A phase-field thermomechanical framework for modeling failure and crack evolution in glass panes under fire

This paper presents a novel phase-field thermomechanical modeling framework for predicting complicated behaviors of thermal cracking in glass panes under fire. The main idea is to incorporate the proposed mathematical model, which calculates the exact deformation of the mesh elements, into the varia...

Full description

Saved in:
Bibliographic Details
Published inComputer methods in applied mechanics and engineering Vol. 385; p. 114068
Main Authors Abdoh, D.A., Yin, B.B., Liew, K.M.
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier B.V 01.11.2021
Elsevier BV
Subjects
Online AccessGet full text
ISSN0045-7825
1879-2138
DOI10.1016/j.cma.2021.114068

Cover

Abstract This paper presents a novel phase-field thermomechanical modeling framework for predicting complicated behaviors of thermal cracking in glass panes under fire. The main idea is to incorporate the proposed mathematical model, which calculates the exact deformation of the mesh elements, into the variational phase-field model to simulate the thermal fracture behavior in glass panes in an effective manner. The developed model improves upon previous attempts to predict thermal cracking in the following ways: (1) in a major departure from the classical phase-field simulation of thermomechanical fracture, crack evolution can be predicted using only temperature distributions; the phase-field formulations are kept fixed to overcome mesh dependency and convergency; (2) the new modeling framework directly transforms temperature variations into thermal strains (rate of loading) using fewer mesh elements and a larger time step, thus substantially reducing the computational effort; and (3) the proposed model can simultaneously predict multiple cracks distributed in any arbitrary space in the glass panes more realistically than the previous numerical models, regardless of glass pane type and size, fixation method, and thermal loading variation. The proposed coupling model is validated through comparisons against experimental observations and ANSYS simulations. Moreover, the validated model is used to examine for the first time the effect of real engineering influential conditions, namely the heating rate, glass pane size ratio under non-uniform thermal loading, and glass pane fixation with a frame on three sides, on thermal cracking behavior. •A novel modeling framework incorporated the thermomechanical effects is developed for glass cracking analysis.•The framework is successfully modeled and simulated the crack growth and failure paths.•The current results have shown reasonable agreement with the values obtained from the experiments and ANSYS software.•Through the modeling framework, we have carried out parametric studies to examine the influence of heating rate, glass size ratio and fixation method of the problems.
AbstractList This paper presents a novel phase-field thermomechanical modeling framework for predicting complicated behaviors of thermal cracking in glass panes under fire. The main idea is to incorporate the proposed mathematical model, which calculates the exact deformation of the mesh elements, into the variational phase-field model to simulate the thermal fracture behavior in glass panes in an effective manner. The developed model improves upon previous attempts to predict thermal cracking in the following ways: (1) in a major departure from the classical phase-field simulation of thermomechanical fracture, crack evolution can be predicted using only temperature distributions; the phase-field formulations are kept fixed to overcome mesh dependency and convergency; (2) the new modeling framework directly transforms temperature variations into thermal strains (rate of loading) using fewer mesh elements and a larger time step, thus substantially reducing the computational effort; and (3) the proposed model can simultaneously predict multiple cracks distributed in any arbitrary space in the glass panes more realistically than the previous numerical models, regardless of glass pane type and size, fixation method, and thermal loading variation. The proposed coupling model is validated through comparisons against experimental observations and ANSYS simulations. Moreover, the validated model is used to examine for the first time the effect of real engineering influential conditions, namely the heating rate, glass pane size ratio under non-uniform thermal loading, and glass pane fixation with a frame on three sides, on thermal cracking behavior. •A novel modeling framework incorporated the thermomechanical effects is developed for glass cracking analysis.•The framework is successfully modeled and simulated the crack growth and failure paths.•The current results have shown reasonable agreement with the values obtained from the experiments and ANSYS software.•Through the modeling framework, we have carried out parametric studies to examine the influence of heating rate, glass size ratio and fixation method of the problems.
This paper presents a novel phase-field thermomechanical modeling framework for predicting complicated behaviors of thermal cracking in glass panes under fire. The main idea is to incorporate the proposed mathematical model, which calculates the exact deformation of the mesh elements, into the variational phase-field model to simulate the thermal fracture behavior in glass panes in an effective manner. The developed model improves upon previous attempts to predict thermal cracking in the following ways: (1) in a major departure from the classical phase-field simulation of thermomechanical fracture, crack evolution can be predicted using only temperature distributions; the phase-field formulations are kept fixed to overcome mesh dependency and convergency; (2) the new modeling framework directly transforms temperature variations into thermal strains (rate of loading) using fewer mesh elements and a larger time step, thus substantially reducing the computational effort; and (3) the proposed model can simultaneously predict multiple cracks distributed in any arbitrary space in the glass panes more realistically than the previous numerical models, regardless of glass pane type and size, fixation method, and thermal loading variation. The proposed coupling model is validated through comparisons against experimental observations and ANSYS simulations. Moreover, the validated model is used to examine for the first time the effect of real engineering influential conditions, namely the heating rate, glass pane size ratio under non-uniform thermal loading, and glass pane fixation with a frame on three sides, on thermal cracking behavior.
ArticleNumber 114068
Author Yin, B.B.
Liew, K.M.
Abdoh, D.A.
Author_xml – sequence: 1
  givenname: D.A.
  orcidid: 0000-0003-3907-5408
  surname: Abdoh
  fullname: Abdoh, D.A.
– sequence: 2
  givenname: B.B.
  orcidid: 0000-0001-9660-8907
  surname: Yin
  fullname: Yin, B.B.
– sequence: 3
  givenname: K.M.
  orcidid: 0000-0001-7160-7676
  surname: Liew
  fullname: Liew, K.M.
  email: kmliew@cityu.edu.hk
BookMark eNp9kLtOAzEQRS0UJBLgA-gsUW_wY5-iQoiXFIkGamvWHidOdu1g74L4ezYKFQXTTHPPjO5ZkJkPHgm54mzJGS9vtkvdw1IwwZec56ysT8ic11WTCS7rGZkzlhdZVYvijCxS2rJpai7mZHdH9xtImFmHnaHDBmMfetQb8E5DR22EHr9C3FEbIu2Dwc75NbXgujEiBW-ojqB3FD9DNw4ueOo8XXeQEt2Dx0RHbzBS6yJekFMLXcLL331O3h8f3u6fs9Xr08v93SrTsuFD1kpmCgG1bAyrbVlazipobK0BNVrMhYScSyFlYdoWq6Yt2hxR6KIttW0bKc_J9fHuPoaPEdOgtmGMfnqpRFFVhajKJp9S1TGlY0gpolXaDXBoMMSpneJMHcyqrZrMqoNZdTQ7kfwPuY-uh_j9L3N7ZHAq_ukwqqQdeo1mEqMHZYL7h_4BrnaUhg
CitedBy_id crossref_primary_10_1016_j_ijmecsci_2024_109313
crossref_primary_10_1115_1_4064076
crossref_primary_10_1016_j_cma_2023_116577
crossref_primary_10_1016_j_engfracmech_2024_109884
crossref_primary_10_1016_j_jmps_2025_106041
crossref_primary_10_1016_j_compstruct_2024_118112
crossref_primary_10_1016_j_nocx_2022_100102
crossref_primary_10_1016_j_tafmec_2023_103980
crossref_primary_10_1080_10407790_2024_2310708
crossref_primary_10_1016_j_engfracmech_2024_110799
crossref_primary_10_1016_j_compstruct_2023_116961
crossref_primary_10_1038_s41598_024_80884_3
crossref_primary_10_1016_j_engfailanal_2024_108084
crossref_primary_10_1016_j_cma_2022_115318
Cites_doi 10.1016/j.enganabound.2020.08.014
10.1007/s10694-016-0596-0
10.1016/j.conbuildmat.2018.06.088
10.3390/app8122488
10.1016/S0045-7825(03)00391-8
10.1016/j.firesaf.2013.11.003
10.1002/nme.2861
10.1016/j.cma.2019.112808
10.1016/j.firesaf.2014.05.002
10.1016/j.cma.2017.12.021
10.1016/j.engfracmech.2005.02.004
10.3801/IAFSS.FSS.11-666
10.1016/j.cma.2014.11.017
10.1016/j.jmps.2016.06.004
10.1016/j.jmps.2013.09.003
10.1016/j.commatsci.2014.05.071
10.1016/j.jmps.2020.104072
10.1016/j.engfracmech.2013.06.006
10.1016/j.mechmat.2010.07.002
10.1016/j.compstruc.2019.03.005
10.1016/j.proeng.2013.08.118
10.1016/j.cma.2019.04.040
10.1016/j.matdes.2017.08.021
10.1016/j.cma.2010.04.011
10.1088/0965-0393/22/1/015011
10.1016/j.applthermaleng.2017.07.019
10.1016/j.jmps.2019.103684
10.1016/j.jmps.2019.103861
10.1016/j.ijplas.2014.08.016
10.1007/s10704-012-9753-8
10.1016/j.jmps.2010.05.005
10.1016/j.cma.2012.01.008
10.1016/j.cma.2019.01.012
10.1016/j.firesaf.2015.05.002
10.1016/S0022-5096(00)00022-3
10.1016/j.apm.2020.02.033
10.1016/j.engfracmech.2019.106498
10.1016/j.cma.2020.112839
10.1016/j.cma.2019.112790
10.1016/j.applthermaleng.2016.06.057
10.1016/j.finel.2017.05.001
10.1016/j.cma.2021.113872
10.1016/j.engfracmech.2010.11.020
10.1007/s10704-017-0220-4
10.1016/j.matdes.2008.06.049
10.1016/j.ijsolstr.2015.10.012
10.1016/j.compstruc.2004.11.026
10.1016/j.cma.2014.11.016
10.1063/1.478812
10.1016/j.jmps.2019.103810
10.1016/S0045-7825(00)00219-X
10.1016/j.jmps.2019.103686
10.1016/j.engfracmech.2017.11.017
10.1016/j.tafmec.2019.102447
10.1177/0734904115599668
10.1016/j.jmps.2020.103968
10.1016/j.engfracmech.2019.02.033
ContentType Journal Article
Copyright 2021 Elsevier B.V.
Copyright Elsevier BV Nov 1, 2021
Copyright_xml – notice: 2021 Elsevier B.V.
– notice: Copyright Elsevier BV Nov 1, 2021
DBID AAYXX
CITATION
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
DOI 10.1016/j.cma.2021.114068
DatabaseName CrossRef
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Civil Engineering Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
EISSN 1879-2138
ExternalDocumentID 10_1016_j_cma_2021_114068
S0045782521003996
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
AAYFN
ABAOU
ABBOA
ABFNM
ABJNI
ABMAC
ABYKQ
ACAZW
ACDAQ
ACGFS
ACIWK
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIGVJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ARUGR
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
IHE
J1W
JJJVA
KOM
LG9
LY7
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SST
SSV
SSW
SSZ
T5K
TN5
WH7
XPP
ZMT
~02
~G-
29F
AAQXK
AATTM
AAXKI
AAYOK
AAYWO
AAYXX
ABEFU
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADIYS
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
R2-
RIG
SBC
SET
SEW
SSH
VH1
VOH
WUQ
ZY4
7SC
7TB
8FD
EFKBS
FR3
JQ2
KR7
L7M
L~C
L~D
ID FETCH-LOGICAL-c391t-b30d52a839d08f66f107a9f8caecefe423a4132335dbbe79b5b4ee2c5b6cfb933
IEDL.DBID AIKHN
ISSN 0045-7825
IngestDate Fri Jul 25 07:47:56 EDT 2025
Tue Jul 01 04:06:14 EDT 2025
Thu Apr 24 23:05:00 EDT 2025
Fri Feb 23 02:42:32 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Thermal strains
Glass pane
Thermal cracking
Failure
Crack initiation
Crack propagation
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c391t-b30d52a839d08f66f107a9f8caecefe423a4132335dbbe79b5b4ee2c5b6cfb933
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-7160-7676
0000-0003-3907-5408
0000-0001-9660-8907
PQID 2577527694
PQPubID 2045269
ParticipantIDs proquest_journals_2577527694
crossref_citationtrail_10_1016_j_cma_2021_114068
crossref_primary_10_1016_j_cma_2021_114068
elsevier_sciencedirect_doi_10_1016_j_cma_2021_114068
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-11-01
2021-11-00
20211101
PublicationDateYYYYMMDD 2021-11-01
PublicationDate_xml – month: 11
  year: 2021
  text: 2021-11-01
  day: 01
PublicationDecade 2020
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Computer methods in applied mechanics and engineering
PublicationYear 2021
Publisher Elsevier B.V
Elsevier BV
Publisher_xml – name: Elsevier B.V
– name: Elsevier BV
References Abdoh, Ademiloye, Liew (b27) 2020; 120
Xia, Da, Yvonnet (b39) 2018; 332
Areias, Reinoso, Camanho, César de Sá, Rabczuk (b19) 2018; 189
Wei (b23) 1999; 110
Abdoh, Kodur, Liew (b28) 2020; 84
Yang, Ravi-Chandar (b5) 2001; 49
Liu, Zhang (b21) 2019; 355
Wang, Wang, Su, Sun, He, Liew (b60) 2015; 75
Areias, Rabczuk (b18) 2017; 132
Wang, Chen, Wang, Wen, Dembele, Sun, He (b12) 2014; 63
Li, Yin, Zhang, Liew (b41) 2021; 382
Dubé, Doquet, Constantinescu, George, Rémond, Ahzi (b13) 2010; 42
Wang, Wang, Wen, Sun, Liew (b1) 2017; 125
Wei (b24) 2001; 190
Borden, Verhoosel, Scott, Hughes, Landis (b34) 2012; 217–220
Biner (b43) 2017
Ren, Zhuang, Anitescu, Rabczuk (b59) 2019; 217
Samaniego, Anitescu, Goswami, Nguyen-Thanh, Guo, Hamdia, Zhuang, Rabczuk (b46) 2020; 362
Lo, Borden, Ravi-Chandar, Landis (b36) 2019; 132
Meng, Thouless (b10) 2019; 132
Miehe, Hofacker, Schänzel, Aldakheel (b53) 2015; 294
McAuliffe, Waisman (b49) 2015; 65
Tang, Zhang, Tang, Liu (b9) 2016; 80
Wei (b25) 2002; vol. 2002
Shahani, Fasakhodi (b14) 2009; 30
Silling, Askari (b30) 2005; 83
Liu, Zhang, Liew (b22) 2020; 143
Goswami, Anitescu, Chakraborty, Rabczuk (b47) 2020; 106
Nguyen, Waldmann, Bui (b51) 2019; 348
Goswami, Anitescu, Rabczuk (b42) 2020; 361
Wang (b55) 2019
Ha, Bobaru (b31) 2011; 78
Miehe, Hofacker, Welschinger (b44) 2010; 199
Nguyen, Yvonnet, Bornert, Chateau (b38) 2016; 95
Wang, Wang, Shao, Chen, Su, Sun, He, Liew (b2) 2014; 67
Wang, Chen, Wang, Sun (b11) 2013; 62
Wang, Wang, Shao, Chen, Su, Sun, He, Wen, Zong, Liew (b3) 2014; 11
Bouchard, Bay, Chastel (b15) 2003; 192
Svolos, Bronkhorst, Waisman (b50) 2020; 137
Wang, Zhang, Wang, Yang, Sun (b56) 2018; 181
Chen, Wang, Wang, Zhao, Sun, He (b61) 2017; 53
Abdoh, Ademiloye, Liew (b26) 2020; 362
Foraboschi (b8) 2017; 134
Bhowmick, Liu (b45) 2018; 8
Miehe, Schänzel, Ulmer (b52) 2015; 294
Chen, Woody Ju, Su, Huang, Li, Zhai (b32) 2019; 216
Yang, Chen (b16) 2005; 72
Areias, Rabczuk, Dias-da Costa (b20) 2013; 110
Hofacker, Miehe (b33) 2012; 178
Wang, Wang, Sun, He, Liew (b4) 2016; 106
Bahr, Weiss, Bahr, Hofmann, Fischer, Lampenscherf, Balke (b7) 2010; 58
Msekh, Sargado, Jamshidian, Areias, Rabczuk (b57) 2015; 96
Huang, Lu, Liu (b29) 2015; 2015
Xu, Ming, Chen (b35) 2020; 135
Wang, Shao, Wang, Zhao, Sun, He (b6) 2015; 33
Yin, Zhang (b37) 2019; 211
Chu, Li, Liu (b54) 2017; 208
Li, Yin, Zhang, Liew (b40) 2020; 142
Miehe, Welschinger, Hofacker (b58) 2010; 83
Johanns, Lee, Gao, Pharr (b17) 2014; 22
Sicsic, Marigo, Maurini (b48) 2014; 63
Wang (10.1016/j.cma.2021.114068_b56) 2018; 181
Sicsic (10.1016/j.cma.2021.114068_b48) 2014; 63
Tang (10.1016/j.cma.2021.114068_b9) 2016; 80
Wang (10.1016/j.cma.2021.114068_b12) 2014; 63
Li (10.1016/j.cma.2021.114068_b40) 2020; 142
Goswami (10.1016/j.cma.2021.114068_b47) 2020; 106
Nguyen (10.1016/j.cma.2021.114068_b51) 2019; 348
Miehe (10.1016/j.cma.2021.114068_b44) 2010; 199
Xia (10.1016/j.cma.2021.114068_b39) 2018; 332
Wang (10.1016/j.cma.2021.114068_b3) 2014; 11
Bahr (10.1016/j.cma.2021.114068_b7) 2010; 58
Silling (10.1016/j.cma.2021.114068_b30) 2005; 83
Yin (10.1016/j.cma.2021.114068_b37) 2019; 211
Goswami (10.1016/j.cma.2021.114068_b42) 2020; 361
Areias (10.1016/j.cma.2021.114068_b20) 2013; 110
Chen (10.1016/j.cma.2021.114068_b61) 2017; 53
Huang (10.1016/j.cma.2021.114068_b29) 2015; 2015
Areias (10.1016/j.cma.2021.114068_b19) 2018; 189
Dubé (10.1016/j.cma.2021.114068_b13) 2010; 42
Chen (10.1016/j.cma.2021.114068_b32) 2019; 216
McAuliffe (10.1016/j.cma.2021.114068_b49) 2015; 65
Chu (10.1016/j.cma.2021.114068_b54) 2017; 208
Nguyen (10.1016/j.cma.2021.114068_b38) 2016; 95
Xu (10.1016/j.cma.2021.114068_b35) 2020; 135
Areias (10.1016/j.cma.2021.114068_b18) 2017; 132
Msekh (10.1016/j.cma.2021.114068_b57) 2015; 96
Wei (10.1016/j.cma.2021.114068_b25) 2002; vol. 2002
Li (10.1016/j.cma.2021.114068_b41) 2021; 382
Wang (10.1016/j.cma.2021.114068_b55) 2019
Hofacker (10.1016/j.cma.2021.114068_b33) 2012; 178
Bouchard (10.1016/j.cma.2021.114068_b15) 2003; 192
Lo (10.1016/j.cma.2021.114068_b36) 2019; 132
Miehe (10.1016/j.cma.2021.114068_b58) 2010; 83
Meng (10.1016/j.cma.2021.114068_b10) 2019; 132
Wang (10.1016/j.cma.2021.114068_b1) 2017; 125
Ha (10.1016/j.cma.2021.114068_b31) 2011; 78
Wang (10.1016/j.cma.2021.114068_b60) 2015; 75
Johanns (10.1016/j.cma.2021.114068_b17) 2014; 22
Abdoh (10.1016/j.cma.2021.114068_b27) 2020; 120
Yang (10.1016/j.cma.2021.114068_b16) 2005; 72
Borden (10.1016/j.cma.2021.114068_b34) 2012; 217–220
Wang (10.1016/j.cma.2021.114068_b2) 2014; 67
Liu (10.1016/j.cma.2021.114068_b22) 2020; 143
Foraboschi (10.1016/j.cma.2021.114068_b8) 2017; 134
Yang (10.1016/j.cma.2021.114068_b5) 2001; 49
Wang (10.1016/j.cma.2021.114068_b6) 2015; 33
Shahani (10.1016/j.cma.2021.114068_b14) 2009; 30
Ren (10.1016/j.cma.2021.114068_b59) 2019; 217
Abdoh (10.1016/j.cma.2021.114068_b26) 2020; 362
Abdoh (10.1016/j.cma.2021.114068_b28) 2020; 84
Miehe (10.1016/j.cma.2021.114068_b52) 2015; 294
Wei (10.1016/j.cma.2021.114068_b24) 2001; 190
Wang (10.1016/j.cma.2021.114068_b11) 2013; 62
Svolos (10.1016/j.cma.2021.114068_b50) 2020; 137
Biner (10.1016/j.cma.2021.114068_b43) 2017
Wang (10.1016/j.cma.2021.114068_b4) 2016; 106
Bhowmick (10.1016/j.cma.2021.114068_b45) 2018; 8
Wei (10.1016/j.cma.2021.114068_b23) 1999; 110
Samaniego (10.1016/j.cma.2021.114068_b46) 2020; 362
Miehe (10.1016/j.cma.2021.114068_b53) 2015; 294
Liu (10.1016/j.cma.2021.114068_b21) 2019; 355
References_xml – volume: 72
  start-page: 2280
  year: 2005
  end-page: 2297
  ident: b16
  article-title: Finite element modelling of multiple cohesive discrete crack propagation in reinforced concrete beams
  publication-title: Eng. Fract. Mech.
– volume: 65
  start-page: 131
  year: 2015
  end-page: 151
  ident: b49
  article-title: A unified model for metal failure capturing shear banding and fracture
  publication-title: Int. J. Plast.
– volume: 181
  start-page: 588
  year: 2018
  end-page: 597
  ident: b56
  article-title: The effect of glass panel dimension on the fire response of glass façades
  publication-title: Constr. Build. Mater.
– volume: 96
  start-page: 472
  year: 2015
  end-page: 484
  ident: b57
  article-title: Abaqus implementation of phase-field model for brittle fracture
  publication-title: Comput. Mater. Sci.
– volume: 143
  year: 2020
  ident: b22
  article-title: Modeling of crack bridging and failure in heterogeneous composite materials: A damage-plastic multiphase model
  publication-title: J. Mech. Phys. Solids.
– volume: 62
  start-page: 717
  year: 2013
  end-page: 724
  ident: b11
  article-title: Thermal shock effect on the glass thermal stress response and crack propagation
  publication-title: Procedia Eng.
– volume: 132
  start-page: 27
  year: 2017
  end-page: 41
  ident: b18
  article-title: Steiner-point free edge cutting of tetrahedral meshes with applications in fracture
  publication-title: Finite Elem. Anal. Des.
– volume: 75
  start-page: 45
  year: 2015
  end-page: 58
  ident: b60
  article-title: Fracture behavior of framing coated glass curtain walls under fire conditions
  publication-title: Fire Saf. J.
– volume: 63
  start-page: 256
  year: 2014
  end-page: 284
  ident: b48
  article-title: Initiation of a periodic array of cracks in the thermal shock problem: A gradient damage modeling
  publication-title: J. Mech. Phys. Solids.
– volume: 8
  start-page: 1
  year: 2018
  end-page: 19
  ident: b45
  article-title: Three dimensional CS-FEM phase field modeling technique for brittle fracture in elastic solids
  publication-title: Appl. Sci.
– volume: 58
  start-page: 1411
  year: 2010
  end-page: 1421
  ident: b7
  article-title: Scaling behavior of thermal shock crack patterns and tunneling cracks driven by cooling or drying
  publication-title: J. Mech. Phys. Solids.
– volume: 135
  year: 2020
  ident: b35
  article-title: A phase field framework for dynamic adiabatic shear banding
  publication-title: J. Mech. Phys. Solids.
– year: 2017
  ident: b43
  article-title: Programming Phase Field Modeling
– volume: 217
  start-page: 45
  year: 2019
  end-page: 56
  ident: b59
  article-title: An explicit phase field method for brittle dynamic fracture
  publication-title: Comput. Struct.
– volume: 49
  start-page: 91
  year: 2001
  end-page: 130
  ident: b5
  article-title: Crack path instabilities in a quenched glass plate
  publication-title: J. Mech. Phys. Solids.
– volume: 208
  start-page: 115
  year: 2017
  end-page: 130
  ident: b54
  article-title: Study the dynamic crack path in brittle material under thermal shock loading by phase field modeling
  publication-title: Int. J. Fract.
– volume: 110
  start-page: 8930
  year: 1999
  end-page: 8943
  ident: b23
  article-title: Discrete singular convolution for the solution of the Fokker-Planck equation
  publication-title: J. Chem. Phys.
– volume: 362
  year: 2020
  ident: b26
  article-title: Modeling glass cooling mechanism with down-flowing water film via the smoothed particle hydrodynamics
  publication-title: Comput. Methods Appl. Mech. Engrg.
– volume: 192
  start-page: 3887
  year: 2003
  end-page: 3908
  ident: b15
  article-title: Numerical modelling of crack propagation: Automatic remeshing and comparison of different criteria
  publication-title: Comput. Methods Appl. Mech. Engrg.
– volume: 30
  start-page: 1032
  year: 2009
  end-page: 1041
  ident: b14
  article-title: Finite element analysis of dynamic crack propagation using remeshing technique
  publication-title: Mater. Des.
– volume: 132
  year: 2019
  ident: b10
  article-title: Cohesive-zone analyses with stochastic effects, illustrated by an example of kinetic crack growth
  publication-title: J. Mech. Phys. Solids.
– volume: 80
  start-page: 520
  year: 2016
  end-page: 531
  ident: b9
  article-title: Numerical model for the cracking behavior of heterogeneous brittle solids subjected to thermal shock
  publication-title: Int. J. Solids Struct.
– volume: 33
  start-page: 390
  year: 2015
  end-page: 404
  ident: b6
  article-title: Thermal breakage and fallout behaviors of non-tempered glass under the effect of water film
  publication-title: J. Fire Sci.
– volume: 362
  year: 2020
  ident: b46
  article-title: An energy approach to the solution of partial differential equations in computational mechanics via machine learning: Concepts, implementation and applications
  publication-title: Comput. Methods Appl. Mech. Engrg.
– volume: 294
  start-page: 486
  year: 2015
  end-page: 522
  ident: b53
  article-title: Phase field modeling of fracture in multi-physics problems. Part II. Coupled brittle-to-ductile failure criteria and crack propagation in thermo-elastic-plastic solids
  publication-title: Comput. Methods Appl. Mech. Eng.
– volume: 2015
  year: 2015
  ident: b29
  article-title: Nonlocal peridynamic modeling and simulation on crack propagation in concrete structures
  publication-title: Math. Probl. Eng.
– volume: 53
  start-page: 43
  year: 2017
  end-page: 64
  ident: b61
  article-title: Experimental and numerical study of window glass breakage with varying shaded widths under thermal loading
  publication-title: Fire Technol.
– volume: 199
  start-page: 2765
  year: 2010
  end-page: 2778
  ident: b44
  article-title: A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits
  publication-title: Comput. Methods Appl. Mech. Engrg.
– volume: 189
  start-page: 339
  year: 2018
  end-page: 360
  ident: b19
  article-title: Effective 2D and 3D crack propagation with local mesh refinement and the screened Poisson equation
  publication-title: Eng. Fract. Mech.
– volume: 137
  year: 2020
  ident: b50
  article-title: Thermal-conductivity degradation across cracks in coupled thermo-mechanical systems modeled by the phase field fracture method
  publication-title: J. Mech. Phys. Solids.
– volume: 217–220
  start-page: 77
  year: 2012
  end-page: 95
  ident: b34
  article-title: A phase field description of dynamic brittle fracture
  publication-title: Comput. Methods Appl. Mech. Eng.
– volume: 83
  start-page: 1526
  year: 2005
  end-page: 1535
  ident: b30
  article-title: A meshfree method based on the peridynamic model of solid mechanics
  publication-title: Comput. Struct.
– volume: 42
  start-page: 863
  year: 2010
  end-page: 872
  ident: b13
  article-title: Modeling of thermal shock-induced damage in a borosilicate glass
  publication-title: Mech. Mater.
– volume: 132
  year: 2019
  ident: b36
  article-title: A phase field model for fatigue crack growth
  publication-title: J. Mech. Phys. Solids.
– volume: 361
  year: 2020
  ident: b42
  article-title: Adaptive fourth-order phase field analysis for brittle fracture
  publication-title: Comput. Methods Appl. Mech. Engrg.
– volume: 106
  start-page: 438
  year: 2016
  end-page: 442
  ident: b4
  article-title: Influence of fire location on the thermal performance of glass façades
  publication-title: Appl. Therm. Eng.
– volume: vol. 2002
  start-page: 207
  year: 2002
  end-page: 246
  ident: b25
  publication-title: Institutional Knowledge at Singapore Management University
– volume: 11
  start-page: 666
  year: 2014
  end-page: 676
  ident: b3
  article-title: Experimental study on thermal breakage of four-point fixed glass façade
  publication-title: Fire Saf. Sci.
– volume: 78
  start-page: 1156
  year: 2011
  end-page: 1168
  ident: b31
  article-title: Characteristics of dynamic brittle fracture captured with peridynamics
  publication-title: Eng. Fract. Mech.
– start-page: 91
  year: 2019
  end-page: 130
  ident: b55
  article-title: Experimental and Numerical Study of Glass Façade Breakage Behavior under Fire Conditions (Chapter 4)
– volume: 178
  start-page: 113
  year: 2012
  end-page: 129
  ident: b33
  article-title: Continuum phase field modeling of dynamic fracture: Variational principles and staggered FE implementation
  publication-title: Int. J. Fract.
– volume: 67
  start-page: 24
  year: 2014
  end-page: 34
  ident: b2
  article-title: Fracture behavior of a four-point fixed glass curtain wall under fire conditions
  publication-title: Fire Saf. J.
– volume: 110
  start-page: 113
  year: 2013
  end-page: 137
  ident: b20
  article-title: Element-wise fracture algorithm based on rotation of edges
  publication-title: Eng. Fract. Mech.
– volume: 216
  year: 2019
  ident: b32
  article-title: Influence of micro-modulus functions on peridynamics simulation of crack propagation and branching in brittle materials
  publication-title: Eng. Fract. Mech.
– volume: 190
  start-page: 2017
  year: 2001
  end-page: 2030
  ident: b24
  article-title: A new algorithm for solving some mechanical problems
  publication-title: Comput. Methods Appl. Mech. Engrg.
– volume: 142
  year: 2020
  ident: b40
  article-title: Modeling microfracture evolution in heterogeneous composites: A coupled cohesive phase field model
  publication-title: J. Mech. Phys. Solids.
– volume: 106
  year: 2020
  ident: b47
  article-title: Transfer learning enhanced physics informed neural network for phase-field modeling of fracture
  publication-title: Theor. Appl. Fract. Mech.
– volume: 125
  start-page: 662
  year: 2017
  end-page: 672
  ident: b1
  article-title: Investigation of thermal breakage and heat transfer in single, insulated and laminated glazing under fire conditions
  publication-title: Appl. Therm. Eng.
– volume: 355
  start-page: 1026
  year: 2019
  end-page: 1061
  ident: b21
  article-title: A novel XFEM cohesive fracture framework for modeling nonlocal slip in randomly discrete fiber reinforced cementitious composites
  publication-title: Comput. Methods Appl. Mech. Engrg.
– volume: 95
  start-page: 320
  year: 2016
  end-page: 350
  ident: b38
  article-title: Initiation and propagation of complex 3D networks of cracks in heterogeneous quasi-brittle materials: Direct comparison between in situ testing-microCT experiments and phase field simulations
  publication-title: J. Mech. Phys. Solids.
– volume: 382
  year: 2021
  ident: b41
  article-title: A framework for phase-field modeling of interfacial debonding and frictional slipping in heterogeneous composites
  publication-title: Comput. Methods Appl. Mech. Engrg.
– volume: 84
  start-page: 357
  year: 2020
  end-page: 376
  ident: b28
  article-title: Smoothed particle hydrodynamics modeling of the thermal behavior of double skin facades in fires considering the effects of venetian blinds
  publication-title: Appl. Math. Model.
– volume: 83
  start-page: 1273
  year: 2010
  end-page: 1311
  ident: b58
  article-title: Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field FE implementations
  publication-title: Internat. J. Numer. Methods Engrg.
– volume: 332
  start-page: 234
  year: 2018
  end-page: 254
  ident: b39
  article-title: Topology optimization for maximizing the fracture resistance of quasi-brittle composites
  publication-title: Comput. Methods Appl. Mech. Engrg.
– volume: 63
  start-page: 113
  year: 2014
  end-page: 124
  ident: b12
  article-title: Development of a dynamic model for crack propagation in glazing system under thermal loading
  publication-title: Fire Saf. J.
– volume: 294
  start-page: 449
  year: 2015
  end-page: 485
  ident: b52
  article-title: Phase field modeling of fracture in multi-physics problems. Part I. Balance of crack surface and failure criteria for brittle crack propagation in thermo-elastic solids
  publication-title: Comput. Methods Appl. Mech. Engrg.
– volume: 22
  start-page: 0
  year: 2014
  end-page: 21
  ident: b17
  article-title: An evaluation of the advantages and limitations in simulating indentation cracking with cohesive zone finite elements
  publication-title: Model. Simul. Mater. Sci. Eng.
– volume: 211
  start-page: 321
  year: 2019
  end-page: 340
  ident: b37
  article-title: Phase field method for simulating the brittle fracture of fiber reinforced composites
  publication-title: Eng. Fract. Mech.
– volume: 134
  start-page: 301
  year: 2017
  end-page: 319
  ident: b8
  article-title: Analytical modeling to predict thermal shock failure and maximum temperature gradients of a glass panel
  publication-title: Mater. Des.
– volume: 120
  start-page: 195
  year: 2020
  end-page: 210
  ident: b27
  article-title: A meshfree analysis of the thermal behaviors of hot surface glass pane subjects to down-flowing water film via smoothed particle hydrodynamics
  publication-title: Eng. Anal. Bound. Elem.
– volume: 348
  start-page: 1
  year: 2019
  end-page: 28
  ident: b51
  article-title: Computational chemo-thermo-mechanical coupling phase field model for complex fracture induced by early-age shrinkage and hydration heat in cement-based materials
  publication-title: Comput. Methods Appl. Mech. Engrg.
– volume: 2015
  year: 2015
  ident: 10.1016/j.cma.2021.114068_b29
  article-title: Nonlocal peridynamic modeling and simulation on crack propagation in concrete structures
  publication-title: Math. Probl. Eng.
– volume: 120
  start-page: 195
  year: 2020
  ident: 10.1016/j.cma.2021.114068_b27
  article-title: A meshfree analysis of the thermal behaviors of hot surface glass pane subjects to down-flowing water film via smoothed particle hydrodynamics
  publication-title: Eng. Anal. Bound. Elem.
  doi: 10.1016/j.enganabound.2020.08.014
– volume: 53
  start-page: 43
  year: 2017
  ident: 10.1016/j.cma.2021.114068_b61
  article-title: Experimental and numerical study of window glass breakage with varying shaded widths under thermal loading
  publication-title: Fire Technol.
  doi: 10.1007/s10694-016-0596-0
– volume: 181
  start-page: 588
  year: 2018
  ident: 10.1016/j.cma.2021.114068_b56
  article-title: The effect of glass panel dimension on the fire response of glass façades
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2018.06.088
– volume: 8
  start-page: 1
  year: 2018
  ident: 10.1016/j.cma.2021.114068_b45
  article-title: Three dimensional CS-FEM phase field modeling technique for brittle fracture in elastic solids
  publication-title: Appl. Sci.
  doi: 10.3390/app8122488
– volume: 192
  start-page: 3887
  year: 2003
  ident: 10.1016/j.cma.2021.114068_b15
  article-title: Numerical modelling of crack propagation: Automatic remeshing and comparison of different criteria
  publication-title: Comput. Methods Appl. Mech. Engrg.
  doi: 10.1016/S0045-7825(03)00391-8
– volume: 63
  start-page: 113
  year: 2014
  ident: 10.1016/j.cma.2021.114068_b12
  article-title: Development of a dynamic model for crack propagation in glazing system under thermal loading
  publication-title: Fire Saf. J.
  doi: 10.1016/j.firesaf.2013.11.003
– year: 2017
  ident: 10.1016/j.cma.2021.114068_b43
– volume: 83
  start-page: 1273
  year: 2010
  ident: 10.1016/j.cma.2021.114068_b58
  article-title: Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field FE implementations
  publication-title: Internat. J. Numer. Methods Engrg.
  doi: 10.1002/nme.2861
– volume: 361
  year: 2020
  ident: 10.1016/j.cma.2021.114068_b42
  article-title: Adaptive fourth-order phase field analysis for brittle fracture
  publication-title: Comput. Methods Appl. Mech. Engrg.
  doi: 10.1016/j.cma.2019.112808
– volume: 67
  start-page: 24
  year: 2014
  ident: 10.1016/j.cma.2021.114068_b2
  article-title: Fracture behavior of a four-point fixed glass curtain wall under fire conditions
  publication-title: Fire Saf. J.
  doi: 10.1016/j.firesaf.2014.05.002
– volume: 332
  start-page: 234
  year: 2018
  ident: 10.1016/j.cma.2021.114068_b39
  article-title: Topology optimization for maximizing the fracture resistance of quasi-brittle composites
  publication-title: Comput. Methods Appl. Mech. Engrg.
  doi: 10.1016/j.cma.2017.12.021
– volume: 72
  start-page: 2280
  year: 2005
  ident: 10.1016/j.cma.2021.114068_b16
  article-title: Finite element modelling of multiple cohesive discrete crack propagation in reinforced concrete beams
  publication-title: Eng. Fract. Mech.
  doi: 10.1016/j.engfracmech.2005.02.004
– volume: 11
  start-page: 666
  year: 2014
  ident: 10.1016/j.cma.2021.114068_b3
  article-title: Experimental study on thermal breakage of four-point fixed glass façade
  publication-title: Fire Saf. Sci.
  doi: 10.3801/IAFSS.FSS.11-666
– volume: 294
  start-page: 486
  year: 2015
  ident: 10.1016/j.cma.2021.114068_b53
  article-title: Phase field modeling of fracture in multi-physics problems. Part II. Coupled brittle-to-ductile failure criteria and crack propagation in thermo-elastic-plastic solids
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2014.11.017
– volume: 95
  start-page: 320
  year: 2016
  ident: 10.1016/j.cma.2021.114068_b38
  article-title: Initiation and propagation of complex 3D networks of cracks in heterogeneous quasi-brittle materials: Direct comparison between in situ testing-microCT experiments and phase field simulations
  publication-title: J. Mech. Phys. Solids.
  doi: 10.1016/j.jmps.2016.06.004
– volume: 63
  start-page: 256
  year: 2014
  ident: 10.1016/j.cma.2021.114068_b48
  article-title: Initiation of a periodic array of cracks in the thermal shock problem: A gradient damage modeling
  publication-title: J. Mech. Phys. Solids.
  doi: 10.1016/j.jmps.2013.09.003
– volume: 96
  start-page: 472
  year: 2015
  ident: 10.1016/j.cma.2021.114068_b57
  article-title: Abaqus implementation of phase-field model for brittle fracture
  publication-title: Comput. Mater. Sci.
  doi: 10.1016/j.commatsci.2014.05.071
– volume: 143
  year: 2020
  ident: 10.1016/j.cma.2021.114068_b22
  article-title: Modeling of crack bridging and failure in heterogeneous composite materials: A damage-plastic multiphase model
  publication-title: J. Mech. Phys. Solids.
  doi: 10.1016/j.jmps.2020.104072
– volume: 110
  start-page: 113
  year: 2013
  ident: 10.1016/j.cma.2021.114068_b20
  article-title: Element-wise fracture algorithm based on rotation of edges
  publication-title: Eng. Fract. Mech.
  doi: 10.1016/j.engfracmech.2013.06.006
– volume: 42
  start-page: 863
  year: 2010
  ident: 10.1016/j.cma.2021.114068_b13
  article-title: Modeling of thermal shock-induced damage in a borosilicate glass
  publication-title: Mech. Mater.
  doi: 10.1016/j.mechmat.2010.07.002
– start-page: 91
  year: 2019
  ident: 10.1016/j.cma.2021.114068_b55
– volume: 217
  start-page: 45
  year: 2019
  ident: 10.1016/j.cma.2021.114068_b59
  article-title: An explicit phase field method for brittle dynamic fracture
  publication-title: Comput. Struct.
  doi: 10.1016/j.compstruc.2019.03.005
– volume: 62
  start-page: 717
  year: 2013
  ident: 10.1016/j.cma.2021.114068_b11
  article-title: Thermal shock effect on the glass thermal stress response and crack propagation
  publication-title: Procedia Eng.
  doi: 10.1016/j.proeng.2013.08.118
– volume: 355
  start-page: 1026
  year: 2019
  ident: 10.1016/j.cma.2021.114068_b21
  article-title: A novel XFEM cohesive fracture framework for modeling nonlocal slip in randomly discrete fiber reinforced cementitious composites
  publication-title: Comput. Methods Appl. Mech. Engrg.
  doi: 10.1016/j.cma.2019.04.040
– volume: 134
  start-page: 301
  year: 2017
  ident: 10.1016/j.cma.2021.114068_b8
  article-title: Analytical modeling to predict thermal shock failure and maximum temperature gradients of a glass panel
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2017.08.021
– volume: 199
  start-page: 2765
  year: 2010
  ident: 10.1016/j.cma.2021.114068_b44
  article-title: A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits
  publication-title: Comput. Methods Appl. Mech. Engrg.
  doi: 10.1016/j.cma.2010.04.011
– volume: 22
  start-page: 0
  year: 2014
  ident: 10.1016/j.cma.2021.114068_b17
  article-title: An evaluation of the advantages and limitations in simulating indentation cracking with cohesive zone finite elements
  publication-title: Model. Simul. Mater. Sci. Eng.
  doi: 10.1088/0965-0393/22/1/015011
– volume: 125
  start-page: 662
  year: 2017
  ident: 10.1016/j.cma.2021.114068_b1
  article-title: Investigation of thermal breakage and heat transfer in single, insulated and laminated glazing under fire conditions
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2017.07.019
– volume: 132
  year: 2019
  ident: 10.1016/j.cma.2021.114068_b36
  article-title: A phase field model for fatigue crack growth
  publication-title: J. Mech. Phys. Solids.
  doi: 10.1016/j.jmps.2019.103684
– volume: 137
  year: 2020
  ident: 10.1016/j.cma.2021.114068_b50
  article-title: Thermal-conductivity degradation across cracks in coupled thermo-mechanical systems modeled by the phase field fracture method
  publication-title: J. Mech. Phys. Solids.
  doi: 10.1016/j.jmps.2019.103861
– volume: 65
  start-page: 131
  year: 2015
  ident: 10.1016/j.cma.2021.114068_b49
  article-title: A unified model for metal failure capturing shear banding and fracture
  publication-title: Int. J. Plast.
  doi: 10.1016/j.ijplas.2014.08.016
– volume: 178
  start-page: 113
  year: 2012
  ident: 10.1016/j.cma.2021.114068_b33
  article-title: Continuum phase field modeling of dynamic fracture: Variational principles and staggered FE implementation
  publication-title: Int. J. Fract.
  doi: 10.1007/s10704-012-9753-8
– volume: 58
  start-page: 1411
  year: 2010
  ident: 10.1016/j.cma.2021.114068_b7
  article-title: Scaling behavior of thermal shock crack patterns and tunneling cracks driven by cooling or drying
  publication-title: J. Mech. Phys. Solids.
  doi: 10.1016/j.jmps.2010.05.005
– volume: vol. 2002
  start-page: 207
  year: 2002
  ident: 10.1016/j.cma.2021.114068_b25
– volume: 217–220
  start-page: 77
  year: 2012
  ident: 10.1016/j.cma.2021.114068_b34
  article-title: A phase field description of dynamic brittle fracture
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2012.01.008
– volume: 348
  start-page: 1
  year: 2019
  ident: 10.1016/j.cma.2021.114068_b51
  article-title: Computational chemo-thermo-mechanical coupling phase field model for complex fracture induced by early-age shrinkage and hydration heat in cement-based materials
  publication-title: Comput. Methods Appl. Mech. Engrg.
  doi: 10.1016/j.cma.2019.01.012
– volume: 75
  start-page: 45
  year: 2015
  ident: 10.1016/j.cma.2021.114068_b60
  article-title: Fracture behavior of framing coated glass curtain walls under fire conditions
  publication-title: Fire Saf. J.
  doi: 10.1016/j.firesaf.2015.05.002
– volume: 49
  start-page: 91
  year: 2001
  ident: 10.1016/j.cma.2021.114068_b5
  article-title: Crack path instabilities in a quenched glass plate
  publication-title: J. Mech. Phys. Solids.
  doi: 10.1016/S0022-5096(00)00022-3
– volume: 84
  start-page: 357
  year: 2020
  ident: 10.1016/j.cma.2021.114068_b28
  article-title: Smoothed particle hydrodynamics modeling of the thermal behavior of double skin facades in fires considering the effects of venetian blinds
  publication-title: Appl. Math. Model.
  doi: 10.1016/j.apm.2020.02.033
– volume: 216
  year: 2019
  ident: 10.1016/j.cma.2021.114068_b32
  article-title: Influence of micro-modulus functions on peridynamics simulation of crack propagation and branching in brittle materials
  publication-title: Eng. Fract. Mech.
  doi: 10.1016/j.engfracmech.2019.106498
– volume: 362
  year: 2020
  ident: 10.1016/j.cma.2021.114068_b26
  article-title: Modeling glass cooling mechanism with down-flowing water film via the smoothed particle hydrodynamics
  publication-title: Comput. Methods Appl. Mech. Engrg.
  doi: 10.1016/j.cma.2020.112839
– volume: 362
  year: 2020
  ident: 10.1016/j.cma.2021.114068_b46
  article-title: An energy approach to the solution of partial differential equations in computational mechanics via machine learning: Concepts, implementation and applications
  publication-title: Comput. Methods Appl. Mech. Engrg.
  doi: 10.1016/j.cma.2019.112790
– volume: 106
  start-page: 438
  year: 2016
  ident: 10.1016/j.cma.2021.114068_b4
  article-title: Influence of fire location on the thermal performance of glass façades
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2016.06.057
– volume: 132
  start-page: 27
  year: 2017
  ident: 10.1016/j.cma.2021.114068_b18
  article-title: Steiner-point free edge cutting of tetrahedral meshes with applications in fracture
  publication-title: Finite Elem. Anal. Des.
  doi: 10.1016/j.finel.2017.05.001
– volume: 382
  year: 2021
  ident: 10.1016/j.cma.2021.114068_b41
  article-title: A framework for phase-field modeling of interfacial debonding and frictional slipping in heterogeneous composites
  publication-title: Comput. Methods Appl. Mech. Engrg.
  doi: 10.1016/j.cma.2021.113872
– volume: 78
  start-page: 1156
  year: 2011
  ident: 10.1016/j.cma.2021.114068_b31
  article-title: Characteristics of dynamic brittle fracture captured with peridynamics
  publication-title: Eng. Fract. Mech.
  doi: 10.1016/j.engfracmech.2010.11.020
– volume: 208
  start-page: 115
  year: 2017
  ident: 10.1016/j.cma.2021.114068_b54
  article-title: Study the dynamic crack path in brittle material under thermal shock loading by phase field modeling
  publication-title: Int. J. Fract.
  doi: 10.1007/s10704-017-0220-4
– volume: 30
  start-page: 1032
  year: 2009
  ident: 10.1016/j.cma.2021.114068_b14
  article-title: Finite element analysis of dynamic crack propagation using remeshing technique
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2008.06.049
– volume: 80
  start-page: 520
  year: 2016
  ident: 10.1016/j.cma.2021.114068_b9
  article-title: Numerical model for the cracking behavior of heterogeneous brittle solids subjected to thermal shock
  publication-title: Int. J. Solids Struct.
  doi: 10.1016/j.ijsolstr.2015.10.012
– volume: 83
  start-page: 1526
  year: 2005
  ident: 10.1016/j.cma.2021.114068_b30
  article-title: A meshfree method based on the peridynamic model of solid mechanics
  publication-title: Comput. Struct.
  doi: 10.1016/j.compstruc.2004.11.026
– volume: 294
  start-page: 449
  year: 2015
  ident: 10.1016/j.cma.2021.114068_b52
  article-title: Phase field modeling of fracture in multi-physics problems. Part I. Balance of crack surface and failure criteria for brittle crack propagation in thermo-elastic solids
  publication-title: Comput. Methods Appl. Mech. Engrg.
  doi: 10.1016/j.cma.2014.11.016
– volume: 110
  start-page: 8930
  year: 1999
  ident: 10.1016/j.cma.2021.114068_b23
  article-title: Discrete singular convolution for the solution of the Fokker-Planck equation
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.478812
– volume: 135
  year: 2020
  ident: 10.1016/j.cma.2021.114068_b35
  article-title: A phase field framework for dynamic adiabatic shear banding
  publication-title: J. Mech. Phys. Solids.
  doi: 10.1016/j.jmps.2019.103810
– volume: 190
  start-page: 2017
  year: 2001
  ident: 10.1016/j.cma.2021.114068_b24
  article-title: A new algorithm for solving some mechanical problems
  publication-title: Comput. Methods Appl. Mech. Engrg.
  doi: 10.1016/S0045-7825(00)00219-X
– volume: 132
  year: 2019
  ident: 10.1016/j.cma.2021.114068_b10
  article-title: Cohesive-zone analyses with stochastic effects, illustrated by an example of kinetic crack growth
  publication-title: J. Mech. Phys. Solids.
  doi: 10.1016/j.jmps.2019.103686
– volume: 189
  start-page: 339
  year: 2018
  ident: 10.1016/j.cma.2021.114068_b19
  article-title: Effective 2D and 3D crack propagation with local mesh refinement and the screened Poisson equation
  publication-title: Eng. Fract. Mech.
  doi: 10.1016/j.engfracmech.2017.11.017
– volume: 106
  year: 2020
  ident: 10.1016/j.cma.2021.114068_b47
  article-title: Transfer learning enhanced physics informed neural network for phase-field modeling of fracture
  publication-title: Theor. Appl. Fract. Mech.
  doi: 10.1016/j.tafmec.2019.102447
– volume: 33
  start-page: 390
  year: 2015
  ident: 10.1016/j.cma.2021.114068_b6
  article-title: Thermal breakage and fallout behaviors of non-tempered glass under the effect of water film
  publication-title: J. Fire Sci.
  doi: 10.1177/0734904115599668
– volume: 142
  year: 2020
  ident: 10.1016/j.cma.2021.114068_b40
  article-title: Modeling microfracture evolution in heterogeneous composites: A coupled cohesive phase field model
  publication-title: J. Mech. Phys. Solids.
  doi: 10.1016/j.jmps.2020.103968
– volume: 211
  start-page: 321
  year: 2019
  ident: 10.1016/j.cma.2021.114068_b37
  article-title: Phase field method for simulating the brittle fracture of fiber reinforced composites
  publication-title: Eng. Fract. Mech.
  doi: 10.1016/j.engfracmech.2019.02.033
SSID ssj0000812
Score 2.4545615
Snippet This paper presents a novel phase-field thermomechanical modeling framework for predicting complicated behaviors of thermal cracking in glass panes under fire....
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 114068
SubjectTerms CAD
Computer aided design
Crack initiation
Crack propagation
Cracking (fracturing)
Evolution
Failure
Finite element method
Fixation
Glass pane
Heating rate
Mathematical analysis
Mathematical models
Numerical models
Thermal cracking
Thermal simulation
Thermal strains
Thermomechanical analysis
Title A phase-field thermomechanical framework for modeling failure and crack evolution in glass panes under fire
URI https://dx.doi.org/10.1016/j.cma.2021.114068
https://www.proquest.com/docview/2577527694
Volume 385
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T9xAEB7B0SRFEkgiIICmSBXJwfY-7rY8IdAFJKog0a32qVwI5nR3SZnfzux6TR5CFDSWbHksa2b2m8_yzLcAH71xjotoqtDQgcuoKlMHymXbRO_H0bOY1T4v5eyKn1-L6w04GWZhUltlwf4e0zNalyvHxZvHi_k8zfjypMVO9ScNmCq5CVstU1KMYGv65WJ2-QeQJ00vGs5FlQyGn5u5zctl9aG2SaK5dRJcfbw8_QfUufqcvYFXhTbitH-zbdgI3Q68LhQSywJd7cDLv_QF38LNFBffqExVuU8NE9e7vbsNadg3xQbj0JmFRF0xb4pDdhjNPDWro-k8uqVxNxh-lQzFeYeZcCOhSFhhGkFbYiQfvoOrs9OvJ7Oq7K5QOaaadWVZ7UVriCD5ehKljPQhaFScOBNciIFolqEC1zImvLVhrKywPITWCStdtIqx9zDq7rqwC-gz0yDLxgeuammkaqNwDZNBTZhke1APTtWuSI-nHTB-6KHH7LumOOgUB93HYQ8-PZgset2Np27mQ6T0P8mjqS48ZXYwRFWXlbvSBGFj0Y6l4vvPe-oHeJHO-nnFAxitlz_DIRGXtT2Czc-_m6OSnvfC-e2a
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PT9VAEJ4gHtSDKEoAUefgyaTSdn_07ZEQyFOREyTcNvszPpHy8t7To387s9utiDEcvPTQ7jTNzuzM1-w33wK888Y5LqKpQkMXLqOqTB0olm0Tve-iZzGrfZ7K6Tn_dCEu1uBw7IVJtMqS-4ecnrN1ubNfZnN_PpulHl-etNip_qQGUyUfwEMuWJd4fR9-3fI8qOYNkuFcVGn4uLWZSV4uaw-1TZLMrZPc6r-L019pOtee42fwtIBGPBi-6zmshX4TNgqAxLI8l5vw5A91wRdweYDzr1SkqsxSw4T0rq6vQmr1TZ7BOPKykIAr5iNxyA6jmSWqOpreo1sYd4nhZ4lPnPWY4TZSDglLTA1oC4w0gy_h_Pjo7HBalbMVKsdUs6osq71oDcEjX0-ilJF-A42KE2eCCzEQyDJU3lrGhLc2dMoKy0NonbDSRasY24L1_roP24A-4wyybHzgqpZGqjYK1zAZ1IRJtgP1OKnaFeHxdP7Fdz0yzL5p8oNOftCDH3bg_W-T-aC6cd9gPnpK3wkdTVXhPrO90au6rNulpgTWibaTiu_-31vfwqPp2ZcTffLx9PMreJyeDJ2Le7C-WvwIrwnCrOybHKI3w0PuZQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+phase-field+thermomechanical+framework+for+modeling+failure+and+crack+evolution+in+glass+panes+under+fire&rft.jtitle=Computer+methods+in+applied+mechanics+and+engineering&rft.au=Abdoh%2C+DA&rft.au=Yin%2C+BB&rft.au=Liew%2C+KM&rft.date=2021-11-01&rft.pub=Elsevier+BV&rft.issn=0045-7825&rft.volume=385&rft.spage=1&rft_id=info:doi/10.1016%2Fj.cma.2021.114068&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0045-7825&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0045-7825&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0045-7825&client=summon