Fine-Tuned Visual Transformer Masked Autoencoder Applied for Anomaly Detection in Satellite Images

Anomaly detection is a process in which outlier samples can be detected in a given dataset. The purpose of this study is to implement, test, and evaluate the possibility of using deep learning methods for outlier detection with the use of a fine-tuning approach. A Transformer Masked Autoencoder was...

Full description

Saved in:
Bibliographic Details
Published inApplied sciences Vol. 15; no. 11; p. 6286
Main Authors Gajda, Jakub, Kwiecień, Joanna
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.06.2025
Subjects
Online AccessGet full text
ISSN2076-3417
2076-3417
DOI10.3390/app15116286

Cover

Loading…
Abstract Anomaly detection is a process in which outlier samples can be detected in a given dataset. The purpose of this study is to implement, test, and evaluate the possibility of using deep learning methods for outlier detection with the use of a fine-tuning approach. A Transformer Masked Autoencoder was fine-tuned for a custom satellite image dataset after being pre-trained on the ImageNet subset. The first process of training included building an internal representation of images from a normal class. After adjusting the model weights for this task, a custom dataset with normal and abnormal samples was used for the reconstruction error calculation. The results obtained in this study show that it is possible to distinguish between normal class representatives and outliers using the proposed approach. However, this is not sufficient for the model to be employed in real-life applications. With a given level of precision, the model requires additional knowledge about the subject to correctly classify the sample. To the best of our knowledge, this study is the first to apply ViTMAE for a custom satellite image database. An analysis of the misclassified samples shows that the model tends to generalize the image content and is not sufficiently robust for image noise. As a result of the analysis, a new anomaly indicator is proposed for further study.
AbstractList Anomaly detection is a process in which outlier samples can be detected in a given dataset. The purpose of this study is to implement, test, and evaluate the possibility of using deep learning methods for outlier detection with the use of a fine-tuning approach. A Transformer Masked Autoencoder was fine-tuned for a custom satellite image dataset after being pre-trained on the ImageNet subset. The first process of training included building an internal representation of images from a normal class. After adjusting the model weights for this task, a custom dataset with normal and abnormal samples was used for the reconstruction error calculation. The results obtained in this study show that it is possible to distinguish between normal class representatives and outliers using the proposed approach. However, this is not sufficient for the model to be employed in real-life applications. With a given level of precision, the model requires additional knowledge about the subject to correctly classify the sample. To the best of our knowledge, this study is the first to apply ViTMAE for a custom satellite image database. An analysis of the misclassified samples shows that the model tends to generalize the image content and is not sufficiently robust for image noise. As a result of the analysis, a new anomaly indicator is proposed for further study.
Audience Academic
Author Gajda, Jakub
Kwiecień, Joanna
Author_xml – sequence: 1
  givenname: Jakub
  orcidid: 0000-0001-6185-0664
  surname: Gajda
  fullname: Gajda, Jakub
– sequence: 2
  givenname: Joanna
  orcidid: 0000-0002-8225-7605
  surname: Kwiecień
  fullname: Kwiecień, Joanna
BookMark eNptkc1u1DAUhSNUJErpiheIxBKl9b-dZVQojFTEgoGt5dg3Iw-JHWxn0bevyyBaJOyFr47P-WTrvG7OQgzQNG8xuqK0R9dmXTHHWBAlXjTnBEnRUYbl2bP5VXOZ8xHV1WOqMDpvxlsfoNtvAVz7w-fNzO0-mZCnmBZI7ReTf9abYSsRgo2uSsO6zr5q1dEOIS5mvm8_QAFbfAytD-03U2CefYF2t5gD5DfNy8nMGS7_nBfN99uP-5vP3d3XT7ub4a6ztMelGzGInlDJjJiUUr0DzunkpGJKgjCuBxCKcoUElkxSIBQpSx0WFiE-IUQvmt2J66I56jX5xaR7HY3Xv4WYDtqk4u0MehwZFwiYItiwGu7JCCNwohDC3GFVWe9OrDXFXxvkoo9xS6E-X1OCpSSMIvbkOpgK9WGKJRm7-Gz1oBhHijL1yLr6j6tuB4u3tcPJV_2fwPtTwKaYc4Lp72cw0o9V62dV0we_Q5nK
Cites_doi 10.1109/ICCV.2015.177
10.1016/j.patrec.2021.05.022
10.1016/j.compbiomed.2020.103903
10.1109/ICTAI.2014.105
10.2514/6.2020-1851
10.1109/CyberSecurity49315.2020.9138871
10.1007/978-3-319-59050-9_12
10.1007/s11263-019-01228-7
10.1016/j.comnet.2007.02.001
10.1007/978-3-030-32251-9_42
10.1109/ICCV51070.2023.00624
10.1007/978-3-030-33778-0_37
10.1007/s11263-015-0816-y
10.1109/USBEREIT51232.2021.9455004
10.1109/CVPR52688.2022.01553
10.1109/HASE.2017.36
10.1016/j.procs.2022.01.057
10.1016/j.neucom.2021.12.093
10.15607/RSS.2017.XIII.064
10.3390/rs13081506
10.1109/ACCESS.2021.3088149
10.1016/j.procir.2019.02.123
ContentType Journal Article
Copyright COPYRIGHT 2025 MDPI AG
2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2025 MDPI AG
– notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
DOA
DOI 10.3390/app15116286
DatabaseName CrossRef
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList CrossRef

Publicly Available Content Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Sciences (General)
EISSN 2076-3417
ExternalDocumentID oai_doaj_org_article_bb4560e4821a45f092bebe5280015d18
A845083488
10_3390_app15116286
GroupedDBID .4S
2XV
5VS
7XC
8CJ
8FE
8FG
8FH
AADQD
AAFWJ
AAYXX
ADBBV
ADMLS
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
APEBS
ARCSS
BCNDV
BENPR
CCPQU
CITATION
CZ9
D1I
D1J
D1K
GROUPED_DOAJ
IAO
IGS
ITC
K6-
K6V
KC.
KQ8
L6V
LK5
LK8
M7R
MODMG
M~E
OK1
P62
PHGZM
PHGZT
PIMPY
PROAC
TUS
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
PUEGO
ID FETCH-LOGICAL-c391t-b1e692374a6f8889de553fd78487e6ad9ee683580617473e2308c3d16c005f003
IEDL.DBID DOA
ISSN 2076-3417
IngestDate Wed Aug 27 01:30:54 EDT 2025
Mon Jun 30 07:45:22 EDT 2025
Wed Jun 25 16:51:34 EDT 2025
Tue Jul 01 05:43:28 EDT 2025
Thu Jul 03 08:38:23 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c391t-b1e692374a6f8889de553fd78487e6ad9ee683580617473e2308c3d16c005f003
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-8225-7605
0000-0001-6185-0664
OpenAccessLink https://doaj.org/article/bb4560e4821a45f092bebe5280015d18
PQID 3217724304
PQPubID 2032433
ParticipantIDs doaj_primary_oai_doaj_org_article_bb4560e4821a45f092bebe5280015d18
proquest_journals_3217724304
gale_infotracmisc_A845083488
gale_infotracacademiconefile_A845083488
crossref_primary_10_3390_app15116286
PublicationCentury 2000
PublicationDate 2025-06-01
PublicationDateYYYYMMDD 2025-06-01
PublicationDate_xml – month: 06
  year: 2025
  text: 2025-06-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Applied sciences
PublicationYear 2025
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References ref_14
ref_36
ref_35
ref_12
ref_34
ref_11
ref_33
ref_10
ref_32
Patcha (ref_6) 2007; 51
ref_31
ref_30
Selvaraju (ref_44) 2020; 128
Khan (ref_27) 2021; 9
ref_18
ref_17
ref_39
ref_15
ref_37
An (ref_19) 2015; 2
Russakovsky (ref_40) 2015; 115
Wibisono (ref_16) 2021; Volume 1869
ref_24
ref_22
ref_21
Siddalingappa (ref_25) 2021; 12
ref_43
ref_42
ref_41
ref_1
ref_3
ref_2
ref_29
ref_28
ref_26
ref_9
ref_8
Staar (ref_23) 2019; 79
ref_5
ref_4
Hardy (ref_38) 2021; 104
ref_7
Lesouple (ref_13) 2021; 149
Xia (ref_20) 2022; 493
References_xml – ident: ref_7
– ident: ref_9
– ident: ref_36
  doi: 10.1109/ICCV.2015.177
– volume: 149
  start-page: 109
  year: 2021
  ident: ref_13
  article-title: Generalized isolation forest for anomaly detection
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/j.patrec.2021.05.022
– ident: ref_24
  doi: 10.1016/j.compbiomed.2020.103903
– ident: ref_3
– ident: ref_34
– ident: ref_11
  doi: 10.1109/ICTAI.2014.105
– ident: ref_15
  doi: 10.2514/6.2020-1851
– ident: ref_37
– ident: ref_14
– ident: ref_1
– ident: ref_8
  doi: 10.1109/CyberSecurity49315.2020.9138871
– ident: ref_18
– volume: 2
  start-page: 1
  year: 2015
  ident: ref_19
  article-title: Variational autoencoder based anomaly detection using reconstruction probability
  publication-title: Spec. Lect. IE
– volume: 12
  start-page: 148
  year: 2021
  ident: ref_25
  article-title: Anomaly detection on medical images using autoencoder and convolutional neural network
  publication-title: Int. J. Adv. Comput. Sci. Appl.
– ident: ref_32
  doi: 10.1007/978-3-319-59050-9_12
– volume: 128
  start-page: 336
  year: 2020
  ident: ref_44
  article-title: Grad-CAM: Visual Explanations from Deep Networks via Gradient-Based Localization
  publication-title: Int. J. Comput. Vis.
  doi: 10.1007/s11263-019-01228-7
– volume: 51
  start-page: 3448
  year: 2007
  ident: ref_6
  article-title: An overview of anomaly detection techniques: Existing solutions and latest technological trends
  publication-title: Comput. Netw.
  doi: 10.1016/j.comnet.2007.02.001
– volume: Volume 1869
  start-page: 012077
  year: 2021
  ident: ref_16
  article-title: Multivariate weather anomaly detection using DBSCAN clustering algorithm
  publication-title: Journal of Physics: Conference Series (JPCS)
– ident: ref_26
  doi: 10.1007/978-3-030-32251-9_42
– ident: ref_30
  doi: 10.1109/ICCV51070.2023.00624
– ident: ref_4
– ident: ref_22
  doi: 10.1007/978-3-030-33778-0_37
– ident: ref_31
– ident: ref_29
– ident: ref_33
– ident: ref_2
– volume: 115
  start-page: 211
  year: 2015
  ident: ref_40
  article-title: ImageNet Large Scale Visual Recognition Challenge
  publication-title: Int. J. Comput. Vis.
  doi: 10.1007/s11263-015-0816-y
– ident: ref_12
– volume: 104
  start-page: 102535
  year: 2021
  ident: ref_38
  article-title: The Earth Observation-based Anomaly Detection (EOAD) system: A simple, scalable approach to mapping in-field and farm-scale anomalies using widely available satellite imagery
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– ident: ref_10
– ident: ref_21
  doi: 10.1109/USBEREIT51232.2021.9455004
– ident: ref_42
  doi: 10.1109/CVPR52688.2022.01553
– ident: ref_28
  doi: 10.1109/HASE.2017.36
– ident: ref_41
– ident: ref_5
  doi: 10.1016/j.procs.2022.01.057
– volume: 493
  start-page: 497
  year: 2022
  ident: ref_20
  article-title: GAN-based anomaly detection: A review
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2021.12.093
– ident: ref_17
– ident: ref_35
  doi: 10.15607/RSS.2017.XIII.064
– ident: ref_43
– ident: ref_39
  doi: 10.3390/rs13081506
– volume: 9
  start-page: 87079
  year: 2021
  ident: ref_27
  article-title: A spectrogram image-based network anomaly detection system using deep convolutional neural network
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3088149
– volume: 79
  start-page: 484
  year: 2019
  ident: ref_23
  article-title: Anomaly detection with convolutional neural networks for industrial surface inspection
  publication-title: CIRP
  doi: 10.1016/j.procir.2019.02.123
SSID ssj0000913810
Score 2.3200812
Snippet Anomaly detection is a process in which outlier samples can be detected in a given dataset. The purpose of this study is to implement, test, and evaluate the...
SourceID doaj
proquest
gale
crossref
SourceType Open Website
Aggregation Database
Index Database
StartPage 6286
SubjectTerms Analysis
anomaly detection
autoencoders
Classification
Datasets
Deep learning
Diffusion models
Electric transformers
Machine learning
Medical imaging equipment
Neural networks
satellite images
transformer models
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fTxQxEJ4ovOgDEdR4iKYPJOpDI912u70ncigXNIEYPQxvTX-tIcIu3O49-N8zs9fD40Ff22azmelMv5l2vgHY9wFBEOqal8I5rrwL3FVVxb30RgVfSBeoUPj0TJ-cq68X5UVOuHX5WeXKJw6OOraBcuQfJWLnqlAYfR_e3HLqGkW3q7mFxmPYRBdsMPjaPDo--_b9PstCrJdGHCwL8yTG93QvjIec0EP19NpRNDD2_8svD4fN9BlsZZTIJku1bsOj1OzA0zXuwB3YzlbZsfeZOvrDc_BTXMBnC_Sd7Odlt8BvzFbINM3Zqet-48xk0bfEXxlxKKNQhivYpGmv3dUf9jn1wwOthl027IcbODv7xL5co-_pXsD59Hj26YTnLgo8yLHouRdJI4qrlNM1hrvjmMpS1rEyGKok7eI4JW3oMhSxjKpkwpjEBBmFDmigNRr9S9ho2ia9ApZKEQtZBqGdVjrWzsQ6eGEqWWocrEewvxKovVmSZVgMMkjudk3uIzgiYd8vIYbrYaCd_7LZYKz3CO0OkjKFcAr_Y1x43G9lYQjlRWFG8I5UZckO-7kLLpcT4J8So5WdGEVM9-ifRrD3YCXaT3g4vVK2zfbb2b-7bff_06_hSUEdgYe8zB5s9PNFeoMwpfdv8168A0hZ5ls
  priority: 102
  providerName: ProQuest
Title Fine-Tuned Visual Transformer Masked Autoencoder Applied for Anomaly Detection in Satellite Images
URI https://www.proquest.com/docview/3217724304
https://doaj.org/article/bb4560e4821a45f092bebe5280015d18
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwEB5RemkPqECrboGVD0ilh6jr-BHnuBS2FAlUwVJxs_yKhFqy1SZ74N8zdrIoHFAvvdqjxJrJzHwTez4DHFqHIAhtnQlqTMatcZkpiiKzzCrubM6Mi43CF5fy7Iaf34rbwVVf8UxYRw_cKe6rtZjiJ4GrnBouqkmZW3yvyFXM9p6mNl_MeYNiKsXgkkbqqq4hj2FdH_eDMblRmbqmBykoMfW_FI9Tkpm9g60eHZJpt6pt2Aj1DrwdcAbuwHbvjQ056imjv-yCnaFANl9hzCS_7poVPmO-RqRhSS5M8xtnpqt2EXkrPQ716JOgBJnWi3vz54GchDYdzKrJXU2uTeLqbAP5cY8xp3kPN7PT-bezrL89IXOspG1maZCI3gpuZIVlbumDEKzyhcISJUjjyxCkipugiGF4wQLWIsoxT6VDx6zQ2T_AZr2ow0cgQVCfM-GoNJJLXxnlK2epKpiQOFiN4HCtUP23I8nQWFxEveuB3kdwHJX9JBKZrdMA2lv39tb_svcIPkdT6eh_7dI407cR4Eojk5WeKh4Z7jEujWD_mST6jXs-vTa27v220QwrtCLnbMI__Y_F7sGbPN4XnP7a7MNmu1yFAwQxrR3DKzX7PobXx6eXP6_G6et9BNIG70A
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcgAOiBYQCwV8KAIOFuvYcZwDQgtl2aXdXtii3ly_gipoUjZZof4pfiPjbFK2B7j1aluWNZ7H58d8A7BrHYIg3GuaMmOosMZRk2UZtdwq4WzCjYuJwrNDOTkSn4_T4w343efCxG-VvU9sHbWvXLwjf8MRO2eJwNP3u_OfNFaNiq-rfQmNlVrsh4tfeGSr3073cH9fJMn44_zDhHZVBajjOWuoZUEiqsmEkQUe_3If0pQXPlMI3YM0Pg9Bqvg4iLFdZDwgRleOeyYdKmyBRoDz3oCbgvM8WpQaf7q804kcm4oNV2mA2D-Mr9AYUplsc7XXAl9bH-BfUaANbeN7cLfDpGS0UqIt2AjlNtxZYyrchq3OB9TkVUdU_fo-2DEOoPMlemry9bRe4hzzHgeHBZmZ-jv2jJZNFdkyPTZ1mJfgCDIqqzPz44Lshab9DlaS05J8MS1DaBPI9Aw9Xf0Ajq5Fug9hs6zK8AhISJlPeOqYNFJIXxjlC2eZyngqsbEYwG4vUH2-oubQeKSJctdrch_A-yjsyyGRT7ttqBbfdGee2loEksMgVMKMwHXkiUXtThMVMaVnagAv41bpaPXNwjjTJS_gSiN_lh4pEXn10RsOYOfKSLRWd7W732zdeYta_9Xtx__vfg63JvPZgT6YHu4_gdtJrEXc3gjtwGazWIanCJAa-6zVSgIn120GfwCayx-y
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrYTggGgBsVDAhyLgEHUdO45zQGjLdtWldFXBFvVm_Aqq2iZlkxXqX-PXMc4mZXuAW6-2FUXjeXxje74B2DYWQRDudZRQrSNutI10mqaRYUZya2KmbSgUPpyK_WP-6SQ5WYPfXS1MeFbZ-cTGUbvShjPyHYbYOY05Zt87efss4mg0_nD5MwodpMJNa9dOY6kiB_7qF6Zv1fvJCPf6dRyP92Yf96O2w0BkWUbryFAvEOGkXIscU8HM-SRhuUslwngvtMu8FzJcFGKc5ynziNelZY4Ki8qbo0Hgd-_AeopZ0aAH67t706Mv1yc8gXFT0sGyKJCxbBDupDHAUtFUbq-EwaZbwL9iQhPoxg_hQYtQyXCpUhuw5otNuL_CW7gJG61HqMjblrb63SMwY1wQzRbot8m302qB35h1qNjPyaGuznBmuKjLwJ3pcKhFwARXkGFRXujzKzLydfM4rCCnBfmqG77Q2pPJBfq96jEc34p8n0CvKAv_FIhPqItZYqnQgguXa-lya6hMWSJwMO_DdidQdbkk6lCY4AS5qxW592E3CPt6SWDXbgbK-Q_VGqsyBmHlwHMZU83xP7LYoK4nsQwI01HZhzdhq1TwAfVcW92WMuCfBjYtNZQ8sOyjb-zD1o2VaLv25nS32ar1HZX6q-nP_j_9Cu6iCajPk-nBc7gXh8bEzfHQFvTq-cK_QLRUm5etWhL4ftuW8AfqeCVE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fine-Tuned+Visual+Transformer+Masked+Autoencoder+Applied+for+Anomaly+Detection+in+Satellite+Images&rft.jtitle=Applied+sciences&rft.au=Jakub+Gajda&rft.au=Joanna+Kwiecie%C5%84&rft.date=2025-06-01&rft.pub=MDPI+AG&rft.eissn=2076-3417&rft.volume=15&rft.issue=11&rft.spage=6286&rft_id=info:doi/10.3390%2Fapp15116286&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_bb4560e4821a45f092bebe5280015d18
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-3417&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-3417&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-3417&client=summon