A phase-field thermomechanical framework for modeling failure and crack evolution in glass panes under fire
This paper presents a novel phase-field thermomechanical modeling framework for predicting complicated behaviors of thermal cracking in glass panes under fire. The main idea is to incorporate the proposed mathematical model, which calculates the exact deformation of the mesh elements, into the varia...
Saved in:
Published in | Computer methods in applied mechanics and engineering Vol. 385; p. 114068 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Amsterdam
Elsevier B.V
01.11.2021
Elsevier BV |
Subjects | |
Online Access | Get full text |
ISSN | 0045-7825 1879-2138 |
DOI | 10.1016/j.cma.2021.114068 |
Cover
Abstract | This paper presents a novel phase-field thermomechanical modeling framework for predicting complicated behaviors of thermal cracking in glass panes under fire. The main idea is to incorporate the proposed mathematical model, which calculates the exact deformation of the mesh elements, into the variational phase-field model to simulate the thermal fracture behavior in glass panes in an effective manner. The developed model improves upon previous attempts to predict thermal cracking in the following ways: (1) in a major departure from the classical phase-field simulation of thermomechanical fracture, crack evolution can be predicted using only temperature distributions; the phase-field formulations are kept fixed to overcome mesh dependency and convergency; (2) the new modeling framework directly transforms temperature variations into thermal strains (rate of loading) using fewer mesh elements and a larger time step, thus substantially reducing the computational effort; and (3) the proposed model can simultaneously predict multiple cracks distributed in any arbitrary space in the glass panes more realistically than the previous numerical models, regardless of glass pane type and size, fixation method, and thermal loading variation. The proposed coupling model is validated through comparisons against experimental observations and ANSYS simulations. Moreover, the validated model is used to examine for the first time the effect of real engineering influential conditions, namely the heating rate, glass pane size ratio under non-uniform thermal loading, and glass pane fixation with a frame on three sides, on thermal cracking behavior.
•A novel modeling framework incorporated the thermomechanical effects is developed for glass cracking analysis.•The framework is successfully modeled and simulated the crack growth and failure paths.•The current results have shown reasonable agreement with the values obtained from the experiments and ANSYS software.•Through the modeling framework, we have carried out parametric studies to examine the influence of heating rate, glass size ratio and fixation method of the problems. |
---|---|
AbstractList | This paper presents a novel phase-field thermomechanical modeling framework for predicting complicated behaviors of thermal cracking in glass panes under fire. The main idea is to incorporate the proposed mathematical model, which calculates the exact deformation of the mesh elements, into the variational phase-field model to simulate the thermal fracture behavior in glass panes in an effective manner. The developed model improves upon previous attempts to predict thermal cracking in the following ways: (1) in a major departure from the classical phase-field simulation of thermomechanical fracture, crack evolution can be predicted using only temperature distributions; the phase-field formulations are kept fixed to overcome mesh dependency and convergency; (2) the new modeling framework directly transforms temperature variations into thermal strains (rate of loading) using fewer mesh elements and a larger time step, thus substantially reducing the computational effort; and (3) the proposed model can simultaneously predict multiple cracks distributed in any arbitrary space in the glass panes more realistically than the previous numerical models, regardless of glass pane type and size, fixation method, and thermal loading variation. The proposed coupling model is validated through comparisons against experimental observations and ANSYS simulations. Moreover, the validated model is used to examine for the first time the effect of real engineering influential conditions, namely the heating rate, glass pane size ratio under non-uniform thermal loading, and glass pane fixation with a frame on three sides, on thermal cracking behavior.
•A novel modeling framework incorporated the thermomechanical effects is developed for glass cracking analysis.•The framework is successfully modeled and simulated the crack growth and failure paths.•The current results have shown reasonable agreement with the values obtained from the experiments and ANSYS software.•Through the modeling framework, we have carried out parametric studies to examine the influence of heating rate, glass size ratio and fixation method of the problems. This paper presents a novel phase-field thermomechanical modeling framework for predicting complicated behaviors of thermal cracking in glass panes under fire. The main idea is to incorporate the proposed mathematical model, which calculates the exact deformation of the mesh elements, into the variational phase-field model to simulate the thermal fracture behavior in glass panes in an effective manner. The developed model improves upon previous attempts to predict thermal cracking in the following ways: (1) in a major departure from the classical phase-field simulation of thermomechanical fracture, crack evolution can be predicted using only temperature distributions; the phase-field formulations are kept fixed to overcome mesh dependency and convergency; (2) the new modeling framework directly transforms temperature variations into thermal strains (rate of loading) using fewer mesh elements and a larger time step, thus substantially reducing the computational effort; and (3) the proposed model can simultaneously predict multiple cracks distributed in any arbitrary space in the glass panes more realistically than the previous numerical models, regardless of glass pane type and size, fixation method, and thermal loading variation. The proposed coupling model is validated through comparisons against experimental observations and ANSYS simulations. Moreover, the validated model is used to examine for the first time the effect of real engineering influential conditions, namely the heating rate, glass pane size ratio under non-uniform thermal loading, and glass pane fixation with a frame on three sides, on thermal cracking behavior. |
ArticleNumber | 114068 |
Author | Yin, B.B. Liew, K.M. Abdoh, D.A. |
Author_xml | – sequence: 1 givenname: D.A. orcidid: 0000-0003-3907-5408 surname: Abdoh fullname: Abdoh, D.A. – sequence: 2 givenname: B.B. orcidid: 0000-0001-9660-8907 surname: Yin fullname: Yin, B.B. – sequence: 3 givenname: K.M. orcidid: 0000-0001-7160-7676 surname: Liew fullname: Liew, K.M. email: kmliew@cityu.edu.hk |
BookMark | eNp9kLtOAzEQRS0UJBLgA-gsUW_wY5-iQoiXFIkGamvWHidOdu1g74L4ezYKFQXTTHPPjO5ZkJkPHgm54mzJGS9vtkvdw1IwwZec56ysT8ic11WTCS7rGZkzlhdZVYvijCxS2rJpai7mZHdH9xtImFmHnaHDBmMfetQb8E5DR22EHr9C3FEbIu2Dwc75NbXgujEiBW-ojqB3FD9DNw4ueOo8XXeQEt2Dx0RHbzBS6yJekFMLXcLL331O3h8f3u6fs9Xr08v93SrTsuFD1kpmCgG1bAyrbVlazipobK0BNVrMhYScSyFlYdoWq6Yt2hxR6KIttW0bKc_J9fHuPoaPEdOgtmGMfnqpRFFVhajKJp9S1TGlY0gpolXaDXBoMMSpneJMHcyqrZrMqoNZdTQ7kfwPuY-uh_j9L3N7ZHAq_ukwqqQdeo1mEqMHZYL7h_4BrnaUhg |
CitedBy_id | crossref_primary_10_1016_j_ijmecsci_2024_109313 crossref_primary_10_1115_1_4064076 crossref_primary_10_1016_j_cma_2023_116577 crossref_primary_10_1016_j_engfracmech_2024_109884 crossref_primary_10_1016_j_jmps_2025_106041 crossref_primary_10_1016_j_compstruct_2024_118112 crossref_primary_10_1016_j_nocx_2022_100102 crossref_primary_10_1016_j_tafmec_2023_103980 crossref_primary_10_1080_10407790_2024_2310708 crossref_primary_10_1016_j_engfracmech_2024_110799 crossref_primary_10_1016_j_compstruct_2023_116961 crossref_primary_10_1038_s41598_024_80884_3 crossref_primary_10_1016_j_engfailanal_2024_108084 crossref_primary_10_1016_j_cma_2022_115318 |
Cites_doi | 10.1016/j.enganabound.2020.08.014 10.1007/s10694-016-0596-0 10.1016/j.conbuildmat.2018.06.088 10.3390/app8122488 10.1016/S0045-7825(03)00391-8 10.1016/j.firesaf.2013.11.003 10.1002/nme.2861 10.1016/j.cma.2019.112808 10.1016/j.firesaf.2014.05.002 10.1016/j.cma.2017.12.021 10.1016/j.engfracmech.2005.02.004 10.3801/IAFSS.FSS.11-666 10.1016/j.cma.2014.11.017 10.1016/j.jmps.2016.06.004 10.1016/j.jmps.2013.09.003 10.1016/j.commatsci.2014.05.071 10.1016/j.jmps.2020.104072 10.1016/j.engfracmech.2013.06.006 10.1016/j.mechmat.2010.07.002 10.1016/j.compstruc.2019.03.005 10.1016/j.proeng.2013.08.118 10.1016/j.cma.2019.04.040 10.1016/j.matdes.2017.08.021 10.1016/j.cma.2010.04.011 10.1088/0965-0393/22/1/015011 10.1016/j.applthermaleng.2017.07.019 10.1016/j.jmps.2019.103684 10.1016/j.jmps.2019.103861 10.1016/j.ijplas.2014.08.016 10.1007/s10704-012-9753-8 10.1016/j.jmps.2010.05.005 10.1016/j.cma.2012.01.008 10.1016/j.cma.2019.01.012 10.1016/j.firesaf.2015.05.002 10.1016/S0022-5096(00)00022-3 10.1016/j.apm.2020.02.033 10.1016/j.engfracmech.2019.106498 10.1016/j.cma.2020.112839 10.1016/j.cma.2019.112790 10.1016/j.applthermaleng.2016.06.057 10.1016/j.finel.2017.05.001 10.1016/j.cma.2021.113872 10.1016/j.engfracmech.2010.11.020 10.1007/s10704-017-0220-4 10.1016/j.matdes.2008.06.049 10.1016/j.ijsolstr.2015.10.012 10.1016/j.compstruc.2004.11.026 10.1016/j.cma.2014.11.016 10.1063/1.478812 10.1016/j.jmps.2019.103810 10.1016/S0045-7825(00)00219-X 10.1016/j.jmps.2019.103686 10.1016/j.engfracmech.2017.11.017 10.1016/j.tafmec.2019.102447 10.1177/0734904115599668 10.1016/j.jmps.2020.103968 10.1016/j.engfracmech.2019.02.033 |
ContentType | Journal Article |
Copyright | 2021 Elsevier B.V. Copyright Elsevier BV Nov 1, 2021 |
Copyright_xml | – notice: 2021 Elsevier B.V. – notice: Copyright Elsevier BV Nov 1, 2021 |
DBID | AAYXX CITATION 7SC 7TB 8FD FR3 JQ2 KR7 L7M L~C L~D |
DOI | 10.1016/j.cma.2021.114068 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Civil Engineering Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Civil Engineering Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Engineering |
EISSN | 1879-2138 |
ExternalDocumentID | 10_1016_j_cma_2021_114068 S0045782521003996 |
GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO AAYFN ABAOU ABBOA ABFNM ABJNI ABMAC ABYKQ ACAZW ACDAQ ACGFS ACIWK ACRLP ACZNC ADBBV ADEZE ADGUI ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIGVJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ARUGR AXJTR BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ IHE J1W JJJVA KOM LG9 LY7 M41 MHUIS MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 RNS ROL RPZ SDF SDG SDP SES SPC SPCBC SST SSV SSW SSZ T5K TN5 WH7 XPP ZMT ~02 ~G- 29F AAQXK AATTM AAXKI AAYOK AAYWO AAYXX ABEFU ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADIYS ADJOM ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FEDTE FGOYB G-2 HLZ HVGLF HZ~ R2- RIG SBC SET SEW SSH VH1 VOH WUQ ZY4 7SC 7TB 8FD EFKBS FR3 JQ2 KR7 L7M L~C L~D |
ID | FETCH-LOGICAL-c391t-b30d52a839d08f66f107a9f8caecefe423a4132335dbbe79b5b4ee2c5b6cfb933 |
IEDL.DBID | AIKHN |
ISSN | 0045-7825 |
IngestDate | Fri Jul 25 07:47:56 EDT 2025 Tue Jul 01 04:06:14 EDT 2025 Thu Apr 24 23:05:00 EDT 2025 Fri Feb 23 02:42:32 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Thermal strains Glass pane Thermal cracking Failure Crack initiation Crack propagation |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c391t-b30d52a839d08f66f107a9f8caecefe423a4132335dbbe79b5b4ee2c5b6cfb933 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-7160-7676 0000-0003-3907-5408 0000-0001-9660-8907 |
PQID | 2577527694 |
PQPubID | 2045269 |
ParticipantIDs | proquest_journals_2577527694 crossref_citationtrail_10_1016_j_cma_2021_114068 crossref_primary_10_1016_j_cma_2021_114068 elsevier_sciencedirect_doi_10_1016_j_cma_2021_114068 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-11-01 2021-11-00 20211101 |
PublicationDateYYYYMMDD | 2021-11-01 |
PublicationDate_xml | – month: 11 year: 2021 text: 2021-11-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Amsterdam |
PublicationPlace_xml | – name: Amsterdam |
PublicationTitle | Computer methods in applied mechanics and engineering |
PublicationYear | 2021 |
Publisher | Elsevier B.V Elsevier BV |
Publisher_xml | – name: Elsevier B.V – name: Elsevier BV |
References | Abdoh, Ademiloye, Liew (b27) 2020; 120 Xia, Da, Yvonnet (b39) 2018; 332 Areias, Reinoso, Camanho, César de Sá, Rabczuk (b19) 2018; 189 Wei (b23) 1999; 110 Abdoh, Kodur, Liew (b28) 2020; 84 Yang, Ravi-Chandar (b5) 2001; 49 Liu, Zhang (b21) 2019; 355 Wang, Wang, Su, Sun, He, Liew (b60) 2015; 75 Areias, Rabczuk (b18) 2017; 132 Wang, Chen, Wang, Wen, Dembele, Sun, He (b12) 2014; 63 Li, Yin, Zhang, Liew (b41) 2021; 382 Dubé, Doquet, Constantinescu, George, Rémond, Ahzi (b13) 2010; 42 Wang, Wang, Wen, Sun, Liew (b1) 2017; 125 Wei (b24) 2001; 190 Borden, Verhoosel, Scott, Hughes, Landis (b34) 2012; 217–220 Biner (b43) 2017 Ren, Zhuang, Anitescu, Rabczuk (b59) 2019; 217 Samaniego, Anitescu, Goswami, Nguyen-Thanh, Guo, Hamdia, Zhuang, Rabczuk (b46) 2020; 362 Lo, Borden, Ravi-Chandar, Landis (b36) 2019; 132 Meng, Thouless (b10) 2019; 132 Miehe, Hofacker, Schänzel, Aldakheel (b53) 2015; 294 McAuliffe, Waisman (b49) 2015; 65 Tang, Zhang, Tang, Liu (b9) 2016; 80 Wei (b25) 2002; vol. 2002 Shahani, Fasakhodi (b14) 2009; 30 Silling, Askari (b30) 2005; 83 Liu, Zhang, Liew (b22) 2020; 143 Goswami, Anitescu, Chakraborty, Rabczuk (b47) 2020; 106 Nguyen, Waldmann, Bui (b51) 2019; 348 Goswami, Anitescu, Rabczuk (b42) 2020; 361 Wang (b55) 2019 Ha, Bobaru (b31) 2011; 78 Miehe, Hofacker, Welschinger (b44) 2010; 199 Nguyen, Yvonnet, Bornert, Chateau (b38) 2016; 95 Wang, Wang, Shao, Chen, Su, Sun, He, Liew (b2) 2014; 67 Wang, Chen, Wang, Sun (b11) 2013; 62 Wang, Wang, Shao, Chen, Su, Sun, He, Wen, Zong, Liew (b3) 2014; 11 Bouchard, Bay, Chastel (b15) 2003; 192 Svolos, Bronkhorst, Waisman (b50) 2020; 137 Wang, Zhang, Wang, Yang, Sun (b56) 2018; 181 Chen, Wang, Wang, Zhao, Sun, He (b61) 2017; 53 Abdoh, Ademiloye, Liew (b26) 2020; 362 Foraboschi (b8) 2017; 134 Bhowmick, Liu (b45) 2018; 8 Miehe, Schänzel, Ulmer (b52) 2015; 294 Chen, Woody Ju, Su, Huang, Li, Zhai (b32) 2019; 216 Yang, Chen (b16) 2005; 72 Areias, Rabczuk, Dias-da Costa (b20) 2013; 110 Hofacker, Miehe (b33) 2012; 178 Wang, Wang, Sun, He, Liew (b4) 2016; 106 Bahr, Weiss, Bahr, Hofmann, Fischer, Lampenscherf, Balke (b7) 2010; 58 Msekh, Sargado, Jamshidian, Areias, Rabczuk (b57) 2015; 96 Huang, Lu, Liu (b29) 2015; 2015 Xu, Ming, Chen (b35) 2020; 135 Wang, Shao, Wang, Zhao, Sun, He (b6) 2015; 33 Yin, Zhang (b37) 2019; 211 Chu, Li, Liu (b54) 2017; 208 Li, Yin, Zhang, Liew (b40) 2020; 142 Miehe, Welschinger, Hofacker (b58) 2010; 83 Johanns, Lee, Gao, Pharr (b17) 2014; 22 Sicsic, Marigo, Maurini (b48) 2014; 63 Wang (10.1016/j.cma.2021.114068_b56) 2018; 181 Sicsic (10.1016/j.cma.2021.114068_b48) 2014; 63 Tang (10.1016/j.cma.2021.114068_b9) 2016; 80 Wang (10.1016/j.cma.2021.114068_b12) 2014; 63 Li (10.1016/j.cma.2021.114068_b40) 2020; 142 Goswami (10.1016/j.cma.2021.114068_b47) 2020; 106 Nguyen (10.1016/j.cma.2021.114068_b51) 2019; 348 Miehe (10.1016/j.cma.2021.114068_b44) 2010; 199 Xia (10.1016/j.cma.2021.114068_b39) 2018; 332 Wang (10.1016/j.cma.2021.114068_b3) 2014; 11 Bahr (10.1016/j.cma.2021.114068_b7) 2010; 58 Silling (10.1016/j.cma.2021.114068_b30) 2005; 83 Yin (10.1016/j.cma.2021.114068_b37) 2019; 211 Goswami (10.1016/j.cma.2021.114068_b42) 2020; 361 Areias (10.1016/j.cma.2021.114068_b20) 2013; 110 Chen (10.1016/j.cma.2021.114068_b61) 2017; 53 Huang (10.1016/j.cma.2021.114068_b29) 2015; 2015 Areias (10.1016/j.cma.2021.114068_b19) 2018; 189 Dubé (10.1016/j.cma.2021.114068_b13) 2010; 42 Chen (10.1016/j.cma.2021.114068_b32) 2019; 216 McAuliffe (10.1016/j.cma.2021.114068_b49) 2015; 65 Chu (10.1016/j.cma.2021.114068_b54) 2017; 208 Nguyen (10.1016/j.cma.2021.114068_b38) 2016; 95 Xu (10.1016/j.cma.2021.114068_b35) 2020; 135 Areias (10.1016/j.cma.2021.114068_b18) 2017; 132 Msekh (10.1016/j.cma.2021.114068_b57) 2015; 96 Wei (10.1016/j.cma.2021.114068_b25) 2002; vol. 2002 Li (10.1016/j.cma.2021.114068_b41) 2021; 382 Wang (10.1016/j.cma.2021.114068_b55) 2019 Hofacker (10.1016/j.cma.2021.114068_b33) 2012; 178 Bouchard (10.1016/j.cma.2021.114068_b15) 2003; 192 Lo (10.1016/j.cma.2021.114068_b36) 2019; 132 Miehe (10.1016/j.cma.2021.114068_b58) 2010; 83 Meng (10.1016/j.cma.2021.114068_b10) 2019; 132 Wang (10.1016/j.cma.2021.114068_b1) 2017; 125 Ha (10.1016/j.cma.2021.114068_b31) 2011; 78 Wang (10.1016/j.cma.2021.114068_b60) 2015; 75 Johanns (10.1016/j.cma.2021.114068_b17) 2014; 22 Abdoh (10.1016/j.cma.2021.114068_b27) 2020; 120 Yang (10.1016/j.cma.2021.114068_b16) 2005; 72 Borden (10.1016/j.cma.2021.114068_b34) 2012; 217–220 Wang (10.1016/j.cma.2021.114068_b2) 2014; 67 Liu (10.1016/j.cma.2021.114068_b22) 2020; 143 Foraboschi (10.1016/j.cma.2021.114068_b8) 2017; 134 Yang (10.1016/j.cma.2021.114068_b5) 2001; 49 Wang (10.1016/j.cma.2021.114068_b6) 2015; 33 Shahani (10.1016/j.cma.2021.114068_b14) 2009; 30 Ren (10.1016/j.cma.2021.114068_b59) 2019; 217 Abdoh (10.1016/j.cma.2021.114068_b26) 2020; 362 Abdoh (10.1016/j.cma.2021.114068_b28) 2020; 84 Miehe (10.1016/j.cma.2021.114068_b52) 2015; 294 Wei (10.1016/j.cma.2021.114068_b24) 2001; 190 Wang (10.1016/j.cma.2021.114068_b11) 2013; 62 Svolos (10.1016/j.cma.2021.114068_b50) 2020; 137 Biner (10.1016/j.cma.2021.114068_b43) 2017 Wang (10.1016/j.cma.2021.114068_b4) 2016; 106 Bhowmick (10.1016/j.cma.2021.114068_b45) 2018; 8 Wei (10.1016/j.cma.2021.114068_b23) 1999; 110 Samaniego (10.1016/j.cma.2021.114068_b46) 2020; 362 Miehe (10.1016/j.cma.2021.114068_b53) 2015; 294 Liu (10.1016/j.cma.2021.114068_b21) 2019; 355 |
References_xml | – volume: 72 start-page: 2280 year: 2005 end-page: 2297 ident: b16 article-title: Finite element modelling of multiple cohesive discrete crack propagation in reinforced concrete beams publication-title: Eng. Fract. Mech. – volume: 65 start-page: 131 year: 2015 end-page: 151 ident: b49 article-title: A unified model for metal failure capturing shear banding and fracture publication-title: Int. J. Plast. – volume: 181 start-page: 588 year: 2018 end-page: 597 ident: b56 article-title: The effect of glass panel dimension on the fire response of glass façades publication-title: Constr. Build. Mater. – volume: 96 start-page: 472 year: 2015 end-page: 484 ident: b57 article-title: Abaqus implementation of phase-field model for brittle fracture publication-title: Comput. Mater. Sci. – volume: 143 year: 2020 ident: b22 article-title: Modeling of crack bridging and failure in heterogeneous composite materials: A damage-plastic multiphase model publication-title: J. Mech. Phys. Solids. – volume: 62 start-page: 717 year: 2013 end-page: 724 ident: b11 article-title: Thermal shock effect on the glass thermal stress response and crack propagation publication-title: Procedia Eng. – volume: 132 start-page: 27 year: 2017 end-page: 41 ident: b18 article-title: Steiner-point free edge cutting of tetrahedral meshes with applications in fracture publication-title: Finite Elem. Anal. Des. – volume: 75 start-page: 45 year: 2015 end-page: 58 ident: b60 article-title: Fracture behavior of framing coated glass curtain walls under fire conditions publication-title: Fire Saf. J. – volume: 63 start-page: 256 year: 2014 end-page: 284 ident: b48 article-title: Initiation of a periodic array of cracks in the thermal shock problem: A gradient damage modeling publication-title: J. Mech. Phys. Solids. – volume: 8 start-page: 1 year: 2018 end-page: 19 ident: b45 article-title: Three dimensional CS-FEM phase field modeling technique for brittle fracture in elastic solids publication-title: Appl. Sci. – volume: 58 start-page: 1411 year: 2010 end-page: 1421 ident: b7 article-title: Scaling behavior of thermal shock crack patterns and tunneling cracks driven by cooling or drying publication-title: J. Mech. Phys. Solids. – volume: 135 year: 2020 ident: b35 article-title: A phase field framework for dynamic adiabatic shear banding publication-title: J. Mech. Phys. Solids. – year: 2017 ident: b43 article-title: Programming Phase Field Modeling – volume: 217 start-page: 45 year: 2019 end-page: 56 ident: b59 article-title: An explicit phase field method for brittle dynamic fracture publication-title: Comput. Struct. – volume: 49 start-page: 91 year: 2001 end-page: 130 ident: b5 article-title: Crack path instabilities in a quenched glass plate publication-title: J. Mech. Phys. Solids. – volume: 208 start-page: 115 year: 2017 end-page: 130 ident: b54 article-title: Study the dynamic crack path in brittle material under thermal shock loading by phase field modeling publication-title: Int. J. Fract. – volume: 110 start-page: 8930 year: 1999 end-page: 8943 ident: b23 article-title: Discrete singular convolution for the solution of the Fokker-Planck equation publication-title: J. Chem. Phys. – volume: 362 year: 2020 ident: b26 article-title: Modeling glass cooling mechanism with down-flowing water film via the smoothed particle hydrodynamics publication-title: Comput. Methods Appl. Mech. Engrg. – volume: 192 start-page: 3887 year: 2003 end-page: 3908 ident: b15 article-title: Numerical modelling of crack propagation: Automatic remeshing and comparison of different criteria publication-title: Comput. Methods Appl. Mech. Engrg. – volume: 30 start-page: 1032 year: 2009 end-page: 1041 ident: b14 article-title: Finite element analysis of dynamic crack propagation using remeshing technique publication-title: Mater. Des. – volume: 132 year: 2019 ident: b10 article-title: Cohesive-zone analyses with stochastic effects, illustrated by an example of kinetic crack growth publication-title: J. Mech. Phys. Solids. – volume: 80 start-page: 520 year: 2016 end-page: 531 ident: b9 article-title: Numerical model for the cracking behavior of heterogeneous brittle solids subjected to thermal shock publication-title: Int. J. Solids Struct. – volume: 33 start-page: 390 year: 2015 end-page: 404 ident: b6 article-title: Thermal breakage and fallout behaviors of non-tempered glass under the effect of water film publication-title: J. Fire Sci. – volume: 362 year: 2020 ident: b46 article-title: An energy approach to the solution of partial differential equations in computational mechanics via machine learning: Concepts, implementation and applications publication-title: Comput. Methods Appl. Mech. Engrg. – volume: 294 start-page: 486 year: 2015 end-page: 522 ident: b53 article-title: Phase field modeling of fracture in multi-physics problems. Part II. Coupled brittle-to-ductile failure criteria and crack propagation in thermo-elastic-plastic solids publication-title: Comput. Methods Appl. Mech. Eng. – volume: 2015 year: 2015 ident: b29 article-title: Nonlocal peridynamic modeling and simulation on crack propagation in concrete structures publication-title: Math. Probl. Eng. – volume: 53 start-page: 43 year: 2017 end-page: 64 ident: b61 article-title: Experimental and numerical study of window glass breakage with varying shaded widths under thermal loading publication-title: Fire Technol. – volume: 199 start-page: 2765 year: 2010 end-page: 2778 ident: b44 article-title: A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits publication-title: Comput. Methods Appl. Mech. Engrg. – volume: 189 start-page: 339 year: 2018 end-page: 360 ident: b19 article-title: Effective 2D and 3D crack propagation with local mesh refinement and the screened Poisson equation publication-title: Eng. Fract. Mech. – volume: 137 year: 2020 ident: b50 article-title: Thermal-conductivity degradation across cracks in coupled thermo-mechanical systems modeled by the phase field fracture method publication-title: J. Mech. Phys. Solids. – volume: 217–220 start-page: 77 year: 2012 end-page: 95 ident: b34 article-title: A phase field description of dynamic brittle fracture publication-title: Comput. Methods Appl. Mech. Eng. – volume: 83 start-page: 1526 year: 2005 end-page: 1535 ident: b30 article-title: A meshfree method based on the peridynamic model of solid mechanics publication-title: Comput. Struct. – volume: 42 start-page: 863 year: 2010 end-page: 872 ident: b13 article-title: Modeling of thermal shock-induced damage in a borosilicate glass publication-title: Mech. Mater. – volume: 132 year: 2019 ident: b36 article-title: A phase field model for fatigue crack growth publication-title: J. Mech. Phys. Solids. – volume: 361 year: 2020 ident: b42 article-title: Adaptive fourth-order phase field analysis for brittle fracture publication-title: Comput. Methods Appl. Mech. Engrg. – volume: 106 start-page: 438 year: 2016 end-page: 442 ident: b4 article-title: Influence of fire location on the thermal performance of glass façades publication-title: Appl. Therm. Eng. – volume: vol. 2002 start-page: 207 year: 2002 end-page: 246 ident: b25 publication-title: Institutional Knowledge at Singapore Management University – volume: 11 start-page: 666 year: 2014 end-page: 676 ident: b3 article-title: Experimental study on thermal breakage of four-point fixed glass façade publication-title: Fire Saf. Sci. – volume: 78 start-page: 1156 year: 2011 end-page: 1168 ident: b31 article-title: Characteristics of dynamic brittle fracture captured with peridynamics publication-title: Eng. Fract. Mech. – start-page: 91 year: 2019 end-page: 130 ident: b55 article-title: Experimental and Numerical Study of Glass Façade Breakage Behavior under Fire Conditions (Chapter 4) – volume: 178 start-page: 113 year: 2012 end-page: 129 ident: b33 article-title: Continuum phase field modeling of dynamic fracture: Variational principles and staggered FE implementation publication-title: Int. J. Fract. – volume: 67 start-page: 24 year: 2014 end-page: 34 ident: b2 article-title: Fracture behavior of a four-point fixed glass curtain wall under fire conditions publication-title: Fire Saf. J. – volume: 110 start-page: 113 year: 2013 end-page: 137 ident: b20 article-title: Element-wise fracture algorithm based on rotation of edges publication-title: Eng. Fract. Mech. – volume: 216 year: 2019 ident: b32 article-title: Influence of micro-modulus functions on peridynamics simulation of crack propagation and branching in brittle materials publication-title: Eng. Fract. Mech. – volume: 190 start-page: 2017 year: 2001 end-page: 2030 ident: b24 article-title: A new algorithm for solving some mechanical problems publication-title: Comput. Methods Appl. Mech. Engrg. – volume: 142 year: 2020 ident: b40 article-title: Modeling microfracture evolution in heterogeneous composites: A coupled cohesive phase field model publication-title: J. Mech. Phys. Solids. – volume: 106 year: 2020 ident: b47 article-title: Transfer learning enhanced physics informed neural network for phase-field modeling of fracture publication-title: Theor. Appl. Fract. Mech. – volume: 125 start-page: 662 year: 2017 end-page: 672 ident: b1 article-title: Investigation of thermal breakage and heat transfer in single, insulated and laminated glazing under fire conditions publication-title: Appl. Therm. Eng. – volume: 355 start-page: 1026 year: 2019 end-page: 1061 ident: b21 article-title: A novel XFEM cohesive fracture framework for modeling nonlocal slip in randomly discrete fiber reinforced cementitious composites publication-title: Comput. Methods Appl. Mech. Engrg. – volume: 95 start-page: 320 year: 2016 end-page: 350 ident: b38 article-title: Initiation and propagation of complex 3D networks of cracks in heterogeneous quasi-brittle materials: Direct comparison between in situ testing-microCT experiments and phase field simulations publication-title: J. Mech. Phys. Solids. – volume: 382 year: 2021 ident: b41 article-title: A framework for phase-field modeling of interfacial debonding and frictional slipping in heterogeneous composites publication-title: Comput. Methods Appl. Mech. Engrg. – volume: 84 start-page: 357 year: 2020 end-page: 376 ident: b28 article-title: Smoothed particle hydrodynamics modeling of the thermal behavior of double skin facades in fires considering the effects of venetian blinds publication-title: Appl. Math. Model. – volume: 83 start-page: 1273 year: 2010 end-page: 1311 ident: b58 article-title: Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field FE implementations publication-title: Internat. J. Numer. Methods Engrg. – volume: 332 start-page: 234 year: 2018 end-page: 254 ident: b39 article-title: Topology optimization for maximizing the fracture resistance of quasi-brittle composites publication-title: Comput. Methods Appl. Mech. Engrg. – volume: 63 start-page: 113 year: 2014 end-page: 124 ident: b12 article-title: Development of a dynamic model for crack propagation in glazing system under thermal loading publication-title: Fire Saf. J. – volume: 294 start-page: 449 year: 2015 end-page: 485 ident: b52 article-title: Phase field modeling of fracture in multi-physics problems. Part I. Balance of crack surface and failure criteria for brittle crack propagation in thermo-elastic solids publication-title: Comput. Methods Appl. Mech. Engrg. – volume: 22 start-page: 0 year: 2014 end-page: 21 ident: b17 article-title: An evaluation of the advantages and limitations in simulating indentation cracking with cohesive zone finite elements publication-title: Model. Simul. Mater. Sci. Eng. – volume: 211 start-page: 321 year: 2019 end-page: 340 ident: b37 article-title: Phase field method for simulating the brittle fracture of fiber reinforced composites publication-title: Eng. Fract. Mech. – volume: 134 start-page: 301 year: 2017 end-page: 319 ident: b8 article-title: Analytical modeling to predict thermal shock failure and maximum temperature gradients of a glass panel publication-title: Mater. Des. – volume: 120 start-page: 195 year: 2020 end-page: 210 ident: b27 article-title: A meshfree analysis of the thermal behaviors of hot surface glass pane subjects to down-flowing water film via smoothed particle hydrodynamics publication-title: Eng. Anal. Bound. Elem. – volume: 348 start-page: 1 year: 2019 end-page: 28 ident: b51 article-title: Computational chemo-thermo-mechanical coupling phase field model for complex fracture induced by early-age shrinkage and hydration heat in cement-based materials publication-title: Comput. Methods Appl. Mech. Engrg. – volume: 2015 year: 2015 ident: 10.1016/j.cma.2021.114068_b29 article-title: Nonlocal peridynamic modeling and simulation on crack propagation in concrete structures publication-title: Math. Probl. Eng. – volume: 120 start-page: 195 year: 2020 ident: 10.1016/j.cma.2021.114068_b27 article-title: A meshfree analysis of the thermal behaviors of hot surface glass pane subjects to down-flowing water film via smoothed particle hydrodynamics publication-title: Eng. Anal. Bound. Elem. doi: 10.1016/j.enganabound.2020.08.014 – volume: 53 start-page: 43 year: 2017 ident: 10.1016/j.cma.2021.114068_b61 article-title: Experimental and numerical study of window glass breakage with varying shaded widths under thermal loading publication-title: Fire Technol. doi: 10.1007/s10694-016-0596-0 – volume: 181 start-page: 588 year: 2018 ident: 10.1016/j.cma.2021.114068_b56 article-title: The effect of glass panel dimension on the fire response of glass façades publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2018.06.088 – volume: 8 start-page: 1 year: 2018 ident: 10.1016/j.cma.2021.114068_b45 article-title: Three dimensional CS-FEM phase field modeling technique for brittle fracture in elastic solids publication-title: Appl. Sci. doi: 10.3390/app8122488 – volume: 192 start-page: 3887 year: 2003 ident: 10.1016/j.cma.2021.114068_b15 article-title: Numerical modelling of crack propagation: Automatic remeshing and comparison of different criteria publication-title: Comput. Methods Appl. Mech. Engrg. doi: 10.1016/S0045-7825(03)00391-8 – volume: 63 start-page: 113 year: 2014 ident: 10.1016/j.cma.2021.114068_b12 article-title: Development of a dynamic model for crack propagation in glazing system under thermal loading publication-title: Fire Saf. J. doi: 10.1016/j.firesaf.2013.11.003 – year: 2017 ident: 10.1016/j.cma.2021.114068_b43 – volume: 83 start-page: 1273 year: 2010 ident: 10.1016/j.cma.2021.114068_b58 article-title: Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field FE implementations publication-title: Internat. J. Numer. Methods Engrg. doi: 10.1002/nme.2861 – volume: 361 year: 2020 ident: 10.1016/j.cma.2021.114068_b42 article-title: Adaptive fourth-order phase field analysis for brittle fracture publication-title: Comput. Methods Appl. Mech. Engrg. doi: 10.1016/j.cma.2019.112808 – volume: 67 start-page: 24 year: 2014 ident: 10.1016/j.cma.2021.114068_b2 article-title: Fracture behavior of a four-point fixed glass curtain wall under fire conditions publication-title: Fire Saf. J. doi: 10.1016/j.firesaf.2014.05.002 – volume: 332 start-page: 234 year: 2018 ident: 10.1016/j.cma.2021.114068_b39 article-title: Topology optimization for maximizing the fracture resistance of quasi-brittle composites publication-title: Comput. Methods Appl. Mech. Engrg. doi: 10.1016/j.cma.2017.12.021 – volume: 72 start-page: 2280 year: 2005 ident: 10.1016/j.cma.2021.114068_b16 article-title: Finite element modelling of multiple cohesive discrete crack propagation in reinforced concrete beams publication-title: Eng. Fract. Mech. doi: 10.1016/j.engfracmech.2005.02.004 – volume: 11 start-page: 666 year: 2014 ident: 10.1016/j.cma.2021.114068_b3 article-title: Experimental study on thermal breakage of four-point fixed glass façade publication-title: Fire Saf. Sci. doi: 10.3801/IAFSS.FSS.11-666 – volume: 294 start-page: 486 year: 2015 ident: 10.1016/j.cma.2021.114068_b53 article-title: Phase field modeling of fracture in multi-physics problems. Part II. Coupled brittle-to-ductile failure criteria and crack propagation in thermo-elastic-plastic solids publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2014.11.017 – volume: 95 start-page: 320 year: 2016 ident: 10.1016/j.cma.2021.114068_b38 article-title: Initiation and propagation of complex 3D networks of cracks in heterogeneous quasi-brittle materials: Direct comparison between in situ testing-microCT experiments and phase field simulations publication-title: J. Mech. Phys. Solids. doi: 10.1016/j.jmps.2016.06.004 – volume: 63 start-page: 256 year: 2014 ident: 10.1016/j.cma.2021.114068_b48 article-title: Initiation of a periodic array of cracks in the thermal shock problem: A gradient damage modeling publication-title: J. Mech. Phys. Solids. doi: 10.1016/j.jmps.2013.09.003 – volume: 96 start-page: 472 year: 2015 ident: 10.1016/j.cma.2021.114068_b57 article-title: Abaqus implementation of phase-field model for brittle fracture publication-title: Comput. Mater. Sci. doi: 10.1016/j.commatsci.2014.05.071 – volume: 143 year: 2020 ident: 10.1016/j.cma.2021.114068_b22 article-title: Modeling of crack bridging and failure in heterogeneous composite materials: A damage-plastic multiphase model publication-title: J. Mech. Phys. Solids. doi: 10.1016/j.jmps.2020.104072 – volume: 110 start-page: 113 year: 2013 ident: 10.1016/j.cma.2021.114068_b20 article-title: Element-wise fracture algorithm based on rotation of edges publication-title: Eng. Fract. Mech. doi: 10.1016/j.engfracmech.2013.06.006 – volume: 42 start-page: 863 year: 2010 ident: 10.1016/j.cma.2021.114068_b13 article-title: Modeling of thermal shock-induced damage in a borosilicate glass publication-title: Mech. Mater. doi: 10.1016/j.mechmat.2010.07.002 – start-page: 91 year: 2019 ident: 10.1016/j.cma.2021.114068_b55 – volume: 217 start-page: 45 year: 2019 ident: 10.1016/j.cma.2021.114068_b59 article-title: An explicit phase field method for brittle dynamic fracture publication-title: Comput. Struct. doi: 10.1016/j.compstruc.2019.03.005 – volume: 62 start-page: 717 year: 2013 ident: 10.1016/j.cma.2021.114068_b11 article-title: Thermal shock effect on the glass thermal stress response and crack propagation publication-title: Procedia Eng. doi: 10.1016/j.proeng.2013.08.118 – volume: 355 start-page: 1026 year: 2019 ident: 10.1016/j.cma.2021.114068_b21 article-title: A novel XFEM cohesive fracture framework for modeling nonlocal slip in randomly discrete fiber reinforced cementitious composites publication-title: Comput. Methods Appl. Mech. Engrg. doi: 10.1016/j.cma.2019.04.040 – volume: 134 start-page: 301 year: 2017 ident: 10.1016/j.cma.2021.114068_b8 article-title: Analytical modeling to predict thermal shock failure and maximum temperature gradients of a glass panel publication-title: Mater. Des. doi: 10.1016/j.matdes.2017.08.021 – volume: 199 start-page: 2765 year: 2010 ident: 10.1016/j.cma.2021.114068_b44 article-title: A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits publication-title: Comput. Methods Appl. Mech. Engrg. doi: 10.1016/j.cma.2010.04.011 – volume: 22 start-page: 0 year: 2014 ident: 10.1016/j.cma.2021.114068_b17 article-title: An evaluation of the advantages and limitations in simulating indentation cracking with cohesive zone finite elements publication-title: Model. Simul. Mater. Sci. Eng. doi: 10.1088/0965-0393/22/1/015011 – volume: 125 start-page: 662 year: 2017 ident: 10.1016/j.cma.2021.114068_b1 article-title: Investigation of thermal breakage and heat transfer in single, insulated and laminated glazing under fire conditions publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2017.07.019 – volume: 132 year: 2019 ident: 10.1016/j.cma.2021.114068_b36 article-title: A phase field model for fatigue crack growth publication-title: J. Mech. Phys. Solids. doi: 10.1016/j.jmps.2019.103684 – volume: 137 year: 2020 ident: 10.1016/j.cma.2021.114068_b50 article-title: Thermal-conductivity degradation across cracks in coupled thermo-mechanical systems modeled by the phase field fracture method publication-title: J. Mech. Phys. Solids. doi: 10.1016/j.jmps.2019.103861 – volume: 65 start-page: 131 year: 2015 ident: 10.1016/j.cma.2021.114068_b49 article-title: A unified model for metal failure capturing shear banding and fracture publication-title: Int. J. Plast. doi: 10.1016/j.ijplas.2014.08.016 – volume: 178 start-page: 113 year: 2012 ident: 10.1016/j.cma.2021.114068_b33 article-title: Continuum phase field modeling of dynamic fracture: Variational principles and staggered FE implementation publication-title: Int. J. Fract. doi: 10.1007/s10704-012-9753-8 – volume: 58 start-page: 1411 year: 2010 ident: 10.1016/j.cma.2021.114068_b7 article-title: Scaling behavior of thermal shock crack patterns and tunneling cracks driven by cooling or drying publication-title: J. Mech. Phys. Solids. doi: 10.1016/j.jmps.2010.05.005 – volume: vol. 2002 start-page: 207 year: 2002 ident: 10.1016/j.cma.2021.114068_b25 – volume: 217–220 start-page: 77 year: 2012 ident: 10.1016/j.cma.2021.114068_b34 article-title: A phase field description of dynamic brittle fracture publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2012.01.008 – volume: 348 start-page: 1 year: 2019 ident: 10.1016/j.cma.2021.114068_b51 article-title: Computational chemo-thermo-mechanical coupling phase field model for complex fracture induced by early-age shrinkage and hydration heat in cement-based materials publication-title: Comput. Methods Appl. Mech. Engrg. doi: 10.1016/j.cma.2019.01.012 – volume: 75 start-page: 45 year: 2015 ident: 10.1016/j.cma.2021.114068_b60 article-title: Fracture behavior of framing coated glass curtain walls under fire conditions publication-title: Fire Saf. J. doi: 10.1016/j.firesaf.2015.05.002 – volume: 49 start-page: 91 year: 2001 ident: 10.1016/j.cma.2021.114068_b5 article-title: Crack path instabilities in a quenched glass plate publication-title: J. Mech. Phys. Solids. doi: 10.1016/S0022-5096(00)00022-3 – volume: 84 start-page: 357 year: 2020 ident: 10.1016/j.cma.2021.114068_b28 article-title: Smoothed particle hydrodynamics modeling of the thermal behavior of double skin facades in fires considering the effects of venetian blinds publication-title: Appl. Math. Model. doi: 10.1016/j.apm.2020.02.033 – volume: 216 year: 2019 ident: 10.1016/j.cma.2021.114068_b32 article-title: Influence of micro-modulus functions on peridynamics simulation of crack propagation and branching in brittle materials publication-title: Eng. Fract. Mech. doi: 10.1016/j.engfracmech.2019.106498 – volume: 362 year: 2020 ident: 10.1016/j.cma.2021.114068_b26 article-title: Modeling glass cooling mechanism with down-flowing water film via the smoothed particle hydrodynamics publication-title: Comput. Methods Appl. Mech. Engrg. doi: 10.1016/j.cma.2020.112839 – volume: 362 year: 2020 ident: 10.1016/j.cma.2021.114068_b46 article-title: An energy approach to the solution of partial differential equations in computational mechanics via machine learning: Concepts, implementation and applications publication-title: Comput. Methods Appl. Mech. Engrg. doi: 10.1016/j.cma.2019.112790 – volume: 106 start-page: 438 year: 2016 ident: 10.1016/j.cma.2021.114068_b4 article-title: Influence of fire location on the thermal performance of glass façades publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2016.06.057 – volume: 132 start-page: 27 year: 2017 ident: 10.1016/j.cma.2021.114068_b18 article-title: Steiner-point free edge cutting of tetrahedral meshes with applications in fracture publication-title: Finite Elem. Anal. Des. doi: 10.1016/j.finel.2017.05.001 – volume: 382 year: 2021 ident: 10.1016/j.cma.2021.114068_b41 article-title: A framework for phase-field modeling of interfacial debonding and frictional slipping in heterogeneous composites publication-title: Comput. Methods Appl. Mech. Engrg. doi: 10.1016/j.cma.2021.113872 – volume: 78 start-page: 1156 year: 2011 ident: 10.1016/j.cma.2021.114068_b31 article-title: Characteristics of dynamic brittle fracture captured with peridynamics publication-title: Eng. Fract. Mech. doi: 10.1016/j.engfracmech.2010.11.020 – volume: 208 start-page: 115 year: 2017 ident: 10.1016/j.cma.2021.114068_b54 article-title: Study the dynamic crack path in brittle material under thermal shock loading by phase field modeling publication-title: Int. J. Fract. doi: 10.1007/s10704-017-0220-4 – volume: 30 start-page: 1032 year: 2009 ident: 10.1016/j.cma.2021.114068_b14 article-title: Finite element analysis of dynamic crack propagation using remeshing technique publication-title: Mater. Des. doi: 10.1016/j.matdes.2008.06.049 – volume: 80 start-page: 520 year: 2016 ident: 10.1016/j.cma.2021.114068_b9 article-title: Numerical model for the cracking behavior of heterogeneous brittle solids subjected to thermal shock publication-title: Int. J. Solids Struct. doi: 10.1016/j.ijsolstr.2015.10.012 – volume: 83 start-page: 1526 year: 2005 ident: 10.1016/j.cma.2021.114068_b30 article-title: A meshfree method based on the peridynamic model of solid mechanics publication-title: Comput. Struct. doi: 10.1016/j.compstruc.2004.11.026 – volume: 294 start-page: 449 year: 2015 ident: 10.1016/j.cma.2021.114068_b52 article-title: Phase field modeling of fracture in multi-physics problems. Part I. Balance of crack surface and failure criteria for brittle crack propagation in thermo-elastic solids publication-title: Comput. Methods Appl. Mech. Engrg. doi: 10.1016/j.cma.2014.11.016 – volume: 110 start-page: 8930 year: 1999 ident: 10.1016/j.cma.2021.114068_b23 article-title: Discrete singular convolution for the solution of the Fokker-Planck equation publication-title: J. Chem. Phys. doi: 10.1063/1.478812 – volume: 135 year: 2020 ident: 10.1016/j.cma.2021.114068_b35 article-title: A phase field framework for dynamic adiabatic shear banding publication-title: J. Mech. Phys. Solids. doi: 10.1016/j.jmps.2019.103810 – volume: 190 start-page: 2017 year: 2001 ident: 10.1016/j.cma.2021.114068_b24 article-title: A new algorithm for solving some mechanical problems publication-title: Comput. Methods Appl. Mech. Engrg. doi: 10.1016/S0045-7825(00)00219-X – volume: 132 year: 2019 ident: 10.1016/j.cma.2021.114068_b10 article-title: Cohesive-zone analyses with stochastic effects, illustrated by an example of kinetic crack growth publication-title: J. Mech. Phys. Solids. doi: 10.1016/j.jmps.2019.103686 – volume: 189 start-page: 339 year: 2018 ident: 10.1016/j.cma.2021.114068_b19 article-title: Effective 2D and 3D crack propagation with local mesh refinement and the screened Poisson equation publication-title: Eng. Fract. Mech. doi: 10.1016/j.engfracmech.2017.11.017 – volume: 106 year: 2020 ident: 10.1016/j.cma.2021.114068_b47 article-title: Transfer learning enhanced physics informed neural network for phase-field modeling of fracture publication-title: Theor. Appl. Fract. Mech. doi: 10.1016/j.tafmec.2019.102447 – volume: 33 start-page: 390 year: 2015 ident: 10.1016/j.cma.2021.114068_b6 article-title: Thermal breakage and fallout behaviors of non-tempered glass under the effect of water film publication-title: J. Fire Sci. doi: 10.1177/0734904115599668 – volume: 142 year: 2020 ident: 10.1016/j.cma.2021.114068_b40 article-title: Modeling microfracture evolution in heterogeneous composites: A coupled cohesive phase field model publication-title: J. Mech. Phys. Solids. doi: 10.1016/j.jmps.2020.103968 – volume: 211 start-page: 321 year: 2019 ident: 10.1016/j.cma.2021.114068_b37 article-title: Phase field method for simulating the brittle fracture of fiber reinforced composites publication-title: Eng. Fract. Mech. doi: 10.1016/j.engfracmech.2019.02.033 |
SSID | ssj0000812 |
Score | 2.4545615 |
Snippet | This paper presents a novel phase-field thermomechanical modeling framework for predicting complicated behaviors of thermal cracking in glass panes under fire.... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 114068 |
SubjectTerms | CAD Computer aided design Crack initiation Crack propagation Cracking (fracturing) Evolution Failure Finite element method Fixation Glass pane Heating rate Mathematical analysis Mathematical models Numerical models Thermal cracking Thermal simulation Thermal strains Thermomechanical analysis |
Title | A phase-field thermomechanical framework for modeling failure and crack evolution in glass panes under fire |
URI | https://dx.doi.org/10.1016/j.cma.2021.114068 https://www.proquest.com/docview/2577527694 |
Volume | 385 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T9xAEB7B0SRFEkgiIICmSBXJwfY-7rY8IdAFJKog0a32qVwI5nR3SZnfzux6TR5CFDSWbHksa2b2m8_yzLcAH71xjotoqtDQgcuoKlMHymXbRO_H0bOY1T4v5eyKn1-L6w04GWZhUltlwf4e0zNalyvHxZvHi_k8zfjypMVO9ScNmCq5CVstU1KMYGv65WJ2-QeQJ00vGs5FlQyGn5u5zctl9aG2SaK5dRJcfbw8_QfUufqcvYFXhTbitH-zbdgI3Q68LhQSywJd7cDLv_QF38LNFBffqExVuU8NE9e7vbsNadg3xQbj0JmFRF0xb4pDdhjNPDWro-k8uqVxNxh-lQzFeYeZcCOhSFhhGkFbYiQfvoOrs9OvJ7Oq7K5QOaaadWVZ7UVriCD5ehKljPQhaFScOBNciIFolqEC1zImvLVhrKywPITWCStdtIqx9zDq7rqwC-gz0yDLxgeuammkaqNwDZNBTZhke1APTtWuSI-nHTB-6KHH7LumOOgUB93HYQ8-PZgset2Np27mQ6T0P8mjqS48ZXYwRFWXlbvSBGFj0Y6l4vvPe-oHeJHO-nnFAxitlz_DIRGXtT2Czc-_m6OSnvfC-e2a |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PT9VAEJ4gHtSDKEoAUefgyaTSdn_07ZEQyFOREyTcNvszPpHy8t7To387s9utiDEcvPTQ7jTNzuzM1-w33wK888Y5LqKpQkMXLqOqTB0olm0Tve-iZzGrfZ7K6Tn_dCEu1uBw7IVJtMqS-4ecnrN1ubNfZnN_PpulHl-etNip_qQGUyUfwEMuWJd4fR9-3fI8qOYNkuFcVGn4uLWZSV4uaw-1TZLMrZPc6r-L019pOtee42fwtIBGPBi-6zmshX4TNgqAxLI8l5vw5A91wRdweYDzr1SkqsxSw4T0rq6vQmr1TZ7BOPKykIAr5iNxyA6jmSWqOpreo1sYd4nhZ4lPnPWY4TZSDglLTA1oC4w0gy_h_Pjo7HBalbMVKsdUs6osq71oDcEjX0-ilJF-A42KE2eCCzEQyDJU3lrGhLc2dMoKy0NonbDSRasY24L1_roP24A-4wyybHzgqpZGqjYK1zAZ1IRJtgP1OKnaFeHxdP7Fdz0yzL5p8oNOftCDH3bg_W-T-aC6cd9gPnpK3wkdTVXhPrO90au6rNulpgTWibaTiu_-31vfwqPp2ZcTffLx9PMreJyeDJ2Le7C-WvwIrwnCrOybHKI3w0PuZQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+phase-field+thermomechanical+framework+for+modeling+failure+and+crack+evolution+in+glass+panes+under+fire&rft.jtitle=Computer+methods+in+applied+mechanics+and+engineering&rft.au=Abdoh%2C+DA&rft.au=Yin%2C+BB&rft.au=Liew%2C+KM&rft.date=2021-11-01&rft.pub=Elsevier+BV&rft.issn=0045-7825&rft.volume=385&rft.spage=1&rft_id=info:doi/10.1016%2Fj.cma.2021.114068&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0045-7825&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0045-7825&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0045-7825&client=summon |