Further enhancement of the particle shifting technique: Towards better volume conservation and particle distribution in SPH simulations of violent free-surface flows
•An enhanced particle shifting technique (PST) is presented to overcome the deficiencies of traditional PSTs.•The volume-non-conservation issue is tackled by introducing a corrective cohesion force between particles.•The non-physical gap issue is alleviated by introducing a different free-surface tr...
Saved in:
Published in | Applied Mathematical Modelling Vol. 101; pp. 214 - 238 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
New York
Elsevier Inc
01.01.2022
Elsevier BV |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •An enhanced particle shifting technique (PST) is presented to overcome the deficiencies of traditional PSTs.•The volume-non-conservation issue is tackled by introducing a corrective cohesion force between particles.•The non-physical gap issue is alleviated by introducing a different free-surface treatment.•Four benchmarks are implemented to validate the effectiveness and stability of the present scheme.•Satisfactory numerical results are obtained in WCSPH simulations of violent free-surface flows.
[Display omitted]
The non-conservation of total fluid volume, caused by the accumulating errors on the potential energy of the fluid, has been a serious numerical issue in a Weakly-Compressible SPH (WCSPH) simulation when transitional Particle Shifting Techniques (PSTs) are employed to prevent disordered particle distribution and the tensile instability from negative pressures. This paper is dedicated to, within the framework of WCSPH, developing an enhanced version that remedies the aforementioned deficiency of the traditional PSTs, and meanwhile improves the quality of the particle distribution in the vicinity of a free-surface region. To this end, a Corrective Cohesion Force (CCF) between a target particle and its interacting particles is introduced to provide adaptive compensation corresponding to the particle repositioning. Four classical benchmarks are implemented to validate the effectiveness and stability of the present PST. It is demonstrated that the new PST incorporating with the CCF shows satisfactory performance to improve the conservation of total fluid volume, and to obtain more uniform particle distribution in the proximity of the free-surface. In addition, the newly-developed PST also maintains the accuracy and stability inherited from the traditional versions, suggesting that it can be treated as an ideal alternative with regard to the traditional PSTs in a WCSPH simulation, especially for a long-term-duration case with violent free-surface evolutions. |
---|---|
AbstractList | The non-conservation of total fluid volume, caused by the accumulating errors on the potential energy of the fluid, has been a serious numerical issue in a Weakly-Compressible SPH (WCSPH) simulation when transitional Particle Shifting Techniques (PSTs) are employed to prevent disordered particle distribution and the tensile instability from negative pressures. This paper is dedicated to, within the framework of WCSPH, developing an enhanced version that remedies the aforementioned deficiency of the traditional PSTs, and meanwhile improves the quality of the particle distribution in the vicinity of a free-surface region. To this end, a Corrective Cohesion Force (CCF) between a target particle and its interacting particles is introduced to provide adaptive compensation corresponding to the particle repositioning. Four classical benchmarks are implemented to validate the effectiveness and stability of the present PST. It is demonstrated that the new PST incorporating with the CCF shows satisfactory performance to improve the conservation of total fluid volume, and to obtain more uniform particle distribution in the proximity of the free-surface. In addition, the newly-developed PST also maintains the accuracy and stability inherited from the traditional versions, suggesting that it can be treated as an ideal alternative with regard to the traditional PSTs in a WCSPH simulation, especially for a long-term-duration case with violent free-surface evolutions. •An enhanced particle shifting technique (PST) is presented to overcome the deficiencies of traditional PSTs.•The volume-non-conservation issue is tackled by introducing a corrective cohesion force between particles.•The non-physical gap issue is alleviated by introducing a different free-surface treatment.•Four benchmarks are implemented to validate the effectiveness and stability of the present scheme.•Satisfactory numerical results are obtained in WCSPH simulations of violent free-surface flows. [Display omitted] The non-conservation of total fluid volume, caused by the accumulating errors on the potential energy of the fluid, has been a serious numerical issue in a Weakly-Compressible SPH (WCSPH) simulation when transitional Particle Shifting Techniques (PSTs) are employed to prevent disordered particle distribution and the tensile instability from negative pressures. This paper is dedicated to, within the framework of WCSPH, developing an enhanced version that remedies the aforementioned deficiency of the traditional PSTs, and meanwhile improves the quality of the particle distribution in the vicinity of a free-surface region. To this end, a Corrective Cohesion Force (CCF) between a target particle and its interacting particles is introduced to provide adaptive compensation corresponding to the particle repositioning. Four classical benchmarks are implemented to validate the effectiveness and stability of the present PST. It is demonstrated that the new PST incorporating with the CCF shows satisfactory performance to improve the conservation of total fluid volume, and to obtain more uniform particle distribution in the proximity of the free-surface. In addition, the newly-developed PST also maintains the accuracy and stability inherited from the traditional versions, suggesting that it can be treated as an ideal alternative with regard to the traditional PSTs in a WCSPH simulation, especially for a long-term-duration case with violent free-surface evolutions. |
Author | Lyu, Hong-Guan Sun, Peng-Nan |
Author_xml | – sequence: 1 givenname: Hong-Guan orcidid: 0000-0003-1211-979X surname: Lyu fullname: Lyu, Hong-Guan email: hongguanlyu@163.com organization: School of Marine Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China – sequence: 2 givenname: Peng-Nan orcidid: 0000-0001-8886-6260 surname: Sun fullname: Sun, Peng-Nan email: sunpn@mail.sysu.edu.cn organization: School of Marine Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China |
BookMark | eNp9kc1q3DAUhUVJoUnaB-hO0LXdK9kje9pVCPmDQAJNoTshS1cdDbY0leQJeaC8ZzUzgYYuspJ0db57OJwTcuSDR0I-M6gZMPF1XavNVHPgrIa-Bta-I8fQQFctof119Or-gZyktAaARXkdk-fLOeYVRop-pbzGCX2mwdIyoxsVs9Mj0rRyNjv_m2bUK-_-zPiNPoRHFU2iA-Zc8G0Y5wmpDj5h3KrsgqfKm387jEs5umHe_zhPf9xf0-Smedxr085z68K4s7cRsUpztEojtWN4TB_Je6vGhJ9ezlPy8_Li4fy6ur27ujk_u610s2S5GvggGoHGdkIrI_hgFecL1mgYTI9D3zZ9NwBv2r4FhQulRQctt5wZ3cPSiOaUfDns3cRQUqYs12GOvlhKLkAsG9YueFF1B5WOIaWIVmqX9zFyVG6UDOSuE7mWpRO560RCL0snhWT_kZvoJhWf3mS-HxgswbcOo0zaYanKuIg6SxPcG_Rf70arWg |
CitedBy_id | crossref_primary_10_3390_math10061007 crossref_primary_10_1016_j_cma_2024_116776 crossref_primary_10_1016_j_apm_2025_116104 crossref_primary_10_1063_5_0200088 crossref_primary_10_1063_5_0226993 crossref_primary_10_1016_j_cma_2023_116372 crossref_primary_10_1016_j_cpc_2024_109389 crossref_primary_10_1007_s40571_024_00892_y crossref_primary_10_1063_5_0181039 crossref_primary_10_3390_lubricants11030128 crossref_primary_10_1002_fld_5083 crossref_primary_10_1016_j_cma_2022_115356 crossref_primary_10_1016_j_cma_2024_117015 crossref_primary_10_1016_j_enganabound_2024_106080 crossref_primary_10_1063_5_0175947 crossref_primary_10_1016_j_coastaleng_2024_104521 crossref_primary_10_1016_j_oceaneng_2025_120601 crossref_primary_10_1016_j_cma_2023_116460 crossref_primary_10_7498_aps_72_20221922 crossref_primary_10_1016_j_oceaneng_2023_116560 crossref_primary_10_1063_5_0239901 crossref_primary_10_1016_j_oceaneng_2024_119962 crossref_primary_10_1007_s40571_022_00463_z crossref_primary_10_1063_5_0197088 crossref_primary_10_1016_j_cma_2022_115788 crossref_primary_10_1016_j_jcp_2024_113039 crossref_primary_10_1007_s11804_024_00511_5 crossref_primary_10_1016_j_apor_2021_102938 crossref_primary_10_1016_j_oceaneng_2023_113701 crossref_primary_10_1002_nme_7657 crossref_primary_10_1007_s00466_024_02465_5 crossref_primary_10_1016_j_enganabound_2024_105764 crossref_primary_10_1063_5_0133782 crossref_primary_10_1016_j_oceaneng_2022_113581 crossref_primary_10_1007_s40571_024_00758_3 crossref_primary_10_1016_j_oceaneng_2024_119772 crossref_primary_10_1007_s11804_024_00404_7 crossref_primary_10_1017_jfm_2023_995 crossref_primary_10_1007_s42241_023_0020_4 crossref_primary_10_1016_j_cma_2023_116700 crossref_primary_10_1016_j_compgeo_2024_106802 crossref_primary_10_1016_j_jcp_2025_113945 crossref_primary_10_1016_j_cma_2022_115659 crossref_primary_10_1016_j_jcp_2023_112213 crossref_primary_10_1007_s40571_024_00815_x crossref_primary_10_1016_j_apm_2022_10_037 crossref_primary_10_1016_j_cma_2023_116640 crossref_primary_10_1016_j_oceaneng_2023_116306 crossref_primary_10_1080_21664250_2024_2442201 crossref_primary_10_1016_j_cma_2023_116203 crossref_primary_10_3390_fluids8050137 crossref_primary_10_1016_j_ijmecsci_2025_110150 crossref_primary_10_1016_j_euromechflu_2022_01_002 crossref_primary_10_1063_5_0153363 crossref_primary_10_3390_en15020502 crossref_primary_10_1016_j_apor_2023_103712 crossref_primary_10_1016_j_oceaneng_2024_118571 crossref_primary_10_1016_j_apor_2023_103476 crossref_primary_10_1016_j_compfluid_2023_106144 crossref_primary_10_1016_j_jcp_2022_111079 crossref_primary_10_1007_s10409_022_22158_x crossref_primary_10_1016_j_jcp_2024_113336 |
Cites_doi | 10.1016/j.oceaneng.2021.108576 10.1016/j.jcp.2010.01.019 10.1063/1.4986004 10.1007/s42241-020-0039-8 10.1016/S0045-7825(96)01090-0 10.1103/PhysRevE.79.056701 10.1016/j.cpc.2014.06.008 10.1002/fld.3819 10.1016/j.cpc.2009.11.002 10.1016/j.apm.2021.01.011 10.1016/j.apm.2019.02.048 10.1088/0034-4885/68/8/R01 10.1016/j.coastaleng.2019.103617 10.1016/j.apm.2016.06.030 10.1016/j.cma.2016.10.028 10.1016/j.compfluid.2016.05.029 10.1016/j.cpc.2008.12.004 10.1006/jcph.1994.1034 10.1016/j.apor.2014.06.006 10.1007/s11831-010-9040-7 10.1016/j.apm.2021.06.029 10.1016/j.enganabound.2019.03.033 10.1016/j.cpc.2012.07.006 10.1007/s00466-018-1542-4 10.1016/j.cma.2020.113189 10.1016/j.jcp.2008.06.005 10.1016/j.cma.2019.01.045 10.2112/JCOASTRES-D-17-00188.1 10.1063/1.5068697 10.3390/w12113189 10.1016/j.compfluid.2013.05.001 10.1002/fld.3671 10.1016/j.jcp.2020.109255 10.1002/nme.5608 10.1016/j.apor.2021.102602 10.1016/j.jcp.2009.05.032 10.1080/21664250.2018.1436243 10.1080/00221686.2015.1119209 10.1016/j.apor.2020.102508 10.1016/j.compfluid.2018.10.018 10.1016/j.compfluid.2017.12.012 10.1016/S1001-6058(16)60730-8 10.1016/j.apor.2013.03.006 10.1016/j.jcp.2019.109092 10.1006/jcph.1999.6246 10.1146/annurev-fluid-010816-060121 10.1016/j.jcp.2013.02.002 10.1016/j.cma.2019.112580 10.1016/j.cma.2020.113653 10.1007/BF02123482 10.1016/j.compfluid.2020.104806 10.1016/j.jcp.2016.02.039 10.1016/j.enganabound.2019.03.012 10.1016/j.jcp.2010.02.011 10.1016/j.oceaneng.2015.06.016 10.1016/j.cpc.2021.108066 10.1016/0021-9991(83)90036-0 10.1006/jcph.2000.6439 10.1016/j.oceaneng.2020.108552 10.1016/j.jcp.2016.08.047 10.1016/j.jcp.2011.10.027 10.1016/j.jfluidstructs.2020.102942 10.1006/jcph.1995.1010 10.1016/j.jfluidstructs.2014.03.009 10.1016/j.apor.2021.102714 10.1016/j.jcp.2017.12.006 10.1016/j.oceaneng.2016.03.040 10.1063/1.5079315 10.1016/j.cma.2020.113176 10.1016/S0021-9991(03)00324-3 10.1016/j.cma.2010.12.016 10.1016/j.jcp.2012.05.005 10.1016/j.jcp.2016.12.005 10.1002/1097-0207(20000810)48:10<1503::AID-NME832>3.0.CO;2-D |
ContentType | Journal Article |
Copyright | 2021 Elsevier Inc. Copyright Elsevier BV Jan 2022 |
Copyright_xml | – notice: 2021 Elsevier Inc. – notice: Copyright Elsevier BV Jan 2022 |
DBID | AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
DOI | 10.1016/j.apm.2021.08.014 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Computer and Information Systems Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics Psychology |
EISSN | 0307-904X |
EndPage | 238 |
ExternalDocumentID | 10_1016_j_apm_2021_08_014 S0307904X21003760 |
GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1RT 1~. 1~5 23M 4.4 457 4G. 5GY 5VS 6I. 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAFTH AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABAOU ABEFU ABFNM ABMAC ABVKL ABXDB ABYKQ ACAZW ACDAQ ACGFS ACNNM ACRLP ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEKER AENEX AEXQZ AFFNX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIGVJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ARUGR ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HZ~ IHE IXB J1W JJJVA KOM LG9 LY7 M26 M41 MHUIS MO0 MVM N9A NCXOZ O-L O9- OAUVE OK1 OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SES SEW SPC SPCBC SST SSW SSZ T5K TN5 WH7 WUQ XJT XPP ZMT ~02 ~G- AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACRPL ACVFH ADCNI ADNMO ADVLN AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH -W8 .7I .GO .QK 0BK 2DF 53G 6J9 7SC 8FD 8VB AAGDL AAGZJ AAHIA AAHSB AAMFJ AAMIU AAPUL AATTQ AAZMC ABCCY ABDBF ABFIM ABIVO ABLIJ ABPEM ABRYG ABTAI ABXUL ABXYU ABZLS ACGOD ACHQT ACTIO ACTOA ACUHS ADAHI ADCVX ADKVQ ADYSH AECIN AEFOU AEGXH AEISY AEKEX AEMOZ AEMXT AEOZL AEPSL AEYOC AEZRU AFHDM AFRVT AGDLA AGMYJ AGRBW AHDZW AHQJS AIJEM AIYEW AJWEG AKBVH AKVCP ALQZU AVBZW AWYRJ BEJHT BLEHA BMOTO BOHLJ CCCUG CQ1 DGFLZ DKSSO EAP EBR EBU EDJ EMK EPL EPS EST ESX E~B E~C FEDTE G-F GTTXZ H13 HF~ HVGLF IPNFZ J.O JQ2 K1G KYCEM L7M LJTGL L~C L~D M4Z NA5 PQQKQ QWB RNANH ROSJB RSYQP S-F STATR TASJS TBQAZ TDBHL TEH TFH TFL TFW TH9 TNTFI TRJHH TUROJ TUS TWZ UPT UT5 UT9 VAE ZL0 ~01 ~S~ |
ID | FETCH-LOGICAL-c391t-b2b636edf76cad62bfa22513c0bd8eb84387b0234840ae5ac67042f21dc809d63 |
IEDL.DBID | .~1 |
ISSN | 0307-904X 1088-8691 |
IngestDate | Fri Jul 25 05:28:32 EDT 2025 Thu Apr 24 23:10:13 EDT 2025 Tue Jul 01 04:24:04 EDT 2025 Fri Feb 23 02:42:20 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Smoothed particle hydrodynamics Particle shifting technique Dam breaking Sloshing Weakly-compressible SPH Violent free-surface flows Volume conservation |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c391t-b2b636edf76cad62bfa22513c0bd8eb84387b0234840ae5ac67042f21dc809d63 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-1211-979X 0000-0001-8886-6260 |
PQID | 2606931452 |
PQPubID | 2045280 |
PageCount | 25 |
ParticipantIDs | proquest_journals_2606931452 crossref_citationtrail_10_1016_j_apm_2021_08_014 crossref_primary_10_1016_j_apm_2021_08_014 elsevier_sciencedirect_doi_10_1016_j_apm_2021_08_014 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | January 2022 2022-01-00 20220101 |
PublicationDateYYYYMMDD | 2022-01-01 |
PublicationDate_xml | – month: 01 year: 2022 text: January 2022 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | Applied Mathematical Modelling |
PublicationYear | 2022 |
Publisher | Elsevier Inc Elsevier BV |
Publisher_xml | – name: Elsevier Inc – name: Elsevier BV |
References | Monaghan, Gingold (bib0035) 1983; 52 Marrone, Colagrossi, Le Touzé, Graziani (bib0058) 2010; 229 Dias, Ghidaglia (bib0073) 2018; 50 Rezavand, Zhang, Hu (bib0072) 2020; 402 Peng, Zhang, Ming (bib0018) 2021; 376 Xie, Zhao, Wan (bib0026) 2020 Sun, Le Touzé, Oger, Zhang (bib0023) 2021; 221 Wang, Meng, Zhang, Ming, Sun (bib0046) 2019; 357 Ming, Zhang, Xue, Wang (bib0020) 2016; 117 Gotoh, Khayyer (bib0004) 2018; 60 Antuono, Colagrossi, Marrone (bib0051) 2012; 183 Xu, Stansby, Laurence (bib0041) 2009; 228 Antuono, Sun, Marrone, Colagrossi (bib0049) 2021; 216 Tanaka, Masunaga (bib0055) 2010; 229 Wang, Chen, Wang, Liao, Zhu, Li (bib0012) 2016; 40 Jiang, Ren, Yuan, Zhou, Wang (bib0017) 2020; 407 Shadloo, Oger, Le Touzé (bib0002) 2016; 136 Colagrossi (bib0066) 2005 Khayyer, Shimizu, Gotoh, Nagashima (bib0025) 2021; 94 Huang, Zhang, Shi, Si, Huang (bib0059) 2018; 113 Zhang, Rezavand, Zhu, Yu, Wu, Zhang, Wang, Hu (bib0032) 2021; 267 Lind, Stansby (bib0033) 2016; 326 Colagrossi, Landrini (bib0036) 2003; 191 Dilts (bib0057) 2000; 48 Zheng, Ma, Shao, Hu, Gui (bib0009) 2019; 35 Sun, Colagrossi, Marrone, Antuono, Zhang (bib0048) 2019; 348 Peng, Zhang, Ming (bib0024) 2021; 222 Krimi, Rezoug, Khelladi, Nogueira, Deligant, Ramírez (bib0013) 2018; 358 Krimi, Jandaghian, Shakibaeinia (bib0047) 2020; 12 Khayyer, Gotoh, Shimizu (bib0043) 2017; 332 Sun, Zhang, Liew (bib0054) 2021; 100 Khayyer, Gotoh, Shimizu (bib0060) 2019; 179 Adami, Hu, Adams (bib0053) 2012; 231 Liu, Liu (bib0030) 2010; 17 Cao, Ming, Zhang (bib0028) 2014; 47 Antuono, Bouscasse, Colagrossi, Marrone (bib0040) 2014; 185 Oger, Marrone, Le Touzé, de Leffe (bib0070) 2016; 313 Randles, Libersky (bib0052) 1996; 139 Xu, Yu (bib0045) 2018; 62 You, Khayyer, Zheng, Gotoh, Ma (bib0006) 2021; 110 He, Zhang, Huang, Liu (bib0008) 2020; 156 Molteni, Colagrossi (bib0037) 2009; 180 Swegle, Hicks, Attaway (bib0039) 1995; 116 Xu, Yu (bib0015) 2019; 73 Ye, Pan, Huang, Liu (bib0034) 2019; 31 Sun, Colagrossi, Marrone, Zhang (bib0044) 2017; 315 Luo, Reeve, Shao, Karunarathna, Lin, Cai (bib0010) 2019; 103 Khayyer, Gotoh (bib0068) 2013; 242 Lobovský, Botia-Vera, Castellana, Mas-Soler, Souto-Iglesias (bib0064) 2014; 48 Wendland (bib0050) 1995; 4 Zhang, Cao, Ming, Zhang (bib0027) 2013; 42 Sun, Le Touzé, Zhang (bib0074) 2019; 104 Monaghan, Rafiee (bib0063) 2013; 71 Souto-Iglesias, Bulian, Botia-Vera (bib0065) 2015; 105 Zhang, Sun, Ming, Colagrossi (bib0021) 2017; 29 Zhang, Khalid, Long, Chang, Liu (bib0022) 2020; 94 Monaghan (bib0001) 1994; 110 Cao, Tao, Zhang, Ming (bib0005) 2019; 31 Tsuruta, Khayyer, Gotoh (bib0069) 2013; 82 Monaghan (bib0029) 2005; 68 Yan, Li, Kan, Zhang, Lai (bib0016) 2020; 368 Antuono, Colagrossi, Marrone, Molteni (bib0038) 2010; 181 Monaghan (bib0061) 2000; 159 Hammani, Marrone, Colagrossi, Oger, Le Touzé (bib0075) 2020; 368 Le Touzé, Colagrossi, Colicchio, Greco (bib0067) 2013; 73 Lee, Moulinec, Xu, Violeau, Laurence, Stansby (bib0056) 2008; 227 Marrone, Antuono, Colagrossi, Colicchio, Le Touzé, Graziani (bib0071) 2011; 200 Cheng, Zhang, Ming (bib0003) 2017; 29 Cao, Ming, Zhang, Tao (bib0014) 2018; 163 Lind, Xu, Stansby, Rogers (bib0042) 2012; 231 Akbari, Torabbeigi (bib0019) 2021; 112 Violeau, Rogers (bib0011) 2016; 54 Cummins, Rudman (bib0031) 1999; 152 Colagrossi, Antuono, Le Touze (bib0062) 2009 Harris, Liang, Shao, Zhang, Roberts (bib0007) 2021; 111 Violeau (10.1016/j.apm.2021.08.014_bib0011) 2016; 54 Xu (10.1016/j.apm.2021.08.014_bib0015) 2019; 73 Huang (10.1016/j.apm.2021.08.014_bib0059) 2018; 113 Zheng (10.1016/j.apm.2021.08.014_bib0009) 2019; 35 Sun (10.1016/j.apm.2021.08.014_sbref0074) 2019; 104 Lobovský (10.1016/j.apm.2021.08.014_sbref0064) 2014; 48 Hammani (10.1016/j.apm.2021.08.014_sbref0075) 2020; 368 Sun (10.1016/j.apm.2021.08.014_bib0023) 2021; 221 Lind (10.1016/j.apm.2021.08.014_sbref0042) 2012; 231 Xu (10.1016/j.apm.2021.08.014_bib0045) 2018; 62 Wang (10.1016/j.apm.2021.08.014_sbref0012) 2016; 40 Cao (10.1016/j.apm.2021.08.014_bib0028) 2014; 47 Zhang (10.1016/j.apm.2021.08.014_bib0032) 2021; 267 Yan (10.1016/j.apm.2021.08.014_bib0016) 2020; 368 Sun (10.1016/j.apm.2021.08.014_sbref0054) 2021; 100 Monaghan (10.1016/j.apm.2021.08.014_sbref0001) 1994; 110 Krimi (10.1016/j.apm.2021.08.014_bib0013) 2018; 358 Cummins (10.1016/j.apm.2021.08.014_sbref0031) 1999; 152 Dias (10.1016/j.apm.2021.08.014_bib0073) 2018; 50 Wendland (10.1016/j.apm.2021.08.014_sbref0050) 1995; 4 Zhang (10.1016/j.apm.2021.08.014_bib0022) 2020; 94 Lee (10.1016/j.apm.2021.08.014_sbref0056) 2008; 227 Monaghan (10.1016/j.apm.2021.08.014_sbref0061) 2000; 159 Akbari (10.1016/j.apm.2021.08.014_bib0019) 2021; 112 Cao (10.1016/j.apm.2021.08.014_bib0014) 2018; 163 You (10.1016/j.apm.2021.08.014_sbref0006) 2021; 110 Harris (10.1016/j.apm.2021.08.014_bib0007) 2021; 111 Oger (10.1016/j.apm.2021.08.014_sbref0070) 2016; 313 Colagrossi (10.1016/j.apm.2021.08.014_sbref0062) 2009 Luo (10.1016/j.apm.2021.08.014_bib0010) 2019; 103 Antuono (10.1016/j.apm.2021.08.014_sbref0038) 2010; 181 Antuono (10.1016/j.apm.2021.08.014_sbref0049) 2021; 216 Rezavand (10.1016/j.apm.2021.08.014_bib0072) 2020; 402 Zhang (10.1016/j.apm.2021.08.014_bib0027) 2013; 42 Antuono (10.1016/j.apm.2021.08.014_sbref0040) 2014; 185 Monaghan (10.1016/j.apm.2021.08.014_bib0035) 1983; 52 Cao (10.1016/j.apm.2021.08.014_bib0005) 2019; 31 Monaghan (10.1016/j.apm.2021.08.014_bib0063) 2013; 71 He (10.1016/j.apm.2021.08.014_bib0008) 2020; 156 Gotoh (10.1016/j.apm.2021.08.014_bib0004) 2018; 60 Peng (10.1016/j.apm.2021.08.014_bib0024) 2021; 222 Ye (10.1016/j.apm.2021.08.014_bib0034) 2019; 31 Marrone (10.1016/j.apm.2021.08.014_sbref0058) 2010; 229 Peng (10.1016/j.apm.2021.08.014_bib0018) 2021; 376 Xu (10.1016/j.apm.2021.08.014_sbref0041) 2009; 228 Wang (10.1016/j.apm.2021.08.014_sbref0046) 2019; 357 Cheng (10.1016/j.apm.2021.08.014_bib0003) 2017; 29 Xie (10.1016/j.apm.2021.08.014_bib0026) 2020 Molteni (10.1016/j.apm.2021.08.014_sbref0037) 2009; 180 Dilts (10.1016/j.apm.2021.08.014_sbref0057) 2000; 48 Colagrossi (10.1016/j.apm.2021.08.014_bib0066) 2005 Jiang (10.1016/j.apm.2021.08.014_bib0017) 2020; 407 Tsuruta (10.1016/j.apm.2021.08.014_sbref0069) 2013; 82 Sun (10.1016/j.apm.2021.08.014_sbref0048) 2019; 348 Swegle (10.1016/j.apm.2021.08.014_sbref0039) 1995; 116 Shadloo (10.1016/j.apm.2021.08.014_sbref0002) 2016; 136 Khayyer (10.1016/j.apm.2021.08.014_sbref0025) 2021; 94 Khayyer (10.1016/j.apm.2021.08.014_sbref0060) 2019; 179 Sun (10.1016/j.apm.2021.08.014_sbref0044) 2017; 315 Tanaka (10.1016/j.apm.2021.08.014_bib0055) 2010; 229 Khayyer (10.1016/j.apm.2021.08.014_sbref0043) 2017; 332 Zhang (10.1016/j.apm.2021.08.014_sbref0021) 2017; 29 Colagrossi (10.1016/j.apm.2021.08.014_bib0036) 2003; 191 Adami (10.1016/j.apm.2021.08.014_sbref0053) 2012; 231 Khayyer (10.1016/j.apm.2021.08.014_sbref0068) 2013; 242 Monaghan (10.1016/j.apm.2021.08.014_bib0029) 2005; 68 Lind (10.1016/j.apm.2021.08.014_sbref0033) 2016; 326 Le Touzé (10.1016/j.apm.2021.08.014_bib0067) 2013; 73 Marrone (10.1016/j.apm.2021.08.014_sbref0071) 2011; 200 Krimi (10.1016/j.apm.2021.08.014_sbref0047) 2020; 12 Randles (10.1016/j.apm.2021.08.014_bib0052) 1996; 139 Ming (10.1016/j.apm.2021.08.014_bib0020) 2016; 117 Liu (10.1016/j.apm.2021.08.014_bib0030) 2010; 17 Antuono (10.1016/j.apm.2021.08.014_sbref0051) 2012; 183 Souto-Iglesias (10.1016/j.apm.2021.08.014_sbref0065) 2015; 105 |
References_xml | – volume: 242 start-page: 211 year: 2013 end-page: 233 ident: bib0068 article-title: Enhancement of performance and stability of MPS mesh-free particle method for multiphase flows characterized by high density ratios publication-title: J. Comput. Phys. – volume: 402 start-page: 109092 year: 2020 ident: bib0072 article-title: A weakly compressible SPH method for violent multi-phase flows with high density ratio publication-title: J. Comput. Phys. – volume: 94 start-page: 242 year: 2021 end-page: 271 ident: bib0025 article-title: A coupled incompressible SPH-hamiltonian SPH solver for hydroelastic fsi corresponding to composite structures publication-title: Appl. Math. Model. – volume: 180 start-page: 861 year: 2009 end-page: 872 ident: bib0037 article-title: A simple procedure to improve the pressure evaluation in hydrodynamic context using the SPH publication-title: Comput. Phys. Commun. – volume: 29 start-page: 187 year: 2017 end-page: 216 ident: bib0021 article-title: Smoothed particle hydrodynamics and its applications in fluid-structure interactions publication-title: J. Hydrodyn. – volume: 326 start-page: 290 year: 2016 end-page: 311 ident: bib0033 article-title: High-order Eulerian incompressible smoothed particle hydrodynamics with transition to lagrangian free-surface motion publication-title: J. Comput. Phys. – volume: 163 start-page: 7 year: 2018 end-page: 19 ident: bib0014 article-title: Multi-phase SPH modelling of air effect on the dynamic flooding of a damaged cabin publication-title: Comput. Fluids – year: 2005 ident: bib0066 publication-title: A Meshless Lagrangian Method for Free-Surface and Interface Flows with Fragmentation – volume: 48 start-page: 407 year: 2014 end-page: 434 ident: bib0064 article-title: Experimental investigation of dynamic pressure loads during dam break publication-title: J. Fluids Struct. – volume: 31 start-page: 032103 year: 2019 ident: bib0005 article-title: Smoothed particle hydrodynamics (SPH) model for coupled analysis of a damaged ship with internal sloshing in beam seas publication-title: Phys. Fluids – volume: 222 start-page: 108576 year: 2021 ident: bib0024 article-title: Numerical simulation of structural damage subjected to the near-field underwater explosion based on SPH and RKPM publication-title: Ocean Eng. – volume: 104 start-page: 240 year: 2019 end-page: 258 ident: bib0074 article-title: Study of a complex fluid-structure dam-breaking benchmark problem using a multi-phase SPH method with APR publication-title: Eng. Anal. Bound. Elem. – volume: 105 start-page: 136 year: 2015 end-page: 159 ident: bib0065 article-title: A set of canonical problems in sloshing. Part 2: influence of tank width on impact pressure statistics in regular forced angular motion publication-title: Ocean Eng. – year: 2009 ident: bib0062 article-title: Theoretical considerations on the free-surface role in the SPH Model publication-title: Phys. Rev. E – volume: 71 start-page: 537 year: 2013 end-page: 561 ident: bib0063 article-title: A simple SPH algorithm for multi-fluid flow with high density ratios publication-title: Int. J. Numer. Methods Fluids – volume: 60 start-page: 79 year: 2018 end-page: 103 ident: bib0004 article-title: On the state-of-the-art of particle methods for coastal and ocean engineering publication-title: Coast. Eng. J. – volume: 185 start-page: 2609 year: 2014 end-page: 2621 ident: bib0040 article-title: A measure of spatial disorder in particle methods publication-title: Comput. Phys. Commun. – volume: 12 year: 2020 ident: bib0047 article-title: A WCSPH particle shifting strategy for simulating violent free surface flows publication-title: Water – volume: 29 start-page: 107101 year: 2017 ident: bib0003 article-title: Study on coupled dynamics of ship and flooding water based on experimental and SPH methods publication-title: Phys. Fluids – volume: 113 start-page: 179 year: 2018 end-page: 207 ident: bib0059 article-title: Coupled finite particle method with a modified particle shifting technology publication-title: Int. J. Numer. Methods Eng. – volume: 228 start-page: 6703 year: 2009 end-page: 6725 ident: bib0041 article-title: Accuracy and stability in incompressible SPH (ISPH) based on the projection method and a new approach publication-title: J. Comput. Phys. – volume: 181 start-page: 532 year: 2010 end-page: 549 ident: bib0038 article-title: Free-surface flows solved by means of SPH schemes with numerical diffusive terms publication-title: Comput. Phys. Commun. – volume: 156 start-page: 103617 year: 2020 ident: bib0008 article-title: Numerical investigation of the solitary wave breaking over a slope by using the finite particle method publication-title: Coast. Eng. – volume: 73 start-page: 715 year: 2019 end-page: 731 ident: bib0015 article-title: Extension of SPH to simulate non-isothermal free surface flows during the injection molding process publication-title: Appl. Math. Model. – volume: 139 start-page: 375 year: 1996 end-page: 408 ident: bib0052 article-title: Smoothed particle hydrodynamics: Some recent improvements and applications publication-title: Comput. Methods Appl. Mech.Engineering – volume: 100 start-page: 33 year: 2021 end-page: 54 ident: bib0054 article-title: Fast detection of free surface and surface tension modelling via single-phase sph publication-title: Appl. Math. Model. – volume: 357 start-page: 112580 year: 2019 ident: bib0046 article-title: Improved particle shifting technology and optimized free-surface detection method for free-surface flows in smoothed particle hydrodynamics publication-title: Comput. Methods Appl. Mech.Eng. – volume: 68 start-page: 1703 year: 2005 end-page: 1759 ident: bib0029 article-title: Smoothed particle hydrodynamics publication-title: Rep. Prog. Phys. – volume: 231 start-page: 7057 year: 2012 end-page: 7075 ident: bib0053 article-title: A generalized wall boundary condition for smoothed particle hydrodynamics publication-title: J. Comput. Phys. – volume: 103 start-page: 160 year: 2019 end-page: 171 ident: bib0010 article-title: Consistent particle method simulation of solitary wave impinging on and overtopping a seawall publication-title: Eng. Anal. Bound. Elem. – volume: 200 start-page: 1526 year: 2011 end-page: 1542 ident: bib0071 article-title: -SPH model for simulating violent impact flows publication-title: Comput. Methods Appl. Mech. Eng. – volume: 35 start-page: 1106 year: 2019 end-page: 1119 ident: bib0009 article-title: An improved 2d+ t incompressible smoothed particle hydrodynamics approach for high-speed vessel waves publication-title: J. Coast. Res. – volume: 368 start-page: 113176 year: 2020 ident: bib0016 article-title: Higher-order nonlocal theory of updated lagrangian particle hydrodynamics (ULPH) and simulations of multiphase flows publication-title: Comput. Methods Appl. Mech.Eng. – volume: 229 start-page: 4279 year: 2010 end-page: 4290 ident: bib0055 article-title: Stabilization and smoothing of pressure in MPS method by quasi-compressibility publication-title: J. Comput. Phys. – volume: 112 start-page: 102714 year: 2021 ident: bib0019 article-title: SPH modeling of wave interaction with reshaped and non-reshaped berm breakwaters with permeable layers publication-title: Appl. Ocean Res. – volume: 332 start-page: 236 year: 2017 end-page: 256 ident: bib0043 article-title: Comparative study on accuracy and conservation properties of two particle regularization schemes and proposal of an optimized particle shifting scheme in ISPH context publication-title: J. Comput. Phys. – volume: 348 start-page: 912 year: 2019 end-page: 934 ident: bib0048 article-title: A consistent approach to particle shifting in the publication-title: Comput. Methods in Applied Mechanics and Engineering – volume: 31 start-page: 011301 year: 2019 ident: bib0034 article-title: Smoothed particle hydrodynamics (SPH) for complex fluid flows: Recent developments in methodology and applications publication-title: Phys. Fluids – volume: 183 start-page: 2570 year: 2012 end-page: 2580 ident: bib0051 article-title: Numerical diffusive terms in weakly-compressible SPH schemes publication-title: Comput. Phys. Commun. – volume: 358 start-page: 53 year: 2018 end-page: 87 ident: bib0013 article-title: Smoothed particle hydrodynamics: a consistent model for interfacial multiphase fluid flow simulations publication-title: J. Comput. Phys. – volume: 368 start-page: 113189 year: 2020 ident: bib0075 article-title: Detailed study on the extension of the publication-title: Comput. Methods Appl. Mech. Eng. – volume: 313 start-page: 76 year: 2016 end-page: 98 ident: bib0070 article-title: SPH accuracy improvement through the combination of a quasi-lagrangian shifting transport velocity and consistent ALE formalisms publication-title: J. Comput. Phys. – volume: 94 start-page: 102942 year: 2020 ident: bib0022 article-title: Investigations on sloshing mitigation using elastic baffles by coupling smoothed finite element method and decoupled finite particle method publication-title: J. Fluids Struct. – volume: 267 start-page: 108066 year: 2021 ident: bib0032 article-title: Sphinxsys: an open-source multi-physics and multi-resolution library based on smoothed particle hydrodynamics publication-title: Comput. Phys. Commun. – volume: 152 start-page: 584 year: 1999 end-page: 607 ident: bib0031 article-title: An SPH projection method publication-title: J. Comput. Phys. – volume: 116 start-page: 123 year: 1995 end-page: 134 ident: bib0039 article-title: Smoothed particle hydrodynamics stability analysis publication-title: J. Comput. Phys. – volume: 82 start-page: 158 year: 2013 end-page: 164 ident: bib0069 article-title: A short note on dynamic stabilization of moving particle semi-implicit method publication-title: Comput. Fluids – volume: 376 start-page: 113653 year: 2021 ident: bib0018 article-title: Particle regeneration technique for smoothed particle hydrodynamics in simulation of compressible multiphase flows publication-title: Comput. Methods Appl. Mech.Eng. – volume: 54 start-page: 1 year: 2016 end-page: 26 ident: bib0011 article-title: Smoothed particle hydrodynamics (SPH) for free-surface flows: past, present and future publication-title: J. Hydraul. Res. – volume: 42 start-page: 24 year: 2013 end-page: 31 ident: bib0027 article-title: Investigation on a damaged ship model sinking into water based on three dimensional SPH method publication-title: Appl. Ocean Res. – volume: 216 start-page: 104806 year: 2021 ident: bib0049 article-title: The publication-title: Comput. Fluids – volume: 407 start-page: 109255 year: 2020 ident: bib0017 article-title: A least-squares particle model with other techniques for 2D viscoelastic fluid/free surface flow publication-title: J. Comput. Phys. – volume: 40 start-page: 9625 year: 2016 end-page: 9655 ident: bib0012 article-title: An overview of smoothed particle hydrodynamics for simulating multiphase flow publication-title: Appl. Math. Model. – volume: 221 start-page: 108552 year: 2021 ident: bib0023 article-title: An accurate FSI-SPH modeling of challenging fluid-structure interaction problems in two and three dimensions publication-title: Ocean Eng. – volume: 50 start-page: 243 year: 2018 end-page: 273 ident: bib0073 article-title: Slamming: Recent progress in the evaluation of impact pressures publication-title: Annu. Rev. Fluid Mech. – volume: 110 start-page: 102508 year: 2021 ident: bib0006 article-title: Enhancement of publication-title: Appl. Ocean Res. – volume: 48 start-page: 1503 year: 2000 end-page: 1524 ident: bib0057 article-title: Moving least-squares particle hydrodynamics ii: conservation and boundaries publication-title: Int. J. Numer. Methods Eng. – volume: 52 start-page: 374 year: 1983 end-page: 389 ident: bib0035 article-title: Shock simulation by the particle method SPH publication-title: J. Comput. Phys. – volume: 227 start-page: 8417 year: 2008 end-page: 8436 ident: bib0056 article-title: Comparisons of weakly compressible and truly incompressible algorithms for the SPH mesh free particle method publication-title: J. Comput. Phys. – volume: 110 start-page: 399 year: 1994 end-page: 406 ident: bib0001 article-title: Simulating free surface flows with SPH publication-title: J. Comput. Phys. – year: 2020 ident: bib0026 article-title: CFD simulations of three-dimensional violent sloshing flows in tanks based on MPS and GPU publication-title: J. Hydrodyn. – volume: 191 start-page: 448 year: 2003 end-page: 475 ident: bib0036 article-title: Numerical simulation of interfacial flows by smoothed particle hydrodynamics publication-title: J. Comput. Phys. – volume: 111 start-page: 102602 year: 2021 ident: bib0007 article-title: MPM simulation of solitary wave run-up on permeable boundaries publication-title: Appl. Ocean Res. – volume: 73 start-page: 660 year: 2013 end-page: 691 ident: bib0067 article-title: A critical investigation of smoothed particle hydrodynamics applied to problems with free-surfaces publication-title: Int. J. Numer. Methods Fluids – volume: 229 start-page: 3652 year: 2010 end-page: 3663 ident: bib0058 article-title: Fast free-surface detection and level-set function definition in SPH solvers publication-title: J. Comput. Phys. – volume: 315 start-page: 25 year: 2017 end-page: 49 ident: bib0044 article-title: The publication-title: Comput. Methods Appl. Mech.Eng. – volume: 231 start-page: 1499 year: 2012 end-page: 1523 ident: bib0042 article-title: Incompressible smoothed particle hydrodynamics for free-surface flows: a generalised diffusion-based algorithm for stability and validations for impulsive flows and propagating waves publication-title: J. Comput. Phys. – volume: 4 start-page: 389 year: 1995 end-page: 396 ident: bib0050 article-title: Piecewise polynomial, positive definite and compactly supported radial functions of minimal degree publication-title: Adv. Comput. Math. – volume: 136 start-page: 11 year: 2016 end-page: 34 ident: bib0002 article-title: Smoothed particle hydrodynamics method for fluid flows, towards industrial applications: motivations, current state, and challenges publication-title: Comput. Fluids – volume: 117 start-page: 359 year: 2016 end-page: 382 ident: bib0020 article-title: Damage characteristics of ship structures subjected to shockwaves of underwater contact explosions publication-title: Ocean Eng. – volume: 179 start-page: 356 year: 2019 end-page: 371 ident: bib0060 article-title: A projection-based particle method with optimized particle shifting for multiphase flows with large density ratios and discontinuous density fields publication-title: Comput. Fluids – volume: 62 start-page: 963 year: 2018 end-page: 990 ident: bib0045 article-title: A technique to remove the tensile instability in weakly compressible SPH publication-title: Comput. Mech. – volume: 159 start-page: 290 year: 2000 end-page: 311 ident: bib0061 article-title: SPH without a tensile instability publication-title: J. Comput. Phys. – volume: 47 start-page: 241 year: 2014 end-page: 254 ident: bib0028 article-title: Sloshing in a rectangular tank based on SPH simulation publication-title: Appl. Ocean Res. – volume: 17 start-page: 25 year: 2010 end-page: 76 ident: bib0030 article-title: Smoothed particle hydrodynamics (SPH): an overview and recent developments publication-title: Arch. Comput. Methods Eng. – volume: 222 start-page: 108576 year: 2021 ident: 10.1016/j.apm.2021.08.014_bib0024 article-title: Numerical simulation of structural damage subjected to the near-field underwater explosion based on SPH and RKPM publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2021.108576 – volume: 229 start-page: 3652 issue: 10 year: 2010 ident: 10.1016/j.apm.2021.08.014_sbref0058 article-title: Fast free-surface detection and level-set function definition in SPH solvers publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2010.01.019 – year: 2005 ident: 10.1016/j.apm.2021.08.014_bib0066 – volume: 29 start-page: 107101 issue: 10 year: 2017 ident: 10.1016/j.apm.2021.08.014_bib0003 article-title: Study on coupled dynamics of ship and flooding water based on experimental and SPH methods publication-title: Phys. Fluids doi: 10.1063/1.4986004 – year: 2020 ident: 10.1016/j.apm.2021.08.014_bib0026 article-title: CFD simulations of three-dimensional violent sloshing flows in tanks based on MPS and GPU publication-title: J. Hydrodyn. doi: 10.1007/s42241-020-0039-8 – volume: 139 start-page: 375 issue: 1 year: 1996 ident: 10.1016/j.apm.2021.08.014_bib0052 article-title: Smoothed particle hydrodynamics: Some recent improvements and applications publication-title: Comput. Methods Appl. Mech.Engineering doi: 10.1016/S0045-7825(96)01090-0 – year: 2009 ident: 10.1016/j.apm.2021.08.014_sbref0062 article-title: Theoretical considerations on the free-surface role in the SPH Model publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.79.056701 – volume: 185 start-page: 2609 issue: 10 year: 2014 ident: 10.1016/j.apm.2021.08.014_sbref0040 article-title: A measure of spatial disorder in particle methods publication-title: Comput. Phys. Commun. doi: 10.1016/j.cpc.2014.06.008 – volume: 73 start-page: 660 issue: 7 year: 2013 ident: 10.1016/j.apm.2021.08.014_bib0067 article-title: A critical investigation of smoothed particle hydrodynamics applied to problems with free-surfaces publication-title: Int. J. Numer. Methods Fluids doi: 10.1002/fld.3819 – volume: 181 start-page: 532 issue: 3 year: 2010 ident: 10.1016/j.apm.2021.08.014_sbref0038 article-title: Free-surface flows solved by means of SPH schemes with numerical diffusive terms publication-title: Comput. Phys. Commun. doi: 10.1016/j.cpc.2009.11.002 – volume: 94 start-page: 242 year: 2021 ident: 10.1016/j.apm.2021.08.014_sbref0025 article-title: A coupled incompressible SPH-hamiltonian SPH solver for hydroelastic fsi corresponding to composite structures publication-title: Appl. Math. Model. doi: 10.1016/j.apm.2021.01.011 – volume: 73 start-page: 715 year: 2019 ident: 10.1016/j.apm.2021.08.014_bib0015 article-title: Extension of SPH to simulate non-isothermal free surface flows during the injection molding process publication-title: Appl. Math. Model. doi: 10.1016/j.apm.2019.02.048 – volume: 68 start-page: 1703 issue: 8 year: 2005 ident: 10.1016/j.apm.2021.08.014_bib0029 article-title: Smoothed particle hydrodynamics publication-title: Rep. Prog. Phys. doi: 10.1088/0034-4885/68/8/R01 – volume: 156 start-page: 103617 year: 2020 ident: 10.1016/j.apm.2021.08.014_bib0008 article-title: Numerical investigation of the solitary wave breaking over a slope by using the finite particle method publication-title: Coast. Eng. doi: 10.1016/j.coastaleng.2019.103617 – volume: 40 start-page: 9625 issue: 23 year: 2016 ident: 10.1016/j.apm.2021.08.014_sbref0012 article-title: An overview of smoothed particle hydrodynamics for simulating multiphase flow publication-title: Appl. Math. Model. doi: 10.1016/j.apm.2016.06.030 – volume: 315 start-page: 25 year: 2017 ident: 10.1016/j.apm.2021.08.014_sbref0044 article-title: The δ-plus-SPH model: simple procedures for a further improvement of the SPH scheme publication-title: Comput. Methods Appl. Mech.Eng. doi: 10.1016/j.cma.2016.10.028 – volume: 136 start-page: 11 year: 2016 ident: 10.1016/j.apm.2021.08.014_sbref0002 article-title: Smoothed particle hydrodynamics method for fluid flows, towards industrial applications: motivations, current state, and challenges publication-title: Comput. Fluids doi: 10.1016/j.compfluid.2016.05.029 – volume: 180 start-page: 861 issue: 6 year: 2009 ident: 10.1016/j.apm.2021.08.014_sbref0037 article-title: A simple procedure to improve the pressure evaluation in hydrodynamic context using the SPH publication-title: Comput. Phys. Commun. doi: 10.1016/j.cpc.2008.12.004 – volume: 110 start-page: 399 issue: 2 year: 1994 ident: 10.1016/j.apm.2021.08.014_sbref0001 article-title: Simulating free surface flows with SPH publication-title: J. Comput. Phys. doi: 10.1006/jcph.1994.1034 – volume: 47 start-page: 241 year: 2014 ident: 10.1016/j.apm.2021.08.014_bib0028 article-title: Sloshing in a rectangular tank based on SPH simulation publication-title: Appl. Ocean Res. doi: 10.1016/j.apor.2014.06.006 – volume: 17 start-page: 25 issue: 1 year: 2010 ident: 10.1016/j.apm.2021.08.014_bib0030 article-title: Smoothed particle hydrodynamics (SPH): an overview and recent developments publication-title: Arch. Comput. Methods Eng. doi: 10.1007/s11831-010-9040-7 – volume: 100 start-page: 33 year: 2021 ident: 10.1016/j.apm.2021.08.014_sbref0054 article-title: Fast detection of free surface and surface tension modelling via single-phase sph publication-title: Appl. Math. Model. doi: 10.1016/j.apm.2021.06.029 – volume: 104 start-page: 240 year: 2019 ident: 10.1016/j.apm.2021.08.014_sbref0074 article-title: Study of a complex fluid-structure dam-breaking benchmark problem using a multi-phase SPH method with APR publication-title: Eng. Anal. Bound. Elem. doi: 10.1016/j.enganabound.2019.03.033 – volume: 183 start-page: 2570 issue: 12 year: 2012 ident: 10.1016/j.apm.2021.08.014_sbref0051 article-title: Numerical diffusive terms in weakly-compressible SPH schemes publication-title: Comput. Phys. Commun. doi: 10.1016/j.cpc.2012.07.006 – volume: 62 start-page: 963 issue: 5 year: 2018 ident: 10.1016/j.apm.2021.08.014_bib0045 article-title: A technique to remove the tensile instability in weakly compressible SPH publication-title: Comput. Mech. doi: 10.1007/s00466-018-1542-4 – volume: 368 start-page: 113189 year: 2020 ident: 10.1016/j.apm.2021.08.014_sbref0075 article-title: Detailed study on the extension of the δ-SPH model to multi-phase flow publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2020.113189 – volume: 227 start-page: 8417 issue: 18 year: 2008 ident: 10.1016/j.apm.2021.08.014_sbref0056 article-title: Comparisons of weakly compressible and truly incompressible algorithms for the SPH mesh free particle method publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2008.06.005 – volume: 348 start-page: 912 year: 2019 ident: 10.1016/j.apm.2021.08.014_sbref0048 article-title: A consistent approach to particle shifting in the δ-plus-SPH model publication-title: Comput. Methods in Applied Mechanics and Engineering doi: 10.1016/j.cma.2019.01.045 – volume: 35 start-page: 1106 issue: 5 year: 2019 ident: 10.1016/j.apm.2021.08.014_bib0009 article-title: An improved 2d+ t incompressible smoothed particle hydrodynamics approach for high-speed vessel waves publication-title: J. Coast. Res. doi: 10.2112/JCOASTRES-D-17-00188.1 – volume: 31 start-page: 011301 issue: 1 year: 2019 ident: 10.1016/j.apm.2021.08.014_bib0034 article-title: Smoothed particle hydrodynamics (SPH) for complex fluid flows: Recent developments in methodology and applications publication-title: Phys. Fluids doi: 10.1063/1.5068697 – volume: 12 issue: 11 year: 2020 ident: 10.1016/j.apm.2021.08.014_sbref0047 article-title: A WCSPH particle shifting strategy for simulating violent free surface flows publication-title: Water doi: 10.3390/w12113189 – volume: 82 start-page: 158 year: 2013 ident: 10.1016/j.apm.2021.08.014_sbref0069 article-title: A short note on dynamic stabilization of moving particle semi-implicit method publication-title: Comput. Fluids doi: 10.1016/j.compfluid.2013.05.001 – volume: 71 start-page: 537 issue: 5 year: 2013 ident: 10.1016/j.apm.2021.08.014_bib0063 article-title: A simple SPH algorithm for multi-fluid flow with high density ratios publication-title: Int. J. Numer. Methods Fluids doi: 10.1002/fld.3671 – volume: 407 start-page: 109255 year: 2020 ident: 10.1016/j.apm.2021.08.014_bib0017 article-title: A least-squares particle model with other techniques for 2D viscoelastic fluid/free surface flow publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2020.109255 – volume: 113 start-page: 179 issue: 2 year: 2018 ident: 10.1016/j.apm.2021.08.014_bib0059 article-title: Coupled finite particle method with a modified particle shifting technology publication-title: Int. J. Numer. Methods Eng. doi: 10.1002/nme.5608 – volume: 111 start-page: 102602 year: 2021 ident: 10.1016/j.apm.2021.08.014_bib0007 article-title: MPM simulation of solitary wave run-up on permeable boundaries publication-title: Appl. Ocean Res. doi: 10.1016/j.apor.2021.102602 – volume: 228 start-page: 6703 issue: 18 year: 2009 ident: 10.1016/j.apm.2021.08.014_sbref0041 article-title: Accuracy and stability in incompressible SPH (ISPH) based on the projection method and a new approach publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2009.05.032 – volume: 60 start-page: 79 issue: 1 year: 2018 ident: 10.1016/j.apm.2021.08.014_bib0004 article-title: On the state-of-the-art of particle methods for coastal and ocean engineering publication-title: Coast. Eng. J. doi: 10.1080/21664250.2018.1436243 – volume: 54 start-page: 1 issue: 1 year: 2016 ident: 10.1016/j.apm.2021.08.014_bib0011 article-title: Smoothed particle hydrodynamics (SPH) for free-surface flows: past, present and future publication-title: J. Hydraul. Res. doi: 10.1080/00221686.2015.1119209 – volume: 110 start-page: 102508 year: 2021 ident: 10.1016/j.apm.2021.08.014_sbref0006 article-title: Enhancement of δ-SPH for ocean engineering applications through incorporation of a background mesh scheme publication-title: Appl. Ocean Res. doi: 10.1016/j.apor.2020.102508 – volume: 179 start-page: 356 year: 2019 ident: 10.1016/j.apm.2021.08.014_sbref0060 article-title: A projection-based particle method with optimized particle shifting for multiphase flows with large density ratios and discontinuous density fields publication-title: Comput. Fluids doi: 10.1016/j.compfluid.2018.10.018 – volume: 163 start-page: 7 year: 2018 ident: 10.1016/j.apm.2021.08.014_bib0014 article-title: Multi-phase SPH modelling of air effect on the dynamic flooding of a damaged cabin publication-title: Comput. Fluids doi: 10.1016/j.compfluid.2017.12.012 – volume: 29 start-page: 187 issue: 2 year: 2017 ident: 10.1016/j.apm.2021.08.014_sbref0021 article-title: Smoothed particle hydrodynamics and its applications in fluid-structure interactions publication-title: J. Hydrodyn. doi: 10.1016/S1001-6058(16)60730-8 – volume: 42 start-page: 24 year: 2013 ident: 10.1016/j.apm.2021.08.014_bib0027 article-title: Investigation on a damaged ship model sinking into water based on three dimensional SPH method publication-title: Appl. Ocean Res. doi: 10.1016/j.apor.2013.03.006 – volume: 402 start-page: 109092 year: 2020 ident: 10.1016/j.apm.2021.08.014_bib0072 article-title: A weakly compressible SPH method for violent multi-phase flows with high density ratio publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2019.109092 – volume: 152 start-page: 584 issue: 2 year: 1999 ident: 10.1016/j.apm.2021.08.014_sbref0031 article-title: An SPH projection method publication-title: J. Comput. Phys. doi: 10.1006/jcph.1999.6246 – volume: 50 start-page: 243 issue: 1 year: 2018 ident: 10.1016/j.apm.2021.08.014_bib0073 article-title: Slamming: Recent progress in the evaluation of impact pressures publication-title: Annu. Rev. Fluid Mech. doi: 10.1146/annurev-fluid-010816-060121 – volume: 242 start-page: 211 year: 2013 ident: 10.1016/j.apm.2021.08.014_sbref0068 article-title: Enhancement of performance and stability of MPS mesh-free particle method for multiphase flows characterized by high density ratios publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2013.02.002 – volume: 357 start-page: 112580 year: 2019 ident: 10.1016/j.apm.2021.08.014_sbref0046 article-title: Improved particle shifting technology and optimized free-surface detection method for free-surface flows in smoothed particle hydrodynamics publication-title: Comput. Methods Appl. Mech.Eng. doi: 10.1016/j.cma.2019.112580 – volume: 376 start-page: 113653 year: 2021 ident: 10.1016/j.apm.2021.08.014_bib0018 article-title: Particle regeneration technique for smoothed particle hydrodynamics in simulation of compressible multiphase flows publication-title: Comput. Methods Appl. Mech.Eng. doi: 10.1016/j.cma.2020.113653 – volume: 4 start-page: 389 issue: 1 year: 1995 ident: 10.1016/j.apm.2021.08.014_sbref0050 article-title: Piecewise polynomial, positive definite and compactly supported radial functions of minimal degree publication-title: Adv. Comput. Math. doi: 10.1007/BF02123482 – volume: 216 start-page: 104806 year: 2021 ident: 10.1016/j.apm.2021.08.014_sbref0049 article-title: The δ-ALE-SPH model: an arbitrary Lagrangian-Eulerian framework for the δ-SPH model with particle shifting technique publication-title: Comput. Fluids doi: 10.1016/j.compfluid.2020.104806 – volume: 313 start-page: 76 year: 2016 ident: 10.1016/j.apm.2021.08.014_sbref0070 article-title: SPH accuracy improvement through the combination of a quasi-lagrangian shifting transport velocity and consistent ALE formalisms publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2016.02.039 – volume: 103 start-page: 160 year: 2019 ident: 10.1016/j.apm.2021.08.014_bib0010 article-title: Consistent particle method simulation of solitary wave impinging on and overtopping a seawall publication-title: Eng. Anal. Bound. Elem. doi: 10.1016/j.enganabound.2019.03.012 – volume: 229 start-page: 4279 issue: 11 year: 2010 ident: 10.1016/j.apm.2021.08.014_bib0055 article-title: Stabilization and smoothing of pressure in MPS method by quasi-compressibility publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2010.02.011 – volume: 105 start-page: 136 year: 2015 ident: 10.1016/j.apm.2021.08.014_sbref0065 article-title: A set of canonical problems in sloshing. Part 2: influence of tank width on impact pressure statistics in regular forced angular motion publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2015.06.016 – volume: 267 start-page: 108066 year: 2021 ident: 10.1016/j.apm.2021.08.014_bib0032 article-title: Sphinxsys: an open-source multi-physics and multi-resolution library based on smoothed particle hydrodynamics publication-title: Comput. Phys. Commun. doi: 10.1016/j.cpc.2021.108066 – volume: 52 start-page: 374 issue: 2 year: 1983 ident: 10.1016/j.apm.2021.08.014_bib0035 article-title: Shock simulation by the particle method SPH publication-title: J. Comput. Phys. doi: 10.1016/0021-9991(83)90036-0 – volume: 159 start-page: 290 issue: 2 year: 2000 ident: 10.1016/j.apm.2021.08.014_sbref0061 article-title: SPH without a tensile instability publication-title: J. Comput. Phys. doi: 10.1006/jcph.2000.6439 – volume: 221 start-page: 108552 year: 2021 ident: 10.1016/j.apm.2021.08.014_bib0023 article-title: An accurate FSI-SPH modeling of challenging fluid-structure interaction problems in two and three dimensions publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2020.108552 – volume: 326 start-page: 290 year: 2016 ident: 10.1016/j.apm.2021.08.014_sbref0033 article-title: High-order Eulerian incompressible smoothed particle hydrodynamics with transition to lagrangian free-surface motion publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2016.08.047 – volume: 231 start-page: 1499 issue: 4 year: 2012 ident: 10.1016/j.apm.2021.08.014_sbref0042 article-title: Incompressible smoothed particle hydrodynamics for free-surface flows: a generalised diffusion-based algorithm for stability and validations for impulsive flows and propagating waves publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2011.10.027 – volume: 94 start-page: 102942 year: 2020 ident: 10.1016/j.apm.2021.08.014_bib0022 article-title: Investigations on sloshing mitigation using elastic baffles by coupling smoothed finite element method and decoupled finite particle method publication-title: J. Fluids Struct. doi: 10.1016/j.jfluidstructs.2020.102942 – volume: 116 start-page: 123 issue: 1 year: 1995 ident: 10.1016/j.apm.2021.08.014_sbref0039 article-title: Smoothed particle hydrodynamics stability analysis publication-title: J. Comput. Phys. doi: 10.1006/jcph.1995.1010 – volume: 48 start-page: 407 year: 2014 ident: 10.1016/j.apm.2021.08.014_sbref0064 article-title: Experimental investigation of dynamic pressure loads during dam break publication-title: J. Fluids Struct. doi: 10.1016/j.jfluidstructs.2014.03.009 – volume: 112 start-page: 102714 year: 2021 ident: 10.1016/j.apm.2021.08.014_bib0019 article-title: SPH modeling of wave interaction with reshaped and non-reshaped berm breakwaters with permeable layers publication-title: Appl. Ocean Res. doi: 10.1016/j.apor.2021.102714 – volume: 358 start-page: 53 year: 2018 ident: 10.1016/j.apm.2021.08.014_bib0013 article-title: Smoothed particle hydrodynamics: a consistent model for interfacial multiphase fluid flow simulations publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2017.12.006 – volume: 117 start-page: 359 year: 2016 ident: 10.1016/j.apm.2021.08.014_bib0020 article-title: Damage characteristics of ship structures subjected to shockwaves of underwater contact explosions publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2016.03.040 – volume: 31 start-page: 032103 issue: 3 year: 2019 ident: 10.1016/j.apm.2021.08.014_bib0005 article-title: Smoothed particle hydrodynamics (SPH) model for coupled analysis of a damaged ship with internal sloshing in beam seas publication-title: Phys. Fluids doi: 10.1063/1.5079315 – volume: 368 start-page: 113176 year: 2020 ident: 10.1016/j.apm.2021.08.014_bib0016 article-title: Higher-order nonlocal theory of updated lagrangian particle hydrodynamics (ULPH) and simulations of multiphase flows publication-title: Comput. Methods Appl. Mech.Eng. doi: 10.1016/j.cma.2020.113176 – volume: 191 start-page: 448 issue: 2 year: 2003 ident: 10.1016/j.apm.2021.08.014_bib0036 article-title: Numerical simulation of interfacial flows by smoothed particle hydrodynamics publication-title: J. Comput. Phys. doi: 10.1016/S0021-9991(03)00324-3 – volume: 200 start-page: 1526 issue: 13 year: 2011 ident: 10.1016/j.apm.2021.08.014_sbref0071 article-title: δ-SPH model for simulating violent impact flows publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2010.12.016 – volume: 231 start-page: 7057 issue: 21 year: 2012 ident: 10.1016/j.apm.2021.08.014_sbref0053 article-title: A generalized wall boundary condition for smoothed particle hydrodynamics publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2012.05.005 – volume: 332 start-page: 236 year: 2017 ident: 10.1016/j.apm.2021.08.014_sbref0043 article-title: Comparative study on accuracy and conservation properties of two particle regularization schemes and proposal of an optimized particle shifting scheme in ISPH context publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2016.12.005 – volume: 48 start-page: 1503 issue: 10 year: 2000 ident: 10.1016/j.apm.2021.08.014_sbref0057 article-title: Moving least-squares particle hydrodynamics ii: conservation and boundaries publication-title: Int. J. Numer. Methods Eng. doi: 10.1002/1097-0207(20000810)48:10<1503::AID-NME832>3.0.CO;2-D |
SSID | ssj0005904 ssj0012860 |
Score | 2.5579855 |
Snippet | •An enhanced particle shifting technique (PST) is presented to overcome the deficiencies of traditional PSTs.•The volume-non-conservation issue is tackled by... The non-conservation of total fluid volume, caused by the accumulating errors on the potential energy of the fluid, has been a serious numerical issue in a... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 214 |
SubjectTerms | Compressibility Conservation Dam breaking Free surfaces Particle shifting technique Potential energy Simulation Sloshing Smoothed particle hydrodynamics Violent free-surface flows Volume conservation Weakly-compressible SPH |
Title | Further enhancement of the particle shifting technique: Towards better volume conservation and particle distribution in SPH simulations of violent free-surface flows |
URI | https://dx.doi.org/10.1016/j.apm.2021.08.014 https://www.proquest.com/docview/2606931452 |
Volume | 101 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBYhvbSH0idNm4Y59FRw17K1ktxbCF3clITSbGBvQk_ikniX9S695d_kf1Zjy9sHNIeeDEKSbc1oHtLMN4S8k6UM0WygmQ4hzxg1VSaD0JkrtRNUG8N7ANOzc15fstPFdLFHTsZcGAyrTLJ_kOm9tE4tk7Sak1XTTC6QPaucLaLTkmNoB2awM4Fc_uH2tzCPKmcjGCL2Hm82-xgvvcJk9GJA8aTsX7rpLyndq57ZE_I42YxwPHzWU7Ln22fk0dkOcLV7Tu5m2zWacuDbK6QjnvnBMkBsg1X6H-iumoBRzrADbv0I8z5stgPTp_XAIKzAYox1Oq0F3bpfczgE2k01sqBp4eJrDV1zk4qAdfjO4a5_A2HtfdZt10FbD-F6-aN7QS5nn-YndZYqMGS2rOgmM4XhJfcuCG6144UJOu5_WtrcOOmNZKUUJmp9Ft1E7afachGFQCioszKvHC9fkv122fpXBKogozscfV8pPCssIumFyA25o5WYOi4OSD6uvbIJnhyrZFyrMQ7tu4rkUkguhZUzKTsg73dDVgM2x32d2UhQ9QeDqag77ht2OBJfpd3dqegD8qqkbFq8_r9Z35CHBaZR9Ec5h2R_s976t9G42ZijnnuPyIPjz1_q8_icfzut65_IMP3T |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKOQAHxFP0AcwBLkhhY8frOEgcELDa0m6F1K20N-OnGlSyq_WuKi78G34BfxA7cZaHRA9IvUaxE81M5uF88w1Cz3jBXUgbcCadyzOKVZVxV8rMFNKUWCrFWgLTyTEbn9IPs-FsC_3oe2EirDL5_s6nt946XRkkaQ4WdT04ieZZ5XQWipY8QjsSsvLQfr0IdZt_ffAuKPk5IaP307fjLI0WyHRR4VWmiGIFs8aVTEvDiHIyGDYudK4Mt4rTgpcqhDMa6h9ph1KzMli3I9honleGFWHfa-g6De4ijk14-e03XEmV0559Mb5e_yu1BZXJRex-Jx1tKKb_CoZ_hYU21o3uoNspSYU3nRzuoi3b3EO3JhuGV38ffR-tlzF3BNucRcOJh4wwdxCuwSIJEPxZ7SKsGjZMsa9g2uJ0Pai2jwg67wg6grrT8TDIxvzaw0Rm3zSUC-oGTj6Owddf0tQxH5_ZgQtW4JbWZn69dFJbcOfzC_8AnV6JXh6i7Wbe2EcIKsdD_R2KbV5aSnSk7nPB_HKDq3JoWLmD8l72Qic-9DiW41z0wLfPIqhLRHWJOKoT0x30YrNk0ZGBXHYz7RUq_rBoEYLVZcv2e-WL5E68CEUnqwpMh2T3_3Z9im6Mp5MjcXRwfLiHbpLYw9GeI-2j7dVybR-HzGqlnrSWDOjTVX86PwHetTff |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Further+enhancement+of+the+particle+shifting+technique%3A+Towards+better+volume+conservation+and+particle+distribution+in+SPH+simulations+of+violent+free-surface+flows&rft.jtitle=Applied+mathematical+modelling&rft.au=Lyu%2C+Hong-Guan&rft.au=Sun%2C+Peng-Nan&rft.date=2022-01-01&rft.pub=Elsevier+Inc&rft.issn=0307-904X&rft.volume=101&rft.spage=214&rft.epage=238&rft_id=info:doi/10.1016%2Fj.apm.2021.08.014&rft.externalDocID=S0307904X21003760 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0307-904X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0307-904X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0307-904X&client=summon |