Fine-Tuned Visual Transformer Masked Autoencoder Applied for Anomaly Detection in Satellite Images
Anomaly detection is a process in which outlier samples can be detected in a given dataset. The purpose of this study is to implement, test, and evaluate the possibility of using deep learning methods for outlier detection with the use of a fine-tuning approach. A Transformer Masked Autoencoder was...
Saved in:
Published in | Applied sciences Vol. 15; no. 11; p. 6286 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.06.2025
|
Subjects | |
Online Access | Get full text |
ISSN | 2076-3417 2076-3417 |
DOI | 10.3390/app15116286 |
Cover
Loading…
Abstract | Anomaly detection is a process in which outlier samples can be detected in a given dataset. The purpose of this study is to implement, test, and evaluate the possibility of using deep learning methods for outlier detection with the use of a fine-tuning approach. A Transformer Masked Autoencoder was fine-tuned for a custom satellite image dataset after being pre-trained on the ImageNet subset. The first process of training included building an internal representation of images from a normal class. After adjusting the model weights for this task, a custom dataset with normal and abnormal samples was used for the reconstruction error calculation. The results obtained in this study show that it is possible to distinguish between normal class representatives and outliers using the proposed approach. However, this is not sufficient for the model to be employed in real-life applications. With a given level of precision, the model requires additional knowledge about the subject to correctly classify the sample. To the best of our knowledge, this study is the first to apply ViTMAE for a custom satellite image database. An analysis of the misclassified samples shows that the model tends to generalize the image content and is not sufficiently robust for image noise. As a result of the analysis, a new anomaly indicator is proposed for further study. |
---|---|
AbstractList | Anomaly detection is a process in which outlier samples can be detected in a given dataset. The purpose of this study is to implement, test, and evaluate the possibility of using deep learning methods for outlier detection with the use of a fine-tuning approach. A Transformer Masked Autoencoder was fine-tuned for a custom satellite image dataset after being pre-trained on the ImageNet subset. The first process of training included building an internal representation of images from a normal class. After adjusting the model weights for this task, a custom dataset with normal and abnormal samples was used for the reconstruction error calculation. The results obtained in this study show that it is possible to distinguish between normal class representatives and outliers using the proposed approach. However, this is not sufficient for the model to be employed in real-life applications. With a given level of precision, the model requires additional knowledge about the subject to correctly classify the sample. To the best of our knowledge, this study is the first to apply ViTMAE for a custom satellite image database. An analysis of the misclassified samples shows that the model tends to generalize the image content and is not sufficiently robust for image noise. As a result of the analysis, a new anomaly indicator is proposed for further study. |
Audience | Academic |
Author | Gajda, Jakub Kwiecień, Joanna |
Author_xml | – sequence: 1 givenname: Jakub orcidid: 0000-0001-6185-0664 surname: Gajda fullname: Gajda, Jakub – sequence: 2 givenname: Joanna orcidid: 0000-0002-8225-7605 surname: Kwiecień fullname: Kwiecień, Joanna |
BookMark | eNptkc1u1DAUhSNUJErpiheIxBKl9b-dZVQojFTEgoGt5dg3Iw-JHWxn0bevyyBaJOyFr47P-WTrvG7OQgzQNG8xuqK0R9dmXTHHWBAlXjTnBEnRUYbl2bP5VXOZ8xHV1WOqMDpvxlsfoNtvAVz7w-fNzO0-mZCnmBZI7ReTf9abYSsRgo2uSsO6zr5q1dEOIS5mvm8_QAFbfAytD-03U2CefYF2t5gD5DfNy8nMGS7_nBfN99uP-5vP3d3XT7ub4a6ztMelGzGInlDJjJiUUr0DzunkpGJKgjCuBxCKcoUElkxSIBQpSx0WFiE-IUQvmt2J66I56jX5xaR7HY3Xv4WYDtqk4u0MehwZFwiYItiwGu7JCCNwohDC3GFVWe9OrDXFXxvkoo9xS6E-X1OCpSSMIvbkOpgK9WGKJRm7-Gz1oBhHijL1yLr6j6tuB4u3tcPJV_2fwPtTwKaYc4Lp72cw0o9V62dV0we_Q5nK |
Cites_doi | 10.1109/ICCV.2015.177 10.1016/j.patrec.2021.05.022 10.1016/j.compbiomed.2020.103903 10.1109/ICTAI.2014.105 10.2514/6.2020-1851 10.1109/CyberSecurity49315.2020.9138871 10.1007/978-3-319-59050-9_12 10.1007/s11263-019-01228-7 10.1016/j.comnet.2007.02.001 10.1007/978-3-030-32251-9_42 10.1109/ICCV51070.2023.00624 10.1007/978-3-030-33778-0_37 10.1007/s11263-015-0816-y 10.1109/USBEREIT51232.2021.9455004 10.1109/CVPR52688.2022.01553 10.1109/HASE.2017.36 10.1016/j.procs.2022.01.057 10.1016/j.neucom.2021.12.093 10.15607/RSS.2017.XIII.064 10.3390/rs13081506 10.1109/ACCESS.2021.3088149 10.1016/j.procir.2019.02.123 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2025 MDPI AG 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: COPYRIGHT 2025 MDPI AG – notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION ABUWG AFKRA AZQEC BENPR CCPQU DWQXO PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS DOA |
DOI | 10.3390/app15116286 |
DatabaseName | CrossRef ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Sciences (General) |
EISSN | 2076-3417 |
ExternalDocumentID | oai_doaj_org_article_bb4560e4821a45f092bebe5280015d18 A845083488 10_3390_app15116286 |
GroupedDBID | .4S 2XV 5VS 7XC 8CJ 8FE 8FG 8FH AADQD AAFWJ AAYXX ADBBV ADMLS AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS APEBS ARCSS BCNDV BENPR CCPQU CITATION CZ9 D1I D1J D1K GROUPED_DOAJ IAO IGS ITC K6- K6V KC. KQ8 L6V LK5 LK8 M7R MODMG M~E OK1 P62 PHGZM PHGZT PIMPY PROAC TUS ABUWG AZQEC DWQXO PKEHL PQEST PQQKQ PQUKI PRINS PUEGO |
ID | FETCH-LOGICAL-c391t-b1e692374a6f8889de553fd78487e6ad9ee683580617473e2308c3d16c005f003 |
IEDL.DBID | DOA |
ISSN | 2076-3417 |
IngestDate | Wed Aug 27 01:30:54 EDT 2025 Mon Jun 30 07:45:22 EDT 2025 Wed Jun 25 16:51:34 EDT 2025 Tue Jul 01 05:43:28 EDT 2025 Thu Jul 03 08:38:23 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c391t-b1e692374a6f8889de553fd78487e6ad9ee683580617473e2308c3d16c005f003 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-8225-7605 0000-0001-6185-0664 |
OpenAccessLink | https://doaj.org/article/bb4560e4821a45f092bebe5280015d18 |
PQID | 3217724304 |
PQPubID | 2032433 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_bb4560e4821a45f092bebe5280015d18 proquest_journals_3217724304 gale_infotracmisc_A845083488 gale_infotracacademiconefile_A845083488 crossref_primary_10_3390_app15116286 |
PublicationCentury | 2000 |
PublicationDate | 2025-06-01 |
PublicationDateYYYYMMDD | 2025-06-01 |
PublicationDate_xml | – month: 06 year: 2025 text: 2025-06-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Applied sciences |
PublicationYear | 2025 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | ref_14 ref_36 ref_35 ref_12 ref_34 ref_11 ref_33 ref_10 ref_32 Patcha (ref_6) 2007; 51 ref_31 ref_30 Selvaraju (ref_44) 2020; 128 Khan (ref_27) 2021; 9 ref_18 ref_17 ref_39 ref_15 ref_37 An (ref_19) 2015; 2 Russakovsky (ref_40) 2015; 115 Wibisono (ref_16) 2021; Volume 1869 ref_24 ref_22 ref_21 Siddalingappa (ref_25) 2021; 12 ref_43 ref_42 ref_41 ref_1 ref_3 ref_2 ref_29 ref_28 ref_26 ref_9 ref_8 Staar (ref_23) 2019; 79 ref_5 ref_4 Hardy (ref_38) 2021; 104 ref_7 Lesouple (ref_13) 2021; 149 Xia (ref_20) 2022; 493 |
References_xml | – ident: ref_7 – ident: ref_9 – ident: ref_36 doi: 10.1109/ICCV.2015.177 – volume: 149 start-page: 109 year: 2021 ident: ref_13 article-title: Generalized isolation forest for anomaly detection publication-title: Pattern Recognit. Lett. doi: 10.1016/j.patrec.2021.05.022 – ident: ref_24 doi: 10.1016/j.compbiomed.2020.103903 – ident: ref_3 – ident: ref_34 – ident: ref_11 doi: 10.1109/ICTAI.2014.105 – ident: ref_15 doi: 10.2514/6.2020-1851 – ident: ref_37 – ident: ref_14 – ident: ref_1 – ident: ref_8 doi: 10.1109/CyberSecurity49315.2020.9138871 – ident: ref_18 – volume: 2 start-page: 1 year: 2015 ident: ref_19 article-title: Variational autoencoder based anomaly detection using reconstruction probability publication-title: Spec. Lect. IE – volume: 12 start-page: 148 year: 2021 ident: ref_25 article-title: Anomaly detection on medical images using autoencoder and convolutional neural network publication-title: Int. J. Adv. Comput. Sci. Appl. – ident: ref_32 doi: 10.1007/978-3-319-59050-9_12 – volume: 128 start-page: 336 year: 2020 ident: ref_44 article-title: Grad-CAM: Visual Explanations from Deep Networks via Gradient-Based Localization publication-title: Int. J. Comput. Vis. doi: 10.1007/s11263-019-01228-7 – volume: 51 start-page: 3448 year: 2007 ident: ref_6 article-title: An overview of anomaly detection techniques: Existing solutions and latest technological trends publication-title: Comput. Netw. doi: 10.1016/j.comnet.2007.02.001 – volume: Volume 1869 start-page: 012077 year: 2021 ident: ref_16 article-title: Multivariate weather anomaly detection using DBSCAN clustering algorithm publication-title: Journal of Physics: Conference Series (JPCS) – ident: ref_26 doi: 10.1007/978-3-030-32251-9_42 – ident: ref_30 doi: 10.1109/ICCV51070.2023.00624 – ident: ref_4 – ident: ref_22 doi: 10.1007/978-3-030-33778-0_37 – ident: ref_31 – ident: ref_29 – ident: ref_33 – ident: ref_2 – volume: 115 start-page: 211 year: 2015 ident: ref_40 article-title: ImageNet Large Scale Visual Recognition Challenge publication-title: Int. J. Comput. Vis. doi: 10.1007/s11263-015-0816-y – ident: ref_12 – volume: 104 start-page: 102535 year: 2021 ident: ref_38 article-title: The Earth Observation-based Anomaly Detection (EOAD) system: A simple, scalable approach to mapping in-field and farm-scale anomalies using widely available satellite imagery publication-title: Int. J. Appl. Earth Obs. Geoinf. – ident: ref_10 – ident: ref_21 doi: 10.1109/USBEREIT51232.2021.9455004 – ident: ref_42 doi: 10.1109/CVPR52688.2022.01553 – ident: ref_28 doi: 10.1109/HASE.2017.36 – ident: ref_41 – ident: ref_5 doi: 10.1016/j.procs.2022.01.057 – volume: 493 start-page: 497 year: 2022 ident: ref_20 article-title: GAN-based anomaly detection: A review publication-title: Neurocomputing doi: 10.1016/j.neucom.2021.12.093 – ident: ref_17 – ident: ref_35 doi: 10.15607/RSS.2017.XIII.064 – ident: ref_43 – ident: ref_39 doi: 10.3390/rs13081506 – volume: 9 start-page: 87079 year: 2021 ident: ref_27 article-title: A spectrogram image-based network anomaly detection system using deep convolutional neural network publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3088149 – volume: 79 start-page: 484 year: 2019 ident: ref_23 article-title: Anomaly detection with convolutional neural networks for industrial surface inspection publication-title: CIRP doi: 10.1016/j.procir.2019.02.123 |
SSID | ssj0000913810 |
Score | 2.3200812 |
Snippet | Anomaly detection is a process in which outlier samples can be detected in a given dataset. The purpose of this study is to implement, test, and evaluate the... |
SourceID | doaj proquest gale crossref |
SourceType | Open Website Aggregation Database Index Database |
StartPage | 6286 |
SubjectTerms | Analysis anomaly detection autoencoders Classification Datasets Deep learning Diffusion models Electric transformers Machine learning Medical imaging equipment Neural networks satellite images transformer models |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fTxQxEJ4ovOgDEdR4iKYPJOpDI912u70ncigXNIEYPQxvTX-tIcIu3O49-N8zs9fD40Ff22azmelMv5l2vgHY9wFBEOqal8I5rrwL3FVVxb30RgVfSBeoUPj0TJ-cq68X5UVOuHX5WeXKJw6OOraBcuQfJWLnqlAYfR_e3HLqGkW3q7mFxmPYRBdsMPjaPDo--_b9PstCrJdGHCwL8yTG93QvjIec0EP19NpRNDD2_8svD4fN9BlsZZTIJku1bsOj1OzA0zXuwB3YzlbZsfeZOvrDc_BTXMBnC_Sd7Odlt8BvzFbINM3Zqet-48xk0bfEXxlxKKNQhivYpGmv3dUf9jn1wwOthl027IcbODv7xL5co-_pXsD59Hj26YTnLgo8yLHouRdJI4qrlNM1hrvjmMpS1rEyGKok7eI4JW3oMhSxjKpkwpjEBBmFDmigNRr9S9ho2ia9ApZKEQtZBqGdVjrWzsQ6eGEqWWocrEewvxKovVmSZVgMMkjudk3uIzgiYd8vIYbrYaCd_7LZYKz3CO0OkjKFcAr_Y1x43G9lYQjlRWFG8I5UZckO-7kLLpcT4J8So5WdGEVM9-ifRrD3YCXaT3g4vVK2zfbb2b-7bff_06_hSUEdgYe8zB5s9PNFeoMwpfdv8168A0hZ5ls priority: 102 providerName: ProQuest |
Title | Fine-Tuned Visual Transformer Masked Autoencoder Applied for Anomaly Detection in Satellite Images |
URI | https://www.proquest.com/docview/3217724304 https://doaj.org/article/bb4560e4821a45f092bebe5280015d18 |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwEB5RemkPqECrboGVD0ilh6jr-BHnuBS2FAlUwVJxs_yKhFqy1SZ74N8zdrIoHFAvvdqjxJrJzHwTez4DHFqHIAhtnQlqTMatcZkpiiKzzCrubM6Mi43CF5fy7Iaf34rbwVVf8UxYRw_cKe6rtZjiJ4GrnBouqkmZW3yvyFXM9p6mNl_MeYNiKsXgkkbqqq4hj2FdH_eDMblRmbqmBykoMfW_FI9Tkpm9g60eHZJpt6pt2Aj1DrwdcAbuwHbvjQ056imjv-yCnaFANl9hzCS_7poVPmO-RqRhSS5M8xtnpqt2EXkrPQ716JOgBJnWi3vz54GchDYdzKrJXU2uTeLqbAP5cY8xp3kPN7PT-bezrL89IXOspG1maZCI3gpuZIVlbumDEKzyhcISJUjjyxCkipugiGF4wQLWIsoxT6VDx6zQ2T_AZr2ow0cgQVCfM-GoNJJLXxnlK2epKpiQOFiN4HCtUP23I8nQWFxEveuB3kdwHJX9JBKZrdMA2lv39tb_svcIPkdT6eh_7dI407cR4Eojk5WeKh4Z7jEujWD_mST6jXs-vTa27v220QwrtCLnbMI__Y_F7sGbPN4XnP7a7MNmu1yFAwQxrR3DKzX7PobXx6eXP6_G6et9BNIG70A |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcgAOiBYQCwV8KAIOFuvYcZwDQgtl2aXdXtii3ly_gipoUjZZof4pfiPjbFK2B7j1aluWNZ7H58d8A7BrHYIg3GuaMmOosMZRk2UZtdwq4WzCjYuJwrNDOTkSn4_T4w343efCxG-VvU9sHbWvXLwjf8MRO2eJwNP3u_OfNFaNiq-rfQmNlVrsh4tfeGSr3073cH9fJMn44_zDhHZVBajjOWuoZUEiqsmEkQUe_3If0pQXPlMI3YM0Pg9Bqvg4iLFdZDwgRleOeyYdKmyBRoDz3oCbgvM8WpQaf7q804kcm4oNV2mA2D-Mr9AYUplsc7XXAl9bH-BfUaANbeN7cLfDpGS0UqIt2AjlNtxZYyrchq3OB9TkVUdU_fo-2DEOoPMlemry9bRe4hzzHgeHBZmZ-jv2jJZNFdkyPTZ1mJfgCDIqqzPz44Lshab9DlaS05J8MS1DaBPI9Aw9Xf0Ajq5Fug9hs6zK8AhISJlPeOqYNFJIXxjlC2eZyngqsbEYwG4vUH2-oubQeKSJctdrch_A-yjsyyGRT7ttqBbfdGee2loEksMgVMKMwHXkiUXtThMVMaVnagAv41bpaPXNwjjTJS_gSiN_lh4pEXn10RsOYOfKSLRWd7W732zdeYta_9Xtx__vfg63JvPZgT6YHu4_gdtJrEXc3gjtwGazWIanCJAa-6zVSgIn120GfwCayx-y |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrYTggGgBsVDAhyLgEHUdO45zQGjLdtWldFXBFvVm_Aqq2iZlkxXqX-PXMc4mZXuAW6-2FUXjeXxje74B2DYWQRDudZRQrSNutI10mqaRYUZya2KmbSgUPpyK_WP-6SQ5WYPfXS1MeFbZ-cTGUbvShjPyHYbYOY05Zt87efss4mg0_nD5MwodpMJNa9dOY6kiB_7qF6Zv1fvJCPf6dRyP92Yf96O2w0BkWUbryFAvEOGkXIscU8HM-SRhuUslwngvtMu8FzJcFGKc5ynziNelZY4Ki8qbo0Hgd-_AeopZ0aAH67t706Mv1yc8gXFT0sGyKJCxbBDupDHAUtFUbq-EwaZbwL9iQhPoxg_hQYtQyXCpUhuw5otNuL_CW7gJG61HqMjblrb63SMwY1wQzRbot8m302qB35h1qNjPyaGuznBmuKjLwJ3pcKhFwARXkGFRXujzKzLydfM4rCCnBfmqG77Q2pPJBfq96jEc34p8n0CvKAv_FIhPqItZYqnQgguXa-lya6hMWSJwMO_DdidQdbkk6lCY4AS5qxW592E3CPt6SWDXbgbK-Q_VGqsyBmHlwHMZU83xP7LYoK4nsQwI01HZhzdhq1TwAfVcW92WMuCfBjYtNZQ8sOyjb-zD1o2VaLv25nS32ar1HZX6q-nP_j_9Cu6iCajPk-nBc7gXh8bEzfHQFvTq-cK_QLRUm5etWhL4ftuW8AfqeCVE |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fine-Tuned+Visual+Transformer+Masked+Autoencoder+Applied+for+Anomaly+Detection+in+Satellite+Images&rft.jtitle=Applied+sciences&rft.au=Jakub+Gajda&rft.au=Joanna+Kwiecie%C5%84&rft.date=2025-06-01&rft.pub=MDPI+AG&rft.eissn=2076-3417&rft.volume=15&rft.issue=11&rft.spage=6286&rft_id=info:doi/10.3390%2Fapp15116286&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_bb4560e4821a45f092bebe5280015d18 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-3417&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-3417&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-3417&client=summon |