The physics of spreading processes in multilayer networks

Despite the success of traditional network analysis, standard networks provide a limited representation of complex systems, which often include different types of relationships (or ‘multiplexity’) between their components. Such structural complexity has a significant effect on both dynamics and func...

Full description

Saved in:
Bibliographic Details
Published inNature physics Vol. 12; no. 10; pp. 901 - 906
Main Authors De Domenico, Manlio, Granell, Clara, Porter, Mason A., Arenas, Alex
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 01.10.2016
Nature Publishing Group
Subjects
Online AccessGet full text
ISSN1745-2473
1745-2481
DOI10.1038/nphys3865

Cover

Loading…
Abstract Despite the success of traditional network analysis, standard networks provide a limited representation of complex systems, which often include different types of relationships (or ‘multiplexity’) between their components. Such structural complexity has a significant effect on both dynamics and function. Throwing away or aggregating available structural information can generate misleading results and be a major obstacle towards attempts to understand complex systems. The recent multilayer approach for modelling networked systems explicitly allows the incorporation of multiplexity and other features of realistic systems. It allows one to couple different structural relationships by encoding them in a convenient mathematical object. It also allows one to couple different dynamical processes on top of such interconnected structures. The resulting framework plays a crucial role in helping to achieve a thorough, accurate understanding of complex systems. The study of multilayer networks has also revealed new physical phenomena that remain hidden when using ordinary graphs, the traditional network representation. Here we survey progress towards attaining a deeper understanding of spreading processes on multilayer networks, and we highlight some of the physical phenomena related to spreading processes that emerge from multilayer structure. Reshaping network theory to describe the multilayered structures of the real world has formed a focus in complex networks research in recent years. Progress in our understanding of dynamical processes is but one of the fruits of this labour.
AbstractList Despite the success of traditional network analysis, standard networks provide a limited representation of complex systems, which often include dierent types of relationships (or multiplexity) between their components. Such structural complexity has a signicant eect on both dynamics and function. Throwing away or aggregating available structural information can generate misleading results and be a major obstacle towards attempts to understand complex systems. The recent multilayer approach for modelling networked systems explicitly allows the incorporation of multiplexity and other features of realistic systems. It allows one to couple dierent structural relationships by encoding them in a convenient mathematical object. It also allows one to couple dierent dynamical processes on top of such interconnected structures. The resulting framework plays a crucial role in helping to achieve a thorough, accurate understanding of complex systems. The study of multilayer networks has also revealed new physical phenomena that remain hidden when using ordinary graphs, the traditional network representation. Here we survey progress towards attaining a deeper understanding of spreading processes on multilayer networks, and we highlight some of the physical phenomena related to spreading processes that emerge from multilayer structure.
Despite the success of traditional network analysis, standard networks provide a limited representation of complex systems, which often include different types of relationships (or 'multiplexity') between their components. Such structural complexity has a significant effect on both dynamics and function. Throwing away or aggregating available structural information can generate misleading results and be a major obstacle towards attempts to understand complex systems. The recent multilayer approach for modelling networked systems explicitly allows the incorporation of multiplexity and other features of realistic systems. It allows one to couple different structural relationships by encoding them in a convenient mathematical object. It also allows one to couple different dynamical processes on top of such interconnected structures. The resulting framework plays a crucial role in helping to achieve a thorough, accurate understanding of complex systems. The study of multilayer networks has also revealed new physical phenomena that remain hidden when using ordinary graphs, the traditional network representation. Here we survey progress towards attaining a deeper understanding of spreading processes on multilayer networks, and we highlight some of the physical phenomena related to spreading processes that emerge from multilayer structure.
Despite the success of traditional network analysis, standard networks provide a limited representation of complex systems, which often include different types of relationships (or ‘multiplexity’) between their components. Such structural complexity has a significant effect on both dynamics and function. Throwing away or aggregating available structural information can generate misleading results and be a major obstacle towards attempts to understand complex systems. The recent multilayer approach for modelling networked systems explicitly allows the incorporation of multiplexity and other features of realistic systems. It allows one to couple different structural relationships by encoding them in a convenient mathematical object. It also allows one to couple different dynamical processes on top of such interconnected structures. The resulting framework plays a crucial role in helping to achieve a thorough, accurate understanding of complex systems. The study of multilayer networks has also revealed new physical phenomena that remain hidden when using ordinary graphs, the traditional network representation. Here we survey progress towards attaining a deeper understanding of spreading processes on multilayer networks, and we highlight some of the physical phenomena related to spreading processes that emerge from multilayer structure. Reshaping network theory to describe the multilayered structures of the real world has formed a focus in complex networks research in recent years. Progress in our understanding of dynamical processes is but one of the fruits of this labour.
Author Porter, Mason A.
Granell, Clara
De Domenico, Manlio
Arenas, Alex
Author_xml – sequence: 1
  givenname: Manlio
  orcidid: 0000-0001-5158-8594
  surname: De Domenico
  fullname: De Domenico, Manlio
  email: manlio.dedomenico@urv.cat
  organization: Departament d’Enginyeria Informàtica i Matemàtiques, Universitat Rovira i Virgili
– sequence: 2
  givenname: Clara
  surname: Granell
  fullname: Granell, Clara
  organization: Department of Mathematics, Carolina Center for Interdisciplinary Applied Mathematics, University of North Carolina
– sequence: 3
  givenname: Mason A.
  surname: Porter
  fullname: Porter, Mason A.
  organization: Oxford Centre for Industrial and Applied Mathematics, Mathematical Institute, University of Oxford, CABDyN Complexity Centre, University of Oxford, Department of Mathematics, University of California
– sequence: 4
  givenname: Alex
  orcidid: 0000-0003-0937-0334
  surname: Arenas
  fullname: Arenas, Alex
  email: alexandre.arenas@urv.cat
  organization: Departament d’Enginyeria Informàtica i Matemàtiques, Universitat Rovira i Virgili
BookMark eNptkN9KwzAUh4NMcJte-AYFb1SoS5om6byT4T8YeDOvS5KeuswuqUmL7G18Fp_MjInIFAInF9_v8DvfCA2ss4DQKcFXBNNiYtvlJtCCswM0JCJnaZYXZPDzF_QIjUJYYZxnnNAhul4sIdlmjA6Jq5PQepCVsS9J652GECAkxibrvulMIzfgPz8sdO_Ov4ZjdFjLJsDJ9xyj57vbxewhnT_dP85u5qmmU9KlCldc6EqqDHIMICrGKipgyqWoua6yuhJTIUGAIlgxrZgAzaikVOFMKSLoGJ3v9sZGbz2ErlyboKFppAXXh5IUOSswjxdF9GwPXbne29guUhljvKDxjdFkR2nvQvBQl9p0sjPOdl6apiS43Losf1zGxMVeovVmLf3mX_Zyx0aV0SP4Xx3-wF9tjYgE
CitedBy_id crossref_primary_10_1038_s41598_020_75147_w
crossref_primary_10_1038_s41467_018_08009_9
crossref_primary_10_1109_TCYB_2020_3006032
crossref_primary_10_1137_19M1257123
crossref_primary_10_3390_e24081147
crossref_primary_10_1063_1_5121394
crossref_primary_10_1016_j_neuroimage_2021_118705
crossref_primary_10_1063_5_0023427
crossref_primary_10_1063_1_5010766
crossref_primary_10_1063_5_0126799
crossref_primary_10_1109_TVT_2024_3440958
crossref_primary_10_1186_s12859_019_2800_y
crossref_primary_10_1209_0295_5075_129_10002
crossref_primary_10_1209_0295_5075_133_48003
crossref_primary_10_1016_j_tics_2017_06_009
crossref_primary_10_1103_PhysRevX_10_021069
crossref_primary_10_1007_s11229_022_04008_y
crossref_primary_10_1109_TCSI_2021_3050988
crossref_primary_10_1038_s42254_023_00676_y
crossref_primary_10_1088_1367_2630_ab023e
crossref_primary_10_1016_j_physa_2022_127209
crossref_primary_10_1038_s41598_018_20864_6
crossref_primary_10_1016_j_matcom_2021_04_017
crossref_primary_10_1103_PhysRevE_104_024309
crossref_primary_10_1103_PhysRevResearch_5_033065
crossref_primary_10_1103_PhysRevResearch_2_033005
crossref_primary_10_1103_PhysRevE_104_024302
crossref_primary_10_1140_epjds_s13688_020_00233_y
crossref_primary_10_3390_w11020246
crossref_primary_10_1103_PhysRevE_104_034311
crossref_primary_10_1109_ACCESS_2025_3539345
crossref_primary_10_1093_gigascience_gix004
crossref_primary_10_1016_j_neunet_2022_02_023
crossref_primary_10_1073_pnas_2302245120
crossref_primary_10_1063_1_4990592
crossref_primary_10_1109_TNNLS_2023_3341347
crossref_primary_10_1142_S0219525917500151
crossref_primary_10_1146_annurev_phyto_080516_035326
crossref_primary_10_1007_s41109_023_00572_5
crossref_primary_10_1038_s41467_023_37323_0
crossref_primary_10_1073_pnas_1604405114
crossref_primary_10_1142_S0218202521500536
crossref_primary_10_1016_j_chaos_2017_11_008
crossref_primary_10_1088_1367_2630_ab461c
crossref_primary_10_1088_1742_5468_ab6a04
crossref_primary_10_1016_j_physa_2022_128439
crossref_primary_10_21105_joss_05116
crossref_primary_10_1016_j_physleta_2019_125996
crossref_primary_10_1103_PhysRevE_104_024402
crossref_primary_10_1109_TCNS_2019_2903907
crossref_primary_10_3390_math10040588
crossref_primary_10_1038_s41567_019_0459_y
crossref_primary_10_1088_1742_5468_abd310
crossref_primary_10_1103_PhysRevResearch_3_L032045
crossref_primary_10_1063_5_0042155
crossref_primary_10_1063_5_0044327
crossref_primary_10_1063_5_0004826
crossref_primary_10_1063_1_4985185
crossref_primary_10_1016_j_physrep_2019_07_001
crossref_primary_10_1016_j_plrev_2019_07_003
crossref_primary_10_1098_rstb_2019_0498
crossref_primary_10_1103_PhysRevE_100_022316
crossref_primary_10_1007_s11431_021_1977_3
crossref_primary_10_1038_s41467_021_25485_8
crossref_primary_10_1016_j_chaos_2019_109548
crossref_primary_10_1016_j_physa_2019_04_143
crossref_primary_10_1103_PhysRevX_8_031038
crossref_primary_10_1007_s10955_017_1858_z
crossref_primary_10_1103_PhysRevX_8_031039
crossref_primary_10_1155_2021_9923837
crossref_primary_10_1109_TCYB_2024_3367783
crossref_primary_10_1007_s11071_023_08542_3
crossref_primary_10_1007_s41745_019_0103_y
crossref_primary_10_1371_journal_pone_0279345
crossref_primary_10_1016_j_physleta_2024_129772
crossref_primary_10_1063_5_0205793
crossref_primary_10_3390_a14070189
crossref_primary_10_1137_18M1231304
crossref_primary_10_1109_ACCESS_2020_2965547
crossref_primary_10_1371_journal_pone_0245396
crossref_primary_10_1038_s41598_021_87987_1
crossref_primary_10_1038_s41598_017_01655_x
crossref_primary_10_1142_S0217979218503095
crossref_primary_10_1098_rsta_2020_0410
crossref_primary_10_1103_PhysRevE_102_052304
crossref_primary_10_1109_TMC_2019_2923665
crossref_primary_10_1109_TNSE_2022_3186159
crossref_primary_10_1007_s41109_021_00402_6
crossref_primary_10_1038_s41598_020_79507_4
crossref_primary_10_1371_journal_pcsy_0000033
crossref_primary_10_1016_j_joi_2024_101591
crossref_primary_10_1038_s41562_020_00994_6
crossref_primary_10_1038_s44284_024_00188_5
crossref_primary_10_1137_21M1406180
crossref_primary_10_1109_TNSE_2022_3208343
crossref_primary_10_1063_1_5039483
crossref_primary_10_15407_fm29_03_419
crossref_primary_10_1007_s41109_020_00310_1
crossref_primary_10_1007_s41109_024_00632_4
crossref_primary_10_1109_ACCESS_2020_2975357
crossref_primary_10_1016_j_physleta_2024_129673
crossref_primary_10_3390_mca26040068
crossref_primary_10_1016_j_physa_2018_02_157
crossref_primary_10_1103_PhysRevE_107_024309
crossref_primary_10_1109_JIOT_2023_3294470
crossref_primary_10_1038_s42254_018_0002_6
crossref_primary_10_1016_j_physa_2019_122028
crossref_primary_10_1016_j_physa_2019_04_214
crossref_primary_10_1080_00018732_2019_1650450
crossref_primary_10_1038_s42005_019_0152_6
crossref_primary_10_1209_0295_5075_130_48002
crossref_primary_10_1103_PhysRevE_99_012308
crossref_primary_10_1063_1_5077075
crossref_primary_10_1371_journal_pcbi_1012678
crossref_primary_10_1103_PhysRevE_99_012312
crossref_primary_10_1016_j_chaos_2020_110621
crossref_primary_10_1016_j_eswa_2024_126042
crossref_primary_10_1209_0295_5075_124_58004
crossref_primary_10_1109_TCCN_2020_3027697
crossref_primary_10_1016_j_neuroimage_2024_120582
crossref_primary_10_1103_PhysRevE_95_052312
crossref_primary_10_1016_j_plrev_2017_12_006
crossref_primary_10_3389_fpsyg_2021_623970
crossref_primary_10_1109_ACCESS_2022_3160206
crossref_primary_10_1103_PhysRevE_99_012302
crossref_primary_10_1103_PhysRevResearch_5_033220
crossref_primary_10_1016_j_physa_2017_11_099
crossref_primary_10_1103_PhysRevE_105_064301
crossref_primary_10_1016_j_physleta_2024_130159
crossref_primary_10_1007_s13278_024_01331_9
crossref_primary_10_1063_5_0161399
crossref_primary_10_1109_ACCESS_2021_3090997
crossref_primary_10_1038_s41598_019_52326_y
crossref_primary_10_1038_s41598_019_38869_0
crossref_primary_10_1140_epjb_s10051_024_00693_5
crossref_primary_10_1007_s41109_020_00301_2
crossref_primary_10_3389_fict_2017_00022
crossref_primary_10_1016_j_jhydrol_2024_132604
crossref_primary_10_1093_bioinformatics_btx252
crossref_primary_10_1016_j_physa_2020_125410
crossref_primary_10_1103_PhysRevX_14_021007
crossref_primary_10_1103_PhysRevE_101_052309
crossref_primary_10_1109_TSMC_2018_2882782
crossref_primary_10_1109_TNSE_2019_2894142
crossref_primary_10_1016_j_ins_2018_08_050
crossref_primary_10_1103_PhysRevE_103_022320
crossref_primary_10_1007_s11071_020_06021_7
crossref_primary_10_1103_PhysRevE_95_062215
crossref_primary_10_1016_j_physa_2018_02_115
crossref_primary_10_1038_s41598_018_20730_5
crossref_primary_10_1038_s41598_017_07591_0
crossref_primary_10_1016_j_chaos_2022_112447
crossref_primary_10_1073_pnas_1920986117
crossref_primary_10_1142_S0219720020500201
crossref_primary_10_1109_TNSE_2020_2968436
crossref_primary_10_1038_s42005_021_00695_0
crossref_primary_10_1038_s42005_023_01369_9
crossref_primary_10_1109_TCYB_2018_2853611
crossref_primary_10_1038_s41567_021_01371_4
crossref_primary_10_1016_j_physa_2018_11_045
crossref_primary_10_3390_pr8030312
crossref_primary_10_1103_PhysRevE_97_060301
crossref_primary_10_1038_srep46730
crossref_primary_10_1002_wics_1566
crossref_primary_10_3390_math11071573
crossref_primary_10_1088_1367_2630_aaf660
crossref_primary_10_1016_j_amc_2018_12_045
crossref_primary_10_1016_j_neucom_2018_05_109
crossref_primary_10_1103_PhysRevResearch_3_013157
crossref_primary_10_1007_s00265_022_03218_1
crossref_primary_10_1109_ACCESS_2021_3116868
crossref_primary_10_1103_PhysRevE_100_020301
crossref_primary_10_1109_TCSS_2024_3396229
crossref_primary_10_1088_1742_5468_aa5fd8
crossref_primary_10_1016_j_jfranklin_2023_03_032
crossref_primary_10_1063_5_0165796
crossref_primary_10_1109_TCYB_2019_2960605
crossref_primary_10_2139_ssrn_4173672
crossref_primary_10_1093_comnet_cnz027
crossref_primary_10_3389_fphy_2021_755567
crossref_primary_10_1038_s41598_024_69354_y
crossref_primary_10_1016_j_envsoft_2018_08_002
crossref_primary_10_1016_j_comnet_2023_109747
crossref_primary_10_1038_s41567_023_02132_1
crossref_primary_10_3390_e25030471
crossref_primary_10_1063_1_5121401
crossref_primary_10_1063_5_0092464
crossref_primary_10_1111_2041_210X_13655
crossref_primary_10_1016_j_isci_2023_106181
crossref_primary_10_1103_PhysRevE_96_062309
crossref_primary_10_1016_j_plrev_2017_11_003
crossref_primary_10_1140_epjb_e2016_70248_6
crossref_primary_10_1137_19M1254040
crossref_primary_10_1016_j_physrep_2023_03_005
crossref_primary_10_1109_TNSE_2017_2775152
crossref_primary_10_1002_adma_202416988
crossref_primary_10_3390_e25030458
crossref_primary_10_1016_j_tree_2018_03_008
crossref_primary_10_1016_j_chaos_2025_116238
crossref_primary_10_1063_1_5063960
crossref_primary_10_1088_1367_2630_abdb71
crossref_primary_10_1093_cercor_bhab357
crossref_primary_10_1109_TCSS_2022_3161305
crossref_primary_10_1038_s41598_019_49173_2
crossref_primary_10_1093_comnet_cnab032
crossref_primary_10_1137_21M1457321
crossref_primary_10_3390_sym11020284
crossref_primary_10_1140_epjb_e2017_80122_8
crossref_primary_10_1038_s41598_018_37942_4
crossref_primary_10_1109_TSMC_2019_2960156
crossref_primary_10_1038_ni_3727
crossref_primary_10_1063_1_5017962
crossref_primary_10_1088_1742_5468_aabfcc
crossref_primary_10_1088_1367_2630_aad723
crossref_primary_10_1089_big_2019_0169
crossref_primary_10_1142_S0129626424500117
crossref_primary_10_1103_PhysRevE_107_044304
crossref_primary_10_1016_j_chaos_2024_115914
crossref_primary_10_1016_j_chaos_2023_113229
crossref_primary_10_1016_j_anbehav_2018_12_016
crossref_primary_10_1093_comnet_cnx050
crossref_primary_10_1140_epjds_s13688_018_0139_7
crossref_primary_10_1063_1_5093047
crossref_primary_10_1140_epjb_s10051_024_00722_3
crossref_primary_10_1073_pnas_1904421116
crossref_primary_10_1162_netn_a_00033
crossref_primary_10_1088_1367_2630_abe0db
crossref_primary_10_3389_fnhum_2022_848026
crossref_primary_10_7554_eLife_68531
crossref_primary_10_1103_PhysRevE_100_052312
crossref_primary_10_1140_epjds_s13688_018_0180_6
crossref_primary_10_1038_s41467_020_19024_0
crossref_primary_10_1016_j_physa_2019_121355
crossref_primary_10_1038_s41598_021_02418_5
crossref_primary_10_1093_comnet_cnx042
crossref_primary_10_1007_s00332_017_9436_8
crossref_primary_10_1093_comnet_cnx041
crossref_primary_10_1038_s41598_018_20105_w
crossref_primary_10_1038_s42254_020_00264_4
crossref_primary_10_1007_s00285_022_01810_7
crossref_primary_10_1063_1_5108951
crossref_primary_10_3934_era_2022193
crossref_primary_10_1007_s42001_025_00364_0
crossref_primary_10_1038_s41467_019_10063_w
crossref_primary_10_1016_j_iot_2020_100312
crossref_primary_10_1155_2020_5409401
crossref_primary_10_3390_su12020746
crossref_primary_10_1111_ele_12898
crossref_primary_10_1109_TCSS_2019_2909269
crossref_primary_10_1155_2020_2363514
crossref_primary_10_15407_kvt208_02_082
crossref_primary_10_1038_s41467_017_01442_2
crossref_primary_10_1016_j_nicl_2023_103428
crossref_primary_10_1016_j_jfranklin_2018_07_040
crossref_primary_10_1016_j_ins_2022_11_033
crossref_primary_10_3390_a10010001
crossref_primary_10_1103_PhysRevE_98_012302
crossref_primary_10_1109_TNSE_2023_3243560
crossref_primary_10_1088_1742_5468_ab5700
crossref_primary_10_1371_journal_pone_0252266
crossref_primary_10_1038_s42005_021_00634_z
crossref_primary_10_1088_1367_2630_aaf3ea
crossref_primary_10_1016_j_strueco_2023_07_006
crossref_primary_10_1088_2632_072X_ad0e23
crossref_primary_10_1088_1367_2630_ab8e5e
crossref_primary_10_1016_j_physa_2024_129832
crossref_primary_10_1088_1367_2630_ab060c
crossref_primary_10_1088_1367_2630_ab060f
crossref_primary_10_1103_PhysRevE_104_054305
crossref_primary_10_1137_20M1355896
crossref_primary_10_1103_PhysRevE_102_022310
crossref_primary_10_1103_PhysRevE_96_042312
crossref_primary_10_3934_mbe_2023024
crossref_primary_10_3389_fphy_2022_1017015
crossref_primary_10_1098_rspa_2022_0059
crossref_primary_10_1016_j_chaos_2020_110545
crossref_primary_10_1209_0295_5075_121_48006
crossref_primary_10_1007_s41109_021_00366_7
crossref_primary_10_1155_2019_6159365
crossref_primary_10_1088_1367_2630_ab32c7
crossref_primary_10_1109_ACCESS_2019_2904623
crossref_primary_10_1103_PhysRevE_106_024214
crossref_primary_10_55648_1998_6920_2024_18_3_45_56
crossref_primary_10_1163_1568539X_00003493
crossref_primary_10_1209_0295_5075_130_30007
crossref_primary_10_1103_PhysRevE_98_032104
crossref_primary_10_1016_j_physrep_2020_05_004
crossref_primary_10_1103_PhysRevLett_118_168301
crossref_primary_10_1016_j_physa_2021_126457
crossref_primary_10_1103_PhysRevE_96_042302
crossref_primary_10_1016_j_eswa_2022_117525
crossref_primary_10_1016_j_physleta_2024_130199
crossref_primary_10_1038_s42005_022_01039_2
crossref_primary_10_1109_ACCESS_2020_3031014
crossref_primary_10_1016_j_physa_2020_125184
crossref_primary_10_1088_1367_2630_acd020
crossref_primary_10_1103_PhysRevResearch_2_023176
crossref_primary_10_1007_s11227_024_06404_2
crossref_primary_10_1155_2022_9873569
crossref_primary_10_1063_1_5090902
crossref_primary_10_1038_s41746_024_01402_3
crossref_primary_10_1016_j_physa_2017_12_081
crossref_primary_10_1016_j_physa_2023_129297
crossref_primary_10_3389_fnhum_2024_1416667
crossref_primary_10_1098_rspa_2019_0825
crossref_primary_10_1109_TCYB_2019_2915664
crossref_primary_10_1109_ACCESS_2024_3407832
crossref_primary_10_3390_sym11060763
crossref_primary_10_1103_PhysRevX_6_041062
crossref_primary_10_1038_s42005_021_00631_2
crossref_primary_10_1103_PhysRevResearch_2_013155
crossref_primary_10_1209_0295_5075_125_18003
crossref_primary_10_1140_epjst_e2019_800203_3
crossref_primary_10_1016_j_chaos_2022_112921
crossref_primary_10_1038_s41598_018_21054_0
crossref_primary_10_1103_PhysRevResearch_5_013196
crossref_primary_10_1038_s41540_019_0092_5
crossref_primary_10_1016_j_neuron_2017_11_007
crossref_primary_10_1016_j_sleep_2024_02_013
crossref_primary_10_1016_j_knosys_2021_107365
crossref_primary_10_3390_e25121615
crossref_primary_10_1063_5_0232563
crossref_primary_10_1088_1742_5468_abffcb
crossref_primary_10_3390_app122111216
crossref_primary_10_1016_j_chaos_2021_111200
crossref_primary_10_1093_bib_bbab080
crossref_primary_10_15407_fm29_04_586
crossref_primary_10_1103_PhysRevResearch_5_013084
crossref_primary_10_1007_s10618_020_00716_6
crossref_primary_10_1038_s42005_025_01940_6
crossref_primary_10_1016_j_physa_2024_129906
crossref_primary_10_1146_annurev_conmatphys_031218_013259
crossref_primary_10_1088_1751_8121_ab766b
crossref_primary_10_1140_epjb_e2020_100075_1
crossref_primary_10_1209_0295_5075_129_30004
crossref_primary_10_1109_TCNS_2022_3203352
crossref_primary_10_1145_3627816
crossref_primary_10_1088_1742_5468_ab780e
crossref_primary_10_1109_TNSE_2017_2753963
crossref_primary_10_1103_PhysRevE_94_062308
crossref_primary_10_1142_S0129183124500414
crossref_primary_10_1002_adma_202311040
crossref_primary_10_1103_PhysRevResearch_2_023259
crossref_primary_10_1103_PhysRevE_98_062303
crossref_primary_10_1002_adma_202403904
crossref_primary_10_1103_PhysRevE_105_044126
crossref_primary_10_1007_s00248_022_02108_3
crossref_primary_10_1103_PhysRevE_103_042301
crossref_primary_10_1038_s41467_019_11763_z
crossref_primary_10_1155_2021_8643873
crossref_primary_10_1016_j_physa_2019_03_068
crossref_primary_10_1109_TCSI_2019_2955972
crossref_primary_10_1038_s42254_022_00483_x
crossref_primary_10_1140_epjst_e2019_900052_3
crossref_primary_10_1016_j_cnsns_2020_105403
crossref_primary_10_1016_j_amc_2025_129328
crossref_primary_10_1016_j_chaos_2021_110692
crossref_primary_10_1103_PhysRevE_95_012312
crossref_primary_10_1016_j_chaos_2023_114296
crossref_primary_10_1021_acs_analchem_4c02183
crossref_primary_10_1177_23998083221108190
crossref_primary_10_1093_texcom_tgac024
crossref_primary_10_1103_PhysRevX_7_011013
crossref_primary_10_1016_j_physa_2021_126238
crossref_primary_10_1063_5_0091626
crossref_primary_10_3390_brainsci10120915
crossref_primary_10_1016_j_automatica_2022_110185
crossref_primary_10_1016_j_physrep_2025_01_006
crossref_primary_10_1017_nws_2016_22
crossref_primary_10_1063_5_0054770
crossref_primary_10_1103_PhysRevE_97_022311
crossref_primary_10_3390_math8111895
crossref_primary_10_1016_j_physrep_2024_01_003
crossref_primary_10_1209_0295_5075_125_10009
crossref_primary_10_1016_j_physrep_2017_07_007
crossref_primary_10_1103_PhysRevE_97_042314
crossref_primary_10_1103_PhysRevE_98_062321
crossref_primary_10_1140_epjst_e2019_900051_9
crossref_primary_10_1088_1402_4896_adb9a2
crossref_primary_10_1109_LCSYS_2023_3280116
crossref_primary_10_1007_s12652_023_04589_7
crossref_primary_10_1016_j_physa_2018_09_075
crossref_primary_10_1088_1367_2630_aac0c9
crossref_primary_10_1109_ACCESS_2019_2902856
crossref_primary_10_1088_1367_2630_aa9cda
crossref_primary_10_7717_peerj_14571
crossref_primary_10_3389_fvets_2020_00596
crossref_primary_10_1109_TNSE_2018_2871726
crossref_primary_10_1103_PhysRevResearch_2_033164
crossref_primary_10_1103_PhysRevResearch_6_013136
crossref_primary_10_1038_s41598_022_07249_6
crossref_primary_10_1103_PhysRevE_101_022308
crossref_primary_10_1109_OJCOMS_2024_3393848
crossref_primary_10_1140_epjst_e2018_800037_y
crossref_primary_10_1088_2632_072X_ad7f16
crossref_primary_10_1109_JSTSP_2018_2844813
crossref_primary_10_1109_ACCESS_2022_3168659
crossref_primary_10_3390_fi13050135
crossref_primary_10_1093_cz_zoaa079
crossref_primary_10_1103_PhysRevE_98_052305
crossref_primary_10_7554_eLife_32814
crossref_primary_10_1016_j_chaos_2023_114246
crossref_primary_10_1155_2021_6687463
crossref_primary_10_1016_j_conb_2022_102532
crossref_primary_10_1016_j_firesaf_2024_104250
crossref_primary_10_1142_S0129183119500827
crossref_primary_10_3389_fphy_2017_00011
crossref_primary_10_1007_s10329_018_0686_3
crossref_primary_10_1080_09720529_2019_1582870
crossref_primary_10_1038_s41467_017_00587_4
crossref_primary_10_1016_j_neucom_2019_10_011
crossref_primary_10_1103_PhysRevE_98_052315
crossref_primary_10_1016_j_chaos_2020_110477
crossref_primary_10_1088_2632_072X_abe6e9
crossref_primary_10_1016_j_chaos_2023_113166
crossref_primary_10_1007_s10473_019_0618_3
crossref_primary_10_1016_j_physa_2024_130196
crossref_primary_10_1063_5_0008341
crossref_primary_10_3390_e25121610
crossref_primary_10_1103_PhysRevE_97_032308
crossref_primary_10_1103_PhysRevE_97_032307
crossref_primary_10_1140_epjds_s13688_020_00258_3
crossref_primary_10_1103_PhysRevResearch_2_013312
crossref_primary_10_1088_2632_072X_ac457a
crossref_primary_10_1016_j_patcog_2019_06_009
crossref_primary_10_1103_PhysRevX_11_021059
crossref_primary_10_1088_1742_5468_ac9617
crossref_primary_10_1016_j_cjph_2024_10_017
crossref_primary_10_1142_S0217979221501794
crossref_primary_10_1007_s11071_023_08793_0
Cites_doi 10.1103/PhysRevE.89.032804
10.1038/srep10650
10.1137/07070111X
10.1038/nphys2761
10.1007/978-3-319-26641-1
10.1103/PhysRevLett.114.038701
10.1038/nature08932
10.1371/journal.pone.0086028
10.1103/PhysRevE.71.026125
10.1038/srep06911
10.1016/j.plrev.2015.07.006
10.1038/srep00620
10.1103/PhysRevE.92.032805
10.1371/journal.pone.0078293
10.1098/rsta.2015.0117
10.1209/epl/i2005-10080-8
10.1038/srep10840
10.1080/14697688.2014.968356
10.1103/PhysRevE.94.032908
10.1038/nphys3081
10.1103/PhysRevE.85.066109
10.1137/140976649
10.1103/PhysRevLett.109.128703
10.1038/nrn3214
10.1073/pnas.1318469111
10.1093/comnet/cnu016
10.1063/1.4818544
10.1103/PhysRevLett.110.028701
10.1103/PhysRevE.90.012808
10.1088/1367-2630/14/3/033035
10.1103/PhysRevE.87.062806
10.1109/TNSE.2015.2425961
10.1371/journal.pone.0097857
10.1103/PhysRevE.92.042807
10.1103/PhysRevLett.89.248701
10.1103/PhysRevLett.111.128701
10.1016/j.epidem.2014.09.005
10.1016/0378-8733(78)90011-4
10.1103/PhysRevE.90.042814
10.1016/j.physrep.2010.11.002
10.1103/PhysRevE.82.036106
10.1209/0295-5075/97/16006
10.1103/PhysRevLett.116.108701
10.1103/PhysRevE.92.032804
10.1093/acprof:oso/9780199206650.001.0001
10.1017/CBO9780511815478
10.1103/PhysRevE.88.050801
10.1103/PhysRevE.89.042811
10.1016/j.arcontrol.2014.09.003
10.1126/science.1184819
10.1073/pnas.1422487112
10.1103/PhysRevLett.109.248701
10.1016/j.physrep.2014.07.001
10.1140/epjb/e2015-50742-1
10.1038/ncomms7864
10.1103/PhysRevE.89.062813
10.1103/PhysRevE.88.032807
10.1126/sciadv.1500445
10.1126/science.1245200
10.1038/srep10073
10.1088/1367-2630/17/7/073029
10.1038/srep01344
10.1038/nphys2180
10.1016/j.physrep.2005.10.009
10.1140/epjb/e2015-60270-7
10.1073/pnas.0810762106
10.1137/130949191
10.1103/PhysRevE.89.062814
10.1038/ncomms7868
10.1137/15M1009615
ContentType Journal Article
Copyright Springer Nature Limited 2016
Copyright Nature Publishing Group Oct 2016
Copyright_xml – notice: Springer Nature Limited 2016
– notice: Copyright Nature Publishing Group Oct 2016
DBID AAYXX
CITATION
3V.
7U5
7XB
88I
8FD
8FE
8FG
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
DWQXO
GNUQQ
HCIFZ
L7M
M2P
P5Z
P62
PCBAR
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
Q9U
DOI 10.1038/nphys3865
DatabaseName CrossRef
ProQuest Central (Corporate)
Solid State and Superconductivity Abstracts
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
Advanced Technologies Database with Aerospace
Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central Basic
DatabaseTitle CrossRef
ProQuest Central Student
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Natural Science Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Collection
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Solid State and Superconductivity Abstracts
ProQuest One Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
DatabaseTitleList ProQuest Central Student
Technology Research Database

Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1745-2481
EndPage 906
ExternalDocumentID 4202901291
10_1038_nphys3865
Genre Feature
GroupedDBID 0R~
123
29M
39C
3V.
4.4
5BI
5M7
6OB
70F
88I
8FE
8FG
8FH
8R4
8R5
AAEEF
AARCD
AAYZH
AAZLF
ABAWZ
ABDBF
ABJNI
ABLJU
ABUWG
ABZEH
ACBWK
ACGFO
ACGFS
ACGOD
ACMJI
ACUHS
ADBBV
ADFRT
AENEX
AEUYN
AFBBN
AFKRA
AFSHS
AFWHJ
AGAYW
AGHTU
AHBCP
AHOSX
AHSBF
AIBTJ
ALFFA
ALMA_UNASSIGNED_HOLDINGS
AMTXH
ARAPS
ARMCB
ASPBG
AVWKF
AXYYD
AZFZN
AZQEC
BENPR
BGLVJ
BHPHI
BKKNO
BKSAR
BPHCQ
CCPQU
DB5
DU5
DWQXO
EBS
EE.
EJD
ESX
EXGXG
F5P
FEDTE
FQGFK
FSGXE
GNUQQ
HCIFZ
HVGLF
HZ~
I-F
LGEZI
LK5
LOTEE
M2P
M7R
N9A
NADUK
NNMJJ
NXXTH
O9-
ODYON
P2P
P62
PCBAR
PQQKQ
PROAC
Q2X
RNS
RNT
RNTTT
SHXYY
SIXXV
SJN
SNYQT
SOJ
TAOOD
TBHMF
TDRGL
TSG
TUS
~8M
AAYXX
ACMFV
ACSTC
AFANA
ALPWD
ATHPR
CITATION
PHGZM
PHGZT
7U5
7XB
8FD
8FK
L7M
PKEHL
PQEST
PQGLB
PQUKI
Q9U
ID FETCH-LOGICAL-c391t-b0d67cdab2e40ee7d55d37e96a7f6cd2fd797ae7eb10b5cb57ec53a33b02bb173
IEDL.DBID BENPR
ISSN 1745-2473
IngestDate Thu Jul 10 19:26:49 EDT 2025
Sat Aug 23 12:55:37 EDT 2025
Thu Apr 24 23:04:02 EDT 2025
Tue Jul 01 00:25:38 EDT 2025
Fri Feb 21 02:38:30 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c391t-b0d67cdab2e40ee7d55d37e96a7f6cd2fd797ae7eb10b5cb57ec53a33b02bb173
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-0937-0334
0000-0001-5158-8594
PQID 1825568368
PQPubID 27545
PageCount 6
ParticipantIDs proquest_miscellaneous_1845806042
proquest_journals_1825568368
crossref_citationtrail_10_1038_nphys3865
crossref_primary_10_1038_nphys3865
springer_journals_10_1038_nphys3865
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-10-01
PublicationDateYYYYMMDD 2016-10-01
PublicationDate_xml – month: 10
  year: 2016
  text: 2016-10-01
  day: 01
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle Nature physics
PublicationTitleAbbrev Nature Phys
PublicationYear 2016
Publisher Nature Publishing Group UK
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
References Sole-RibaltaASpectral properties of the Laplacian of multiplex networksPhys. Rev. E2013880328072013PhRvE..88c2807S10.1103/PhysRevE.88.032807
KrioukovDPapadopoulosFKitsakMVahdatABoguñáMHyperbolic geometry of complex networksPhys. Rev. E2010820361062010PhRvE..82c6106K278799810.1103/PhysRevE.82.036106
BuldyrevS VParshaniRPaulGStanleyH EHavlinSCatastrophic cascade of failures in interdependent networksNature2010464102510282010Natur.464.1025B10.1038/nature08932
Gómez-GardeñesJde DomenicoMGutiérrezGArenasAGómezSLayer–layer competition in multiplex complex networksPhil. Trans. R. Soc. A2015373201501172015RSPTA.37350117G10.1098/rsta.2015.0117
WangZAndrewsM AWuZ-XWangLBauchC TCoupled disease–behavior dynamics on complex networks: a reviewPhys. Life Rev.2015151292015PhLRv..15....1W10.1016/j.plrev.2015.07.006
SonS-WBizhaniGChristensenCGrassbergerPPaczuskiMPercolation theory on interdependent networks based on epidemic spreadingEurophys. Lett.201297160062012EL.....9716006S10.1209/0295-5075/97/16006
WassermanSFaustKSocial Network Analysis: Methods and Applications19940926.9106610.1017/CBO9780511815478
TangYQianFGaoHKurthsJSynchronization in complex networks and its application—a survey of recent advances and challengesAnnu. Rev. Control20143818419810.1016/j.arcontrol.2014.09.003
SalehiMSpreading processes in multilayer networksIEEE Trans. Netw. Sci. Eng.20152658310.1109/TNSE.2015.2425961
BrockmannDHelbingDThe hidden geometry of complex, network-driven contagion phenomenaScience2013342133713422013Sci...342.1337B10.1126/science.1245200
De DomenicoMNicosiaVArenasALatoraVStructural reducibility of multilayer networksNat. Commun.2015668642015NatCo...6.6864D10.1038/ncomms7864
Solé-RibaltaAGómezSArenasACongestion induced by the structure of multiplex networksPhys. Rev. Lett.20161161087012016PhRvL.116j8701S10.1103/PhysRevLett.116.108701
GallottiRPorterM ABarthelemyMLost in transportation: information measures and cognitive limits in multilayer navigationSci. Adv.20162e15004452016SciA....2E0445G10.1126/sciadv.1500445
De DomenicoMMathematical formulation of multi-layer networksPhys. Rev. X20133041022
BraunUDynamic reconfiguration of frontal brain networks during executive cognition in humansProc. Natl Acad. Sci. USA201511211678116832015PNAS..11211678B10.1073/pnas.1422487112
ZhaoLLaiY-CParkKYeNOnset of traffic congestion in complex networksPhys. Rev. E2005710261252005PhRvE..71b6125Z10.1103/PhysRevE.71.026125
BarthelemyMSpatial networksPhys. Rep.201149911012011PhR...499....1B277096210.1016/j.physrep.2010.11.002
GallottiRBarthelemyMAnatomy and efficiency of urban multimodal mobilitySci. Rep.2014469112014NatSR...4E6911G10.1038/srep06911
RadicchiFDriving interconnected networks to supercriticalityPhys. Rev. X20144021014
Aldous, D. & Fill, J. A. Reversible Markov Chains and Random Walks on Graphs Unfinished monograph, recompiled 2014 (2002); https://www.stat.berkeley.edu/∼aldous/RWG/book.html
GranellCGómezSArenasACompeting spreading processes on multiplex networks: awareness and epidemicsPhys. Rev. E2014900128082014PhRvE..90a2808G10.1103/PhysRevE.90.012808
BianconiGStatistical mechanics of multiplex networks: entropy and overlapPhys. Rev. E2013870628062013PhRvE..87f2806B10.1103/PhysRevE.87.062806
CozzoEStructure of triadic relations in multiplex networksNew J. Phys.2015170730292015NJPh...17g3029C10.1088/1367-2630/17/7/073029
SolaLEigenvector centrality of nodes in multiplex networksChaos201330331312013Chaos..23c3131S1323.0511710.1063/1.4818544
BargigliLDi IasioGInfanteLLilloFPierobonFThe multiplex structure of interbank networksQuant. Financ.20151567369133210851398.9170310.1080/14697688.2014.968356
AbrahamIChechikSKempeDSlivkinsALow-distortion inference of latent similarities from a multiplex social networkSIAM J. Comput.20154461766833526201422.9160410.1137/130949191
BoccalettiSLatoraVMorenoYChavezMHwangD-UComplex networks: structure and dynamicsPhys. Rep.20064241753082006PhR...424..175B21936211371.8200210.1016/j.physrep.2005.10.009
LeeK-MMinBGohK-ITowards real-world complexity: an introduction to multiplex networksEur. Phys. J. B201588482015EPJB...88...48L10.1140/epjb/e2015-50742-1
GómezSDiffusion dynamics on multiplex networksPhys. Rev. Lett.20131100287012013PhRvL.110b8701G10.1103/PhysRevLett.110.028701
BattistonFNicosiaVLatoraVStructural measures for multiplex networksPhys. Rev. E2014890328042014PhRvE..89c2804B10.1103/PhysRevE.89.032804
SorrentinoFSynchronization of hypernetworks of coupled dynamical systemsNew J. Phys.2012140330352012NJPh...14c3035S10.1088/1367-2630/14/3/033035
De DomenicoMSolé-RibaltaAGómezSArenasANavigability of interconnected networks under random failuresProc. Natl Acad. Sci. USA2014111835183562014PNAS..111.8351D32628031355.9001410.1073/pnas.1318469111
MenichettiGRemondiniDPanzarasaPMondragónR JBianconiGWeighted multiplex networksPLoS ONE20149e978572014PLoSO...997857M10.1371/journal.pone.0097857
WangZWangLSzolnokiAPercMEvolutionary games on multilayer networks: a colloquiumEur. Phys. J. B2015881242015EPJB...88..124W10.1140/epjb/e2015-60270-7
Ferraz de Arruda, G., Cozzo, E., Peixoto, P. T., Rodrigues, F. A. & Moreno, Y. Epidemic spreading in interconnected networks: a continuous time approach. Preprint at http://arXiv.org/abs/1509.07054 (2015).
DickisonMHavlinSStanleyH EEpidemics on interconnected networksPhys. Rev. E2012850661092012PhRvE..85f6109D10.1103/PhysRevE.85.066109
BazziMCommunity detection in temporal multilayer networks, with an application to correlation networksMultisc. Model. Simul.20161414134397531328.9015110.1137/15M1009615
BullmoreESpornsOThe economy of brain network organizationNat. Rev. Neurosci.20121333634910.1038/nrn3214
MuchaP JRichardsonTMaconKPorterM AOnnelaJ-PCommunity structure in time-dependent, multiscale, and multiplex networksScience20103288768782010Sci...328..876M26625901226.9105610.1126/science.1184819
ReisS DAvoiding catastrophic failure in correlated networks of networksNat. Phys.20141076276710.1038/nphys3081
NewmanME JNetworks: An Introduction20101195.9400310.1093/acprof:oso/9780199206650.001.0001
SpornsOBetzelR FModular brain networksAnnu. Rev. Psychol.20161519.119.28
BianconiGDorogovtsevS NMultiple percolation transitions in a configuration model of a network of networksPhys. Rev. E2014890628142014PhRvE..89f2814B10.1103/PhysRevE.89.062814
CardilloAEmergence of network features from multiplexitySci. Rep.20133134410.1038/srep01344
SanzJXiaC-YMeloniSMorenoYDynamics of interacting diseasesPhys. Rev. X20144041005
KiveläMMultilayer networksJ. Comp. Netw.2014220327110.1093/comnet/cnu016
HaluAMondragonR JPanzarasaPBianconiGMultiplex pagerankPLoS ONE20138e782932013PLoSO...878293H10.1371/journal.pone.0078293
WuZMenichettiGRahmedeCBianconiGEmergent complex network geometrySci. Rep.20155100732015NatSR...510073W10.1038/srep10073
Sevilla-EscobozaREnhancing the stability of the synchronization of multivariable coupled oscillatorsPhys. Rev. E2015920328042015PhRvE..92c2804S355319310.1103/PhysRevE.92.032804
EcheniquePGómez-GardeñesJMorenoYDynamics of jamming transitions in complex networksEurophys. Lett.2005713252005EL.....71..325E10.1209/epl/i2005-10080-8
FunkSNine challenges in incorporating the dynamics of behaviour in infectious diseases modelsEpidemics201510212510.1016/j.epidem.2014.09.005
ChungFR KSpectral Graph Theory19970867.05046
GuimeràRDíaz-GuileraAVega-RedondoFCabralesAArenasAOptimal network topologies for local search with congestionPhys. Rev. Lett.2002892487012002PhRvL..89x8701G10.1103/PhysRevLett.89.248701
GaoJBuldyrevS VStanleyH EHavlinSNetworks formed from interdependent networksNat. Phys.20128404810.1038/nphys2180
RadicchiFArenasAAbrupt transition in the structural formation of interconnected networksNat. Phys.2013971772010.1038/nphys2761
Gómez-GardenesJReinaresIArenasAFloríaL MEvolution of cooperation in multiplex networksSci. Rep.201226202012NatSR...2E.620G10.1038/srep00620
Taylor, D., Myers, S. A., Clauset, A., Porter, M. A. & Mucha, P. J. Eigenvector-based centrality measures for temporal networks. Preprint at http://arXiv.org/abs/1507.01266 (2015).
FunkSGiladEWatkinsCJansenVA AThe spread of awareness and its impact on epidemic outbreaksProc. Natl Acad. Sci. USA2009106687268772009PNAS..106.6872F1203.9124210.1073/pnas.0810762106
AsllaniMBusielloD MCarlettiTFanelliDPlanchonGTuring patterns in multiplex networksPhys. Rev. E2014900428142014PhRvE..90d2814A10.1103/PhysRevE.90.042814
De DomenicoMSolé-RibaltaAOmodeiEGómezSArenasARanking in interconnected multilayer networks reveals versatile nodesNat. Commun.2015668682015NatCo...6.6868D10.1038/ncomms7868
PeixotoT PInferring the mesoscale structure of layered, edge-valued, and time-varying networksPhys. Rev. E2015920428072015PhRvE..92d2807P10.1103/PhysRevE.92.042807
KoldaT GBaderB WTensor decompositions and applicationsSIAM Rev.2009514555002009SIAMR..51..455K25350561173.6502910.1137/07070111X
Papadopoulos, L., Puckett, J., Daniels, K. E. & Bassett, D. S. Evolution of network architecture in a granular material under compression. Preprint at http://arXiv.org/abs/1603.08159 (2016).
GauvinLPanissonACattutoCDetecting the community structure and activity patterns of temporal networks: a non-negative tensor factorization approachPLoS ONE20149e860282014PLoSO...986028G10.1371/journal.pone.0086028
de Sola PoolIKochenMContacts and influenceSoc. Netw.1978155150660210.1016/0378-8733(78)90011-4
Pilosof, S., Porter, M. A. & Kéfi, S. Ecological multilayer networks: a new frontier for network ecology. Preprint at http://arXiv.org/abs/1511.04453 (2015).
ZhangXBoccalettiSGuanSLiuZExplosive synchronization in adaptive and multilayer networksPhys. Rev. Lett.20151140387012015PhRvL.114c8701Z10.1103/PhysRevLett.114.038701
GleichD FPageRank beyond the WebSIAM Rev.20155732136333767601336.0512210.1137/140976649
LimaADe DomenicoMPejovicVMusolesiMDisease containment strategies based on mobility and information disseminationSci. Rep.20155106502015NatSR...510650L10.1038/srep10650
NicosiaVLatoraVMeasuring and modeling correlations in multiplex networksPhys. Rev. E2015920328052015PhRvE..92c2805N10.1103/PhysRevE.92.032805
BaxterG JDo
L Zhao (BFnphys3865_CR59) 2005; 71
N Kouvaris (BFnphys3865_CR79) 2015; 5
BFnphys3865_CR7
S Funk (BFnphys3865_CR29) 2015; 10
B Min (BFnphys3865_CR43) 2014; 89
M A Porter (BFnphys3865_CR73) 2016
A Hackett (BFnphys3865_CR15) 2016; 6
BFnphys3865_CR69
J Gómez-Gardenes (BFnphys3865_CR33) 2012; 2
R Gallotti (BFnphys3865_CR37) 2016; 2
D Brockmann (BFnphys3865_CR81) 2013; 342
S Boccaletti (BFnphys3865_CR5) 2014; 544
F Tan (BFnphys3865_CR61) 2014; 89
BFnphys3865_CR64
D Krioukov (BFnphys3865_CR80) 2010; 82
S-W Son (BFnphys3865_CR12) 2012; 97
X Zhang (BFnphys3865_CR76) 2015; 114
Z Wang (BFnphys3865_CR36) 2015; 88
S D Reis (BFnphys3865_CR44) 2014; 10
V Nicosia (BFnphys3865_CR45) 2015; 92
G Menichetti (BFnphys3865_CR23) 2014; 9
M Asllani (BFnphys3865_CR78) 2014; 90
Z Wu (BFnphys3865_CR82) 2015; 5
S Gómez (BFnphys3865_CR50) 2013; 110
S V Buldyrev (BFnphys3865_CR9) 2010; 464
C Granell (BFnphys3865_CR30) 2013; 111
M De Domenico (BFnphys3865_CR38) 2015; 6
S Funk (BFnphys3865_CR65) 2009; 106
F Sorrentino (BFnphys3865_CR74) 2012; 14
F Battiston (BFnphys3865_CR19) 2014; 89
P J Mucha (BFnphys3865_CR39) 2010; 328
T G Kolda (BFnphys3865_CR53) 2009; 51
G Bianconi (BFnphys3865_CR22) 2013; 87
J Gao (BFnphys3865_CR10) 2012; 8
L Sola (BFnphys3865_CR17) 2013; 3
R G Morris (BFnphys3865_CR26) 2012; 109
M De Domenico (BFnphys3865_CR20) 2015; 6
M Bazzi (BFnphys3865_CR54) 2016; 14
M Salehi (BFnphys3865_CR35) 2015; 2
L Bargigli (BFnphys3865_CR71) 2015; 15
O Sporns (BFnphys3865_CR67) 2016; 15
G J Baxter (BFnphys3865_CR11) 2012; 109
BFnphys3865_CR55
BFnphys3865_CR56
I Abraham (BFnphys3865_CR84) 2015; 44
J Gómez-Gardeñes (BFnphys3865_CR47) 2015; 373
P Echenique (BFnphys3865_CR60) 2005; 71
M Barthelemy (BFnphys3865_CR83) 2011; 499
S Wasserman (BFnphys3865_CR3) 1994
G Bianconi (BFnphys3865_CR13) 2014; 89
E Cozzo (BFnphys3865_CR63) 2013; 88
R Guimerà (BFnphys3865_CR58) 2002; 89
L Gauvin (BFnphys3865_CR40) 2014; 9
R Gallotti (BFnphys3865_CR6) 2014; 4
R Sevilla-Escoboza (BFnphys3865_CR77) 2015; 92
U Braun (BFnphys3865_CR25) 2015; 112
F Radicchi (BFnphys3865_CR49) 2014; 4
ME J Newman (BFnphys3865_CR1) 2010
A Lima (BFnphys3865_CR32) 2015; 5
A Sole-Ribalta (BFnphys3865_CR51) 2013; 88
V Nicosia (BFnphys3865_CR70) 2015; 92
A Halu (BFnphys3865_CR18) 2013; 8
M De Domenico (BFnphys3865_CR16) 2013; 3
I de Sola Pool (BFnphys3865_CR72) 1978; 1
C Granell (BFnphys3865_CR66) 2014; 90
M Dickison (BFnphys3865_CR62) 2012; 85
A Cardillo (BFnphys3865_CR24) 2013; 3
Y Tang (BFnphys3865_CR75) 2014; 38
E Cozzo (BFnphys3865_CR21) 2015; 17
S Boccaletti (BFnphys3865_CR2) 2006; 424
D F Gleich (BFnphys3865_CR57) 2015; 57
A Solé-Ribalta (BFnphys3865_CR27) 2016; 116
M De Domenico (BFnphys3865_CR68) 2016; 10
K-M Lee (BFnphys3865_CR34) 2015; 88
F Radicchi (BFnphys3865_CR48) 2013; 9
M Kivelä (BFnphys3865_CR4) 2014; 2
FR K Chung (BFnphys3865_CR52) 1997
J Sanz (BFnphys3865_CR31) 2014; 4
B Min (BFnphys3865_CR14) 2014; 89
Z Wang (BFnphys3865_CR28) 2015; 15
T P Peixoto (BFnphys3865_CR42) 2015; 92
E Bullmore (BFnphys3865_CR8) 2012; 13
M De Domenico (BFnphys3865_CR41) 2015; 5
M De Domenico (BFnphys3865_CR46) 2014; 111
References_xml – reference: KouvarisNHataSDiaz-GuileraAPattern formation in multiplex networksSci. Rep.20155108402015NatSR...510840K10.1038/srep10840
– reference: BoccalettiSThe structure and dynamics of multilayer networksPhys. Rep.201454411222014PhR...544....1B327014010.1016/j.physrep.2014.07.001
– reference: MenichettiGRemondiniDPanzarasaPMondragónR JBianconiGWeighted multiplex networksPLoS ONE20149e978572014PLoSO...997857M10.1371/journal.pone.0097857
– reference: BoccalettiSLatoraVMorenoYChavezMHwangD-UComplex networks: structure and dynamicsPhys. Rep.20064241753082006PhR...424..175B21936211371.8200210.1016/j.physrep.2005.10.009
– reference: TanFWuJXiaYChiK TTraffic congestion in interconnected complex networksPhys. Rev. E2014890628132014PhRvE..89f2813T10.1103/PhysRevE.89.062813
– reference: FunkSGiladEWatkinsCJansenVA AThe spread of awareness and its impact on epidemic outbreaksProc. Natl Acad. Sci. USA2009106687268772009PNAS..106.6872F1203.9124210.1073/pnas.0810762106
– reference: GranellCGómezSArenasADynamical interplay between awareness and epidemic spreading in multiplex networksPhys. Rev. Lett.20131111287012013PhRvL.111l8701G10.1103/PhysRevLett.111.128701
– reference: ZhangXBoccalettiSGuanSLiuZExplosive synchronization in adaptive and multilayer networksPhys. Rev. Lett.20151140387012015PhRvL.114c8701Z10.1103/PhysRevLett.114.038701
– reference: SpornsOBetzelR FModular brain networksAnnu. Rev. Psychol.20161519.119.28
– reference: PeixotoT PInferring the mesoscale structure of layered, edge-valued, and time-varying networksPhys. Rev. E2015920428072015PhRvE..92d2807P10.1103/PhysRevE.92.042807
– reference: AsllaniMBusielloD MCarlettiTFanelliDPlanchonGTuring patterns in multiplex networksPhys. Rev. E2014900428142014PhRvE..90d2814A10.1103/PhysRevE.90.042814
– reference: Ferraz de Arruda, G., Cozzo, E., Peixoto, P. T., Rodrigues, F. A. & Moreno, Y. Epidemic spreading in interconnected networks: a continuous time approach. Preprint at http://arXiv.org/abs/1509.07054 (2015).
– reference: MuchaP JRichardsonTMaconKPorterM AOnnelaJ-PCommunity structure in time-dependent, multiscale, and multiplex networksScience20103288768782010Sci...328..876M26625901226.9105610.1126/science.1184819
– reference: CardilloAEmergence of network features from multiplexitySci. Rep.20133134410.1038/srep01344
– reference: Sole-RibaltaASpectral properties of the Laplacian of multiplex networksPhys. Rev. E2013880328072013PhRvE..88c2807S10.1103/PhysRevE.88.032807
– reference: BattistonFNicosiaVLatoraVStructural measures for multiplex networksPhys. Rev. E2014890328042014PhRvE..89c2804B10.1103/PhysRevE.89.032804
– reference: Gómez-GardeñesJde DomenicoMGutiérrezGArenasAGómezSLayer–layer competition in multiplex complex networksPhil. Trans. R. Soc. A2015373201501172015RSPTA.37350117G10.1098/rsta.2015.0117
– reference: GallottiRPorterM ABarthelemyMLost in transportation: information measures and cognitive limits in multilayer navigationSci. Adv.20162e15004452016SciA....2E0445G10.1126/sciadv.1500445
– reference: De DomenicoMSolé-RibaltaAGómezSArenasANavigability of interconnected networks under random failuresProc. Natl Acad. Sci. USA2014111835183562014PNAS..111.8351D32628031355.9001410.1073/pnas.1318469111
– reference: MorrisR GBarthelemyMTransport on coupled spatial networksPhys. Rev. Lett.20121091287032012PhRvL.109l8703M10.1103/PhysRevLett.109.128703
– reference: CozzoEStructure of triadic relations in multiplex networksNew J. Phys.2015170730292015NJPh...17g3029C10.1088/1367-2630/17/7/073029
– reference: KrioukovDPapadopoulosFKitsakMVahdatABoguñáMHyperbolic geometry of complex networksPhys. Rev. E2010820361062010PhRvE..82c6106K278799810.1103/PhysRevE.82.036106
– reference: BuldyrevS VParshaniRPaulGStanleyH EHavlinSCatastrophic cascade of failures in interdependent networksNature2010464102510282010Natur.464.1025B10.1038/nature08932
– reference: SanzJXiaC-YMeloniSMorenoYDynamics of interacting diseasesPhys. Rev. X20144041005
– reference: BazziMCommunity detection in temporal multilayer networks, with an application to correlation networksMultisc. Model. Simul.20161414134397531328.9015110.1137/15M1009615
– reference: HaluAMondragonR JPanzarasaPBianconiGMultiplex pagerankPLoS ONE20138e782932013PLoSO...878293H10.1371/journal.pone.0078293
– reference: KoldaT GBaderB WTensor decompositions and applicationsSIAM Rev.2009514555002009SIAMR..51..455K25350561173.6502910.1137/07070111X
– reference: Aldous, D. & Fill, J. A. Reversible Markov Chains and Random Walks on Graphs Unfinished monograph, recompiled 2014 (2002); https://www.stat.berkeley.edu/∼aldous/RWG/book.html
– reference: CozzoEBanosR AMeloniSMorenoYContact-based social contagion in multiplex networksPhys. Rev. E2013880508012013PhRvE..88e0801C10.1103/PhysRevE.88.050801
– reference: Papadopoulos, L., Puckett, J., Daniels, K. E. & Bassett, D. S. Evolution of network architecture in a granular material under compression. Preprint at http://arXiv.org/abs/1603.08159 (2016).
– reference: Sevilla-EscobozaREnhancing the stability of the synchronization of multivariable coupled oscillatorsPhys. Rev. E2015920328042015PhRvE..92c2804S355319310.1103/PhysRevE.92.032804
– reference: GómezSDiffusion dynamics on multiplex networksPhys. Rev. Lett.20131100287012013PhRvL.110b8701G10.1103/PhysRevLett.110.028701
– reference: DickisonMHavlinSStanleyH EEpidemics on interconnected networksPhys. Rev. E2012850661092012PhRvE..85f6109D10.1103/PhysRevE.85.066109
– reference: BianconiGStatistical mechanics of multiplex networks: entropy and overlapPhys. Rev. E2013870628062013PhRvE..87f2806B10.1103/PhysRevE.87.062806
– reference: NewmanME JNetworks: An Introduction20101195.9400310.1093/acprof:oso/9780199206650.001.0001
– reference: HackettACellaiDGómezSArenasAGleesonJ PBond percolation on multiplex networksPhys. Rev. X20166021002
– reference: ChungFR KSpectral Graph Theory19970867.05046
– reference: de Sola PoolIKochenMContacts and influenceSoc. Netw.1978155150660210.1016/0378-8733(78)90011-4
– reference: De DomenicoMSasaiSArenasAMapping multiplex hubs in human functional brain networkFront. Neurosci.20161000326
– reference: BaxterG JDorogovtsevS NGoltsevA VMendesJF FAvalanche collapse of interdependent networksPhys. Rev. Lett.20121092487012012PhRvL.109x8701B10.1103/PhysRevLett.109.248701
– reference: BianconiGDorogovtsevS NMultiple percolation transitions in a configuration model of a network of networksPhys. Rev. E2014890628142014PhRvE..89f2814B10.1103/PhysRevE.89.062814
– reference: ZhaoLLaiY-CParkKYeNOnset of traffic congestion in complex networksPhys. Rev. E2005710261252005PhRvE..71b6125Z10.1103/PhysRevE.71.026125
– reference: LeeK-MMinBGohK-ITowards real-world complexity: an introduction to multiplex networksEur. Phys. J. B201588482015EPJB...88...48L10.1140/epjb/e2015-50742-1
– reference: SalehiMSpreading processes in multilayer networksIEEE Trans. Netw. Sci. Eng.20152658310.1109/TNSE.2015.2425961
– reference: De DomenicoMNicosiaVArenasALatoraVStructural reducibility of multilayer networksNat. Commun.2015668642015NatCo...6.6864D10.1038/ncomms7864
– reference: WangZWangLSzolnokiAPercMEvolutionary games on multilayer networks: a colloquiumEur. Phys. J. B2015881242015EPJB...88..124W10.1140/epjb/e2015-60270-7
– reference: Solé-RibaltaAGómezSArenasACongestion induced by the structure of multiplex networksPhys. Rev. Lett.20161161087012016PhRvL.116j8701S10.1103/PhysRevLett.116.108701
– reference: BraunUDynamic reconfiguration of frontal brain networks during executive cognition in humansProc. Natl Acad. Sci. USA201511211678116832015PNAS..11211678B10.1073/pnas.1422487112
– reference: RadicchiFArenasAAbrupt transition in the structural formation of interconnected networksNat. Phys.2013971772010.1038/nphys2761
– reference: WangZAndrewsM AWuZ-XWangLBauchC TCoupled disease–behavior dynamics on complex networks: a reviewPhys. Life Rev.2015151292015PhLRv..15....1W10.1016/j.plrev.2015.07.006
– reference: MinBYiS DLeeK-MGohK-INetwork robustness of multiplex networks with interlayer degree correlationsPhys. Rev. E2014890428112014PhRvE..89d2811M10.1103/PhysRevE.89.042811
– reference: Pilosof, S., Porter, M. A. & Kéfi, S. Ecological multilayer networks: a new frontier for network ecology. Preprint at http://arXiv.org/abs/1511.04453 (2015).
– reference: Gómez-GardenesJReinaresIArenasAFloríaL MEvolution of cooperation in multiplex networksSci. Rep.201226202012NatSR...2E.620G10.1038/srep00620
– reference: MinBDo YiSLeeK-MGohK-INetwork robustness of multiplex networks with interlayer degree correlationsPhys. Rev. E2014890428112014PhRvE..89d2811M10.1103/PhysRevE.89.042811
– reference: GauvinLPanissonACattutoCDetecting the community structure and activity patterns of temporal networks: a non-negative tensor factorization approachPLoS ONE20149e860282014PLoSO...986028G10.1371/journal.pone.0086028
– reference: AbrahamIChechikSKempeDSlivkinsALow-distortion inference of latent similarities from a multiplex social networkSIAM J. Comput.20154461766833526201422.9160410.1137/130949191
– reference: GaoJBuldyrevS VStanleyH EHavlinSNetworks formed from interdependent networksNat. Phys.20128404810.1038/nphys2180
– reference: FunkSNine challenges in incorporating the dynamics of behaviour in infectious diseases modelsEpidemics201510212510.1016/j.epidem.2014.09.005
– reference: GranellCGómezSArenasACompeting spreading processes on multiplex networks: awareness and epidemicsPhys. Rev. E2014900128082014PhRvE..90a2808G10.1103/PhysRevE.90.012808
– reference: PorterM AGleesonJ PDynamical Systems on Networks: A Tutorial20161369.3400110.1007/978-3-319-26641-1
– reference: ReisS DAvoiding catastrophic failure in correlated networks of networksNat. Phys.20141076276710.1038/nphys3081
– reference: GleichD FPageRank beyond the WebSIAM Rev.20155732136333767601336.0512210.1137/140976649
– reference: EcheniquePGómez-GardeñesJMorenoYDynamics of jamming transitions in complex networksEurophys. Lett.2005713252005EL.....71..325E10.1209/epl/i2005-10080-8
– reference: WuZMenichettiGRahmedeCBianconiGEmergent complex network geometrySci. Rep.20155100732015NatSR...510073W10.1038/srep10073
– reference: RadicchiFDriving interconnected networks to supercriticalityPhys. Rev. X20144021014
– reference: WassermanSFaustKSocial Network Analysis: Methods and Applications19940926.9106610.1017/CBO9780511815478
– reference: De DomenicoMSolé-RibaltaAOmodeiEGómezSArenasARanking in interconnected multilayer networks reveals versatile nodesNat. Commun.2015668682015NatCo...6.6868D10.1038/ncomms7868
– reference: BrockmannDHelbingDThe hidden geometry of complex, network-driven contagion phenomenaScience2013342133713422013Sci...342.1337B10.1126/science.1245200
– reference: NicosiaVLatoraVMeasuring and modeling correlations in multiplex networksPhys. Rev. E2015920328052015PhRvE..92c2805N10.1103/PhysRevE.92.032805
– reference: TangYQianFGaoHKurthsJSynchronization in complex networks and its application—a survey of recent advances and challengesAnnu. Rev. Control20143818419810.1016/j.arcontrol.2014.09.003
– reference: BullmoreESpornsOThe economy of brain network organizationNat. Rev. Neurosci.20121333634910.1038/nrn3214
– reference: KiveläMMultilayer networksJ. Comp. Netw.2014220327110.1093/comnet/cnu016
– reference: LimaADe DomenicoMPejovicVMusolesiMDisease containment strategies based on mobility and information disseminationSci. Rep.20155106502015NatSR...510650L10.1038/srep10650
– reference: SolaLEigenvector centrality of nodes in multiplex networksChaos201330331312013Chaos..23c3131S1323.0511710.1063/1.4818544
– reference: BargigliLDi IasioGInfanteLLilloFPierobonFThe multiplex structure of interbank networksQuant. Financ.20151567369133210851398.9170310.1080/14697688.2014.968356
– reference: GuimeràRDíaz-GuileraAVega-RedondoFCabralesAArenasAOptimal network topologies for local search with congestionPhys. Rev. Lett.2002892487012002PhRvL..89x8701G10.1103/PhysRevLett.89.248701
– reference: GallottiRBarthelemyMAnatomy and efficiency of urban multimodal mobilitySci. Rep.2014469112014NatSR...4E6911G10.1038/srep06911
– reference: SorrentinoFSynchronization of hypernetworks of coupled dynamical systemsNew J. Phys.2012140330352012NJPh...14c3035S10.1088/1367-2630/14/3/033035
– reference: BarthelemyMSpatial networksPhys. Rep.201149911012011PhR...499....1B277096210.1016/j.physrep.2010.11.002
– reference: SonS-WBizhaniGChristensenCGrassbergerPPaczuskiMPercolation theory on interdependent networks based on epidemic spreadingEurophys. Lett.201297160062012EL.....9716006S10.1209/0295-5075/97/16006
– reference: De DomenicoMMathematical formulation of multi-layer networksPhys. Rev. X20133041022
– reference: Taylor, D., Myers, S. A., Clauset, A., Porter, M. A. & Mucha, P. J. Eigenvector-based centrality measures for temporal networks. Preprint at http://arXiv.org/abs/1507.01266 (2015).
– reference: De DomenicoMLancichinettiAArenasARosvallMIdentifying modular flows on multilayer networks reveals highly overlapping organization in interconnected systemsPhys. Rev. X20155011027
– volume: 89
  start-page: 032804
  year: 2014
  ident: BFnphys3865_CR19
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.89.032804
– volume: 5
  start-page: 10650
  year: 2015
  ident: BFnphys3865_CR32
  publication-title: Sci. Rep.
  doi: 10.1038/srep10650
– volume: 51
  start-page: 455
  year: 2009
  ident: BFnphys3865_CR53
  publication-title: SIAM Rev.
  doi: 10.1137/07070111X
– volume: 10
  start-page: 00326
  year: 2016
  ident: BFnphys3865_CR68
  publication-title: Front. Neurosci.
– volume: 9
  start-page: 717
  year: 2013
  ident: BFnphys3865_CR48
  publication-title: Nat. Phys.
  doi: 10.1038/nphys2761
– volume-title: Dynamical Systems on Networks: A Tutorial
  year: 2016
  ident: BFnphys3865_CR73
  doi: 10.1007/978-3-319-26641-1
– volume: 114
  start-page: 038701
  year: 2015
  ident: BFnphys3865_CR76
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.114.038701
– volume: 464
  start-page: 1025
  year: 2010
  ident: BFnphys3865_CR9
  publication-title: Nature
  doi: 10.1038/nature08932
– volume: 9
  start-page: e86028
  year: 2014
  ident: BFnphys3865_CR40
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0086028
– volume: 71
  start-page: 026125
  year: 2005
  ident: BFnphys3865_CR59
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.71.026125
– volume: 4
  start-page: 6911
  year: 2014
  ident: BFnphys3865_CR6
  publication-title: Sci. Rep.
  doi: 10.1038/srep06911
– volume: 15
  start-page: 1
  year: 2015
  ident: BFnphys3865_CR28
  publication-title: Phys. Life Rev.
  doi: 10.1016/j.plrev.2015.07.006
– volume: 5
  start-page: 011027
  year: 2015
  ident: BFnphys3865_CR41
  publication-title: Phys. Rev. X
– volume: 2
  start-page: 620
  year: 2012
  ident: BFnphys3865_CR33
  publication-title: Sci. Rep.
  doi: 10.1038/srep00620
– volume: 92
  start-page: 032805
  year: 2015
  ident: BFnphys3865_CR45
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.92.032805
– volume: 8
  start-page: e78293
  year: 2013
  ident: BFnphys3865_CR18
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0078293
– volume: 4
  start-page: 041005
  year: 2014
  ident: BFnphys3865_CR31
  publication-title: Phys. Rev. X
– volume: 373
  start-page: 20150117
  year: 2015
  ident: BFnphys3865_CR47
  publication-title: Phil. Trans. R. Soc. A
  doi: 10.1098/rsta.2015.0117
– volume: 71
  start-page: 325
  year: 2005
  ident: BFnphys3865_CR60
  publication-title: Europhys. Lett.
  doi: 10.1209/epl/i2005-10080-8
– volume: 5
  start-page: 10840
  year: 2015
  ident: BFnphys3865_CR79
  publication-title: Sci. Rep.
  doi: 10.1038/srep10840
– volume: 15
  start-page: 673
  year: 2015
  ident: BFnphys3865_CR71
  publication-title: Quant. Financ.
  doi: 10.1080/14697688.2014.968356
– ident: BFnphys3865_CR64
– ident: BFnphys3865_CR69
  doi: 10.1103/PhysRevE.94.032908
– volume: 10
  start-page: 762
  year: 2014
  ident: BFnphys3865_CR44
  publication-title: Nat. Phys.
  doi: 10.1038/nphys3081
– volume: 85
  start-page: 066109
  year: 2012
  ident: BFnphys3865_CR62
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.85.066109
– volume: 57
  start-page: 321
  year: 2015
  ident: BFnphys3865_CR57
  publication-title: SIAM Rev.
  doi: 10.1137/140976649
– volume: 109
  start-page: 128703
  year: 2012
  ident: BFnphys3865_CR26
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.109.128703
– volume: 13
  start-page: 336
  year: 2012
  ident: BFnphys3865_CR8
  publication-title: Nat. Rev. Neurosci.
  doi: 10.1038/nrn3214
– volume: 111
  start-page: 8351
  year: 2014
  ident: BFnphys3865_CR46
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1318469111
– volume: 92
  start-page: 032805
  year: 2015
  ident: BFnphys3865_CR70
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.92.032805
– volume: 2
  start-page: 203
  year: 2014
  ident: BFnphys3865_CR4
  publication-title: J. Comp. Netw.
  doi: 10.1093/comnet/cnu016
– volume: 3
  start-page: 033131
  year: 2013
  ident: BFnphys3865_CR17
  publication-title: Chaos
  doi: 10.1063/1.4818544
– volume: 110
  start-page: 028701
  year: 2013
  ident: BFnphys3865_CR50
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.110.028701
– volume: 90
  start-page: 012808
  year: 2014
  ident: BFnphys3865_CR66
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.90.012808
– volume: 14
  start-page: 033035
  year: 2012
  ident: BFnphys3865_CR74
  publication-title: New J. Phys.
  doi: 10.1088/1367-2630/14/3/033035
– volume: 87
  start-page: 062806
  year: 2013
  ident: BFnphys3865_CR22
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.87.062806
– volume: 2
  start-page: 65
  year: 2015
  ident: BFnphys3865_CR35
  publication-title: IEEE Trans. Netw. Sci. Eng.
  doi: 10.1109/TNSE.2015.2425961
– ident: BFnphys3865_CR56
– volume: 9
  start-page: e97857
  year: 2014
  ident: BFnphys3865_CR23
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0097857
– volume: 92
  start-page: 042807
  year: 2015
  ident: BFnphys3865_CR42
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.92.042807
– volume: 89
  start-page: 248701
  year: 2002
  ident: BFnphys3865_CR58
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.89.248701
– volume: 111
  start-page: 128701
  year: 2013
  ident: BFnphys3865_CR30
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.111.128701
– volume: 10
  start-page: 21
  year: 2015
  ident: BFnphys3865_CR29
  publication-title: Epidemics
  doi: 10.1016/j.epidem.2014.09.005
– volume: 1
  start-page: 5
  year: 1978
  ident: BFnphys3865_CR72
  publication-title: Soc. Netw.
  doi: 10.1016/0378-8733(78)90011-4
– volume: 90
  start-page: 042814
  year: 2014
  ident: BFnphys3865_CR78
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.90.042814
– volume: 499
  start-page: 1
  year: 2011
  ident: BFnphys3865_CR83
  publication-title: Phys. Rep.
  doi: 10.1016/j.physrep.2010.11.002
– volume: 82
  start-page: 036106
  year: 2010
  ident: BFnphys3865_CR80
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.82.036106
– volume: 97
  start-page: 16006
  year: 2012
  ident: BFnphys3865_CR12
  publication-title: Europhys. Lett.
  doi: 10.1209/0295-5075/97/16006
– volume: 116
  start-page: 108701
  year: 2016
  ident: BFnphys3865_CR27
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.116.108701
– volume: 92
  start-page: 032804
  year: 2015
  ident: BFnphys3865_CR77
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.92.032804
– volume-title: Networks: An Introduction
  year: 2010
  ident: BFnphys3865_CR1
  doi: 10.1093/acprof:oso/9780199206650.001.0001
– ident: BFnphys3865_CR7
– volume: 15
  start-page: 19.1
  year: 2016
  ident: BFnphys3865_CR67
  publication-title: Annu. Rev. Psychol.
– volume-title: Social Network Analysis: Methods and Applications
  year: 1994
  ident: BFnphys3865_CR3
  doi: 10.1017/CBO9780511815478
– volume: 88
  start-page: 050801
  year: 2013
  ident: BFnphys3865_CR63
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.88.050801
– volume-title: Spectral Graph Theory
  year: 1997
  ident: BFnphys3865_CR52
– volume: 89
  start-page: 042811
  year: 2014
  ident: BFnphys3865_CR43
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.89.042811
– volume: 38
  start-page: 184
  year: 2014
  ident: BFnphys3865_CR75
  publication-title: Annu. Rev. Control
  doi: 10.1016/j.arcontrol.2014.09.003
– volume: 328
  start-page: 876
  year: 2010
  ident: BFnphys3865_CR39
  publication-title: Science
  doi: 10.1126/science.1184819
– volume: 6
  start-page: 021002
  year: 2016
  ident: BFnphys3865_CR15
  publication-title: Phys. Rev. X
– ident: BFnphys3865_CR55
– volume: 112
  start-page: 11678
  year: 2015
  ident: BFnphys3865_CR25
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1422487112
– volume: 109
  start-page: 248701
  year: 2012
  ident: BFnphys3865_CR11
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.109.248701
– volume: 544
  start-page: 1
  year: 2014
  ident: BFnphys3865_CR5
  publication-title: Phys. Rep.
  doi: 10.1016/j.physrep.2014.07.001
– volume: 88
  start-page: 48
  year: 2015
  ident: BFnphys3865_CR34
  publication-title: Eur. Phys. J. B
  doi: 10.1140/epjb/e2015-50742-1
– volume: 6
  start-page: 6864
  year: 2015
  ident: BFnphys3865_CR38
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms7864
– volume: 3
  start-page: 041022
  year: 2013
  ident: BFnphys3865_CR16
  publication-title: Phys. Rev. X
– volume: 89
  start-page: 062813
  year: 2014
  ident: BFnphys3865_CR61
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.89.062813
– volume: 88
  start-page: 032807
  year: 2013
  ident: BFnphys3865_CR51
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.88.032807
– volume: 2
  start-page: e1500445
  year: 2016
  ident: BFnphys3865_CR37
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.1500445
– volume: 342
  start-page: 1337
  year: 2013
  ident: BFnphys3865_CR81
  publication-title: Science
  doi: 10.1126/science.1245200
– volume: 5
  start-page: 10073
  year: 2015
  ident: BFnphys3865_CR82
  publication-title: Sci. Rep.
  doi: 10.1038/srep10073
– volume: 17
  start-page: 073029
  year: 2015
  ident: BFnphys3865_CR21
  publication-title: New J. Phys.
  doi: 10.1088/1367-2630/17/7/073029
– volume: 3
  start-page: 1344
  year: 2013
  ident: BFnphys3865_CR24
  publication-title: Sci. Rep.
  doi: 10.1038/srep01344
– volume: 8
  start-page: 40
  year: 2012
  ident: BFnphys3865_CR10
  publication-title: Nat. Phys.
  doi: 10.1038/nphys2180
– volume: 89
  start-page: 042811
  year: 2014
  ident: BFnphys3865_CR14
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.89.042811
– volume: 424
  start-page: 175
  year: 2006
  ident: BFnphys3865_CR2
  publication-title: Phys. Rep.
  doi: 10.1016/j.physrep.2005.10.009
– volume: 88
  start-page: 124
  year: 2015
  ident: BFnphys3865_CR36
  publication-title: Eur. Phys. J. B
  doi: 10.1140/epjb/e2015-60270-7
– volume: 106
  start-page: 6872
  year: 2009
  ident: BFnphys3865_CR65
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.0810762106
– volume: 44
  start-page: 617
  year: 2015
  ident: BFnphys3865_CR84
  publication-title: SIAM J. Comput.
  doi: 10.1137/130949191
– volume: 89
  start-page: 062814
  year: 2014
  ident: BFnphys3865_CR13
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.89.062814
– volume: 6
  start-page: 6868
  year: 2015
  ident: BFnphys3865_CR20
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms7868
– volume: 4
  start-page: 021014
  year: 2014
  ident: BFnphys3865_CR49
  publication-title: Phys. Rev. X
– volume: 14
  start-page: 1
  year: 2016
  ident: BFnphys3865_CR54
  publication-title: Multisc. Model. Simul.
  doi: 10.1137/15M1009615
SSID ssj0042613
Score 2.6630268
SecondaryResourceType review_article
Snippet Despite the success of traditional network analysis, standard networks provide a limited representation of complex systems, which often include different types...
Despite the success of traditional network analysis, standard networks provide a limited representation of complex systems, which often include dierent types...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 901
SubjectTerms 639/766/530/2801
639/766/530/2803
Analysis
Atomic
Classical and Continuum Physics
Complex Systems
Computer networks
Condensed Matter Physics
Couples
Dynamical systems
Mathematical and Computational Physics
Mathematical models
Molecular
Multilayers
Multiplexing
Networks
Optical and Plasma Physics
Physics
progress-article
Spreading
Theoretical
Title The physics of spreading processes in multilayer networks
URI https://link.springer.com/article/10.1038/nphys3865
https://www.proquest.com/docview/1825568368
https://www.proquest.com/docview/1845806042
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LSwMxEB60RfAiPrFaS3wcvCzdbpLN5iQqrUWwiFjobckThLKtbvv_TfbRahHPOyQwk535MvNlBuDGYkmkZDag1l1RiAqTIFEmCpSOY0MiInnxSOxlFA_H5HlCJ1XCLa9olbVPLBy1nimfI-86HOybZeE4uZt_Bn5qlK-uViM0tqHpXHDiLl_Nh_7o9a32xf5-gMsnkTSICMN1byGcdDOfOvATL39HpDXM3KiMFgFnsA97FVJE96VpD2DLZIewUzA2VX4E3BkYlXmJHM0scsuUfHg0L7n_JkcfGSoIg1PhgDXKSsZ3fgzjQf_9cRhUcxAChXlvEchQx0xpISNDQmOYplRjZngsmI2VjqxmnAnDnNsNJVWSMqMoFhjLMJKyx_AJNLJZZk4B9SQOleXcGCGJJVRyobkQzlAuUFkmW3Bb6yJVVZNwP6timhbFapykK7W14GolOi87Y_wl1K4VmlY_R56uTdmCy9Vnd6x9rUJkZrb0MoQmvrFP1ILr2hA_ltjc6Oz_jc5h1yGduGThtaGx-FqaC4cmFrID28ngqVMdnG_DEM5z
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LTxsxEB4BFYJL1fIQAQqmgMRllY0f6_WhqlBpGgrhBBK3xU8JKdoENhHqn-pvrL3OJoBQb5xt2dL4m_G8B-DIEUWV4i5hzpsoVKd5kmuLE22yzFJMlaiLxPpXWe-G_r5ltwvwt6mFCWmVjUysBbUZ6uAjb3s9ODTLIln-ffSQhKlRIbrajNCIsLiwf568yVZ9Oz_z73uMcffn9Y9eMp0qkGgiOuNEpSbj2kiFLU2t5YYxQ7gVmeQu0wY7wwWXlnshliqmFeNWMyIJUSlWqsOJP3cRPlBCROCovPurkfzBGiGxAJMlmHLSdDIiebsMjoowX_Pl_zdXal_FYevvrfsJPk71UnQagfQZFmy5Bst1fqiu1kF4OKHoBanQ0CF_TMy-R6NYaWArdF-iOj1xIL0aj8qYX15twM270GcTlsphabcAdRRJtRPCWqmoo0wJaYSUHhb-W3RcteCkoUWhpy3Jw2SMQVGHxklezMjWgq-zraPYh-OtTbsNQYspK1bFHDgtOJgteyYKkRFZ2uEk7KEsD22EcAsOm4d4dsTri7b_f9E-rPSu-5fF5fnVxQ6seh0ri_l_u7A0fpzYL16PGau9GjwI7t4brf8AyKoLcA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1ZaxsxEB4ch4S-lCZNqNs0US_Iy-K1jtXqoZQcNjlaE0oCedvohIJZO1mH0r_WX1dpteschL7lWUKC0SfNjOabGYDPjiiqFHcJc95FoTrNk1xbnGiTZZZiqkSdJPZjnB1d0JNLdtmBv20uTKBVtm9i_VCbqQ5_5H1vB4diWSTL-66hRZwdjr7NrpPQQSpEWtt2GhEip_bPb---VV-PD_1Zf8F4NDw_OEqaDgOJJmIwT1RqMq6NVNjS1FpuGDOEW5FJ7jJtsDNccGm5f9BSxbRi3GpGJCEqxUoNOPHrLsEy915R2oXl_eH47GerB4JvQmI6Jksw5aSta0Tyfhm-LUK3zYfa8M7EfRSVrZXd6BW8bKxUtBdhtQYdW67DSs0W1dVrEB5cKP6JVGjqkF8mcvHRLOYd2Ar9KlFNVpxIb9SjMrLNqw24eBYJbUK3nJb2DaCBIql2QlgrFXWUKSGNkNKDxCtJx1UPdltZFLopUB76ZEyKOlBO8mIhth58XEydxaocT03aagVaNBezKu5g1IMPi2F_pUKcRJZ2ehvmUJaHokK4B5_ag7i3xOON3v5_ox1Y9Ugtvh-PT9_BC29wZZEMuAXd-c2tfe-NmrnabtCD4Oq5AfsPMKERAg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+physics+of+spreading+processes+in+multilayer+networks&rft.jtitle=Nature+physics&rft.au=De+Domenico%2C+Manlio&rft.au=Granell%2C+Clara&rft.au=Porter%2C+Mason+A&rft.au=Arenas%2C+Alex&rft.date=2016-10-01&rft.issn=1745-2473&rft.volume=12&rft.issue=10&rft.spage=901&rft.epage=906&rft_id=info:doi/10.1038%2Fnphys3865&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1745-2473&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1745-2473&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1745-2473&client=summon