Further enhancement of the particle shifting technique: Towards better volume conservation and particle distribution in SPH simulations of violent free-surface flows

•An enhanced particle shifting technique (PST) is presented to overcome the deficiencies of traditional PSTs.•The volume-non-conservation issue is tackled by introducing a corrective cohesion force between particles.•The non-physical gap issue is alleviated by introducing a different free-surface tr...

Full description

Saved in:
Bibliographic Details
Published inApplied Mathematical Modelling Vol. 101; pp. 214 - 238
Main Authors Lyu, Hong-Guan, Sun, Peng-Nan
Format Journal Article
LanguageEnglish
Published New York Elsevier Inc 01.01.2022
Elsevier BV
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •An enhanced particle shifting technique (PST) is presented to overcome the deficiencies of traditional PSTs.•The volume-non-conservation issue is tackled by introducing a corrective cohesion force between particles.•The non-physical gap issue is alleviated by introducing a different free-surface treatment.•Four benchmarks are implemented to validate the effectiveness and stability of the present scheme.•Satisfactory numerical results are obtained in WCSPH simulations of violent free-surface flows. [Display omitted] The non-conservation of total fluid volume, caused by the accumulating errors on the potential energy of the fluid, has been a serious numerical issue in a Weakly-Compressible SPH (WCSPH) simulation when transitional Particle Shifting Techniques (PSTs) are employed to prevent disordered particle distribution and the tensile instability from negative pressures. This paper is dedicated to, within the framework of WCSPH, developing an enhanced version that remedies the aforementioned deficiency of the traditional PSTs, and meanwhile improves the quality of the particle distribution in the vicinity of a free-surface region. To this end, a Corrective Cohesion Force (CCF) between a target particle and its interacting particles is introduced to provide adaptive compensation corresponding to the particle repositioning. Four classical benchmarks are implemented to validate the effectiveness and stability of the present PST. It is demonstrated that the new PST incorporating with the CCF shows satisfactory performance to improve the conservation of total fluid volume, and to obtain more uniform particle distribution in the proximity of the free-surface. In addition, the newly-developed PST also maintains the accuracy and stability inherited from the traditional versions, suggesting that it can be treated as an ideal alternative with regard to the traditional PSTs in a WCSPH simulation, especially for a long-term-duration case with violent free-surface evolutions.
AbstractList The non-conservation of total fluid volume, caused by the accumulating errors on the potential energy of the fluid, has been a serious numerical issue in a Weakly-Compressible SPH (WCSPH) simulation when transitional Particle Shifting Techniques (PSTs) are employed to prevent disordered particle distribution and the tensile instability from negative pressures. This paper is dedicated to, within the framework of WCSPH, developing an enhanced version that remedies the aforementioned deficiency of the traditional PSTs, and meanwhile improves the quality of the particle distribution in the vicinity of a free-surface region. To this end, a Corrective Cohesion Force (CCF) between a target particle and its interacting particles is introduced to provide adaptive compensation corresponding to the particle repositioning. Four classical benchmarks are implemented to validate the effectiveness and stability of the present PST. It is demonstrated that the new PST incorporating with the CCF shows satisfactory performance to improve the conservation of total fluid volume, and to obtain more uniform particle distribution in the proximity of the free-surface. In addition, the newly-developed PST also maintains the accuracy and stability inherited from the traditional versions, suggesting that it can be treated as an ideal alternative with regard to the traditional PSTs in a WCSPH simulation, especially for a long-term-duration case with violent free-surface evolutions.
•An enhanced particle shifting technique (PST) is presented to overcome the deficiencies of traditional PSTs.•The volume-non-conservation issue is tackled by introducing a corrective cohesion force between particles.•The non-physical gap issue is alleviated by introducing a different free-surface treatment.•Four benchmarks are implemented to validate the effectiveness and stability of the present scheme.•Satisfactory numerical results are obtained in WCSPH simulations of violent free-surface flows. [Display omitted] The non-conservation of total fluid volume, caused by the accumulating errors on the potential energy of the fluid, has been a serious numerical issue in a Weakly-Compressible SPH (WCSPH) simulation when transitional Particle Shifting Techniques (PSTs) are employed to prevent disordered particle distribution and the tensile instability from negative pressures. This paper is dedicated to, within the framework of WCSPH, developing an enhanced version that remedies the aforementioned deficiency of the traditional PSTs, and meanwhile improves the quality of the particle distribution in the vicinity of a free-surface region. To this end, a Corrective Cohesion Force (CCF) between a target particle and its interacting particles is introduced to provide adaptive compensation corresponding to the particle repositioning. Four classical benchmarks are implemented to validate the effectiveness and stability of the present PST. It is demonstrated that the new PST incorporating with the CCF shows satisfactory performance to improve the conservation of total fluid volume, and to obtain more uniform particle distribution in the proximity of the free-surface. In addition, the newly-developed PST also maintains the accuracy and stability inherited from the traditional versions, suggesting that it can be treated as an ideal alternative with regard to the traditional PSTs in a WCSPH simulation, especially for a long-term-duration case with violent free-surface evolutions.
Author Lyu, Hong-Guan
Sun, Peng-Nan
Author_xml – sequence: 1
  givenname: Hong-Guan
  orcidid: 0000-0003-1211-979X
  surname: Lyu
  fullname: Lyu, Hong-Guan
  email: hongguanlyu@163.com
  organization: School of Marine Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China
– sequence: 2
  givenname: Peng-Nan
  orcidid: 0000-0001-8886-6260
  surname: Sun
  fullname: Sun, Peng-Nan
  email: sunpn@mail.sysu.edu.cn
  organization: School of Marine Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China
BookMark eNp9kc1q3DAUhUVJoUnaB-hO0LXdK9kje9pVCPmDQAJNoTshS1cdDbY0leQJeaC8ZzUzgYYuspJ0db57OJwTcuSDR0I-M6gZMPF1XavNVHPgrIa-Bta-I8fQQFctof119Or-gZyktAaARXkdk-fLOeYVRop-pbzGCX2mwdIyoxsVs9Mj0rRyNjv_m2bUK-_-zPiNPoRHFU2iA-Zc8G0Y5wmpDj5h3KrsgqfKm387jEs5umHe_zhPf9xf0-Smedxr085z68K4s7cRsUpztEojtWN4TB_Je6vGhJ9ezlPy8_Li4fy6ur27ujk_u610s2S5GvggGoHGdkIrI_hgFecL1mgYTI9D3zZ9NwBv2r4FhQulRQctt5wZ3cPSiOaUfDns3cRQUqYs12GOvlhKLkAsG9YueFF1B5WOIaWIVmqX9zFyVG6UDOSuE7mWpRO560RCL0snhWT_kZvoJhWf3mS-HxgswbcOo0zaYanKuIg6SxPcG_Rf70arWg
CitedBy_id crossref_primary_10_3390_math10061007
crossref_primary_10_1016_j_cma_2024_116776
crossref_primary_10_1016_j_apm_2025_116104
crossref_primary_10_1063_5_0200088
crossref_primary_10_1063_5_0226993
crossref_primary_10_1016_j_cma_2023_116372
crossref_primary_10_1016_j_cpc_2024_109389
crossref_primary_10_1007_s40571_024_00892_y
crossref_primary_10_1063_5_0181039
crossref_primary_10_3390_lubricants11030128
crossref_primary_10_1002_fld_5083
crossref_primary_10_1016_j_cma_2022_115356
crossref_primary_10_1016_j_cma_2024_117015
crossref_primary_10_1016_j_enganabound_2024_106080
crossref_primary_10_1063_5_0175947
crossref_primary_10_1016_j_coastaleng_2024_104521
crossref_primary_10_1016_j_oceaneng_2025_120601
crossref_primary_10_1016_j_cma_2023_116460
crossref_primary_10_7498_aps_72_20221922
crossref_primary_10_1016_j_oceaneng_2023_116560
crossref_primary_10_1063_5_0239901
crossref_primary_10_1016_j_oceaneng_2024_119962
crossref_primary_10_1007_s40571_022_00463_z
crossref_primary_10_1063_5_0197088
crossref_primary_10_1016_j_cma_2022_115788
crossref_primary_10_1016_j_jcp_2024_113039
crossref_primary_10_1007_s11804_024_00511_5
crossref_primary_10_1016_j_apor_2021_102938
crossref_primary_10_1016_j_oceaneng_2023_113701
crossref_primary_10_1002_nme_7657
crossref_primary_10_1007_s00466_024_02465_5
crossref_primary_10_1016_j_enganabound_2024_105764
crossref_primary_10_1063_5_0133782
crossref_primary_10_1016_j_oceaneng_2022_113581
crossref_primary_10_1007_s40571_024_00758_3
crossref_primary_10_1016_j_oceaneng_2024_119772
crossref_primary_10_1007_s11804_024_00404_7
crossref_primary_10_1017_jfm_2023_995
crossref_primary_10_1007_s42241_023_0020_4
crossref_primary_10_1016_j_cma_2023_116700
crossref_primary_10_1016_j_compgeo_2024_106802
crossref_primary_10_1016_j_jcp_2025_113945
crossref_primary_10_1016_j_cma_2022_115659
crossref_primary_10_1016_j_jcp_2023_112213
crossref_primary_10_1007_s40571_024_00815_x
crossref_primary_10_1016_j_apm_2022_10_037
crossref_primary_10_1016_j_cma_2023_116640
crossref_primary_10_1016_j_oceaneng_2023_116306
crossref_primary_10_1080_21664250_2024_2442201
crossref_primary_10_1016_j_cma_2023_116203
crossref_primary_10_3390_fluids8050137
crossref_primary_10_1016_j_ijmecsci_2025_110150
crossref_primary_10_1016_j_euromechflu_2022_01_002
crossref_primary_10_1063_5_0153363
crossref_primary_10_3390_en15020502
crossref_primary_10_1016_j_apor_2023_103712
crossref_primary_10_1016_j_oceaneng_2024_118571
crossref_primary_10_1016_j_apor_2023_103476
crossref_primary_10_1016_j_compfluid_2023_106144
crossref_primary_10_1016_j_jcp_2022_111079
crossref_primary_10_1007_s10409_022_22158_x
crossref_primary_10_1016_j_jcp_2024_113336
Cites_doi 10.1016/j.oceaneng.2021.108576
10.1016/j.jcp.2010.01.019
10.1063/1.4986004
10.1007/s42241-020-0039-8
10.1016/S0045-7825(96)01090-0
10.1103/PhysRevE.79.056701
10.1016/j.cpc.2014.06.008
10.1002/fld.3819
10.1016/j.cpc.2009.11.002
10.1016/j.apm.2021.01.011
10.1016/j.apm.2019.02.048
10.1088/0034-4885/68/8/R01
10.1016/j.coastaleng.2019.103617
10.1016/j.apm.2016.06.030
10.1016/j.cma.2016.10.028
10.1016/j.compfluid.2016.05.029
10.1016/j.cpc.2008.12.004
10.1006/jcph.1994.1034
10.1016/j.apor.2014.06.006
10.1007/s11831-010-9040-7
10.1016/j.apm.2021.06.029
10.1016/j.enganabound.2019.03.033
10.1016/j.cpc.2012.07.006
10.1007/s00466-018-1542-4
10.1016/j.cma.2020.113189
10.1016/j.jcp.2008.06.005
10.1016/j.cma.2019.01.045
10.2112/JCOASTRES-D-17-00188.1
10.1063/1.5068697
10.3390/w12113189
10.1016/j.compfluid.2013.05.001
10.1002/fld.3671
10.1016/j.jcp.2020.109255
10.1002/nme.5608
10.1016/j.apor.2021.102602
10.1016/j.jcp.2009.05.032
10.1080/21664250.2018.1436243
10.1080/00221686.2015.1119209
10.1016/j.apor.2020.102508
10.1016/j.compfluid.2018.10.018
10.1016/j.compfluid.2017.12.012
10.1016/S1001-6058(16)60730-8
10.1016/j.apor.2013.03.006
10.1016/j.jcp.2019.109092
10.1006/jcph.1999.6246
10.1146/annurev-fluid-010816-060121
10.1016/j.jcp.2013.02.002
10.1016/j.cma.2019.112580
10.1016/j.cma.2020.113653
10.1007/BF02123482
10.1016/j.compfluid.2020.104806
10.1016/j.jcp.2016.02.039
10.1016/j.enganabound.2019.03.012
10.1016/j.jcp.2010.02.011
10.1016/j.oceaneng.2015.06.016
10.1016/j.cpc.2021.108066
10.1016/0021-9991(83)90036-0
10.1006/jcph.2000.6439
10.1016/j.oceaneng.2020.108552
10.1016/j.jcp.2016.08.047
10.1016/j.jcp.2011.10.027
10.1016/j.jfluidstructs.2020.102942
10.1006/jcph.1995.1010
10.1016/j.jfluidstructs.2014.03.009
10.1016/j.apor.2021.102714
10.1016/j.jcp.2017.12.006
10.1016/j.oceaneng.2016.03.040
10.1063/1.5079315
10.1016/j.cma.2020.113176
10.1016/S0021-9991(03)00324-3
10.1016/j.cma.2010.12.016
10.1016/j.jcp.2012.05.005
10.1016/j.jcp.2016.12.005
10.1002/1097-0207(20000810)48:10<1503::AID-NME832>3.0.CO;2-D
ContentType Journal Article
Copyright 2021 Elsevier Inc.
Copyright Elsevier BV Jan 2022
Copyright_xml – notice: 2021 Elsevier Inc.
– notice: Copyright Elsevier BV Jan 2022
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1016/j.apm.2021.08.014
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
Psychology
EISSN 0307-904X
EndPage 238
ExternalDocumentID 10_1016_j_apm_2021_08_014
S0307904X21003760
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1RT
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
6I.
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABAOU
ABEFU
ABFNM
ABMAC
ABVKL
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AEXQZ
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HZ~
IHE
IXB
J1W
JJJVA
KOM
LG9
LY7
M26
M41
MHUIS
MO0
MVM
N9A
NCXOZ
O-L
O9-
OAUVE
OK1
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SST
SSW
SSZ
T5K
TN5
WH7
WUQ
XJT
XPP
ZMT
~02
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
-W8
.7I
.GO
.QK
0BK
2DF
53G
6J9
7SC
8FD
8VB
AAGDL
AAGZJ
AAHIA
AAHSB
AAMFJ
AAMIU
AAPUL
AATTQ
AAZMC
ABCCY
ABDBF
ABFIM
ABIVO
ABLIJ
ABPEM
ABRYG
ABTAI
ABXUL
ABXYU
ABZLS
ACGOD
ACHQT
ACTIO
ACTOA
ACUHS
ADAHI
ADCVX
ADKVQ
ADYSH
AECIN
AEFOU
AEGXH
AEISY
AEKEX
AEMOZ
AEMXT
AEOZL
AEPSL
AEYOC
AEZRU
AFHDM
AFRVT
AGDLA
AGMYJ
AGRBW
AHDZW
AHQJS
AIJEM
AIYEW
AJWEG
AKBVH
AKVCP
ALQZU
AVBZW
AWYRJ
BEJHT
BLEHA
BMOTO
BOHLJ
CCCUG
CQ1
DGFLZ
DKSSO
EAP
EBR
EBU
EDJ
EMK
EPL
EPS
EST
ESX
E~B
E~C
FEDTE
G-F
GTTXZ
H13
HF~
HVGLF
IPNFZ
J.O
JQ2
K1G
KYCEM
L7M
LJTGL
L~C
L~D
M4Z
NA5
PQQKQ
QWB
RNANH
ROSJB
RSYQP
S-F
STATR
TASJS
TBQAZ
TDBHL
TEH
TFH
TFL
TFW
TH9
TNTFI
TRJHH
TUROJ
TUS
TWZ
UPT
UT5
UT9
VAE
ZL0
~01
~S~
ID FETCH-LOGICAL-c391t-b2b636edf76cad62bfa22513c0bd8eb84387b0234840ae5ac67042f21dc809d63
IEDL.DBID .~1
ISSN 0307-904X
1088-8691
IngestDate Fri Jul 25 05:28:32 EDT 2025
Thu Apr 24 23:10:13 EDT 2025
Tue Jul 01 04:24:04 EDT 2025
Fri Feb 23 02:42:20 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Smoothed particle hydrodynamics
Particle shifting technique
Dam breaking
Sloshing
Weakly-compressible SPH
Violent free-surface flows
Volume conservation
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c391t-b2b636edf76cad62bfa22513c0bd8eb84387b0234840ae5ac67042f21dc809d63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-1211-979X
0000-0001-8886-6260
PQID 2606931452
PQPubID 2045280
PageCount 25
ParticipantIDs proquest_journals_2606931452
crossref_citationtrail_10_1016_j_apm_2021_08_014
crossref_primary_10_1016_j_apm_2021_08_014
elsevier_sciencedirect_doi_10_1016_j_apm_2021_08_014
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January 2022
2022-01-00
20220101
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – month: 01
  year: 2022
  text: January 2022
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Applied Mathematical Modelling
PublicationYear 2022
Publisher Elsevier Inc
Elsevier BV
Publisher_xml – name: Elsevier Inc
– name: Elsevier BV
References Monaghan, Gingold (bib0035) 1983; 52
Marrone, Colagrossi, Le Touzé, Graziani (bib0058) 2010; 229
Dias, Ghidaglia (bib0073) 2018; 50
Rezavand, Zhang, Hu (bib0072) 2020; 402
Peng, Zhang, Ming (bib0018) 2021; 376
Xie, Zhao, Wan (bib0026) 2020
Sun, Le Touzé, Oger, Zhang (bib0023) 2021; 221
Wang, Meng, Zhang, Ming, Sun (bib0046) 2019; 357
Ming, Zhang, Xue, Wang (bib0020) 2016; 117
Gotoh, Khayyer (bib0004) 2018; 60
Antuono, Colagrossi, Marrone (bib0051) 2012; 183
Xu, Stansby, Laurence (bib0041) 2009; 228
Antuono, Sun, Marrone, Colagrossi (bib0049) 2021; 216
Tanaka, Masunaga (bib0055) 2010; 229
Wang, Chen, Wang, Liao, Zhu, Li (bib0012) 2016; 40
Jiang, Ren, Yuan, Zhou, Wang (bib0017) 2020; 407
Shadloo, Oger, Le Touzé (bib0002) 2016; 136
Colagrossi (bib0066) 2005
Khayyer, Shimizu, Gotoh, Nagashima (bib0025) 2021; 94
Huang, Zhang, Shi, Si, Huang (bib0059) 2018; 113
Zhang, Rezavand, Zhu, Yu, Wu, Zhang, Wang, Hu (bib0032) 2021; 267
Lind, Stansby (bib0033) 2016; 326
Colagrossi, Landrini (bib0036) 2003; 191
Dilts (bib0057) 2000; 48
Zheng, Ma, Shao, Hu, Gui (bib0009) 2019; 35
Sun, Colagrossi, Marrone, Antuono, Zhang (bib0048) 2019; 348
Peng, Zhang, Ming (bib0024) 2021; 222
Krimi, Rezoug, Khelladi, Nogueira, Deligant, Ramírez (bib0013) 2018; 358
Krimi, Jandaghian, Shakibaeinia (bib0047) 2020; 12
Khayyer, Gotoh, Shimizu (bib0043) 2017; 332
Sun, Zhang, Liew (bib0054) 2021; 100
Khayyer, Gotoh, Shimizu (bib0060) 2019; 179
Adami, Hu, Adams (bib0053) 2012; 231
Liu, Liu (bib0030) 2010; 17
Cao, Ming, Zhang (bib0028) 2014; 47
Antuono, Bouscasse, Colagrossi, Marrone (bib0040) 2014; 185
Oger, Marrone, Le Touzé, de Leffe (bib0070) 2016; 313
Randles, Libersky (bib0052) 1996; 139
Xu, Yu (bib0045) 2018; 62
You, Khayyer, Zheng, Gotoh, Ma (bib0006) 2021; 110
He, Zhang, Huang, Liu (bib0008) 2020; 156
Molteni, Colagrossi (bib0037) 2009; 180
Swegle, Hicks, Attaway (bib0039) 1995; 116
Xu, Yu (bib0015) 2019; 73
Ye, Pan, Huang, Liu (bib0034) 2019; 31
Sun, Colagrossi, Marrone, Zhang (bib0044) 2017; 315
Luo, Reeve, Shao, Karunarathna, Lin, Cai (bib0010) 2019; 103
Khayyer, Gotoh (bib0068) 2013; 242
Lobovský, Botia-Vera, Castellana, Mas-Soler, Souto-Iglesias (bib0064) 2014; 48
Wendland (bib0050) 1995; 4
Zhang, Cao, Ming, Zhang (bib0027) 2013; 42
Sun, Le Touzé, Zhang (bib0074) 2019; 104
Monaghan, Rafiee (bib0063) 2013; 71
Souto-Iglesias, Bulian, Botia-Vera (bib0065) 2015; 105
Zhang, Sun, Ming, Colagrossi (bib0021) 2017; 29
Zhang, Khalid, Long, Chang, Liu (bib0022) 2020; 94
Monaghan (bib0001) 1994; 110
Cao, Tao, Zhang, Ming (bib0005) 2019; 31
Tsuruta, Khayyer, Gotoh (bib0069) 2013; 82
Monaghan (bib0029) 2005; 68
Yan, Li, Kan, Zhang, Lai (bib0016) 2020; 368
Antuono, Colagrossi, Marrone, Molteni (bib0038) 2010; 181
Monaghan (bib0061) 2000; 159
Hammani, Marrone, Colagrossi, Oger, Le Touzé (bib0075) 2020; 368
Le Touzé, Colagrossi, Colicchio, Greco (bib0067) 2013; 73
Lee, Moulinec, Xu, Violeau, Laurence, Stansby (bib0056) 2008; 227
Marrone, Antuono, Colagrossi, Colicchio, Le Touzé, Graziani (bib0071) 2011; 200
Cheng, Zhang, Ming (bib0003) 2017; 29
Cao, Ming, Zhang, Tao (bib0014) 2018; 163
Lind, Xu, Stansby, Rogers (bib0042) 2012; 231
Akbari, Torabbeigi (bib0019) 2021; 112
Violeau, Rogers (bib0011) 2016; 54
Cummins, Rudman (bib0031) 1999; 152
Colagrossi, Antuono, Le Touze (bib0062) 2009
Harris, Liang, Shao, Zhang, Roberts (bib0007) 2021; 111
Violeau (10.1016/j.apm.2021.08.014_bib0011) 2016; 54
Xu (10.1016/j.apm.2021.08.014_bib0015) 2019; 73
Huang (10.1016/j.apm.2021.08.014_bib0059) 2018; 113
Zheng (10.1016/j.apm.2021.08.014_bib0009) 2019; 35
Sun (10.1016/j.apm.2021.08.014_sbref0074) 2019; 104
Lobovský (10.1016/j.apm.2021.08.014_sbref0064) 2014; 48
Hammani (10.1016/j.apm.2021.08.014_sbref0075) 2020; 368
Sun (10.1016/j.apm.2021.08.014_bib0023) 2021; 221
Lind (10.1016/j.apm.2021.08.014_sbref0042) 2012; 231
Xu (10.1016/j.apm.2021.08.014_bib0045) 2018; 62
Wang (10.1016/j.apm.2021.08.014_sbref0012) 2016; 40
Cao (10.1016/j.apm.2021.08.014_bib0028) 2014; 47
Zhang (10.1016/j.apm.2021.08.014_bib0032) 2021; 267
Yan (10.1016/j.apm.2021.08.014_bib0016) 2020; 368
Sun (10.1016/j.apm.2021.08.014_sbref0054) 2021; 100
Monaghan (10.1016/j.apm.2021.08.014_sbref0001) 1994; 110
Krimi (10.1016/j.apm.2021.08.014_bib0013) 2018; 358
Cummins (10.1016/j.apm.2021.08.014_sbref0031) 1999; 152
Dias (10.1016/j.apm.2021.08.014_bib0073) 2018; 50
Wendland (10.1016/j.apm.2021.08.014_sbref0050) 1995; 4
Zhang (10.1016/j.apm.2021.08.014_bib0022) 2020; 94
Lee (10.1016/j.apm.2021.08.014_sbref0056) 2008; 227
Monaghan (10.1016/j.apm.2021.08.014_sbref0061) 2000; 159
Akbari (10.1016/j.apm.2021.08.014_bib0019) 2021; 112
Cao (10.1016/j.apm.2021.08.014_bib0014) 2018; 163
You (10.1016/j.apm.2021.08.014_sbref0006) 2021; 110
Harris (10.1016/j.apm.2021.08.014_bib0007) 2021; 111
Oger (10.1016/j.apm.2021.08.014_sbref0070) 2016; 313
Colagrossi (10.1016/j.apm.2021.08.014_sbref0062) 2009
Luo (10.1016/j.apm.2021.08.014_bib0010) 2019; 103
Antuono (10.1016/j.apm.2021.08.014_sbref0038) 2010; 181
Antuono (10.1016/j.apm.2021.08.014_sbref0049) 2021; 216
Rezavand (10.1016/j.apm.2021.08.014_bib0072) 2020; 402
Zhang (10.1016/j.apm.2021.08.014_bib0027) 2013; 42
Antuono (10.1016/j.apm.2021.08.014_sbref0040) 2014; 185
Monaghan (10.1016/j.apm.2021.08.014_bib0035) 1983; 52
Cao (10.1016/j.apm.2021.08.014_bib0005) 2019; 31
Monaghan (10.1016/j.apm.2021.08.014_bib0063) 2013; 71
He (10.1016/j.apm.2021.08.014_bib0008) 2020; 156
Gotoh (10.1016/j.apm.2021.08.014_bib0004) 2018; 60
Peng (10.1016/j.apm.2021.08.014_bib0024) 2021; 222
Ye (10.1016/j.apm.2021.08.014_bib0034) 2019; 31
Marrone (10.1016/j.apm.2021.08.014_sbref0058) 2010; 229
Peng (10.1016/j.apm.2021.08.014_bib0018) 2021; 376
Xu (10.1016/j.apm.2021.08.014_sbref0041) 2009; 228
Wang (10.1016/j.apm.2021.08.014_sbref0046) 2019; 357
Cheng (10.1016/j.apm.2021.08.014_bib0003) 2017; 29
Xie (10.1016/j.apm.2021.08.014_bib0026) 2020
Molteni (10.1016/j.apm.2021.08.014_sbref0037) 2009; 180
Dilts (10.1016/j.apm.2021.08.014_sbref0057) 2000; 48
Colagrossi (10.1016/j.apm.2021.08.014_bib0066) 2005
Jiang (10.1016/j.apm.2021.08.014_bib0017) 2020; 407
Tsuruta (10.1016/j.apm.2021.08.014_sbref0069) 2013; 82
Sun (10.1016/j.apm.2021.08.014_sbref0048) 2019; 348
Swegle (10.1016/j.apm.2021.08.014_sbref0039) 1995; 116
Shadloo (10.1016/j.apm.2021.08.014_sbref0002) 2016; 136
Khayyer (10.1016/j.apm.2021.08.014_sbref0025) 2021; 94
Khayyer (10.1016/j.apm.2021.08.014_sbref0060) 2019; 179
Sun (10.1016/j.apm.2021.08.014_sbref0044) 2017; 315
Tanaka (10.1016/j.apm.2021.08.014_bib0055) 2010; 229
Khayyer (10.1016/j.apm.2021.08.014_sbref0043) 2017; 332
Zhang (10.1016/j.apm.2021.08.014_sbref0021) 2017; 29
Colagrossi (10.1016/j.apm.2021.08.014_bib0036) 2003; 191
Adami (10.1016/j.apm.2021.08.014_sbref0053) 2012; 231
Khayyer (10.1016/j.apm.2021.08.014_sbref0068) 2013; 242
Monaghan (10.1016/j.apm.2021.08.014_bib0029) 2005; 68
Lind (10.1016/j.apm.2021.08.014_sbref0033) 2016; 326
Le Touzé (10.1016/j.apm.2021.08.014_bib0067) 2013; 73
Marrone (10.1016/j.apm.2021.08.014_sbref0071) 2011; 200
Krimi (10.1016/j.apm.2021.08.014_sbref0047) 2020; 12
Randles (10.1016/j.apm.2021.08.014_bib0052) 1996; 139
Ming (10.1016/j.apm.2021.08.014_bib0020) 2016; 117
Liu (10.1016/j.apm.2021.08.014_bib0030) 2010; 17
Antuono (10.1016/j.apm.2021.08.014_sbref0051) 2012; 183
Souto-Iglesias (10.1016/j.apm.2021.08.014_sbref0065) 2015; 105
References_xml – volume: 242
  start-page: 211
  year: 2013
  end-page: 233
  ident: bib0068
  article-title: Enhancement of performance and stability of MPS mesh-free particle method for multiphase flows characterized by high density ratios
  publication-title: J. Comput. Phys.
– volume: 402
  start-page: 109092
  year: 2020
  ident: bib0072
  article-title: A weakly compressible SPH method for violent multi-phase flows with high density ratio
  publication-title: J. Comput. Phys.
– volume: 94
  start-page: 242
  year: 2021
  end-page: 271
  ident: bib0025
  article-title: A coupled incompressible SPH-hamiltonian SPH solver for hydroelastic fsi corresponding to composite structures
  publication-title: Appl. Math. Model.
– volume: 180
  start-page: 861
  year: 2009
  end-page: 872
  ident: bib0037
  article-title: A simple procedure to improve the pressure evaluation in hydrodynamic context using the SPH
  publication-title: Comput. Phys. Commun.
– volume: 29
  start-page: 187
  year: 2017
  end-page: 216
  ident: bib0021
  article-title: Smoothed particle hydrodynamics and its applications in fluid-structure interactions
  publication-title: J. Hydrodyn.
– volume: 326
  start-page: 290
  year: 2016
  end-page: 311
  ident: bib0033
  article-title: High-order Eulerian incompressible smoothed particle hydrodynamics with transition to lagrangian free-surface motion
  publication-title: J. Comput. Phys.
– volume: 163
  start-page: 7
  year: 2018
  end-page: 19
  ident: bib0014
  article-title: Multi-phase SPH modelling of air effect on the dynamic flooding of a damaged cabin
  publication-title: Comput. Fluids
– year: 2005
  ident: bib0066
  publication-title: A Meshless Lagrangian Method for Free-Surface and Interface Flows with Fragmentation
– volume: 48
  start-page: 407
  year: 2014
  end-page: 434
  ident: bib0064
  article-title: Experimental investigation of dynamic pressure loads during dam break
  publication-title: J. Fluids Struct.
– volume: 31
  start-page: 032103
  year: 2019
  ident: bib0005
  article-title: Smoothed particle hydrodynamics (SPH) model for coupled analysis of a damaged ship with internal sloshing in beam seas
  publication-title: Phys. Fluids
– volume: 222
  start-page: 108576
  year: 2021
  ident: bib0024
  article-title: Numerical simulation of structural damage subjected to the near-field underwater explosion based on SPH and RKPM
  publication-title: Ocean Eng.
– volume: 104
  start-page: 240
  year: 2019
  end-page: 258
  ident: bib0074
  article-title: Study of a complex fluid-structure dam-breaking benchmark problem using a multi-phase SPH method with APR
  publication-title: Eng. Anal. Bound. Elem.
– volume: 105
  start-page: 136
  year: 2015
  end-page: 159
  ident: bib0065
  article-title: A set of canonical problems in sloshing. Part 2: influence of tank width on impact pressure statistics in regular forced angular motion
  publication-title: Ocean Eng.
– year: 2009
  ident: bib0062
  article-title: Theoretical considerations on the free-surface role in the SPH Model
  publication-title: Phys. Rev. E
– volume: 71
  start-page: 537
  year: 2013
  end-page: 561
  ident: bib0063
  article-title: A simple SPH algorithm for multi-fluid flow with high density ratios
  publication-title: Int. J. Numer. Methods Fluids
– volume: 60
  start-page: 79
  year: 2018
  end-page: 103
  ident: bib0004
  article-title: On the state-of-the-art of particle methods for coastal and ocean engineering
  publication-title: Coast. Eng. J.
– volume: 185
  start-page: 2609
  year: 2014
  end-page: 2621
  ident: bib0040
  article-title: A measure of spatial disorder in particle methods
  publication-title: Comput. Phys. Commun.
– volume: 12
  year: 2020
  ident: bib0047
  article-title: A WCSPH particle shifting strategy for simulating violent free surface flows
  publication-title: Water
– volume: 29
  start-page: 107101
  year: 2017
  ident: bib0003
  article-title: Study on coupled dynamics of ship and flooding water based on experimental and SPH methods
  publication-title: Phys. Fluids
– volume: 113
  start-page: 179
  year: 2018
  end-page: 207
  ident: bib0059
  article-title: Coupled finite particle method with a modified particle shifting technology
  publication-title: Int. J. Numer. Methods Eng.
– volume: 228
  start-page: 6703
  year: 2009
  end-page: 6725
  ident: bib0041
  article-title: Accuracy and stability in incompressible SPH (ISPH) based on the projection method and a new approach
  publication-title: J. Comput. Phys.
– volume: 181
  start-page: 532
  year: 2010
  end-page: 549
  ident: bib0038
  article-title: Free-surface flows solved by means of SPH schemes with numerical diffusive terms
  publication-title: Comput. Phys. Commun.
– volume: 156
  start-page: 103617
  year: 2020
  ident: bib0008
  article-title: Numerical investigation of the solitary wave breaking over a slope by using the finite particle method
  publication-title: Coast. Eng.
– volume: 73
  start-page: 715
  year: 2019
  end-page: 731
  ident: bib0015
  article-title: Extension of SPH to simulate non-isothermal free surface flows during the injection molding process
  publication-title: Appl. Math. Model.
– volume: 139
  start-page: 375
  year: 1996
  end-page: 408
  ident: bib0052
  article-title: Smoothed particle hydrodynamics: Some recent improvements and applications
  publication-title: Comput. Methods Appl. Mech.Engineering
– volume: 100
  start-page: 33
  year: 2021
  end-page: 54
  ident: bib0054
  article-title: Fast detection of free surface and surface tension modelling via single-phase sph
  publication-title: Appl. Math. Model.
– volume: 357
  start-page: 112580
  year: 2019
  ident: bib0046
  article-title: Improved particle shifting technology and optimized free-surface detection method for free-surface flows in smoothed particle hydrodynamics
  publication-title: Comput. Methods Appl. Mech.Eng.
– volume: 68
  start-page: 1703
  year: 2005
  end-page: 1759
  ident: bib0029
  article-title: Smoothed particle hydrodynamics
  publication-title: Rep. Prog. Phys.
– volume: 231
  start-page: 7057
  year: 2012
  end-page: 7075
  ident: bib0053
  article-title: A generalized wall boundary condition for smoothed particle hydrodynamics
  publication-title: J. Comput. Phys.
– volume: 103
  start-page: 160
  year: 2019
  end-page: 171
  ident: bib0010
  article-title: Consistent particle method simulation of solitary wave impinging on and overtopping a seawall
  publication-title: Eng. Anal. Bound. Elem.
– volume: 200
  start-page: 1526
  year: 2011
  end-page: 1542
  ident: bib0071
  article-title: -SPH model for simulating violent impact flows
  publication-title: Comput. Methods Appl. Mech. Eng.
– volume: 35
  start-page: 1106
  year: 2019
  end-page: 1119
  ident: bib0009
  article-title: An improved 2d+ t incompressible smoothed particle hydrodynamics approach for high-speed vessel waves
  publication-title: J. Coast. Res.
– volume: 368
  start-page: 113176
  year: 2020
  ident: bib0016
  article-title: Higher-order nonlocal theory of updated lagrangian particle hydrodynamics (ULPH) and simulations of multiphase flows
  publication-title: Comput. Methods Appl. Mech.Eng.
– volume: 229
  start-page: 4279
  year: 2010
  end-page: 4290
  ident: bib0055
  article-title: Stabilization and smoothing of pressure in MPS method by quasi-compressibility
  publication-title: J. Comput. Phys.
– volume: 112
  start-page: 102714
  year: 2021
  ident: bib0019
  article-title: SPH modeling of wave interaction with reshaped and non-reshaped berm breakwaters with permeable layers
  publication-title: Appl. Ocean Res.
– volume: 332
  start-page: 236
  year: 2017
  end-page: 256
  ident: bib0043
  article-title: Comparative study on accuracy and conservation properties of two particle regularization schemes and proposal of an optimized particle shifting scheme in ISPH context
  publication-title: J. Comput. Phys.
– volume: 348
  start-page: 912
  year: 2019
  end-page: 934
  ident: bib0048
  article-title: A consistent approach to particle shifting in the
  publication-title: Comput. Methods in Applied Mechanics and Engineering
– volume: 31
  start-page: 011301
  year: 2019
  ident: bib0034
  article-title: Smoothed particle hydrodynamics (SPH) for complex fluid flows: Recent developments in methodology and applications
  publication-title: Phys. Fluids
– volume: 183
  start-page: 2570
  year: 2012
  end-page: 2580
  ident: bib0051
  article-title: Numerical diffusive terms in weakly-compressible SPH schemes
  publication-title: Comput. Phys. Commun.
– volume: 358
  start-page: 53
  year: 2018
  end-page: 87
  ident: bib0013
  article-title: Smoothed particle hydrodynamics: a consistent model for interfacial multiphase fluid flow simulations
  publication-title: J. Comput. Phys.
– volume: 368
  start-page: 113189
  year: 2020
  ident: bib0075
  article-title: Detailed study on the extension of the
  publication-title: Comput. Methods Appl. Mech. Eng.
– volume: 313
  start-page: 76
  year: 2016
  end-page: 98
  ident: bib0070
  article-title: SPH accuracy improvement through the combination of a quasi-lagrangian shifting transport velocity and consistent ALE formalisms
  publication-title: J. Comput. Phys.
– volume: 94
  start-page: 102942
  year: 2020
  ident: bib0022
  article-title: Investigations on sloshing mitigation using elastic baffles by coupling smoothed finite element method and decoupled finite particle method
  publication-title: J. Fluids Struct.
– volume: 267
  start-page: 108066
  year: 2021
  ident: bib0032
  article-title: Sphinxsys: an open-source multi-physics and multi-resolution library based on smoothed particle hydrodynamics
  publication-title: Comput. Phys. Commun.
– volume: 152
  start-page: 584
  year: 1999
  end-page: 607
  ident: bib0031
  article-title: An SPH projection method
  publication-title: J. Comput. Phys.
– volume: 116
  start-page: 123
  year: 1995
  end-page: 134
  ident: bib0039
  article-title: Smoothed particle hydrodynamics stability analysis
  publication-title: J. Comput. Phys.
– volume: 82
  start-page: 158
  year: 2013
  end-page: 164
  ident: bib0069
  article-title: A short note on dynamic stabilization of moving particle semi-implicit method
  publication-title: Comput. Fluids
– volume: 376
  start-page: 113653
  year: 2021
  ident: bib0018
  article-title: Particle regeneration technique for smoothed particle hydrodynamics in simulation of compressible multiphase flows
  publication-title: Comput. Methods Appl. Mech.Eng.
– volume: 54
  start-page: 1
  year: 2016
  end-page: 26
  ident: bib0011
  article-title: Smoothed particle hydrodynamics (SPH) for free-surface flows: past, present and future
  publication-title: J. Hydraul. Res.
– volume: 42
  start-page: 24
  year: 2013
  end-page: 31
  ident: bib0027
  article-title: Investigation on a damaged ship model sinking into water based on three dimensional SPH method
  publication-title: Appl. Ocean Res.
– volume: 216
  start-page: 104806
  year: 2021
  ident: bib0049
  article-title: The
  publication-title: Comput. Fluids
– volume: 407
  start-page: 109255
  year: 2020
  ident: bib0017
  article-title: A least-squares particle model with other techniques for 2D viscoelastic fluid/free surface flow
  publication-title: J. Comput. Phys.
– volume: 40
  start-page: 9625
  year: 2016
  end-page: 9655
  ident: bib0012
  article-title: An overview of smoothed particle hydrodynamics for simulating multiphase flow
  publication-title: Appl. Math. Model.
– volume: 221
  start-page: 108552
  year: 2021
  ident: bib0023
  article-title: An accurate FSI-SPH modeling of challenging fluid-structure interaction problems in two and three dimensions
  publication-title: Ocean Eng.
– volume: 50
  start-page: 243
  year: 2018
  end-page: 273
  ident: bib0073
  article-title: Slamming: Recent progress in the evaluation of impact pressures
  publication-title: Annu. Rev. Fluid Mech.
– volume: 110
  start-page: 102508
  year: 2021
  ident: bib0006
  article-title: Enhancement of
  publication-title: Appl. Ocean Res.
– volume: 48
  start-page: 1503
  year: 2000
  end-page: 1524
  ident: bib0057
  article-title: Moving least-squares particle hydrodynamics ii: conservation and boundaries
  publication-title: Int. J. Numer. Methods Eng.
– volume: 52
  start-page: 374
  year: 1983
  end-page: 389
  ident: bib0035
  article-title: Shock simulation by the particle method SPH
  publication-title: J. Comput. Phys.
– volume: 227
  start-page: 8417
  year: 2008
  end-page: 8436
  ident: bib0056
  article-title: Comparisons of weakly compressible and truly incompressible algorithms for the SPH mesh free particle method
  publication-title: J. Comput. Phys.
– volume: 110
  start-page: 399
  year: 1994
  end-page: 406
  ident: bib0001
  article-title: Simulating free surface flows with SPH
  publication-title: J. Comput. Phys.
– year: 2020
  ident: bib0026
  article-title: CFD simulations of three-dimensional violent sloshing flows in tanks based on MPS and GPU
  publication-title: J. Hydrodyn.
– volume: 191
  start-page: 448
  year: 2003
  end-page: 475
  ident: bib0036
  article-title: Numerical simulation of interfacial flows by smoothed particle hydrodynamics
  publication-title: J. Comput. Phys.
– volume: 111
  start-page: 102602
  year: 2021
  ident: bib0007
  article-title: MPM simulation of solitary wave run-up on permeable boundaries
  publication-title: Appl. Ocean Res.
– volume: 73
  start-page: 660
  year: 2013
  end-page: 691
  ident: bib0067
  article-title: A critical investigation of smoothed particle hydrodynamics applied to problems with free-surfaces
  publication-title: Int. J. Numer. Methods Fluids
– volume: 229
  start-page: 3652
  year: 2010
  end-page: 3663
  ident: bib0058
  article-title: Fast free-surface detection and level-set function definition in SPH solvers
  publication-title: J. Comput. Phys.
– volume: 315
  start-page: 25
  year: 2017
  end-page: 49
  ident: bib0044
  article-title: The
  publication-title: Comput. Methods Appl. Mech.Eng.
– volume: 231
  start-page: 1499
  year: 2012
  end-page: 1523
  ident: bib0042
  article-title: Incompressible smoothed particle hydrodynamics for free-surface flows: a generalised diffusion-based algorithm for stability and validations for impulsive flows and propagating waves
  publication-title: J. Comput. Phys.
– volume: 4
  start-page: 389
  year: 1995
  end-page: 396
  ident: bib0050
  article-title: Piecewise polynomial, positive definite and compactly supported radial functions of minimal degree
  publication-title: Adv. Comput. Math.
– volume: 136
  start-page: 11
  year: 2016
  end-page: 34
  ident: bib0002
  article-title: Smoothed particle hydrodynamics method for fluid flows, towards industrial applications: motivations, current state, and challenges
  publication-title: Comput. Fluids
– volume: 117
  start-page: 359
  year: 2016
  end-page: 382
  ident: bib0020
  article-title: Damage characteristics of ship structures subjected to shockwaves of underwater contact explosions
  publication-title: Ocean Eng.
– volume: 179
  start-page: 356
  year: 2019
  end-page: 371
  ident: bib0060
  article-title: A projection-based particle method with optimized particle shifting for multiphase flows with large density ratios and discontinuous density fields
  publication-title: Comput. Fluids
– volume: 62
  start-page: 963
  year: 2018
  end-page: 990
  ident: bib0045
  article-title: A technique to remove the tensile instability in weakly compressible SPH
  publication-title: Comput. Mech.
– volume: 159
  start-page: 290
  year: 2000
  end-page: 311
  ident: bib0061
  article-title: SPH without a tensile instability
  publication-title: J. Comput. Phys.
– volume: 47
  start-page: 241
  year: 2014
  end-page: 254
  ident: bib0028
  article-title: Sloshing in a rectangular tank based on SPH simulation
  publication-title: Appl. Ocean Res.
– volume: 17
  start-page: 25
  year: 2010
  end-page: 76
  ident: bib0030
  article-title: Smoothed particle hydrodynamics (SPH): an overview and recent developments
  publication-title: Arch. Comput. Methods Eng.
– volume: 222
  start-page: 108576
  year: 2021
  ident: 10.1016/j.apm.2021.08.014_bib0024
  article-title: Numerical simulation of structural damage subjected to the near-field underwater explosion based on SPH and RKPM
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2021.108576
– volume: 229
  start-page: 3652
  issue: 10
  year: 2010
  ident: 10.1016/j.apm.2021.08.014_sbref0058
  article-title: Fast free-surface detection and level-set function definition in SPH solvers
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2010.01.019
– year: 2005
  ident: 10.1016/j.apm.2021.08.014_bib0066
– volume: 29
  start-page: 107101
  issue: 10
  year: 2017
  ident: 10.1016/j.apm.2021.08.014_bib0003
  article-title: Study on coupled dynamics of ship and flooding water based on experimental and SPH methods
  publication-title: Phys. Fluids
  doi: 10.1063/1.4986004
– year: 2020
  ident: 10.1016/j.apm.2021.08.014_bib0026
  article-title: CFD simulations of three-dimensional violent sloshing flows in tanks based on MPS and GPU
  publication-title: J. Hydrodyn.
  doi: 10.1007/s42241-020-0039-8
– volume: 139
  start-page: 375
  issue: 1
  year: 1996
  ident: 10.1016/j.apm.2021.08.014_bib0052
  article-title: Smoothed particle hydrodynamics: Some recent improvements and applications
  publication-title: Comput. Methods Appl. Mech.Engineering
  doi: 10.1016/S0045-7825(96)01090-0
– year: 2009
  ident: 10.1016/j.apm.2021.08.014_sbref0062
  article-title: Theoretical considerations on the free-surface role in the SPH Model
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.79.056701
– volume: 185
  start-page: 2609
  issue: 10
  year: 2014
  ident: 10.1016/j.apm.2021.08.014_sbref0040
  article-title: A measure of spatial disorder in particle methods
  publication-title: Comput. Phys. Commun.
  doi: 10.1016/j.cpc.2014.06.008
– volume: 73
  start-page: 660
  issue: 7
  year: 2013
  ident: 10.1016/j.apm.2021.08.014_bib0067
  article-title: A critical investigation of smoothed particle hydrodynamics applied to problems with free-surfaces
  publication-title: Int. J. Numer. Methods Fluids
  doi: 10.1002/fld.3819
– volume: 181
  start-page: 532
  issue: 3
  year: 2010
  ident: 10.1016/j.apm.2021.08.014_sbref0038
  article-title: Free-surface flows solved by means of SPH schemes with numerical diffusive terms
  publication-title: Comput. Phys. Commun.
  doi: 10.1016/j.cpc.2009.11.002
– volume: 94
  start-page: 242
  year: 2021
  ident: 10.1016/j.apm.2021.08.014_sbref0025
  article-title: A coupled incompressible SPH-hamiltonian SPH solver for hydroelastic fsi corresponding to composite structures
  publication-title: Appl. Math. Model.
  doi: 10.1016/j.apm.2021.01.011
– volume: 73
  start-page: 715
  year: 2019
  ident: 10.1016/j.apm.2021.08.014_bib0015
  article-title: Extension of SPH to simulate non-isothermal free surface flows during the injection molding process
  publication-title: Appl. Math. Model.
  doi: 10.1016/j.apm.2019.02.048
– volume: 68
  start-page: 1703
  issue: 8
  year: 2005
  ident: 10.1016/j.apm.2021.08.014_bib0029
  article-title: Smoothed particle hydrodynamics
  publication-title: Rep. Prog. Phys.
  doi: 10.1088/0034-4885/68/8/R01
– volume: 156
  start-page: 103617
  year: 2020
  ident: 10.1016/j.apm.2021.08.014_bib0008
  article-title: Numerical investigation of the solitary wave breaking over a slope by using the finite particle method
  publication-title: Coast. Eng.
  doi: 10.1016/j.coastaleng.2019.103617
– volume: 40
  start-page: 9625
  issue: 23
  year: 2016
  ident: 10.1016/j.apm.2021.08.014_sbref0012
  article-title: An overview of smoothed particle hydrodynamics for simulating multiphase flow
  publication-title: Appl. Math. Model.
  doi: 10.1016/j.apm.2016.06.030
– volume: 315
  start-page: 25
  year: 2017
  ident: 10.1016/j.apm.2021.08.014_sbref0044
  article-title: The δ-plus-SPH model: simple procedures for a further improvement of the SPH scheme
  publication-title: Comput. Methods Appl. Mech.Eng.
  doi: 10.1016/j.cma.2016.10.028
– volume: 136
  start-page: 11
  year: 2016
  ident: 10.1016/j.apm.2021.08.014_sbref0002
  article-title: Smoothed particle hydrodynamics method for fluid flows, towards industrial applications: motivations, current state, and challenges
  publication-title: Comput. Fluids
  doi: 10.1016/j.compfluid.2016.05.029
– volume: 180
  start-page: 861
  issue: 6
  year: 2009
  ident: 10.1016/j.apm.2021.08.014_sbref0037
  article-title: A simple procedure to improve the pressure evaluation in hydrodynamic context using the SPH
  publication-title: Comput. Phys. Commun.
  doi: 10.1016/j.cpc.2008.12.004
– volume: 110
  start-page: 399
  issue: 2
  year: 1994
  ident: 10.1016/j.apm.2021.08.014_sbref0001
  article-title: Simulating free surface flows with SPH
  publication-title: J. Comput. Phys.
  doi: 10.1006/jcph.1994.1034
– volume: 47
  start-page: 241
  year: 2014
  ident: 10.1016/j.apm.2021.08.014_bib0028
  article-title: Sloshing in a rectangular tank based on SPH simulation
  publication-title: Appl. Ocean Res.
  doi: 10.1016/j.apor.2014.06.006
– volume: 17
  start-page: 25
  issue: 1
  year: 2010
  ident: 10.1016/j.apm.2021.08.014_bib0030
  article-title: Smoothed particle hydrodynamics (SPH): an overview and recent developments
  publication-title: Arch. Comput. Methods Eng.
  doi: 10.1007/s11831-010-9040-7
– volume: 100
  start-page: 33
  year: 2021
  ident: 10.1016/j.apm.2021.08.014_sbref0054
  article-title: Fast detection of free surface and surface tension modelling via single-phase sph
  publication-title: Appl. Math. Model.
  doi: 10.1016/j.apm.2021.06.029
– volume: 104
  start-page: 240
  year: 2019
  ident: 10.1016/j.apm.2021.08.014_sbref0074
  article-title: Study of a complex fluid-structure dam-breaking benchmark problem using a multi-phase SPH method with APR
  publication-title: Eng. Anal. Bound. Elem.
  doi: 10.1016/j.enganabound.2019.03.033
– volume: 183
  start-page: 2570
  issue: 12
  year: 2012
  ident: 10.1016/j.apm.2021.08.014_sbref0051
  article-title: Numerical diffusive terms in weakly-compressible SPH schemes
  publication-title: Comput. Phys. Commun.
  doi: 10.1016/j.cpc.2012.07.006
– volume: 62
  start-page: 963
  issue: 5
  year: 2018
  ident: 10.1016/j.apm.2021.08.014_bib0045
  article-title: A technique to remove the tensile instability in weakly compressible SPH
  publication-title: Comput. Mech.
  doi: 10.1007/s00466-018-1542-4
– volume: 368
  start-page: 113189
  year: 2020
  ident: 10.1016/j.apm.2021.08.014_sbref0075
  article-title: Detailed study on the extension of the δ-SPH model to multi-phase flow
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2020.113189
– volume: 227
  start-page: 8417
  issue: 18
  year: 2008
  ident: 10.1016/j.apm.2021.08.014_sbref0056
  article-title: Comparisons of weakly compressible and truly incompressible algorithms for the SPH mesh free particle method
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2008.06.005
– volume: 348
  start-page: 912
  year: 2019
  ident: 10.1016/j.apm.2021.08.014_sbref0048
  article-title: A consistent approach to particle shifting in the δ-plus-SPH model
  publication-title: Comput. Methods in Applied Mechanics and Engineering
  doi: 10.1016/j.cma.2019.01.045
– volume: 35
  start-page: 1106
  issue: 5
  year: 2019
  ident: 10.1016/j.apm.2021.08.014_bib0009
  article-title: An improved 2d+ t incompressible smoothed particle hydrodynamics approach for high-speed vessel waves
  publication-title: J. Coast. Res.
  doi: 10.2112/JCOASTRES-D-17-00188.1
– volume: 31
  start-page: 011301
  issue: 1
  year: 2019
  ident: 10.1016/j.apm.2021.08.014_bib0034
  article-title: Smoothed particle hydrodynamics (SPH) for complex fluid flows: Recent developments in methodology and applications
  publication-title: Phys. Fluids
  doi: 10.1063/1.5068697
– volume: 12
  issue: 11
  year: 2020
  ident: 10.1016/j.apm.2021.08.014_sbref0047
  article-title: A WCSPH particle shifting strategy for simulating violent free surface flows
  publication-title: Water
  doi: 10.3390/w12113189
– volume: 82
  start-page: 158
  year: 2013
  ident: 10.1016/j.apm.2021.08.014_sbref0069
  article-title: A short note on dynamic stabilization of moving particle semi-implicit method
  publication-title: Comput. Fluids
  doi: 10.1016/j.compfluid.2013.05.001
– volume: 71
  start-page: 537
  issue: 5
  year: 2013
  ident: 10.1016/j.apm.2021.08.014_bib0063
  article-title: A simple SPH algorithm for multi-fluid flow with high density ratios
  publication-title: Int. J. Numer. Methods Fluids
  doi: 10.1002/fld.3671
– volume: 407
  start-page: 109255
  year: 2020
  ident: 10.1016/j.apm.2021.08.014_bib0017
  article-title: A least-squares particle model with other techniques for 2D viscoelastic fluid/free surface flow
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2020.109255
– volume: 113
  start-page: 179
  issue: 2
  year: 2018
  ident: 10.1016/j.apm.2021.08.014_bib0059
  article-title: Coupled finite particle method with a modified particle shifting technology
  publication-title: Int. J. Numer. Methods Eng.
  doi: 10.1002/nme.5608
– volume: 111
  start-page: 102602
  year: 2021
  ident: 10.1016/j.apm.2021.08.014_bib0007
  article-title: MPM simulation of solitary wave run-up on permeable boundaries
  publication-title: Appl. Ocean Res.
  doi: 10.1016/j.apor.2021.102602
– volume: 228
  start-page: 6703
  issue: 18
  year: 2009
  ident: 10.1016/j.apm.2021.08.014_sbref0041
  article-title: Accuracy and stability in incompressible SPH (ISPH) based on the projection method and a new approach
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2009.05.032
– volume: 60
  start-page: 79
  issue: 1
  year: 2018
  ident: 10.1016/j.apm.2021.08.014_bib0004
  article-title: On the state-of-the-art of particle methods for coastal and ocean engineering
  publication-title: Coast. Eng. J.
  doi: 10.1080/21664250.2018.1436243
– volume: 54
  start-page: 1
  issue: 1
  year: 2016
  ident: 10.1016/j.apm.2021.08.014_bib0011
  article-title: Smoothed particle hydrodynamics (SPH) for free-surface flows: past, present and future
  publication-title: J. Hydraul. Res.
  doi: 10.1080/00221686.2015.1119209
– volume: 110
  start-page: 102508
  year: 2021
  ident: 10.1016/j.apm.2021.08.014_sbref0006
  article-title: Enhancement of δ-SPH for ocean engineering applications through incorporation of a background mesh scheme
  publication-title: Appl. Ocean Res.
  doi: 10.1016/j.apor.2020.102508
– volume: 179
  start-page: 356
  year: 2019
  ident: 10.1016/j.apm.2021.08.014_sbref0060
  article-title: A projection-based particle method with optimized particle shifting for multiphase flows with large density ratios and discontinuous density fields
  publication-title: Comput. Fluids
  doi: 10.1016/j.compfluid.2018.10.018
– volume: 163
  start-page: 7
  year: 2018
  ident: 10.1016/j.apm.2021.08.014_bib0014
  article-title: Multi-phase SPH modelling of air effect on the dynamic flooding of a damaged cabin
  publication-title: Comput. Fluids
  doi: 10.1016/j.compfluid.2017.12.012
– volume: 29
  start-page: 187
  issue: 2
  year: 2017
  ident: 10.1016/j.apm.2021.08.014_sbref0021
  article-title: Smoothed particle hydrodynamics and its applications in fluid-structure interactions
  publication-title: J. Hydrodyn.
  doi: 10.1016/S1001-6058(16)60730-8
– volume: 42
  start-page: 24
  year: 2013
  ident: 10.1016/j.apm.2021.08.014_bib0027
  article-title: Investigation on a damaged ship model sinking into water based on three dimensional SPH method
  publication-title: Appl. Ocean Res.
  doi: 10.1016/j.apor.2013.03.006
– volume: 402
  start-page: 109092
  year: 2020
  ident: 10.1016/j.apm.2021.08.014_bib0072
  article-title: A weakly compressible SPH method for violent multi-phase flows with high density ratio
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2019.109092
– volume: 152
  start-page: 584
  issue: 2
  year: 1999
  ident: 10.1016/j.apm.2021.08.014_sbref0031
  article-title: An SPH projection method
  publication-title: J. Comput. Phys.
  doi: 10.1006/jcph.1999.6246
– volume: 50
  start-page: 243
  issue: 1
  year: 2018
  ident: 10.1016/j.apm.2021.08.014_bib0073
  article-title: Slamming: Recent progress in the evaluation of impact pressures
  publication-title: Annu. Rev. Fluid Mech.
  doi: 10.1146/annurev-fluid-010816-060121
– volume: 242
  start-page: 211
  year: 2013
  ident: 10.1016/j.apm.2021.08.014_sbref0068
  article-title: Enhancement of performance and stability of MPS mesh-free particle method for multiphase flows characterized by high density ratios
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2013.02.002
– volume: 357
  start-page: 112580
  year: 2019
  ident: 10.1016/j.apm.2021.08.014_sbref0046
  article-title: Improved particle shifting technology and optimized free-surface detection method for free-surface flows in smoothed particle hydrodynamics
  publication-title: Comput. Methods Appl. Mech.Eng.
  doi: 10.1016/j.cma.2019.112580
– volume: 376
  start-page: 113653
  year: 2021
  ident: 10.1016/j.apm.2021.08.014_bib0018
  article-title: Particle regeneration technique for smoothed particle hydrodynamics in simulation of compressible multiphase flows
  publication-title: Comput. Methods Appl. Mech.Eng.
  doi: 10.1016/j.cma.2020.113653
– volume: 4
  start-page: 389
  issue: 1
  year: 1995
  ident: 10.1016/j.apm.2021.08.014_sbref0050
  article-title: Piecewise polynomial, positive definite and compactly supported radial functions of minimal degree
  publication-title: Adv. Comput. Math.
  doi: 10.1007/BF02123482
– volume: 216
  start-page: 104806
  year: 2021
  ident: 10.1016/j.apm.2021.08.014_sbref0049
  article-title: The δ-ALE-SPH model: an arbitrary Lagrangian-Eulerian framework for the δ-SPH model with particle shifting technique
  publication-title: Comput. Fluids
  doi: 10.1016/j.compfluid.2020.104806
– volume: 313
  start-page: 76
  year: 2016
  ident: 10.1016/j.apm.2021.08.014_sbref0070
  article-title: SPH accuracy improvement through the combination of a quasi-lagrangian shifting transport velocity and consistent ALE formalisms
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2016.02.039
– volume: 103
  start-page: 160
  year: 2019
  ident: 10.1016/j.apm.2021.08.014_bib0010
  article-title: Consistent particle method simulation of solitary wave impinging on and overtopping a seawall
  publication-title: Eng. Anal. Bound. Elem.
  doi: 10.1016/j.enganabound.2019.03.012
– volume: 229
  start-page: 4279
  issue: 11
  year: 2010
  ident: 10.1016/j.apm.2021.08.014_bib0055
  article-title: Stabilization and smoothing of pressure in MPS method by quasi-compressibility
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2010.02.011
– volume: 105
  start-page: 136
  year: 2015
  ident: 10.1016/j.apm.2021.08.014_sbref0065
  article-title: A set of canonical problems in sloshing. Part 2: influence of tank width on impact pressure statistics in regular forced angular motion
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2015.06.016
– volume: 267
  start-page: 108066
  year: 2021
  ident: 10.1016/j.apm.2021.08.014_bib0032
  article-title: Sphinxsys: an open-source multi-physics and multi-resolution library based on smoothed particle hydrodynamics
  publication-title: Comput. Phys. Commun.
  doi: 10.1016/j.cpc.2021.108066
– volume: 52
  start-page: 374
  issue: 2
  year: 1983
  ident: 10.1016/j.apm.2021.08.014_bib0035
  article-title: Shock simulation by the particle method SPH
  publication-title: J. Comput. Phys.
  doi: 10.1016/0021-9991(83)90036-0
– volume: 159
  start-page: 290
  issue: 2
  year: 2000
  ident: 10.1016/j.apm.2021.08.014_sbref0061
  article-title: SPH without a tensile instability
  publication-title: J. Comput. Phys.
  doi: 10.1006/jcph.2000.6439
– volume: 221
  start-page: 108552
  year: 2021
  ident: 10.1016/j.apm.2021.08.014_bib0023
  article-title: An accurate FSI-SPH modeling of challenging fluid-structure interaction problems in two and three dimensions
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2020.108552
– volume: 326
  start-page: 290
  year: 2016
  ident: 10.1016/j.apm.2021.08.014_sbref0033
  article-title: High-order Eulerian incompressible smoothed particle hydrodynamics with transition to lagrangian free-surface motion
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2016.08.047
– volume: 231
  start-page: 1499
  issue: 4
  year: 2012
  ident: 10.1016/j.apm.2021.08.014_sbref0042
  article-title: Incompressible smoothed particle hydrodynamics for free-surface flows: a generalised diffusion-based algorithm for stability and validations for impulsive flows and propagating waves
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2011.10.027
– volume: 94
  start-page: 102942
  year: 2020
  ident: 10.1016/j.apm.2021.08.014_bib0022
  article-title: Investigations on sloshing mitigation using elastic baffles by coupling smoothed finite element method and decoupled finite particle method
  publication-title: J. Fluids Struct.
  doi: 10.1016/j.jfluidstructs.2020.102942
– volume: 116
  start-page: 123
  issue: 1
  year: 1995
  ident: 10.1016/j.apm.2021.08.014_sbref0039
  article-title: Smoothed particle hydrodynamics stability analysis
  publication-title: J. Comput. Phys.
  doi: 10.1006/jcph.1995.1010
– volume: 48
  start-page: 407
  year: 2014
  ident: 10.1016/j.apm.2021.08.014_sbref0064
  article-title: Experimental investigation of dynamic pressure loads during dam break
  publication-title: J. Fluids Struct.
  doi: 10.1016/j.jfluidstructs.2014.03.009
– volume: 112
  start-page: 102714
  year: 2021
  ident: 10.1016/j.apm.2021.08.014_bib0019
  article-title: SPH modeling of wave interaction with reshaped and non-reshaped berm breakwaters with permeable layers
  publication-title: Appl. Ocean Res.
  doi: 10.1016/j.apor.2021.102714
– volume: 358
  start-page: 53
  year: 2018
  ident: 10.1016/j.apm.2021.08.014_bib0013
  article-title: Smoothed particle hydrodynamics: a consistent model for interfacial multiphase fluid flow simulations
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2017.12.006
– volume: 117
  start-page: 359
  year: 2016
  ident: 10.1016/j.apm.2021.08.014_bib0020
  article-title: Damage characteristics of ship structures subjected to shockwaves of underwater contact explosions
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2016.03.040
– volume: 31
  start-page: 032103
  issue: 3
  year: 2019
  ident: 10.1016/j.apm.2021.08.014_bib0005
  article-title: Smoothed particle hydrodynamics (SPH) model for coupled analysis of a damaged ship with internal sloshing in beam seas
  publication-title: Phys. Fluids
  doi: 10.1063/1.5079315
– volume: 368
  start-page: 113176
  year: 2020
  ident: 10.1016/j.apm.2021.08.014_bib0016
  article-title: Higher-order nonlocal theory of updated lagrangian particle hydrodynamics (ULPH) and simulations of multiphase flows
  publication-title: Comput. Methods Appl. Mech.Eng.
  doi: 10.1016/j.cma.2020.113176
– volume: 191
  start-page: 448
  issue: 2
  year: 2003
  ident: 10.1016/j.apm.2021.08.014_bib0036
  article-title: Numerical simulation of interfacial flows by smoothed particle hydrodynamics
  publication-title: J. Comput. Phys.
  doi: 10.1016/S0021-9991(03)00324-3
– volume: 200
  start-page: 1526
  issue: 13
  year: 2011
  ident: 10.1016/j.apm.2021.08.014_sbref0071
  article-title: δ-SPH model for simulating violent impact flows
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2010.12.016
– volume: 231
  start-page: 7057
  issue: 21
  year: 2012
  ident: 10.1016/j.apm.2021.08.014_sbref0053
  article-title: A generalized wall boundary condition for smoothed particle hydrodynamics
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2012.05.005
– volume: 332
  start-page: 236
  year: 2017
  ident: 10.1016/j.apm.2021.08.014_sbref0043
  article-title: Comparative study on accuracy and conservation properties of two particle regularization schemes and proposal of an optimized particle shifting scheme in ISPH context
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2016.12.005
– volume: 48
  start-page: 1503
  issue: 10
  year: 2000
  ident: 10.1016/j.apm.2021.08.014_sbref0057
  article-title: Moving least-squares particle hydrodynamics ii: conservation and boundaries
  publication-title: Int. J. Numer. Methods Eng.
  doi: 10.1002/1097-0207(20000810)48:10<1503::AID-NME832>3.0.CO;2-D
SSID ssj0005904
ssj0012860
Score 2.5579855
Snippet •An enhanced particle shifting technique (PST) is presented to overcome the deficiencies of traditional PSTs.•The volume-non-conservation issue is tackled by...
The non-conservation of total fluid volume, caused by the accumulating errors on the potential energy of the fluid, has been a serious numerical issue in a...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 214
SubjectTerms Compressibility
Conservation
Dam breaking
Free surfaces
Particle shifting technique
Potential energy
Simulation
Sloshing
Smoothed particle hydrodynamics
Violent free-surface flows
Volume conservation
Weakly-compressible SPH
Title Further enhancement of the particle shifting technique: Towards better volume conservation and particle distribution in SPH simulations of violent free-surface flows
URI https://dx.doi.org/10.1016/j.apm.2021.08.014
https://www.proquest.com/docview/2606931452
Volume 101
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBYhvbSH0idNm4Y59FRw17K1ktxbCF3clITSbGBvQk_ikniX9S695d_kf1Zjy9sHNIeeDEKSbc1oHtLMN4S8k6UM0WygmQ4hzxg1VSaD0JkrtRNUG8N7ANOzc15fstPFdLFHTsZcGAyrTLJ_kOm9tE4tk7Sak1XTTC6QPaucLaLTkmNoB2awM4Fc_uH2tzCPKmcjGCL2Hm82-xgvvcJk9GJA8aTsX7rpLyndq57ZE_I42YxwPHzWU7Ln22fk0dkOcLV7Tu5m2zWacuDbK6QjnvnBMkBsg1X6H-iumoBRzrADbv0I8z5stgPTp_XAIKzAYox1Oq0F3bpfczgE2k01sqBp4eJrDV1zk4qAdfjO4a5_A2HtfdZt10FbD-F6-aN7QS5nn-YndZYqMGS2rOgmM4XhJfcuCG6144UJOu5_WtrcOOmNZKUUJmp9Ft1E7afachGFQCioszKvHC9fkv122fpXBKogozscfV8pPCssIumFyA25o5WYOi4OSD6uvbIJnhyrZFyrMQ7tu4rkUkguhZUzKTsg73dDVgM2x32d2UhQ9QeDqag77ht2OBJfpd3dqegD8qqkbFq8_r9Z35CHBaZR9Ec5h2R_s976t9G42ZijnnuPyIPjz1_q8_icfzut65_IMP3T
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKOQAHxFP0AcwBLkhhY8frOEgcELDa0m6F1K20N-OnGlSyq_WuKi78G34BfxA7cZaHRA9IvUaxE81M5uF88w1Cz3jBXUgbcCadyzOKVZVxV8rMFNKUWCrFWgLTyTEbn9IPs-FsC_3oe2EirDL5_s6nt946XRkkaQ4WdT04ieZZ5XQWipY8QjsSsvLQfr0IdZt_ffAuKPk5IaP307fjLI0WyHRR4VWmiGIFs8aVTEvDiHIyGDYudK4Mt4rTgpcqhDMa6h9ph1KzMli3I9honleGFWHfa-g6De4ijk14-e03XEmV0559Mb5e_yu1BZXJRex-Jx1tKKb_CoZ_hYU21o3uoNspSYU3nRzuoi3b3EO3JhuGV38ffR-tlzF3BNucRcOJh4wwdxCuwSIJEPxZ7SKsGjZMsa9g2uJ0Pai2jwg67wg6grrT8TDIxvzaw0Rm3zSUC-oGTj6Owddf0tQxH5_ZgQtW4JbWZn69dFJbcOfzC_8AnV6JXh6i7Wbe2EcIKsdD_R2KbV5aSnSk7nPB_HKDq3JoWLmD8l72Qic-9DiW41z0wLfPIqhLRHWJOKoT0x30YrNk0ZGBXHYz7RUq_rBoEYLVZcv2e-WL5E68CEUnqwpMh2T3_3Z9im6Mp5MjcXRwfLiHbpLYw9GeI-2j7dVybR-HzGqlnrSWDOjTVX86PwHetTff
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Further+enhancement+of+the+particle+shifting+technique%3A+Towards+better+volume+conservation+and+particle+distribution+in+SPH+simulations+of+violent+free-surface+flows&rft.jtitle=Applied+mathematical+modelling&rft.au=Lyu%2C+Hong-Guan&rft.au=Sun%2C+Peng-Nan&rft.date=2022-01-01&rft.pub=Elsevier+Inc&rft.issn=0307-904X&rft.volume=101&rft.spage=214&rft.epage=238&rft_id=info:doi/10.1016%2Fj.apm.2021.08.014&rft.externalDocID=S0307904X21003760
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0307-904X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0307-904X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0307-904X&client=summon