Bidirectional and efficient conversion between microwave and optical light
Converting low-frequency electrical signals into much higher-frequency optical signals has enabled modern communication networks to leverage the strengths of both microfabricated electrical circuits and optical fibre transmission, enabling information networks to grow in size and complexity. A micro...
Saved in:
Published in | Nature physics Vol. 10; no. 4; pp. 321 - 326 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
01.04.2014
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Converting low-frequency electrical signals into much higher-frequency optical signals has enabled modern communication networks to leverage the strengths of both microfabricated electrical circuits and optical fibre transmission, enabling information networks to grow in size and complexity. A microwave-to-optical converter in a quantum information network could provide similar gains by linking quantum processors through low-loss optical fibres and enabling a large-scale quantum network. However, no current technology can convert low-frequency microwave signals into high-frequency optical signals while preserving their fragile quantum state. Here we demonstrate a converter that provides a bidirectional, coherent and efficient link between the microwave and optical portions of the electromagnetic spectrum. We use our converter to transfer classical signals between microwave and optical light with conversion efficiencies of ∼10%, and achieve performance sufficient to transfer quantum states if the device were further precooled from its current 4 K operating temperature to temperatures below 40 mK.
An optomechanical system that converts microwaves to optical frequency light and vice versa is demonstrated. The technique achieves a conversion efficiency of approximately 10%. The results indicate that the device could work at the quantum level, up- and down-converting individual photons, if it were cooled to millikelvin temperatures. It could, therefore, form an integral part of quantum-processor networks. |
---|---|
AbstractList | Converting low-frequency electrical signals into much higher-frequency optical signals has enabled modern communication networks to leverage the strengths of both microfabricated electrical circuits and optical bre transmission, enabling information networks to grow in size and complexity. A microwave-to-optical converter in a quantum information network could provide similar gains by linking quantum processors through low-loss optical bres and enabling a large-scale quantum network. However, no current technology can convert low-frequency microwave signals into high-frequency optical signals while preserving their fragile quantum state. Converting low-frequency electrical signals into much higher-frequency optical signals has enabled modern communication networks to leverage the strengths of both microfabricated electrical circuits and optical fibre transmission, enabling information networks to grow in size and complexity. A microwave-to-optical converter in a quantum information network could provide similar gains by linking quantum processors through low-loss optical fibres and enabling a large-scale quantum network. However, no current technology can convert low-frequency microwave signals into high-frequency optical signals while preserving their fragile quantum state. Here we demonstrate a converter that provides a bidirectional, coherent and efficient link between the microwave and optical portions of the electromagnetic spectrum. We use our converter to transfer classical signals between microwave and optical light with conversion efficiencies of 10%, and achieve performance sufficient to transfer quantum states if the device were further precooled from its current 4 K operating temperature to temperatures below 40 mK. Converting low-frequency electrical signals into much higher-frequency optical signals has enabled modern communication networks to leverage the strengths of both microfabricated electrical circuits and optical fibre transmission, enabling information networks to grow in size and complexity. A microwave-to-optical converter in a quantum information network could provide similar gains by linking quantum processors through low-loss optical fibres and enabling a large-scale quantum network. However, no current technology can convert low-frequency microwave signals into high-frequency optical signals while preserving their fragile quantum state. Here we demonstrate a converter that provides a bidirectional, coherent and efficient link between the microwave and optical portions of the electromagnetic spectrum. We use our converter to transfer classical signals between microwave and optical light with conversion efficiencies of ∼10%, and achieve performance sufficient to transfer quantum states if the device were further precooled from its current 4 K operating temperature to temperatures below 40 mK. An optomechanical system that converts microwaves to optical frequency light and vice versa is demonstrated. The technique achieves a conversion efficiency of approximately 10%. The results indicate that the device could work at the quantum level, up- and down-converting individual photons, if it were cooled to millikelvin temperatures. It could, therefore, form an integral part of quantum-processor networks. |
Author | Lehnert, K. W. Regal, C. A. Cicak, K. Purdy, T. P. Simmonds, R. W. Andrews, R. W. Peterson, R. W. |
Author_xml | – sequence: 1 givenname: R. W. surname: Andrews fullname: Andrews, R. W. email: reed.andrews@colorado.edu organization: JILA, University of Colorado and NIST, Department of Physics, University of Colorado – sequence: 2 givenname: R. W. surname: Peterson fullname: Peterson, R. W. organization: JILA, University of Colorado and NIST, Department of Physics, University of Colorado – sequence: 3 givenname: T. P. surname: Purdy fullname: Purdy, T. P. organization: JILA, University of Colorado and NIST, Department of Physics, University of Colorado – sequence: 4 givenname: K. surname: Cicak fullname: Cicak, K. organization: National Institute of Standards and Technology (NIST) – sequence: 5 givenname: R. W. surname: Simmonds fullname: Simmonds, R. W. organization: National Institute of Standards and Technology (NIST) – sequence: 6 givenname: C. A. surname: Regal fullname: Regal, C. A. organization: JILA, University of Colorado and NIST, Department of Physics, University of Colorado – sequence: 7 givenname: K. W. surname: Lehnert fullname: Lehnert, K. W. organization: JILA, University of Colorado and NIST, Department of Physics, University of Colorado, National Institute of Standards and Technology (NIST) |
BookMark | eNpl0EtLAzEQAOAgFWyrB__BghcVVjNJ9nXU4pOCFz0v2exsm7JN1mTb0n9vaqWInmZgvhlmZkQGxhok5BzoDVCe35puvvWsADgiQ8hEEjORw-CQZ_yEjLxfUCpYCnxIXu91rR2qXlsj20iaOsKm0Uqj6SNlzRqdD6Wown6DaKKlVs5u5Bq_qe16rUJbq2fz_pQcN7L1ePYTx-Tj8eF98hxP355eJnfTWPEC-rjilUhTUBWjBRXIacZogshzVtcCK85Uw3OaJEklU1XktSowRxYWbjgTgjE-Jpf7uZ2znyv0fbnUXmHbSoN25UtIBAhOWUYDvfhDF3blwqE7BZAnwAse1NVehdO8d9iUndNL6bYl0HL31fLw1WCv99YHY2bofk38h78Ae1h6Yw |
CitedBy_id | crossref_primary_10_1103_PhysRevA_100_042330 crossref_primary_10_1103_PhysRevX_11_031027 crossref_primary_10_1103_PhysRevA_98_043804 crossref_primary_10_1063_1_4919113 crossref_primary_10_1088_2399_6528_ab4430 crossref_primary_10_1103_PhysRevA_96_013833 crossref_primary_10_1088_1361_6455_abe395 crossref_primary_10_1088_1402_4896_ab68bb crossref_primary_10_1038_d41586_018_05336_1 crossref_primary_10_1038_s41567_020_0987_5 crossref_primary_10_1103_PhysRevA_110_012415 crossref_primary_10_1103_PhysRevLett_132_153602 crossref_primary_10_1364_OPTICA_6_001498 crossref_primary_10_1126_sciadv_aav0582 crossref_primary_10_1002_andp_201400100 crossref_primary_10_1103_PhysRevA_92_013822 crossref_primary_10_1103_PhysRevA_93_033835 crossref_primary_10_1364_OE_25_006076 crossref_primary_10_1073_pnas_1608412114 crossref_primary_10_1103_PhysRevA_100_023804 crossref_primary_10_1088_2040_8986_aa7b3c crossref_primary_10_1364_OL_514659 crossref_primary_10_1038_s41467_017_01840_6 crossref_primary_10_1063_1_5000973 crossref_primary_10_1038_s41567_023_02135_y crossref_primary_10_1103_PhysRevLett_115_240501 crossref_primary_10_1364_OPTICA_397513 crossref_primary_10_1103_PhysRevB_97_024109 crossref_primary_10_1088_1367_2630_ab51f5 crossref_primary_10_1007_s11432_023_3773_4 crossref_primary_10_1063_1_4930149 crossref_primary_10_1103_PhysRevX_10_021058 crossref_primary_10_1038_nature16536 crossref_primary_10_1038_nphoton_2016_46 crossref_primary_10_1038_s41467_023_44490_7 crossref_primary_10_3788_CJL220630 crossref_primary_10_1103_PhysRevApplied_14_014041 crossref_primary_10_1103_PhysRevB_93_174427 crossref_primary_10_1063_1_4945741 crossref_primary_10_1103_PhysRevB_96_165312 crossref_primary_10_3390_mi15040485 crossref_primary_10_1103_PhysRevLett_129_243601 crossref_primary_10_1038_nphys2923 crossref_primary_10_1038_s42005_020_00412_3 crossref_primary_10_1016_j_physrep_2017_10_002 crossref_primary_10_1103_PhysRevA_92_061801 crossref_primary_10_1103_PhysRevB_98_024404 crossref_primary_10_1038_s41567_018_0090_3 crossref_primary_10_1103_PhysRevX_5_041002 crossref_primary_10_1038_srep46313 crossref_primary_10_1103_PhysRevA_93_033817 crossref_primary_10_3390_nano12152675 crossref_primary_10_1088_2040_8978_18_8_084004 crossref_primary_10_1103_PhysRevA_96_013808 crossref_primary_10_1103_PhysRevApplied_15_L021001 crossref_primary_10_1103_PhysRevApplied_14_014054 crossref_primary_10_1103_PhysRevApplied_15_034063 crossref_primary_10_1515_nanoph_2021_0082 crossref_primary_10_1103_PhysRevApplied_14_061001 crossref_primary_10_1103_PhysRevA_94_053815 crossref_primary_10_7498_aps_66_107101 crossref_primary_10_1103_PhysRevA_94_053812 crossref_primary_10_1364_OPTICA_3_000597 crossref_primary_10_1103_PhysRevA_107_013528 crossref_primary_10_1088_0031_8949_90_7_074055 crossref_primary_10_1002_andp_201400116 crossref_primary_10_1002_que2_62 crossref_primary_10_1038_nnano_2016_86 crossref_primary_10_1103_RevModPhys_89_021001 crossref_primary_10_1103_PhysRevA_97_033806 crossref_primary_10_1002_andp_201400110 crossref_primary_10_1073_pnas_1419326112 crossref_primary_10_1038_s41567_018_0210_0 crossref_primary_10_1038_s41467_023_39493_3 crossref_primary_10_1364_JOSAB_36_001252 crossref_primary_10_1016_j_aop_2021_168553 crossref_primary_10_1038_ncomms15886 crossref_primary_10_1103_PhysRevA_94_063853 crossref_primary_10_1364_JOSAB_36_000168 crossref_primary_10_1039_D1NA00794G crossref_primary_10_1364_OE_23_023167 crossref_primary_10_1103_PhysRevA_92_022346 crossref_primary_10_1088_1361_6455_aaa2d9 crossref_primary_10_1016_j_jlumin_2024_120647 crossref_primary_10_1126_science_1260180 crossref_primary_10_1007_s00340_022_07770_6 crossref_primary_10_1016_j_jmmm_2019_04_013 crossref_primary_10_1038_s41534_022_00581_9 crossref_primary_10_1063_1_4932137 crossref_primary_10_1088_1402_4896_abb327 crossref_primary_10_1103_PhysRevLett_118_253603 crossref_primary_10_1103_PhysRevA_109_043515 crossref_primary_10_1007_s12045_022_1465_4 crossref_primary_10_1038_srep20463 crossref_primary_10_1103_PhysRevApplied_7_024008 crossref_primary_10_1364_OPTICA_474022 crossref_primary_10_7498_aps_72_20230985 crossref_primary_10_1103_PhysRevB_99_054107 crossref_primary_10_1103_PhysRevApplied_12_044027 crossref_primary_10_1103_PhysRevApplied_18_034067 crossref_primary_10_1103_PhysRevX_10_031057 crossref_primary_10_1103_PhysRevLett_117_133602 crossref_primary_10_1126_science_abk3106 crossref_primary_10_1038_s41928_021_00570_4 crossref_primary_10_1088_1361_6455_ab2478 crossref_primary_10_1038_s41467_017_01304_x crossref_primary_10_1088_1367_2630_ace3eb crossref_primary_10_1103_PhysRevX_7_011035 crossref_primary_10_1038_s41467_017_00968_9 crossref_primary_10_1103_PhysRevA_98_052308 crossref_primary_10_1088_1367_2630_17_2_023024 crossref_primary_10_1007_s11128_016_1350_8 crossref_primary_10_1038_ncomms12396 crossref_primary_10_1063_1_5042428 crossref_primary_10_1103_PRXQuantum_1_020315 crossref_primary_10_3390_nano12152543 crossref_primary_10_1038_s41467_017_01063_9 crossref_primary_10_1038_s41586_022_04720_2 crossref_primary_10_1364_OE_382254 crossref_primary_10_1364_OE_402031 crossref_primary_10_1364_OPTICA_397967 crossref_primary_10_1103_PhysRevB_90_174307 crossref_primary_10_1038_s41565_023_01597_8 crossref_primary_10_1007_s12648_019_01476_w crossref_primary_10_1103_PhysRevApplied_11_034010 crossref_primary_10_1103_PhysRevLett_128_094301 crossref_primary_10_1103_PhysRevLett_116_043601 crossref_primary_10_1088_1361_6633_aa7e1a crossref_primary_10_1103_PhysRevA_96_023860 crossref_primary_10_1103_PhysRevResearch_6_013204 crossref_primary_10_1038_s41586_022_05367_9 crossref_primary_10_1103_PhysRevB_101_184430 crossref_primary_10_1038_s41467_023_37138_z crossref_primary_10_1103_PhysRevA_97_023805 crossref_primary_10_1364_OPTICA_430821 crossref_primary_10_1103_PhysRevA_96_032342 crossref_primary_10_1021_acsami_7b09372 crossref_primary_10_1103_PhysRevA_103_013719 crossref_primary_10_1103_PhysRevApplied_9_054024 crossref_primary_10_1103_PhysRevLett_114_080503 crossref_primary_10_1103_PhysRevA_99_063830 crossref_primary_10_1103_PhysRevA_96_063811 crossref_primary_10_1016_j_physrep_2023_10_007 crossref_primary_10_1364_OE_25_017364 crossref_primary_10_1088_1361_6455_ac86b1 crossref_primary_10_1103_PhysRevX_13_011017 crossref_primary_10_1038_s41598_020_58554_x crossref_primary_10_1103_PhysRevApplied_20_054062 crossref_primary_10_1103_PhysRevX_6_041024 crossref_primary_10_1038_srep11278 crossref_primary_10_1103_PhysRevLett_126_047404 crossref_primary_10_1063_1_5137900 crossref_primary_10_1364_AOP_479017 crossref_primary_10_1103_PhysRevApplied_13_014027 crossref_primary_10_1364_OE_27_005945 crossref_primary_10_1038_s41534_022_00526_2 crossref_primary_10_1016_j_optcom_2016_05_008 crossref_primary_10_1038_nphys4251 crossref_primary_10_1103_PhysRevResearch_5_043056 crossref_primary_10_1088_1367_2630_abf535 crossref_primary_10_1103_PhysRevA_101_042320 crossref_primary_10_1103_PhysRevA_95_043815 crossref_primary_10_1103_PhysRevApplied_15_044006 crossref_primary_10_1038_s41467_020_14863_3 crossref_primary_10_1103_PhysRevApplied_18_064016 crossref_primary_10_1038_nphys4143 crossref_primary_10_1063_1_5004261 crossref_primary_10_1103_PhysRevA_106_053503 crossref_primary_10_1103_PhysRevA_92_033843 crossref_primary_10_1103_PhysRevA_95_053855 crossref_primary_10_1002_lpor_202200866 crossref_primary_10_1016_j_rinp_2020_103176 crossref_primary_10_1103_PhysRevA_94_033846 crossref_primary_10_1364_OE_419385 crossref_primary_10_1364_JOSAB_32_000588 crossref_primary_10_1002_advs_202005041 crossref_primary_10_1088_2040_8986_aa52cd crossref_primary_10_1016_j_physleta_2015_12_003 crossref_primary_10_1038_s41598_019_52050_7 crossref_primary_10_1103_PhysRevApplied_6_014013 crossref_primary_10_1515_nanoph_2019_0314 crossref_primary_10_1103_PhysRevApplied_10_024002 crossref_primary_10_1007_s11128_018_1980_0 crossref_primary_10_1103_PhysRevLett_120_093201 crossref_primary_10_1021_acsanm_2c00987 crossref_primary_10_1103_PhysRevLett_113_203601 crossref_primary_10_1007_s11433_017_9039_0 crossref_primary_10_1063_1_4934699 crossref_primary_10_1103_PhysRevA_95_053821 crossref_primary_10_1038_s41467_020_18269_z crossref_primary_10_1103_PhysRevA_99_053825 crossref_primary_10_1103_PhysRevLett_117_100001 crossref_primary_10_1126_science_aaa3693 crossref_primary_10_1038_s41567_022_01612_0 crossref_primary_10_1103_PhysRevA_89_063805 crossref_primary_10_1063_1_5083647 crossref_primary_10_1364_OE_517001 crossref_primary_10_1364_OL_42_001341 crossref_primary_10_1063_1_5108788 crossref_primary_10_1088_1572_9494_ac64f4 crossref_primary_10_1103_PhysRevA_101_033829 crossref_primary_10_1103_PhysRevA_100_033807 crossref_primary_10_1016_j_rinma_2022_100357 crossref_primary_10_1063_1_4994661 crossref_primary_10_1103_PhysRevA_91_032121 crossref_primary_10_1063_5_0152543 crossref_primary_10_1103_PhysRevA_109_043103 crossref_primary_10_3390_mi8040108 crossref_primary_10_1109_JSAC_2020_2968973 crossref_primary_10_1103_PhysRevA_94_043842 crossref_primary_10_1103_PhysRevA_93_023838 crossref_primary_10_1103_PhysRevApplied_10_044036 crossref_primary_10_1103_PhysRevResearch_5_043121 crossref_primary_10_1038_s41467_020_17182_9 crossref_primary_10_1209_0295_5075_131_14001 crossref_primary_10_3390_app7070656 crossref_primary_10_1103_PhysRevApplied_11_064048 crossref_primary_10_1103_PhysRevApplied_16_064044 crossref_primary_10_1364_JOSAB_36_001363 crossref_primary_10_1088_1674_1056_27_2_024204 crossref_primary_10_1038_s41567_020_0797_9 crossref_primary_10_3390_e25071087 crossref_primary_10_1038_s41598_017_00428_w crossref_primary_10_1103_PhysRevA_104_023509 crossref_primary_10_1103_PhysRevA_100_023843 crossref_primary_10_1103_PhysRevA_93_023827 crossref_primary_10_1515_nanoph_2020_0176 crossref_primary_10_1364_OE_26_015255 crossref_primary_10_1103_PhysRevA_105_013707 crossref_primary_10_1088_1367_2630_ac6dfc crossref_primary_10_1063_5_0197437 crossref_primary_10_1063_1_4938747 crossref_primary_10_1103_PhysRevB_105_064405 crossref_primary_10_1002_andp_201800271 crossref_primary_10_7498_aps_71_20211803 crossref_primary_10_1088_0256_307X_41_1_014203 crossref_primary_10_1103_PhysRevApplied_16_044025 crossref_primary_10_35848_1882_0786_ac3e15 crossref_primary_10_1038_532169a crossref_primary_10_1103_PhysRevA_94_043840 crossref_primary_10_1063_1_4967496 crossref_primary_10_1016_j_physleta_2022_127966 crossref_primary_10_1103_PhysRevA_93_023816 crossref_primary_10_1140_epjqt_s40507_024_00229_x crossref_primary_10_1088_2058_9565_ab788a crossref_primary_10_1103_PhysRevApplied_19_034093 crossref_primary_10_1364_OL_42_001277 crossref_primary_10_1103_PhysRevA_89_053803 crossref_primary_10_1364_JOSAB_35_002237 crossref_primary_10_3390_app9224845 crossref_primary_10_1038_s41534_019_0219_y crossref_primary_10_1103_PhysRevA_98_013807 crossref_primary_10_1364_JOSAB_484943 crossref_primary_10_1103_PhysRevLett_126_163604 crossref_primary_10_1093_nsr_nwv048 crossref_primary_10_1103_PhysRevLett_113_063603 crossref_primary_10_1103_PhysRevA_107_063505 crossref_primary_10_1088_2053_1583_abe777 crossref_primary_10_1063_1_5039640 crossref_primary_10_1038_s41567_019_0673_7 crossref_primary_10_1103_PhysRevX_9_021056 crossref_primary_10_1038_s41467_018_08038_4 crossref_primary_10_1038_s41467_022_29115_9 crossref_primary_10_1103_PhysRevA_105_033514 crossref_primary_10_1103_PhysRevA_91_012333 crossref_primary_10_1109_JPHOT_2020_3011427 crossref_primary_10_1038_s41565_017_0039_1 crossref_primary_10_1103_PhysRevA_106_032606 crossref_primary_10_3390_cryst12070890 crossref_primary_10_1103_PhysRevLett_131_067001 crossref_primary_10_1103_PhysRevX_5_041037 crossref_primary_10_1364_OE_24_013850 crossref_primary_10_1103_PhysRevLett_116_147202 crossref_primary_10_1364_OE_27_024393 crossref_primary_10_1103_PhysRevA_93_033846 crossref_primary_10_1038_srep46764 crossref_primary_10_1002_andp_202000608 crossref_primary_10_1038_s41467_023_43745_7 crossref_primary_10_1088_1367_2630_aabb8d crossref_primary_10_1038_s44172_023_00056_5 crossref_primary_10_1103_PhysRevX_12_021062 crossref_primary_10_1088_1674_1056_abea8f crossref_primary_10_1103_PhysRevApplied_3_054009 crossref_primary_10_1126_sciadv_abq1690 crossref_primary_10_1007_s10773_020_04655_2 crossref_primary_10_1038_s41467_020_18358_z crossref_primary_10_1103_PhysRevApplied_10_054036 crossref_primary_10_1364_OE_25_018974 crossref_primary_10_1103_PhysRevA_91_033834 crossref_primary_10_1364_OPTICA_468590 crossref_primary_10_1103_PhysRevA_103_053504 crossref_primary_10_1103_PhysRevA_96_043808 crossref_primary_10_1088_1612_202X_aa9b22 crossref_primary_10_1103_PhysRevLett_129_123603 crossref_primary_10_1103_PhysRevA_90_013824 crossref_primary_10_1103_PhysRevApplied_6_034005 crossref_primary_10_1038_s41586_018_0717_7 crossref_primary_10_1016_j_optcom_2018_08_079 crossref_primary_10_1088_2058_9565_ab8962 crossref_primary_10_1103_PhysRevLett_131_220802 crossref_primary_10_1063_5_0054965 crossref_primary_10_1364_OE_24_020400 crossref_primary_10_1103_PhysRevA_92_062313 crossref_primary_10_1002_advs_202103403 crossref_primary_10_1038_nphoton_2016_107 crossref_primary_10_1038_s41586_023_05740_2 crossref_primary_10_1063_1_4976831 crossref_primary_10_1063_5_0031626 crossref_primary_10_1103_PhysRevX_6_021012 crossref_primary_10_1088_1367_2630_18_10_103036 crossref_primary_10_1103_PhysRevA_106_033518 crossref_primary_10_1103_PhysRevApplied_14_054052 crossref_primary_10_1364_OPTICA_6_000832 crossref_primary_10_1088_1367_2630_ab307c crossref_primary_10_1103_PhysRevA_96_053831 crossref_primary_10_1103_PhysRevLett_116_070405 crossref_primary_10_1103_PhysRevApplied_19_L031006 crossref_primary_10_1103_PhysRevA_94_013812 crossref_primary_10_3788_CJL221046 crossref_primary_10_1016_j_ymssp_2023_110331 crossref_primary_10_1063_1_4995008 crossref_primary_10_1038_s41467_022_34373_8 crossref_primary_10_1140_epjd_s10053_023_00654_0 crossref_primary_10_1103_PhysRevB_101_085108 crossref_primary_10_3390_s22030804 crossref_primary_10_1103_PhysRevA_105_013711 crossref_primary_10_1103_PhysRevB_92_115407 crossref_primary_10_1088_2058_9565_aaf5a6 crossref_primary_10_1364_OPTICA_1_000425 crossref_primary_10_1140_epjp_s13360_019_00001_6 crossref_primary_10_1103_PhysRevB_98_155316 crossref_primary_10_1103_PhysRevB_105_064418 crossref_primary_10_1016_j_physe_2016_02_021 crossref_primary_10_1088_1361_6528_abc44e crossref_primary_10_1088_2058_9565_ab2c87 crossref_primary_10_1103_PhysRevApplied_17_044057 crossref_primary_10_1103_PhysRevA_104_052601 crossref_primary_10_1002_andp_202100599 crossref_primary_10_1103_PhysRevApplied_21_054044 crossref_primary_10_1140_epjd_e2019_100447_8 crossref_primary_10_1103_PhysRevA_93_063822 crossref_primary_10_1364_OE_27_025731 crossref_primary_10_1063_5_0055954 crossref_primary_10_1007_s11433_015_5657_8 crossref_primary_10_1126_sciadv_add2811 crossref_primary_10_1063_5_0002160 crossref_primary_10_3390_nano12162807 crossref_primary_10_1038_s41586_020_3038_6 crossref_primary_10_1140_epjqt_s40507_023_00191_0 crossref_primary_10_1038_s41598_017_04225_3 crossref_primary_10_1364_OE_25_015456 crossref_primary_10_1103_PhysRevA_96_053853 crossref_primary_10_1103_PhysRevLett_121_110505 crossref_primary_10_1103_PhysRevLett_119_063601 crossref_primary_10_1088_1674_1056_25_5_054204 crossref_primary_10_1103_PhysRevLett_121_110506 crossref_primary_10_1103_PhysRevX_7_031001 crossref_primary_10_1038_s41467_019_12964_2 crossref_primary_10_1103_PhysRevA_101_032345 crossref_primary_10_1103_PhysRevA_103_053501 crossref_primary_10_1126_sciadv_1603150 crossref_primary_10_1103_PhysRevLett_124_010511 crossref_primary_10_1103_PhysRevA_94_023837 crossref_primary_10_1103_PhysRevLett_124_033602 crossref_primary_10_1063_5_0009848 crossref_primary_10_1103_Physics_8_18 crossref_primary_10_1126_sciadv_1501286 crossref_primary_10_1088_0957_4484_27_36_364003 crossref_primary_10_1088_1367_2630_16_11_113004 crossref_primary_10_1088_1367_2630_aa7f5d crossref_primary_10_1038_s41467_021_24809_y crossref_primary_10_1103_PhysRevLett_117_173602 crossref_primary_10_1103_PhysRevApplied_18_064045 crossref_primary_10_1364_OE_416983 crossref_primary_10_1038_s41566_022_00959_3 crossref_primary_10_1126_science_1257219 crossref_primary_10_1038_s41467_022_28670_5 crossref_primary_10_1103_PhysRevA_102_043513 crossref_primary_10_1126_science_aaf2941 crossref_primary_10_3390_photonics9110818 crossref_primary_10_1021_nl500879k crossref_primary_10_1002_qute_202100095 crossref_primary_10_1103_PhysRevA_93_053811 crossref_primary_10_1016_j_physleta_2023_128829 crossref_primary_10_1038_s41534_022_00664_7 crossref_primary_10_1103_PhysRevA_109_012611 crossref_primary_10_1103_PhysRevLett_122_153601 crossref_primary_10_1038_s41467_023_40894_7 crossref_primary_10_1038_s41467_017_01158_3 crossref_primary_10_1038_s41534_021_00438_7 crossref_primary_10_1103_PhysRevLett_126_133601 crossref_primary_10_1103_PhysRevResearch_4_043119 crossref_primary_10_1109_JPHOT_2019_2958980 crossref_primary_10_1088_1674_1056_28_7_074204 crossref_primary_10_1063_5_0015166 crossref_primary_10_1103_PhysRevLett_121_183601 crossref_primary_10_1364_JOSAB_36_000306 crossref_primary_10_1103_PhysRevA_92_043845 crossref_primary_10_1126_science_aao0763 crossref_primary_10_1007_s11128_021_03269_9 crossref_primary_10_1063_1_4953805 crossref_primary_10_1103_PhysRevApplied_20_044037 crossref_primary_10_1103_PhysRevX_6_031006 crossref_primary_10_1364_OL_44_003777 crossref_primary_10_1103_PhysRevApplied_20_044031 crossref_primary_10_1103_PhysRevLett_114_123602 crossref_primary_10_1088_0953_4075_48_10_105501 crossref_primary_10_1103_PhysRevA_100_053843 crossref_primary_10_1103_PhysRevX_6_021001 crossref_primary_10_1038_s41566_017_0032_0 crossref_primary_10_1088_1674_1056_24_5_054206 crossref_primary_10_1103_PhysRevA_92_012124 crossref_primary_10_1103_PhysRevA_95_053870 crossref_primary_10_1088_1367_2630_18_5_053030 crossref_primary_10_1063_5_0155213 crossref_primary_10_1038_s41467_017_00447_1 crossref_primary_10_1039_C8RE00254A crossref_primary_10_1103_PhysRevB_92_060406 crossref_primary_10_1088_1402_4896_ad3384 crossref_primary_10_1103_PRXQuantum_3_020201 crossref_primary_10_7498_aps_64_164211 crossref_primary_10_1038_s41567_021_01402_0 crossref_primary_10_1103_PhysRevA_91_013807 crossref_primary_10_1007_s11433_016_0015_3 crossref_primary_10_1103_PhysRevLett_117_123603 crossref_primary_10_1103_PhysRevB_94_121403 crossref_primary_10_1002_qute_201900077 crossref_primary_10_1038_ncomms9491 crossref_primary_10_1103_PhysRevApplied_12_014052 crossref_primary_10_1088_2633_4356_acaba4 crossref_primary_10_1103_PhysRevLett_113_227201 crossref_primary_10_1103_PhysRevLett_119_030502 crossref_primary_10_1103_PRXQuantum_5_010330 crossref_primary_10_1364_OL_43_001163 crossref_primary_10_1016_j_pquantelec_2023_100495 crossref_primary_10_1016_j_cjph_2022_07_010 crossref_primary_10_1038_s41467_020_17053_3 crossref_primary_10_1103_PhysRevLett_123_023602 crossref_primary_10_1002_adfm_202301770 crossref_primary_10_1103_PhysRevLett_124_103602 crossref_primary_10_1364_OE_22_013773 crossref_primary_10_1038_s41598_021_81136_4 crossref_primary_10_1016_j_optcom_2023_129639 crossref_primary_10_1109_COMST_2023_3294240 crossref_primary_10_1103_PhysRevA_91_053849 crossref_primary_10_1103_PhysRevResearch_5_013075 crossref_primary_10_1038_s41534_019_0143_1 crossref_primary_10_1103_PhysRevApplied_11_024067 crossref_primary_10_1364_OE_23_003196 crossref_primary_10_1002_andp_201800402 crossref_primary_10_1088_2058_9565_ac0f36 crossref_primary_10_1088_2058_9565_ab8dce crossref_primary_10_1007_s11433_019_1434_6 crossref_primary_10_1103_PhysRevLett_125_023601 crossref_primary_10_1088_1367_2630_ab6522 crossref_primary_10_1103_PhysRevA_94_012340 crossref_primary_10_1007_s11467_015_0456_2 crossref_primary_10_1088_1612_202X_aa7d2f crossref_primary_10_1007_s11433_015_5651_1 crossref_primary_10_1103_PhysRevResearch_3_033118 crossref_primary_10_1063_1_4985260 crossref_primary_10_1103_PhysRevA_109_022619 crossref_primary_10_1016_j_rinp_2022_105347 crossref_primary_10_1103_PhysRevA_96_042305 crossref_primary_10_1007_s10773_018_3990_1 crossref_primary_10_1364_OPTICA_397235 crossref_primary_10_1038_s41534_023_00749_x crossref_primary_10_1038_s41567_020_0812_1 crossref_primary_10_1016_j_rinp_2022_105592 crossref_primary_10_1063_5_0028395 crossref_primary_10_1103_PhysRevA_95_013843 crossref_primary_10_1016_j_fmre_2022_12_017 crossref_primary_10_1103_PhysRevB_102_064418 crossref_primary_10_1364_OL_44_000033 crossref_primary_10_1002_andp_202000233 crossref_primary_10_1002_eng2_12658 crossref_primary_10_1103_PhysRevB_97_205443 crossref_primary_10_1109_MMM_2020_2993478 crossref_primary_10_1016_j_jallcom_2019_03_167 crossref_primary_10_1038_s41467_020_16996_x crossref_primary_10_1063_5_0065102 crossref_primary_10_1088_1367_2630_ab117a crossref_primary_10_1103_PhysRevLett_127_040503 crossref_primary_10_1063_1_5116533 crossref_primary_10_1103_PhysRevLett_116_063601 crossref_primary_10_1126_sciadv_aar4994 crossref_primary_10_2139_ssrn_4197089 crossref_primary_10_1088_0953_4075_48_18_185501 crossref_primary_10_1103_PhysRevA_90_033818 crossref_primary_10_1103_PhysRevA_95_022327 crossref_primary_10_1103_PhysRevLett_114_113601 crossref_primary_10_1016_j_cma_2019_112692 crossref_primary_10_1021_acsphotonics_1c01614 crossref_primary_10_1021_acsphotonics_1c01857 crossref_primary_10_1038_ncomms9206 crossref_primary_10_1007_s44214_023_00044_y crossref_primary_10_1103_PhysRevB_103_174106 crossref_primary_10_1038_srep22705 crossref_primary_10_1103_PhysRevLett_127_014304 crossref_primary_10_1088_1367_2630_aadbb7 crossref_primary_10_1364_OE_451550 crossref_primary_10_1007_s11433_015_5652_0 crossref_primary_10_1038_s41467_018_04202_y crossref_primary_10_1364_JOSAB_464113 crossref_primary_10_1103_PhysRevLett_131_033603 crossref_primary_10_1088_0253_6102_68_1_57 crossref_primary_10_1364_JOSAB_35_000652 crossref_primary_10_1103_PhysRevA_103_023706 crossref_primary_10_1038_s41586_021_03268_x crossref_primary_10_1364_OL_40_000174 crossref_primary_10_1103_PhysRevLett_112_143602 crossref_primary_10_1103_PhysRevLett_119_127401 crossref_primary_10_1063_5_0007451 crossref_primary_10_1088_2058_9565_ab7eed crossref_primary_10_1088_2058_9565_ab84c1 crossref_primary_10_1088_2058_9565_ad5abb crossref_primary_10_1364_OPTICA_6_000213 crossref_primary_10_1364_OPTICA_6_000577 crossref_primary_10_7498_aps_65_124202 crossref_primary_10_1103_PhysRevA_102_012407 crossref_primary_10_1103_PhysRevA_103_033516 crossref_primary_10_1007_s11128_024_04408_8 crossref_primary_10_1364_OE_431955 crossref_primary_10_1126_science_aam9288 crossref_primary_10_1103_PhysRevA_95_022322 crossref_primary_10_1063_1_4955408 crossref_primary_10_1038_s41598_024_57816_2 crossref_primary_10_1038_s42005_022_00808_3 crossref_primary_10_1103_PhysRevLett_131_183602 crossref_primary_10_1088_2058_9565_aada1d crossref_primary_10_1103_PhysRevA_109_033701 crossref_primary_10_1103_PhysRevA_97_063857 crossref_primary_10_1038_s41567_023_02129_w crossref_primary_10_1038_s41534_019_0220_5 crossref_primary_10_1038_s41566_020_00711_9 crossref_primary_10_1038_s41467_024_48167_7 crossref_primary_10_1088_1367_2630_18_9_093030 crossref_primary_10_1103_PhysRevLett_122_154301 crossref_primary_10_1121_10_0020831 crossref_primary_10_1103_PhysRevA_92_063845 crossref_primary_10_1364_OPTICA_425414 crossref_primary_10_1103_PhysRevA_106_023107 crossref_primary_10_1038_s41566_021_00896_7 crossref_primary_10_1116_5_0128487 crossref_primary_10_1103_PhysRevA_104_063508 crossref_primary_10_1103_PhysRevResearch_4_L042023 crossref_primary_10_1140_epjp_s13360_020_00789_8 crossref_primary_10_1016_j_physleta_2017_03_017 crossref_primary_10_1103_PhysRevApplied_5_044012 crossref_primary_10_1038_s41566_023_01295_w crossref_primary_10_1088_1572_9494_acce27 crossref_primary_10_1103_PhysRevLett_126_250507 crossref_primary_10_1063_1_5055887 crossref_primary_10_1039_D2AN00220E crossref_primary_10_1002_lpor_201900252 crossref_primary_10_1038_s41565_019_0377_2 crossref_primary_10_1103_PhysRevA_97_053812 crossref_primary_10_1088_2040_8978_18_8_085703 crossref_primary_10_1103_PhysRevA_91_043829 crossref_primary_10_1103_RevModPhys_86_1391 crossref_primary_10_1103_PhysRevA_108_043501 crossref_primary_10_1088_1367_2630_ab90d2 crossref_primary_10_1038_nnano_2015_264 crossref_primary_10_1103_PhysRevResearch_4_L042013 crossref_primary_10_1103_PhysRevLett_118_140501 crossref_primary_10_1109_JSTQE_2014_2376966 crossref_primary_10_1103_PhysRevA_90_023812 crossref_primary_10_1103_PhysRevE_96_012404 crossref_primary_10_1364_OE_382770 crossref_primary_10_1103_PhysRevLett_120_020502 crossref_primary_10_1364_OE_26_013783 crossref_primary_10_1103_PhysRevApplied_18_054061 crossref_primary_10_1103_PhysRevApplied_18_044059 crossref_primary_10_1364_PRJ_446226 crossref_primary_10_1088_2058_9565_ad3f47 crossref_primary_10_1038_ncomms10021 crossref_primary_10_1103_PhysRevLett_129_104301 crossref_primary_10_1016_j_physe_2015_10_028 crossref_primary_10_1088_1361_6463_ab1b04 crossref_primary_10_1103_PhysRevApplied_9_034031 crossref_primary_10_1007_s11128_020_02721_6 crossref_primary_10_1038_ncomms7232 crossref_primary_10_22331_q_2021_03_23_416 crossref_primary_10_1103_PhysRevApplied_12_034042 crossref_primary_10_1364_JOSAB_439497 crossref_primary_10_1364_JOSAB_399097 crossref_primary_10_1038_lsa_2016_190 crossref_primary_10_1155_2023_8993363 crossref_primary_10_1103_PhysRevB_98_214303 crossref_primary_10_1103_PRXQuantum_4_020351 crossref_primary_10_1088_2058_9565_ab043d crossref_primary_10_1103_PhysRevLett_123_093603 crossref_primary_10_1038_srep05571 crossref_primary_10_1038_s41586_021_03617_w crossref_primary_10_1103_PhysRevLett_129_107701 crossref_primary_10_1109_MAES_2020_2977851 |
Cites_doi | 10.1103/PhysRevA.81.063837 10.1038/ncomms2201 10.1103/PhysRevLett.108.083603 10.1038/nature11023 10.1049/el:20010220 10.1103/PhysRevLett.105.210501 10.1038/nature11915 10.1038/nature10261 10.1038/nature08812 10.1038/nphoton.2009.229 10.1038/nature07128 10.1126/science.1231282 10.1088/0034-4885/74/10/104401 10.1364/JOSAB.2.001841 10.1103/PhysRevLett.103.043603 10.1103/PhysRevA.87.053818 10.1088/1367-2630/12/8/083030 10.1088/1367-2630/14/11/115021 10.1063/1.2884191 10.1038/nphys2385 10.1038/nature10786 10.1103/PhysRevLett.108.153604 10.1038/nature06715 10.1103/PhysRevA.84.043845 10.1103/PhysRevLett.45.75 10.1103/PhysRevLett.95.060502 10.1103/PhysRevLett.110.233602 10.1103/PhysRevA.51.2537 10.1103/PhysRevLett.110.253601 10.1364/JOSAB.20.000333 10.1038/nature10461 10.1126/science.1231930 10.1103/PhysRevA.82.053806 10.1103/PhysRevLett.109.130503 10.1038/nphys2748 10.1103/PhysRevLett.51.1550 10.1103/PhysRevA.88.062341 10.1038/451664a 10.1103/PhysRevD.26.1817 10.1038/nature07127 10.1364/OL.34.001300 10.1103/PhysRevA.85.020302 10.1103/PhysRevA.68.013808 10.1038/nature10787 10.1103/PhysRevLett.102.083602 10.1103/PhysRevLett.108.153603 10.1088/1367-2630/13/1/013017 10.1364/FIO.2014.FW1C.2 |
ContentType | Journal Article |
Copyright | Springer Nature Limited 2014 Copyright Nature Publishing Group Apr 2014 |
Copyright_xml | – notice: Springer Nature Limited 2014 – notice: Copyright Nature Publishing Group Apr 2014 |
DBID | AAYXX CITATION 3V. 7U5 7XB 88I 8FD 8FE 8FG 8FK ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ BHPHI BKSAR CCPQU DWQXO GNUQQ HCIFZ L7M M2P P5Z P62 PCBAR PQEST PQQKQ PQUKI Q9U |
DOI | 10.1038/nphys2911 |
DatabaseName | CrossRef ProQuest Central (Corporate) Solid State and Superconductivity Abstracts ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection ProQuest One Community College ProQuest Central Korea ProQuest Central Student SciTech Premium Collection Advanced Technologies Database with Aerospace ProQuest Science Journals Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Earth, Atmospheric & Aquatic Science Database ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central Basic |
DatabaseTitle | CrossRef ProQuest Central Student Technology Collection Technology Research Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central Earth, Atmospheric & Aquatic Science Collection Natural Science Collection ProQuest Central Korea Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Collection ProQuest Science Journals (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Solid State and Superconductivity Abstracts ProQuest One Academic ProQuest Central (Alumni) |
DatabaseTitleList | ProQuest Central Student Technology Research Database |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 1745-2481 |
EndPage | 326 |
ExternalDocumentID | 3262994681 10_1038_nphys2911 |
Genre | Feature |
GroupedDBID | 0R~ 123 29M 39C 3V. 4.4 5BI 5M7 6OB 70F 88I 8FE 8FG 8FH 8R4 8R5 AAEEF AARCD AAZLF ABAWZ ABDBF ABJNI ABLJU ABUWG ABVXF ABZEH ACGFO ACGFS ACGOD ACMJI ADBBV ADFRT AENEX AFBBN AFKRA AFSHS AFWHJ AGAYW AGEZK AGHTU AHBCP AHOSX AHSBF AIBTJ ALFFA ALMA_UNASSIGNED_HOLDINGS AMTXH ARAPS ARMCB ASPBG AVWKF AXYYD AZFZN AZQEC BENPR BGLVJ BHPHI BKKNO BKSAR BPHCQ CCPQU DB5 DU5 DWQXO EBS EE. EJD ESX EXGXG F5P FEDTE FQGFK FSGXE GNUQQ HCIFZ HVGLF HZ~ I-F LGEZI LK5 LOTEE M2P M7R N9A NADUK NNMJJ NXXTH O9- ODYON P2P P62 PCBAR PQQKQ PROAC Q2X RNS RNT RNTTT SHXYY SIXXV SJN SNYQT TAOOD TBHMF TDRGL TSG TUS ~8M AAYXX AAYZH ACBWK CITATION 7U5 7XB 8FD 8FK L7M PQEST PQUKI Q9U |
ID | FETCH-LOGICAL-c391t-b3b4661cb20904e307205ee382dd4eb32cf380555ba6c98dc9e8e2004f3244223 |
IEDL.DBID | 8FG |
ISSN | 1745-2473 |
IngestDate | Wed Dec 04 14:11:59 EST 2024 Tue Nov 19 06:46:17 EST 2024 Fri Dec 06 04:52:44 EST 2024 Fri Oct 11 20:46:51 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
License | http://www.springer.com/tdm |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c391t-b3b4661cb20904e307205ee382dd4eb32cf380555ba6c98dc9e8e2004f3244223 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
PQID | 1511851393 |
PQPubID | 27545 |
PageCount | 6 |
ParticipantIDs | proquest_miscellaneous_1541430270 proquest_journals_1511851393 crossref_primary_10_1038_nphys2911 springer_journals_10_1038_nphys2911 |
PublicationCentury | 2000 |
PublicationDate | 2014-04-01 |
PublicationDateYYYYMMDD | 2014-04-01 |
PublicationDate_xml | – month: 04 year: 2014 text: 2014-04-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | London |
PublicationPlace_xml | – name: London |
PublicationTitle | Nature physics |
PublicationTitleAbbrev | Nature Phys |
PublicationYear | 2014 |
Publisher | Nature Publishing Group UK Nature Publishing Group |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group |
References | Braginsky, Manukin (CR27) 1967; 25 Palomaki, Harlow, Teufel, Simmonds, Lehnert (CR32) 2013; 495 Thompson (CR38) 2008; 452 Teufel (CR29) 2011; 475 Schoelkopf, Girvin (CR2) 2008; 451 Purdy, Peterson, Yu, Regal (CR47) 2012; 14 Barzanjeh, Abdi, Milburn, Tombesi, Vitali (CR36) 2012; 109 O’Brien, Furusawa, Vuckovic (CR4) 2009; 3 Verhagen, Deleglise, Weis, Schliesser, Kippenberg (CR31) 2012; 482 Tsang (CR13) 2011; 84 Caves (CR28) 1980; 45 Gozzini, Maccarrone, Mango, Longo, Barbarino (CR25) 1985; 2 Tian (CR35) 2012; 108 Tsang (CR12) 2010; 81 Dorsel, McCullen, Meystre, Vignes, Walther (CR26) 1983; 51 Ladd (CR11) 2010; 464 McGee, Meiser, Regal, Lehnert, Holland (CR37) 2013; 87 Bochmann, Vainsencher, Awschalom, Cleland (CR23) 2013; 9 Kuzyk, van Enk, Wang (CR50) 2013; 88 CR41 Regal, Lehnert (CR22) 2011; 264 Langer (CR6) 2005; 95 Zhang, Peng, Braunstein (CR43) 2003; 68 Wang, Clerk (CR34) 2012; 108 Buluta, Ashhab, Nori (CR5) 2011; 74 Lucero (CR9) 2012; 8 Cohen, Hossein-Zadeh, Levi (CR14) 2001; 37 Yu, Purdy, Regal (CR40) 2012; 108 Hill, Safavi-Naeini, Chan, Painter (CR44) 2012; 3 Zwickl (CR51) 2008; 92 Clarke, Wilhelm (CR1) 2008; 453 Hafezi (CR17) 2012; 85 Tian (CR49) 2013; 110 Savchenkov (CR16) 2009; 34 Caves (CR46) 1982; 26 Akram, Kiesel, Aspelmeyer, Milburn (CR42) 2010; 12 Chan (CR30) 2011; 478 Marcos (CR20) 2010; 105 Ilchenko, Savchenkov, Matsko, Maleki (CR15) 2003; 20 Ritter (CR7) 2012; 484 Tian, Wang (CR33) 2010; 82 Devoret, Schoelkopf (CR3) 2013; 339 Purdy, Peterson, Regal (CR39) 2013; 339 Braginsky, Manukin, Tikhonov (CR24) 1970; 31 Imamoğlu (CR19) 2009; 102 Law (CR45) 1995; 51 Reed (CR8) 2012; 482 Verdú (CR18) 2009; 103 Kimble (CR10) 2008; 453 Safavi-Naeini, Painter (CR21) 2011; 13 Wang, Clerk (CR48) 2013; 110 J Clarke (BFnphys2911_CR1) 2008; 453 V Braginsky (BFnphys2911_CR27) 1967; 25 J Verdú (BFnphys2911_CR18) 2009; 103 MC Kuzyk (BFnphys2911_CR50) 2013; 88 J Chan (BFnphys2911_CR30) 2011; 478 CM Caves (BFnphys2911_CR46) 1982; 26 BFnphys2911_CR41 VS Ilchenko (BFnphys2911_CR15) 2003; 20 E Verhagen (BFnphys2911_CR31) 2012; 482 AA Savchenkov (BFnphys2911_CR16) 2009; 34 JD Thompson (BFnphys2911_CR38) 2008; 452 TP Purdy (BFnphys2911_CR39) 2013; 339 U Akram (BFnphys2911_CR42) 2010; 12 TP Purdy (BFnphys2911_CR47) 2012; 14 A Gozzini (BFnphys2911_CR25) 1985; 2 CK Law (BFnphys2911_CR45) 1995; 51 E Lucero (BFnphys2911_CR9) 2012; 8 DA Cohen (BFnphys2911_CR14) 2001; 37 S Ritter (BFnphys2911_CR7) 2012; 484 MH Devoret (BFnphys2911_CR3) 2013; 339 SA McGee (BFnphys2911_CR37) 2013; 87 AH Safavi-Naeini (BFnphys2911_CR21) 2011; 13 V Braginsky (BFnphys2911_CR24) 1970; 31 C Langer (BFnphys2911_CR6) 2005; 95 L Tian (BFnphys2911_CR49) 2013; 110 Y-D Wang (BFnphys2911_CR34) 2012; 108 JL O’Brien (BFnphys2911_CR4) 2009; 3 M Hafezi (BFnphys2911_CR17) 2012; 85 RJ Schoelkopf (BFnphys2911_CR2) 2008; 451 MD Reed (BFnphys2911_CR8) 2012; 482 J Zhang (BFnphys2911_CR43) 2003; 68 TA Palomaki (BFnphys2911_CR32) 2013; 495 M Tsang (BFnphys2911_CR13) 2011; 84 BM Zwickl (BFnphys2911_CR51) 2008; 92 CA Regal (BFnphys2911_CR22) 2011; 264 JT Hill (BFnphys2911_CR44) 2012; 3 CM Caves (BFnphys2911_CR28) 1980; 45 A Imamoğlu (BFnphys2911_CR19) 2009; 102 I Buluta (BFnphys2911_CR5) 2011; 74 HJ Kimble (BFnphys2911_CR10) 2008; 453 L Tian (BFnphys2911_CR35) 2012; 108 Sh Barzanjeh (BFnphys2911_CR36) 2012; 109 L Tian (BFnphys2911_CR33) 2010; 82 J Bochmann (BFnphys2911_CR23) 2013; 9 Y-D Wang (BFnphys2911_CR48) 2013; 110 M Tsang (BFnphys2911_CR12) 2010; 81 P-L Yu (BFnphys2911_CR40) 2012; 108 TD Ladd (BFnphys2911_CR11) 2010; 464 A Dorsel (BFnphys2911_CR26) 1983; 51 JD Teufel (BFnphys2911_CR29) 2011; 475 D Marcos (BFnphys2911_CR20) 2010; 105 |
References_xml | – volume: 81 start-page: 063837 year: 2010 ident: CR12 article-title: Cavity quantum electro-optics publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.81.063837 contributor: fullname: Tsang – volume: 3 start-page: 1196 year: 2012 ident: CR44 article-title: Coherent optical wavelength conversion via cavity optomechanics publication-title: Nature Commun. doi: 10.1038/ncomms2201 contributor: fullname: Painter – volume: 108 start-page: 083603 year: 2012 ident: CR40 article-title: Control of material damping in high- membrane microresonators publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.108.083603 contributor: fullname: Regal – volume: 484 start-page: 195 year: 2012 end-page: 200 ident: CR7 article-title: An elementary quantum network of single atoms in optical cavities publication-title: Nature doi: 10.1038/nature11023 contributor: fullname: Ritter – volume: 37 start-page: 300 year: 2001 end-page: 301 ident: CR14 article-title: Microphotonic modulator for microwave receiver publication-title: Electron. Lett. doi: 10.1049/el:20010220 contributor: fullname: Levi – volume: 105 start-page: 210501 year: 2010 ident: CR20 article-title: Coupling nitrogen-vacancy centers in diamond to superconducting flux qubits publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.105.210501 contributor: fullname: Marcos – volume: 495 start-page: 210 year: 2013 end-page: 214 ident: CR32 article-title: Coherent state transfer between itinerant microwave fields and a mechanical oscillator publication-title: Nature doi: 10.1038/nature11915 contributor: fullname: Lehnert – volume: 475 start-page: 359 year: 2011 end-page: 363 ident: CR29 article-title: Sideband cooling of micromechanical motion to the quantum ground state publication-title: Nature doi: 10.1038/nature10261 contributor: fullname: Teufel – volume: 464 start-page: 45 year: 2010 end-page: 53 ident: CR11 article-title: Quantum computers publication-title: Nature doi: 10.1038/nature08812 contributor: fullname: Ladd – volume: 3 start-page: 687 year: 2009 end-page: 695 ident: CR4 article-title: Photonic quantum technologies publication-title: Nature Photon. doi: 10.1038/nphoton.2009.229 contributor: fullname: Vuckovic – volume: 453 start-page: 1031 year: 2008 end-page: 1042 ident: CR1 article-title: Superconducting quantum bits publication-title: Nature doi: 10.1038/nature07128 contributor: fullname: Wilhelm – volume: 339 start-page: 801 year: 2013 end-page: 804 ident: CR39 article-title: Observation of radiation pressure shot noise on a macroscopic object publication-title: Science doi: 10.1126/science.1231282 contributor: fullname: Regal – volume: 74 start-page: 104401 year: 2011 ident: CR5 article-title: Natural and artificial atoms for quantum computation publication-title: Rep. Prog. Phys. doi: 10.1088/0034-4885/74/10/104401 contributor: fullname: Nori – volume: 2 start-page: 1841 year: 1985 end-page: 1845 ident: CR25 article-title: Light-pressure bistability at microwave frequencies publication-title: J. Opt. Soc. Am. B doi: 10.1364/JOSAB.2.001841 contributor: fullname: Barbarino – volume: 103 start-page: 043603 year: 2009 ident: CR18 article-title: Strong magnetic coupling of an ultracold gas to a superconducting waveguide cavity publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.103.043603 contributor: fullname: Verdú – volume: 87 start-page: 053818 year: 2013 ident: CR37 article-title: Mechanical resonators for storage and transfer of electrical and optical quantum states publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.87.053818 contributor: fullname: Holland – volume: 12 start-page: 083030 year: 2010 ident: CR42 article-title: Single-photon opto-mechanics in the strong coupling regime publication-title: New J. Phys. doi: 10.1088/1367-2630/12/8/083030 contributor: fullname: Milburn – volume: 14 start-page: 115021 year: 2012 ident: CR47 article-title: Cavity optomechanics with Si N membranes at cryogenic temperatures publication-title: New J. Phys. doi: 10.1088/1367-2630/14/11/115021 contributor: fullname: Regal – volume: 92 start-page: 103125 year: 2008 ident: CR51 article-title: High quality mechanical and optical properties of commercial silicon nitride membranes publication-title: Appl. Phys. Lett. doi: 10.1063/1.2884191 contributor: fullname: Zwickl – volume: 8 start-page: 719 year: 2012 end-page: 723 ident: CR9 article-title: Computing prime factors with a Josephson phase qubit quantum processor publication-title: Nature Phys. doi: 10.1038/nphys2385 contributor: fullname: Lucero – volume: 482 start-page: 382 year: 2012 end-page: 385 ident: CR8 article-title: Realization of three-qubit quantum error correction with superconducting circuits publication-title: Nature doi: 10.1038/nature10786 contributor: fullname: Reed – volume: 108 start-page: 153604 year: 2012 ident: CR35 article-title: Adiabatic state conversion and pulse transmission in optomechanical systems publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.108.153604 contributor: fullname: Tian – volume: 452 start-page: 72 year: 2008 end-page: 75 ident: CR38 article-title: Strong dispersive coupling of a high-finesse cavity to a micromechanical membrane publication-title: Nature doi: 10.1038/nature06715 contributor: fullname: Thompson – volume: 31 start-page: 829 year: 1970 end-page: 830 ident: CR24 article-title: Investigation of dissipative ponderomotive effects of electromagnetic radiation publication-title: J. Exp. Theor. Phys. contributor: fullname: Tikhonov – volume: 84 start-page: 043845 year: 2011 ident: CR13 article-title: Cavity quantum electro-optics. II. input–output relations between traveling optical and microwave fields publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.84.043845 contributor: fullname: Tsang – volume: 45 start-page: 75 year: 1980 end-page: 79 ident: CR28 article-title: Quantum-mechanical radiation-pressure fluctuations in an interferometer publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.45.75 contributor: fullname: Caves – volume: 95 start-page: 060502 year: 2005 ident: CR6 article-title: Long-lived qubit memory using atomic ions publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.95.060502 contributor: fullname: Langer – volume: 110 start-page: 233602 year: 2013 ident: CR49 article-title: Robust photon entanglement via quantum interference in optomechanical interfaces publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.110.233602 contributor: fullname: Tian – volume: 51 start-page: 2537 year: 1995 end-page: 2541 ident: CR45 article-title: Interaction between a moving mirror and radiation pressure: A Hamiltonian formulation publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.51.2537 contributor: fullname: Law – volume: 110 start-page: 253601 year: 2013 ident: CR48 article-title: Reservoir-engineered entanglement in optomechanical systems publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.110.253601 contributor: fullname: Clerk – volume: 20 start-page: 333 year: 2003 end-page: 342 ident: CR15 article-title: Whispering-gallery-mode electro-optic modulator and photonic microwave receiver publication-title: J. Opt. Soc. Am. B doi: 10.1364/JOSAB.20.000333 contributor: fullname: Maleki – volume: 478 start-page: 89 year: 2011 end-page: 92 ident: CR30 article-title: Laser cooling of a nanomechanical oscillator into its quantum ground state publication-title: Nature doi: 10.1038/nature10461 contributor: fullname: Chan – volume: 264 start-page: 012025 year: 2011 ident: CR22 article-title: From cavity electromechanics to cavity optomechanics publication-title: J. Phys.: Conf. Ser. contributor: fullname: Lehnert – volume: 339 start-page: 1169 year: 2013 end-page: 1174 ident: CR3 article-title: Superconducting circuits for quantum information: An outlook publication-title: Science doi: 10.1126/science.1231930 contributor: fullname: Schoelkopf – volume: 82 start-page: 053806 year: 2010 ident: CR33 article-title: Optical wavelength conversion of quantum states with optomechanics publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.82.053806 contributor: fullname: Wang – volume: 109 start-page: 130503 year: 2012 ident: CR36 article-title: Reversible optical-to-microwave quantum interface publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.109.130503 contributor: fullname: Vitali – volume: 9 start-page: 712 year: 2013 end-page: 716 ident: CR23 article-title: Nanomechanical coupling between microwave and optical photons publication-title: Nature Phys. doi: 10.1038/nphys2748 contributor: fullname: Cleland – volume: 25 start-page: 563 year: 1967 end-page: 655 ident: CR27 article-title: Ponderomotive effects of electromagnetic radiation publication-title: J. Exp. Theor. Phys. contributor: fullname: Manukin – volume: 51 start-page: 1550 year: 1983 end-page: 1553 ident: CR26 article-title: Optical bistability and mirror confinement induced by radiation pressure publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.51.1550 contributor: fullname: Walther – volume: 88 start-page: 062341 year: 2013 ident: CR50 article-title: Generating robust optical entanglement in weak-coupling optomechanical systems publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.88.062341 contributor: fullname: Wang – volume: 451 start-page: 664 year: 2008 end-page: 669 ident: CR2 article-title: Wiring up quantum systems publication-title: Nature doi: 10.1038/451664a contributor: fullname: Girvin – volume: 26 start-page: 1817 year: 1982 end-page: 1839 ident: CR46 article-title: Quantum limits on noise in linear amplifiers publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.26.1817 contributor: fullname: Caves – volume: 453 start-page: 1023 year: 2008 end-page: 1030 ident: CR10 article-title: The quantum internet publication-title: Nature doi: 10.1038/nature07127 contributor: fullname: Kimble – volume: 34 start-page: 1300 year: 2009 end-page: 1302 ident: CR16 article-title: Tunable optical single-sideband modulator with complete sideband suppression publication-title: Opt. Lett. doi: 10.1364/OL.34.001300 contributor: fullname: Savchenkov – volume: 85 start-page: 020302 year: 2012 ident: CR17 article-title: Atomic interface between microwave and optical photons publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.85.020302 contributor: fullname: Hafezi – volume: 68 start-page: 013808 year: 2003 ident: CR43 article-title: Quantum-state transfer from light to macroscopic oscillators publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.68.013808 contributor: fullname: Braunstein – volume: 482 start-page: 63 year: 2012 end-page: 67 ident: CR31 article-title: Quantum-coherent coupling of a mechanical oscillator to an optical cavity mode publication-title: Nature doi: 10.1038/nature10787 contributor: fullname: Kippenberg – volume: 102 start-page: 083602 year: 2009 ident: CR19 article-title: Cavity QED based on collective magnetic dipole coupling: Spin ensembles as hybrid two-level systems publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.102.083602 contributor: fullname: Imamoğlu – volume: 108 start-page: 153603 year: 2012 ident: CR34 article-title: Using interference for high fidelity quantum state transfer in optomechanics publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.108.153603 contributor: fullname: Clerk – ident: CR41 – volume: 13 start-page: 013017 year: 2011 ident: CR21 article-title: Proposal for an optomechanical traveling wave phonon-photon translator publication-title: New J. Phys. doi: 10.1088/1367-2630/13/1/013017 contributor: fullname: Painter – volume: 95 start-page: 060502 year: 2005 ident: BFnphys2911_CR6 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.95.060502 contributor: fullname: C Langer – volume: 484 start-page: 195 year: 2012 ident: BFnphys2911_CR7 publication-title: Nature doi: 10.1038/nature11023 contributor: fullname: S Ritter – volume: 495 start-page: 210 year: 2013 ident: BFnphys2911_CR32 publication-title: Nature doi: 10.1038/nature11915 contributor: fullname: TA Palomaki – volume: 2 start-page: 1841 year: 1985 ident: BFnphys2911_CR25 publication-title: J. Opt. Soc. Am. B doi: 10.1364/JOSAB.2.001841 contributor: fullname: A Gozzini – volume: 478 start-page: 89 year: 2011 ident: BFnphys2911_CR30 publication-title: Nature doi: 10.1038/nature10461 contributor: fullname: J Chan – volume: 453 start-page: 1023 year: 2008 ident: BFnphys2911_CR10 publication-title: Nature doi: 10.1038/nature07127 contributor: fullname: HJ Kimble – volume: 339 start-page: 1169 year: 2013 ident: BFnphys2911_CR3 publication-title: Science doi: 10.1126/science.1231930 contributor: fullname: MH Devoret – volume: 451 start-page: 664 year: 2008 ident: BFnphys2911_CR2 publication-title: Nature doi: 10.1038/451664a contributor: fullname: RJ Schoelkopf – volume: 37 start-page: 300 year: 2001 ident: BFnphys2911_CR14 publication-title: Electron. Lett. doi: 10.1049/el:20010220 contributor: fullname: DA Cohen – volume: 475 start-page: 359 year: 2011 ident: BFnphys2911_CR29 publication-title: Nature doi: 10.1038/nature10261 contributor: fullname: JD Teufel – volume: 108 start-page: 153603 year: 2012 ident: BFnphys2911_CR34 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.108.153603 contributor: fullname: Y-D Wang – volume: 110 start-page: 253601 year: 2013 ident: BFnphys2911_CR48 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.110.253601 contributor: fullname: Y-D Wang – volume: 92 start-page: 103125 year: 2008 ident: BFnphys2911_CR51 publication-title: Appl. Phys. Lett. doi: 10.1063/1.2884191 contributor: fullname: BM Zwickl – volume: 3 start-page: 1196 year: 2012 ident: BFnphys2911_CR44 publication-title: Nature Commun. doi: 10.1038/ncomms2201 contributor: fullname: JT Hill – volume: 25 start-page: 563 year: 1967 ident: BFnphys2911_CR27 publication-title: J. Exp. Theor. Phys. contributor: fullname: V Braginsky – volume: 264 start-page: 012025 year: 2011 ident: BFnphys2911_CR22 publication-title: J. Phys.: Conf. Ser. contributor: fullname: CA Regal – volume: 108 start-page: 083603 year: 2012 ident: BFnphys2911_CR40 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.108.083603 contributor: fullname: P-L Yu – volume: 12 start-page: 083030 year: 2010 ident: BFnphys2911_CR42 publication-title: New J. Phys. doi: 10.1088/1367-2630/12/8/083030 contributor: fullname: U Akram – volume: 482 start-page: 63 year: 2012 ident: BFnphys2911_CR31 publication-title: Nature doi: 10.1038/nature10787 contributor: fullname: E Verhagen – volume: 102 start-page: 083602 year: 2009 ident: BFnphys2911_CR19 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.102.083602 contributor: fullname: A Imamoğlu – volume: 110 start-page: 233602 year: 2013 ident: BFnphys2911_CR49 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.110.233602 contributor: fullname: L Tian – volume: 87 start-page: 053818 year: 2013 ident: BFnphys2911_CR37 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.87.053818 contributor: fullname: SA McGee – volume: 105 start-page: 210501 year: 2010 ident: BFnphys2911_CR20 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.105.210501 contributor: fullname: D Marcos – volume: 88 start-page: 062341 year: 2013 ident: BFnphys2911_CR50 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.88.062341 contributor: fullname: MC Kuzyk – volume: 51 start-page: 2537 year: 1995 ident: BFnphys2911_CR45 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.51.2537 contributor: fullname: CK Law – volume: 85 start-page: 020302 year: 2012 ident: BFnphys2911_CR17 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.85.020302 contributor: fullname: M Hafezi – volume: 68 start-page: 013808 year: 2003 ident: BFnphys2911_CR43 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.68.013808 contributor: fullname: J Zhang – volume: 26 start-page: 1817 year: 1982 ident: BFnphys2911_CR46 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.26.1817 contributor: fullname: CM Caves – volume: 31 start-page: 829 year: 1970 ident: BFnphys2911_CR24 publication-title: J. Exp. Theor. Phys. contributor: fullname: V Braginsky – volume: 339 start-page: 801 year: 2013 ident: BFnphys2911_CR39 publication-title: Science doi: 10.1126/science.1231282 contributor: fullname: TP Purdy – volume: 103 start-page: 043603 year: 2009 ident: BFnphys2911_CR18 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.103.043603 contributor: fullname: J Verdú – volume: 84 start-page: 043845 year: 2011 ident: BFnphys2911_CR13 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.84.043845 contributor: fullname: M Tsang – volume: 9 start-page: 712 year: 2013 ident: BFnphys2911_CR23 publication-title: Nature Phys. doi: 10.1038/nphys2748 contributor: fullname: J Bochmann – ident: BFnphys2911_CR41 doi: 10.1364/FIO.2014.FW1C.2 – volume: 108 start-page: 153604 year: 2012 ident: BFnphys2911_CR35 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.108.153604 contributor: fullname: L Tian – volume: 452 start-page: 72 year: 2008 ident: BFnphys2911_CR38 publication-title: Nature doi: 10.1038/nature06715 contributor: fullname: JD Thompson – volume: 14 start-page: 115021 year: 2012 ident: BFnphys2911_CR47 publication-title: New J. Phys. doi: 10.1088/1367-2630/14/11/115021 contributor: fullname: TP Purdy – volume: 20 start-page: 333 year: 2003 ident: BFnphys2911_CR15 publication-title: J. Opt. Soc. Am. B doi: 10.1364/JOSAB.20.000333 contributor: fullname: VS Ilchenko – volume: 51 start-page: 1550 year: 1983 ident: BFnphys2911_CR26 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.51.1550 contributor: fullname: A Dorsel – volume: 8 start-page: 719 year: 2012 ident: BFnphys2911_CR9 publication-title: Nature Phys. doi: 10.1038/nphys2385 contributor: fullname: E Lucero – volume: 81 start-page: 063837 year: 2010 ident: BFnphys2911_CR12 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.81.063837 contributor: fullname: M Tsang – volume: 3 start-page: 687 year: 2009 ident: BFnphys2911_CR4 publication-title: Nature Photon. doi: 10.1038/nphoton.2009.229 contributor: fullname: JL O’Brien – volume: 482 start-page: 382 year: 2012 ident: BFnphys2911_CR8 publication-title: Nature doi: 10.1038/nature10786 contributor: fullname: MD Reed – volume: 34 start-page: 1300 year: 2009 ident: BFnphys2911_CR16 publication-title: Opt. Lett. doi: 10.1364/OL.34.001300 contributor: fullname: AA Savchenkov – volume: 45 start-page: 75 year: 1980 ident: BFnphys2911_CR28 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.45.75 contributor: fullname: CM Caves – volume: 109 start-page: 130503 year: 2012 ident: BFnphys2911_CR36 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.109.130503 contributor: fullname: Sh Barzanjeh – volume: 82 start-page: 053806 year: 2010 ident: BFnphys2911_CR33 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.82.053806 contributor: fullname: L Tian – volume: 453 start-page: 1031 year: 2008 ident: BFnphys2911_CR1 publication-title: Nature doi: 10.1038/nature07128 contributor: fullname: J Clarke – volume: 13 start-page: 013017 year: 2011 ident: BFnphys2911_CR21 publication-title: New J. Phys. doi: 10.1088/1367-2630/13/1/013017 contributor: fullname: AH Safavi-Naeini – volume: 464 start-page: 45 year: 2010 ident: BFnphys2911_CR11 publication-title: Nature doi: 10.1038/nature08812 contributor: fullname: TD Ladd – volume: 74 start-page: 104401 year: 2011 ident: BFnphys2911_CR5 publication-title: Rep. Prog. Phys. doi: 10.1088/0034-4885/74/10/104401 contributor: fullname: I Buluta |
SSID | ssj0042613 |
Score | 2.6736243 |
Snippet | Converting low-frequency electrical signals into much higher-frequency optical signals has enabled modern communication networks to leverage the strengths of... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Publisher |
StartPage | 321 |
SubjectTerms | 639/624/1075/1081 639/766/1130/2799 639/766/1130/2800 Atomic Bidirectional Classical and Continuum Physics Complex Systems Condensed Matter Physics Conversion Converters Electric circuits Electric currents Frequency distribution Mathematical and Computational Physics Microwave communications Microwaves Molecular Networks Optical and Plasma Physics Optical communication Optical fibers Optical properties Physics Signaling Theoretical |
Title | Bidirectional and efficient conversion between microwave and optical light |
URI | https://link.springer.com/article/10.1038/nphys2911 https://www.proquest.com/docview/1511851393 https://search.proquest.com/docview/1541430270 |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8NAEB60RfAiPjFaS3xcQzfZTbI5iZXWUrCIWOgtZB8FQZNqW_37zm6SVnvwnCULszsz38x8OwNww4lE_dPaUyoiHtNRiDpHMi9iQqlpwsPYN4-TH0fRYMyGk3BSJdzmFa2ytonWUKtCmhx5xzdQOES8Qm9nH56ZGmWqq9UIjW1o-kEcGUof7z_UlthEB7R8EBl6AYtp3VmI8k5uEgdB4vt__dEaZG7URa276e_DXoUT3bvyYA9gS-eHsGP5mnJ-BMPua-mMbCbPzXLlatsMAn2Ia5nkNg3mVjQs993w7r6zL22XFjObwXbfTGR-DON-7-V-4FVjETxJE3_hCSoYelUpApIQplFJAxJqTXmgFMPYOJBTyk0fL5FFMuFKJpprowxTBE8M4cAJNPIi16fgRkEmIsk1oSpjGJhlQk1jIhASIOzhvnbgqhZOOiu7X6S2ak15upKgA61abGmlAPN0fVwOXK4-49U19Ygs18XSrGGI1jAuJg5c1-L-9YvNjc7-3-gcdhHNVLSaFjQWn0t9gYhhIdr2WrSh2e2Nnp5_AADiwfQ |
link.rule.ids | 314,780,784,12765,21388,27924,27925,33373,33374,33744,33745,43600,43805,74035,74302 |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT8MwDLZgCMEF8RSFAeVxrZY2aZeeECDGGNtOm7Rb1TwqIUE72AZ_HydrN9iBc6NGcmL7s_3ZAbjhRKL-ae0pFRGP6ShEnSOpFzGhVBbzsOmb5uReP2oPWWcUjsqE26SkVVY20RpqVUiTI2_4BgqHiFfo7fjDM69Gmepq-YTGOmwwiq7bdIq3nipLbKIDOm-IDL2ANWk1WYjyRm4SB0Hs-3_90RJkrtRFrbtp7cJOiRPdu_nB7sGazvdh0_I15eQAOvevc2dkM3lumitX22EQ6ENcyyS3aTC3pGG574Z3951-abu0GNsMtvtmIvNDGLYeBw9tr3wWwZM09qeeoIKhV5UiIDFhGpU0IKHWlAdKMYyNA5lRbuZ4iTSSMVcy1lwbZcgQPDGEA0dQy4tcH4MbBamIJNeEqpRhYJYKlTWJQEiAsIf72oGrSjjJeD79IrFVa8qThQQdqFdiS0oFmCTL43LgcvEZr66pR6S5LmZmDUO0hnExceC6EvevX6xudPL_Rhew1R70ukn3uf9yCtuIbEqKTR1q08-ZPkP0MBXn9or8AA38wzw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT8MwDLZgE4gL4inGszyu1dImbdMTYsDEc0KISdyq5lEJCdrBBvx9nCzdYAfOjRrJsePP9hcb4IQTifanta9UTHym4whtjuR-zIRSRcqjJDCPk-978VWf3TxHz47_NHS0yvpOtBe1qqTJkbcDA4UjxCu0XThaxMNF93Tw7psJUqbS6sZpzEMTvSIJG9DsXPYeHut72cQKdPw8MvJDltC6zxDl7dKkEcI0CP56pynknKmSWufTXYFlhxq9s_Exr8KcLtdgwbI35XAdbjovY9dk83peXipP29YQ6FE8yyu3STHPkbK8N8PC-86_tF1aDWw-23s1cfoG9LuXT-dXvhuS4EuaBiNfUMHQx0oRkpQwjSYbkkhrykOlGEbKoSwoN129RB7LlCuZaq6NaRQIpRiCg01olFWpt8CLw1zEkmtCVc4wTMuFKhIiECAgCOKBbsFRLZxsMO6FkdkaNuXZRIIt2K3FljlzGGbTw2vB4eQzKrKpTuSlrj7NGhaYc0tIC45rcf_6xexG2_9vdACLqB_Z3XXvdgeWEOY4vs0uNEYfn3oPocRI7Dsd-QFl1cjY |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bidirectional+and+efficient+conversion+between+microwave+and+optical+light&rft.jtitle=Nature+physics&rft.au=Andrews%2C+R+W&rft.au=Peterson%2C+R+W&rft.au=Purdy%2C+T+P&rft.au=Cicak%2C+K&rft.date=2014-04-01&rft.pub=Nature+Publishing+Group&rft.issn=1745-2473&rft.eissn=1745-2481&rft.volume=10&rft.issue=4&rft.spage=321&rft_id=info:doi/10.1038%2Fnphys2911&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=3262994681 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1745-2473&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1745-2473&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1745-2473&client=summon |