W&rft.au=Peterson%2C+R+W&rft.au=Purdy%2C+T+P&rft.au=Cicak%2C+K&rft.date=2014-04-01&rft.pub=Nature+Publishing+Group&rft.issn=1745-2473&rft.eissn=1745-2481&rft.volume=10&rft.issue=4&rft.spage=321&rft_id=info:doi/10.1038%2Fnphys2911&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=3262994681
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1745-2473&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1745-2473&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1745-2473&client=summon