Network Intrusion Detection System Based on an Adversarial Auto-Encoder with Few Labeled Training Samples
Network intrusion detection systems (NIDS) are critical to defending network systems from cyber attacks. Recently, machine learning has been applied to enhance NIDS capability. To train a supervised machine-learning model, a large number of labeled training samples are required to achieve practical...
Saved in:
Published in | Journal of network and systems management Vol. 31; no. 1; p. 5 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.03.2023
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Network intrusion detection systems (NIDS) are critical to defending network systems from cyber attacks. Recently, machine learning has been applied to enhance NIDS capability. To train a supervised machine-learning model, a large number of labeled training samples are required to achieve practical performance. However, labeling data samples is a costly task. Additionally, obtaining anomaly data samples is difficult because trends in network traffic that are subject to NIDS change daily, and new attacks continue to be generated. To address this issue, we propose a semi-supervised machine-learning-based NIDS that reduces the required number of labeled training samples by applying an adversarial auto-encoder (AAE) technique. We evaluated the proposed method through a series of experiments and confirmed that the proposed AAE-based NIDS achieves performance comparable to that of multi-layer perceptron-based NIDS with only 0.1% of the labeled training samples. We also confirmed that the selection of data samples for annotation does not affect the performance of the proposed AAE-based NIDS. We also evaluated the relationship between the performance of the proposed method and the dimension of its latent-variable vector. The best performance as measured by recall and F1 score occurred when the dimensionality of the latent variable vector was 10, which suggests that this structure allows for accurate decomposition of attack and normal. This study presents promising results obtained by the proposed semi-supervised learning method with a reduced number of labeled training samples, which reduces the operational costs of a machine-learning-based NIDS. |
---|---|
AbstractList | Network intrusion detection systems (NIDS) are critical to defending network systems from cyber attacks. Recently, machine learning has been applied to enhance NIDS capability. To train a supervised machine-learning model, a large number of labeled training samples are required to achieve practical performance. However, labeling data samples is a costly task. Additionally, obtaining anomaly data samples is difficult because trends in network traffic that are subject to NIDS change daily, and new attacks continue to be generated. To address this issue, we propose a semi-supervised machine-learning-based NIDS that reduces the required number of labeled training samples by applying an adversarial auto-encoder (AAE) technique. We evaluated the proposed method through a series of experiments and confirmed that the proposed AAE-based NIDS achieves performance comparable to that of multi-layer perceptron-based NIDS with only 0.1% of the labeled training samples. We also confirmed that the selection of data samples for annotation does not affect the performance of the proposed AAE-based NIDS. We also evaluated the relationship between the performance of the proposed method and the dimension of its latent-variable vector. The best performance as measured by recall and F1 score occurred when the dimensionality of the latent variable vector was 10, which suggests that this structure allows for accurate decomposition of attack and normal. This study presents promising results obtained by the proposed semi-supervised learning method with a reduced number of labeled training samples, which reduces the operational costs of a machine-learning-based NIDS. |
ArticleNumber | 5 |
Author | Shiomoto, Kohei |
Author_xml | – sequence: 1 givenname: Kohei orcidid: 0000-0003-2968-2060 surname: Shiomoto fullname: Shiomoto, Kohei email: shiomoto@tcu.ac.jp organization: Department of Intelligent Systems, Faculty of Information Technology, Tokyo City University |
BookMark | eNp9kE1LAzEURYMoaKt_wFXA9Wg-mmSyrPUTii5a10Mm86aOTjM1SR36781QQXDRxSM3cE9eOCN07DoHCF1Sck0JUTeBEs1YRobRUudZf4TOqFA8U4qI45SJnGRKKHKKRiF8EEJyrsUZal4g9p3_xM8u-m1oOofvIIKNQ1rsQoQ1vjUBKpzuxuFp9Q0-GN-YFk-3scvune0q8Lhv4jt-gB7PTQlt6i-9aVzjVnhh1psWwjk6qU0b4OL3HKO3h_vl7Cmbvz4-z6bzzHJNY2bKmvEqV7xkpRSmogoqVpO6NlxOck6t1cwIwSFXFpidkCplWYK2tWIi13yMrvbvbnz3tYUQi49u611aWTCl6ERLKfnhFmOSCJ3sjRHbt6zvQvBQFxvfrI3fFZQUg_hiL74gwwziiz5B-T_INtEMQmNS0h5G-R4NaY9bgf_71QHqB2Nkms8 |
CitedBy_id | crossref_primary_10_3390_fi17010025 crossref_primary_10_1007_s10115_024_02068_9 crossref_primary_10_14801_jkiit_2024_22_7_45 crossref_primary_10_3390_math12243909 |
Cites_doi | 10.1109/EuroSPW.2019.00038 10.1109/NETSOFT.2018.8460090 10.1109/SP.2010.25 10.3390/s16101701 10.1109/ACCESS.2018.2869577 10.23919/CNSM52442.2021.9615588 10.1109/CCNC49033.2022.9700632 10.1109/CISDA.2009.5356528 10.1007/978-3-030-49161-1_2 10.1109/ACCESS.2017.2762418 10.1109/ICDIS50059.2020.00014 10.1109/ACCESS.2017.2782159 10.1145/1390156.1390294 10.1109/ACCESS.2020.2972627 10.1007/978-1-4471-4866-1_6 10.1109/CANDARW.2019.00075 10.1145/3167132.3167180 10.1145/3190619.3190637 10.1016/j.procs.2019.09.358 10.1109/BIBE.2014.73 10.3390/app10082847 10.1007/978-3-319-59439-2_1 10.5220/0006639801080116 10.1109/SKIMA.2014.7083539 10.1109/CSCloud.2017.39 10.1145/3437984.3458842 10.1145/3416013.3426457 10.1155/2017/4184196 10.1109/ACCESS.2017.2780250 10.1109/ACCESS.2019.2893871 10.1007/978-3-319-70139-4_87 10.1109/ECACE.2017.7912907 10.1145/3385003.3410924 10.1109/CFIS.2018.8336654 10.1109/TC.2014.2375218 10.1016/j.cose.2019.06.005 10.1109/NOMS47738.2020.9110343 10.1007/978-3-642-20505-7_26 10.1109/ICASSP.2014.6854900 10.1145/3467470 10.1145/3097983.3098052 10.1109/SURV.2013.052213.00046 10.1109/COMST.2015.2494502 10.1109/WINCOM.2016.7777224 10.1007/978-3-319-67422-3_13 10.4018/978-1-59140-561-0.ch071 10.1145/1273496.1273592 10.1109/TETCI.2017.2772792 10.1109/ICNP49622.2020.9259390 10.1109/ICISSEC.2016.7885840 10.1145/1978672.1978676 10.1109/ICASSP.2013.6638284 10.1109/ACCESS.2019.2899721 10.1109/COMST.2018.2847722 10.1145/3098593.3098594 10.1007/978-3-319-66399-9_19 |
ContentType | Journal Article |
Copyright | The Author(s) 2022 The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2022 – notice: The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION 3V. 7SC 7WY 7WZ 7XB 87Z 8AL 8AO 8FD 8FE 8FG 8FK 8FL ABUWG AFKRA ALSLI ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU CNYFK DWQXO FRNLG F~G GNUQQ HCIFZ JQ2 K60 K6~ K7- L.- L7M L~C L~D M0C M0N M1O P5Z P62 PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI PRINS PRQQA Q9U |
DOI | 10.1007/s10922-022-09698-w |
DatabaseName | Springer Nature OA Free Journals CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni) ProQuest Central (Alumni) ProQuest Central UK/Ireland Social Science Premium Collection Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Business Premium Collection Technology Collection ProQuest One Library & Information Science Collection ProQuest Central Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database ABI/INFORM Professional Advanced Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ABI/INFORM Global Computing Database Library Science Database (ProQuest) Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest One Social Sciences ProQuest Central Basic |
DatabaseTitle | CrossRef ProQuest Business Collection (Alumni Edition) Computer Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest Central China ABI/INFORM Complete ProQuest One Applied & Life Sciences Library & Information Science Collection ProQuest Central (New) Advanced Technologies & Aerospace Collection Business Premium Collection Social Science Premium Collection ABI/INFORM Global ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest Business Collection ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ABI/INFORM Global (Corporate) ProQuest One Business Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Pharma Collection ProQuest Central ABI/INFORM Professional Advanced ProQuest Library Science ProQuest Central Korea Advanced Technologies Database with Aerospace ABI/INFORM Complete (Alumni Edition) ProQuest Computing ProQuest One Social Sciences ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Business (Alumni) ProQuest Central (Alumni) Business Premium Collection (Alumni) |
DatabaseTitleList | ProQuest Business Collection (Alumni Edition) ABI/INFORM Global (Corporate) CrossRef |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Computer Science |
EISSN | 1573-7705 |
ExternalDocumentID | 10_1007_s10922_022_09698_w |
GrantInformation_xml | – fundername: Japan Society for the Promotion of Science grantid: J19K11950 |
GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 1N0 1SB 2.D 203 28- 29L 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 77K 7WY 8AO 8FE 8FG 8FL 8FW 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALSLI ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS C6C CAG CCPQU CNYFK COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS EDO EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GROUPED_ABI_INFORM_RESEARCH GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITM IWAJR IXC IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K60 K6V K6~ K7- KDC KOV KOW LAK LLZTM M0C M0N M1O M4Y MA- N2Q NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P62 P9O PF0 PQBIZ PQBZA PQQKQ PROAC PT4 PT5 Q2X QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7R Z7X Z7Z Z81 Z83 Z88 Z8R Z8W Z92 ZMTXR ~A9 ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT 7SC 7XB 8AL 8FD 8FK ABRTQ JQ2 L.- L7M L~C L~D PKEHL PQEST PQGLB PQUKI PRINS PRQQA PUEGO Q9U |
ID | FETCH-LOGICAL-c391t-abf23d873b2b65ad17ed2f0ffa364831cc92a553e87ce2c40d53e6be9cf725893 |
IEDL.DBID | BENPR |
ISSN | 1064-7570 |
IngestDate | Sat Aug 23 14:32:48 EDT 2025 Sat Aug 23 13:58:51 EDT 2025 Thu Apr 24 22:54:53 EDT 2025 Tue Jul 01 01:33:52 EDT 2025 Fri Feb 21 02:44:16 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Network intrusion detection system Semi-supervised learning Adversarial auto-encoder |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c391t-abf23d873b2b65ad17ed2f0ffa364831cc92a553e87ce2c40d53e6be9cf725893 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-2968-2060 |
OpenAccessLink | https://link.springer.com/10.1007/s10922-022-09698-w |
PQID | 2722605957 |
PQPubID | 32329 |
ParticipantIDs | proquest_journals_2771496663 proquest_journals_2722605957 crossref_primary_10_1007_s10922_022_09698_w crossref_citationtrail_10_1007_s10922_022_09698_w springer_journals_10_1007_s10922_022_09698_w |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-03-01 |
PublicationDateYYYYMMDD | 2023-03-01 |
PublicationDate_xml | – month: 03 year: 2023 text: 2023-03-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | Journal of network and systems management |
PublicationTitleAbbrev | J Netw Syst Manage |
PublicationYear | 2023 |
Publisher | Springer US Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer Nature B.V |
References | Hara, K., Shiomoto, K.: Intrusion detection system using semi-supervised learning with adversarial auto-encoder. In: NOMS 2020–2020 IEEE/IFIP Network Operations and Management Symposium, pp. 1–8 (2020) Kayacik, H.G., Zincir-Heywood, A.N., Heywood, M.I.: Selecting features for intrusion detection: a feature relevance analysis on kdd 99. In: PST (2005) Tavallaee, M., Bagheri, E., Lu, W., Ghorbani, A.A.: A detailed analysis of the kdd cup 99 data set. In: 2009 IEEE Symposium on Computational Intelligence for Security and Defense Applications, pp. 1–6 (2009) Zhou, C., Paffenroth, R.C.: Anomaly detection with robust deep autoencoders. In: Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’17, pp. 665–674. Association for Computing Machinery, New York, NY (2017) BuczakALGuvenEA survey of data mining and machine learning methods for cyber security intrusion detectionIEEE Commun. Surv. Tutor.20161821153117610.1109/COMST.2015.2494502 Ahmad, J., Niyaz, Q., Sun, W., Alam, M.: A deep learning approach for network intrusion detection system. In: Proceedings of the 9th EAI International Conference on Bio-Inspired Information and Communications Technologies (Formerly BIONETICS), BICT’15, pp. 21-26. ICST (Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering), Brussels, BEL (2016) Yu, Y., Long, J., Cai, Z.: Network intrusion detection through stacking dilated convolutional autoencoders. Secur. Commun. Netw. (2017) Kenaza, T., Bennaceur, K., Labed, A.: An efficient hybrid svdd/clustering approach for anomaly-based intrusion detection. In: Proceedings of the 33rd Annual ACM Symposium on Applied Computing, SAC ’18, pp. 435–443. Association for Computing Machinery, New York, NY (2018) Lake, B.M., Salakhutdinov, R., Gross, J., Tenenbaum, J.B.: One shot learning of simple visual concepts. Cognit. Sci., 33 (2011) Li, Z., Qin, Z., Huang, K., Yang, X., Ye, S.: Intrusion detection using convolutional neural networks for representation learning. In: Liu, D., Xie, S., Li, Y., Zhao, D., El-Alfy, E.-S.M. (eds.) Neural Information Processing, pp. 858–866. Springer International Publishing, Cham (2017) PapamartzivanosDMármolFGKambourakisGIntroducing deep learning self-adaptive misuse network intrusion detection systemsIEEE Access20197135461356010.1109/ACCESS.2019.2893871 Said Elsayed, M., Le-Khac, N.-A., Dev, S., Jurcut, A.D.: Network anomaly detection using lstm based autoencoder. In: Proceedings of the 16th ACM Symposium on QoS and Security for Wireless and Mobile Networks, Q2SWinet ’20, pp. 37–45. Association for Computing Machinery, New York, NY (2020) Najafabadi, M. M., Khoshgoftaar, T. M., Kemp, C., Seliya, N., Zuech, R.: Machine learning for detecting brute force attacks at the network level. In 2014 IEEE International Conference on Bioinformatics and Bioengineering, pp. 379–385 (2014) Niyaz, Q., Sun, W., Javaid, A.Y.: A deep learning based ddos detection system in software-defined networking (SDN). CoRR, abs/1611.07400 (2016) YinCZhuYFeiJHeXA deep learning approach for intrusion detection using recurrent neural networksIEEE Access20175219542196110.1109/ACCESS.2017.2762418 Wang, W., Du, X., Shan, D., Qin, R., Wang, N.: Cloud intrusion detection method based on stacked contractive auto-encoder and support vector machine. IEEE Trans. Cloud Comput., p. 1 (2020) Makhzani, A., Shlens, J., Jaitly, N., Goodfellow, I., Frey, B.: Adversarial Autoencoders. ArXiv e-prints (2015) VincentPLarochelleHLajoieIBengioYManzagolP-AStacked denoising autoencoders: learning useful representations in a deep network with a local denoising criterionJ. Mach. Learn. Res.201011337134081242.68256 Vanerio, J., Casas, P.: Ensemble-learning approaches for network security and anomaly detection. In: Proceedings of the Workshop on Big Data Analytics and Machine Learning for Data Communication Networks, Big-DAMA ’17, pp. 1–6. Association for Computing Machinery, New York, NY (2017) Madani, P., Vlajic, N.: Robustness of deep autoencoder in intrusion detection under adversarial contamination. In: Proceedings of the 5th Annual Symposium and Bootcamp on Hot Topics in the Science of Security, HoTSoS ’18. Association for Computing Machinery, New York, NY (2018) TanZJamdagniAHeXNandaPLiuRPHuJDetection of denial-of-service attacks based on computer vision techniquesIEEE Trans. Comput.20156492519253310.1109/TC.2014.23752181360.68861 Aouedi, O., Piamrat, K., Bagadthey, D.: A semi-supervised stacked autoencoder approach for network traffic classification. In: 2020 IEEE 28th International Conference on Network Protocols (ICNP), pp. 1–6 (2020) Rifai, S., Vincent, P., Muller, X., Glorot, X., Bengio, Y.: Contractive auto-encoders: Explicit invariance during feature extraction. In: Proceedings of the 28th International Conference on International Conference on Machine Learning, ICML’11, pp. 833–840. Omnipress, Madison, WI (2011) Khare, S., Totaro, M.: Ensemble learning for detecting attacks and anomalies in iot smart home. In: 2020 3rd International Conference on Data Intelligence and Security (ICDIS), pp. 56–63 (2020) Vartouni, A.M., Kashi, S.S., Teshnehlab, M.: An anomaly detection method to detect web attacks using stacked auto-encoder. In: 2018 6th Iranian Joint Congress on Fuzzy and Intelligent Systems (CFIS), pp. 131–134 (2018) Tran, T.K., Sato, H., Kubo, M.: Image-based unknown malware classification with few-shot learning models. In 2019 Seventh International Symposium on Computing and Networking Workshops (CANDARW), pp. 401–407 (2019) ShoneNNgocTNPhaiVDShiQA deep learning approach to network intrusion detectionIEEE Trans. Emerg. Topics Comput. Intell.201821415010.1109/TETCI.2017.2772792 Goodfellow, I.J., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., Bengio, Y.: Generative Adversarial Networks. ArXiv e-prints (2014) Ma, T., Wang, F., Cheng, J., Yu, Y., Chen, X.: A hybrid spectral clustering and deep neural network ensemble algorithm for intrusion detection in sensor networks. Sensors (Basel, Switzerland) 15(10), 1701 (2016) Song, J., Takakura, H., Okabe, Y., Eto, M., Inoue, D., Nakao, K.: Statistical analysis of honeypot data and building of kyoto 2006+ dataset for nids evaluation. In: Proceedings of the First Workshop on Building Analysis Datasets and Gathering Experience Returns for Security, BADGERS’11, pp. 29–36. Association for Computing Machinery, New York, NY (2011) Ring, M., Wunderlich, S., Scheuring, D., Landes, D., Hotho, A.: A survey of network-based intrusion detection data sets. CoRR, abs/1903.02460 (2019) Aygun, R.C., Yavuz, A.G.: Network anomaly detection with stochastically improved autoencoder based models. In: 2017 IEEE 4th International Conference on Cyber Security and Cloud Computing (CSCloud), pp. 193–198 (2017) Salama, M.A., Eid, H.F., Ramadan, R.A., Darwish, A., Hassanien, A.E.: Hybrid intelligent intrusion detection scheme. In: António, G.-C., Ricardo, T., Gerald, S., Lino, C., (eds.) Soft Computing in Industrial Applications, pp. 293–303. Springer, Berlin, Heidelberg (2011) MishraPVaradharajanVTupakulaUPilliESA detailed investigation and analysis of using machine learning techniques for intrusion detectionIEEE Commun. Surv. Tutor.201921168672810.1109/COMST.2018.2847722 Hindy, H., Tachtatzis, C., Atkinson, R., Bayne, E., Bellekens, X.: Developing a siamese network for intrusion detection systems. In: Proceedings of the 1st Workshop on Machine Learning and Systems, EuroMLSys ’21, pp. 120–126. Association for Computing Machinery, New York, NY (2021) Qi, Y., Wang, Y., Zheng, X., Wu, Z.: Robust feature learning by stacked autoencoder with maximum correntropy criterion. In: 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 6716–6720 (2014) Gehring, J., Miao, Y., Metze, F., Waibel, A.: Extracting deep bottleneck features using stacked auto-encoders. In: 2013 IEEE International Conference on Acoustics, Speech and Signal Processing, pp. 3377–3381 (2013) Tang, T.A., Mhamdi, L., McLernon, D., Zaidi, S.A.R., Ghogho, M.: Deep learning approach for network intrusion detection in software defined networking. In: 2016 International Conference on Wireless Networks and Mobile Communications (WINCOM), pp. 258–263 (2016) Hemmer, A., Abderrahim, M., Badonnel, R., Chrisment, I.: An ensemble learning-based architecture for security detection in iot infrastructures. In: 2021 17th International Conference on Network and Service Management (CNSM), pp. 180–186 (2021) Koch, G.., Zemel, R., Salakhutdinov, R. et al.: Siamese neural networks for one-shot image recognition. In: ICML Deep Learning Workshop, vol. 2. Lille (2015) Osada, G., Omote, K., Nishide, T.: Network intrusion detection based on semi-supervised variational auto-encoder. In: Simon, N.F., Dieter, G., Einar, S. (eds.) Computer Security—ESORICS 2017, pp. 344–361. Springer International Publishing, Cham (2017) Kingma, D.P., Ba, J.A.: A method for stochastic optimization. arXiv:1412.6980 (2014) Gharib, A., Sharafaldin, I., Lashkari, A.H., Ghorbani, A.A.: An evaluation framework for intrusion detection dataset. In: 2016 International Conference on Information Science and Security (ICISS), pp. 1–6 (2016) Truong-Huu, T., Dheenadhayalan, N., Pratim Kundu, P., Ramnath, V., Liao, J., Teo, S.G., Praveen Kadiyala, S.: An empirical study on unsupervised network anomaly detection using generative adversarial networks. In: Proceedings of the 1st ACM Workshop on Security and Privacy on Artificial Intelligence, SPAI ’20, page 20–29. Association for Computing Machinery, New York, NY (2020) Yu, Y., Long, J., Cai, Z.: Session-based network intrusion detection using a deep learning architecture. In: Vicenç, T., Yasuo, N., Aoi, H., Sozo, I., (eds.), Modeling Decisions for Artificial Intelligence, pp. 144–155. Springer International Publishing, Cham (2017) Shyu, M.L., Chen, S.C., Sarinnapakorn, K., Chang, L.: A novel anomaly detection scheme based on principal component classifier. In: Proceedings of the IEEE Foundations 9698_CR70 Z Tan (9698_CR16) 2015; 64 G Loukas (9698_CR26) 2018; 6 C Yin (9698_CR25) 2017; 5 9698_CR32 D Papamartzivanos (9698_CR50) 2019; 7 9698_CR31 9698_CR34 9698_CR33 9698_CR36 9698_CR35 T Su (9698_CR30) 2020; 8 9698_CR61 M Al-Qatf (9698_CR39) 2018; 6 9698_CR60 9698_CR63 9698_CR62 L van der Maaten (9698_CR66) 2008; 9 9698_CR29 9698_CR21 9698_CR65 P Mishra (9698_CR3) 2019; 21 9698_CR20 9698_CR64 9698_CR23 9698_CR67 9698_CR22 9698_CR69 9698_CR24 9698_CR68 9698_CR27 AL Buczak (9698_CR8) 2016; 18 9698_CR52 9698_CR51 W Wang (9698_CR28) 2018; 6 9698_CR18 9698_CR17 MH Bhuyan (9698_CR7) 2014; 16 9698_CR19 9698_CR10 9698_CR54 9698_CR2 N Shone (9698_CR37) 2018; 2 9698_CR53 9698_CR5 9698_CR12 9698_CR56 9698_CR4 9698_CR11 9698_CR55 9698_CR14 9698_CR58 9698_CR6 9698_CR13 9698_CR57 9698_CR9 9698_CR15 9698_CR59 9698_CR1 9698_CR41 9698_CR40 P Vincent (9698_CR42) 2010; 11 9698_CR43 FA Khan (9698_CR38) 2019; 7 9698_CR45 9698_CR44 9698_CR47 9698_CR46 9698_CR49 9698_CR48 |
References_xml | – reference: PapamartzivanosDMármolFGKambourakisGIntroducing deep learning self-adaptive misuse network intrusion detection systemsIEEE Access20197135461356010.1109/ACCESS.2019.2893871 – reference: Truong-Huu, T., Dheenadhayalan, N., Pratim Kundu, P., Ramnath, V., Liao, J., Teo, S.G., Praveen Kadiyala, S.: An empirical study on unsupervised network anomaly detection using generative adversarial networks. In: Proceedings of the 1st ACM Workshop on Security and Privacy on Artificial Intelligence, SPAI ’20, page 20–29. Association for Computing Machinery, New York, NY (2020) – reference: Kayacik, H.G., Zincir-Heywood, A.N., Heywood, M.I.: Selecting features for intrusion detection: a feature relevance analysis on kdd 99. In: PST (2005). Accessed 13 April 2020 – reference: Ma, T., Wang, F., Cheng, J., Yu, Y., Chen, X.: A hybrid spectral clustering and deep neural network ensemble algorithm for intrusion detection in sensor networks. Sensors (Basel, Switzerland) 15(10), 1701 (2016) – reference: TanZJamdagniAHeXNandaPLiuRPHuJDetection of denial-of-service attacks based on computer vision techniquesIEEE Trans. Comput.20156492519253310.1109/TC.2014.23752181360.68861 – reference: Hara, K., Shiomoto, K.: Intrusion detection system using semi-supervised learning with adversarial auto-encoder. In: NOMS 2020–2020 IEEE/IFIP Network Operations and Management Symposium, pp. 1–8 (2020) – reference: Ahmad, J., Niyaz, Q., Sun, W., Alam, M.: A deep learning approach for network intrusion detection system. In: Proceedings of the 9th EAI International Conference on Bio-Inspired Information and Communications Technologies (Formerly BIONETICS), BICT’15, pp. 21-26. ICST (Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering), Brussels, BEL (2016) – reference: Yu, Y., Long, J., Cai, Z.: Session-based network intrusion detection using a deep learning architecture. In: Vicenç, T., Yasuo, N., Aoi, H., Sozo, I., (eds.), Modeling Decisions for Artificial Intelligence, pp. 144–155. Springer International Publishing, Cham (2017) – reference: Ring, M., Wunderlich, S., Scheuring, D., Landes, D., Hotho, A.: A survey of network-based intrusion detection data sets. CoRR, abs/1903.02460 (2019) – reference: Qi, Y., Wang, Y., Zheng, X., Wu, Z.: Robust feature learning by stacked autoencoder with maximum correntropy criterion. In: 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 6716–6720 (2014) – reference: Kingma, D.P., Ba, J.A.: A method for stochastic optimization. arXiv:1412.6980 (2014) – reference: Kenaza, T., Bennaceur, K., Labed, A.: An efficient hybrid svdd/clustering approach for anomaly-based intrusion detection. In: Proceedings of the 33rd Annual ACM Symposium on Applied Computing, SAC ’18, pp. 435–443. Association for Computing Machinery, New York, NY (2018) – reference: Goodfellow, I.J., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., Bengio, Y.: Generative Adversarial Networks. ArXiv e-prints (2014) – reference: YinCZhuYFeiJHeXA deep learning approach for intrusion detection using recurrent neural networksIEEE Access20175219542196110.1109/ACCESS.2017.2762418 – reference: Tang, Z., Wang, P., Wang, J.: Convprotonet: deep prototype induction towards better class representation for few-shot malware classification. Appl. Sci., 10(8) (2020) – reference: Andresini, G., Appice, A., Di Mauro, N., Loglisci, C., Malerba, D.: Exploiting the auto-encoder residual error for intrusion detection. In: 2019 IEEE European Symposium on Security and Privacy Workshops (EuroS PW), pp. 281–290 (2019) – reference: Li, Z., Qin, Z., Huang, K., Yang, X., Ye, S.: Intrusion detection using convolutional neural networks for representation learning. In: Liu, D., Xie, S., Li, Y., Zhao, D., El-Alfy, E.-S.M. (eds.) Neural Information Processing, pp. 858–866. Springer International Publishing, Cham (2017) – reference: Shyu, M.L., Chen, S.C., Sarinnapakorn, K., Chang, L.: A novel anomaly detection scheme based on principal component classifier. In: Proceedings of the IEEE Foundations and New Directions of Data Mining Workshop, in conjunction with the Third IEEE International Conference on Data Mining (ICDM’03), pp. 172–179 (2003) – reference: Aygun, R.C., Yavuz, A.G.: Network anomaly detection with stochastically improved autoencoder based models. In: 2017 IEEE 4th International Conference on Cyber Security and Cloud Computing (CSCloud), pp. 193–198 (2017) – reference: Landes, D., Otto, F., Schumann, S., Schlottke, F.: Identifying Suspicious Activities in Company Networks Through Data Mining and Visualization, pp. 75–90. Springer, London (2013) – reference: Tavallaee, M., Bagheri, E., Lu, W., Ghorbani, A.A.: A detailed analysis of the kdd cup 99 data set. In: 2009 IEEE Symposium on Computational Intelligence for Security and Defense Applications, pp. 1–6 (2009) – reference: Shahadat, N., Hossain, I., Rohman, A., Matin, N.: Experimental analysis of data mining application for intrusion detection with feature reduction. In: 2017 International Conference on Electrical, Computer and Communication Engineering (ECCE), pp. 209–216 (2017) – reference: Koch, G.., Zemel, R., Salakhutdinov, R. et al.: Siamese neural networks for one-shot image recognition. In: ICML Deep Learning Workshop, vol. 2. Lille (2015) – reference: Zhou, C., Paffenroth, R.C.: Anomaly detection with robust deep autoencoders. In: Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’17, pp. 665–674. Association for Computing Machinery, New York, NY (2017) – reference: Tang, T.A., Mhamdi, L., McLernon, D., Zaidi, S.A.R., Ghogho, M.: Deep learning approach for network intrusion detection in software defined networking. In: 2016 International Conference on Wireless Networks and Mobile Communications (WINCOM), pp. 258–263 (2016) – reference: VincentPLarochelleHLajoieIBengioYManzagolP-AStacked denoising autoencoders: learning useful representations in a deep network with a local denoising criterionJ. Mach. Learn. Res.201011337134081242.68256 – reference: Tang, T.A., Mhamdi, L., McLernon, D., Zaidi, S.A.R., Ghogho, M.: Deep recurrent neural network for intrusion detection in sdn-based networks. In: 2018 4th IEEE Conference on Network Softwarization and Workshops (NetSoft), pp. 202–206 (2018) – reference: ShoneNNgocTNPhaiVDShiQA deep learning approach to network intrusion detectionIEEE Trans. Emerg. Topics Comput. Intell.201821415010.1109/TETCI.2017.2772792 – reference: Salama, M.A., Eid, H.F., Ramadan, R.A., Darwish, A., Hassanien, A.E.: Hybrid intelligent intrusion detection scheme. In: António, G.-C., Ricardo, T., Gerald, S., Lino, C., (eds.) Soft Computing in Industrial Applications, pp. 293–303. Springer, Berlin, Heidelberg (2011) – reference: Ring, M.., Wunderlich, S.., Grüdl, D., Landes, D., Hotho, A.: A Toolset for Intrusion and Insider Threat Detection, pp. 3–31. Springer International Publishing, Cham (2017) – reference: Yu, Y., Long, J., Cai, Z.: Network intrusion detection through stacking dilated convolutional autoencoders. Secur. Commun. Netw. (2017) – reference: KhanFAGumaeiADerhabAHussainAA novel two-stage deep learning model for efficient network intrusion detectionIEEE Access20197303733038510.1109/ACCESS.2019.2899721 – reference: Said Elsayed, M., Le-Khac, N.-A., Dev, S., Jurcut, A.D.: Network anomaly detection using lstm based autoencoder. In: Proceedings of the 16th ACM Symposium on QoS and Security for Wireless and Mobile Networks, Q2SWinet ’20, pp. 37–45. Association for Computing Machinery, New York, NY (2020) – reference: Khare, S., Totaro, M.: Ensemble learning for detecting attacks and anomalies in iot smart home. In: 2020 3rd International Conference on Data Intelligence and Security (ICDIS), pp. 56–63 (2020) – reference: WangWShengYWangJZengXYeXHuangYZhuMHast-ids: learning hierarchical spatial-temporal features using deep neural networks to improve intrusion detectionIEEE Access201861792180610.1109/ACCESS.2017.2780250 – reference: Aouedi, O., Piamrat, K., Muller, G., Singh, K.: Fluids: federated learning with semi-supervised approach for intrusion detection system. In: 2022 IEEE 19th Annual Consumer Communications Networking Conference (CCNC), pp. 523–524 (2022) – reference: Gharib, A., Sharafaldin, I., Lashkari, A.H., Ghorbani, A.A.: An evaluation framework for intrusion detection dataset. In: 2016 International Conference on Information Science and Security (ICISS), pp. 1–6 (2016) – reference: van der MaatenLHintonGVisualizing data using t-sneJ. Mach. Learn. Res.20089257926051225.68219 – reference: Al-QatfMLashengYAl-HabibMAl-SabahiKDeep learning approach combining sparse autoencoder with svm for network intrusion detectionIEEE Access20186528435285610.1109/ACCESS.2018.2869577 – reference: Tran, T.K., Sato, H., Kubo, M.: Image-based unknown malware classification with few-shot learning models. In 2019 Seventh International Symposium on Computing and Networking Workshops (CANDARW), pp. 401–407 (2019) – reference: BhuyanMHBhattacharyyaDKKalitaJKNetwork anomaly detection: methods, systems and toolsIEEE Commun. Surv. Tutor.201416130333610.1109/SURV.2013.052213.00046 – reference: BuczakALGuvenEA survey of data mining and machine learning methods for cyber security intrusion detectionIEEE Commun. Surv. Tutor.20161821153117610.1109/COMST.2015.2494502 – reference: Vanerio, J., Casas, P.: Ensemble-learning approaches for network security and anomaly detection. In: Proceedings of the Workshop on Big Data Analytics and Machine Learning for Data Communication Networks, Big-DAMA ’17, pp. 1–6. Association for Computing Machinery, New York, NY (2017) – reference: Niyaz, Q., Sun, W., Javaid, A.Y.: A deep learning based ddos detection system in software-defined networking (SDN). CoRR, abs/1611.07400 (2016) – reference: Wang, W., Du, X., Shan, D., Qin, R., Wang, N.: Cloud intrusion detection method based on stacked contractive auto-encoder and support vector machine. IEEE Trans. Cloud Comput., p. 1 (2020) – reference: Osada, G., Omote, K., Nishide, T.: Network intrusion detection based on semi-supervised variational auto-encoder. In: Simon, N.F., Dieter, G., Einar, S. (eds.) Computer Security—ESORICS 2017, pp. 344–361. Springer International Publishing, Cham (2017) – reference: SuTSunHZhuJWangSLiYBat: deep learning methods on network intrusion detection using nsl-kdd datasetIEEE Access20208295752958510.1109/ACCESS.2020.2972627 – reference: LoukasGVuongTHeartfieldRSakellariGYoonYGanDCloud-based cyber-physical intrusion detection for vehicles using deep learningIEEE Access201863491350810.1109/ACCESS.2017.2782159 – reference: Sharafaldin, I., Lashkari, A.H., Ghorbani, A.A.: Toward generating a new intrusion detection dataset and intrusion traffic characterization. In Proceedings of the 4th International Conference on Information Systems Security and Privacy—Volume 1: ICISSP, pp. 108–116. INSTICC, SciTePress (2018) – reference: Song, J., Takakura, H., Okabe, Y., Eto, M., Inoue, D., Nakao, K.: Statistical analysis of honeypot data and building of kyoto 2006+ dataset for nids evaluation. In: Proceedings of the First Workshop on Building Analysis Datasets and Gathering Experience Returns for Security, BADGERS’11, pp. 29–36. Association for Computing Machinery, New York, NY (2011) – reference: Najafabadi, M. M., Khoshgoftaar, T. M., Kemp, C., Seliya, N., Zuech, R.: Machine learning for detecting brute force attacks at the network level. In 2014 IEEE International Conference on Bioinformatics and Bioengineering, pp. 379–385 (2014) – reference: Lake, B.M., Salakhutdinov, R., Gross, J., Tenenbaum, J.B.: One shot learning of simple visual concepts. Cognit. Sci., 33 (2011) – reference: Vincent, P., Larochelle, H., Bengio, Y., Manzagol, P.-A.: Extracting and composing robust features with denoising autoencoders. In: Proceedings of the 25th International Conference on Machine Learning, ICML ’08, pp. 1096–1103. Association for Computing Machinery, New York, NY (2008) – reference: Gehring, J., Miao, Y., Metze, F., Waibel, A.: Extracting deep bottleneck features using stacked auto-encoders. In: 2013 IEEE International Conference on Acoustics, Speech and Signal Processing, pp. 3377–3381 (2013) – reference: Raina, R., Battle, A., Lee, H., Packer, B., Ng, A.Y..: Self-taught learning: transfer learning from unlabeled data. In: Proceedings of the 24th International Conference on Machine Learning, ICML ’07, pp. 759–766. Association for Computing Machinery, New York, NY (2007) – reference: Sundqvist, T., Bhuyan, M.H., Forsman, J., Elmroth, E.: Boosted ensemble learning for anomaly detection in 5g ran. In :Ilias. M., Lazaros, I., Elias P. (eds.) Artificial Intelligence Applications and Innovations, pp. 15–30. Springer International Publishing, Cham (2020) – reference: Rifai, S., Vincent, P., Muller, X., Glorot, X., Bengio, Y.: Contractive auto-encoders: Explicit invariance during feature extraction. In: Proceedings of the 28th International Conference on International Conference on Machine Learning, ICML’11, pp. 833–840. Omnipress, Madison, WI (2011) – reference: Madani, P., Vlajic, N.: Robustness of deep autoencoder in intrusion detection under adversarial contamination. In: Proceedings of the 5th Annual Symposium and Bootcamp on Hot Topics in the Science of Security, HoTSoS ’18. Association for Computing Machinery, New York, NY (2018) – reference: Hemmer, A., Abderrahim, M., Badonnel, R., Chrisment, I.: An ensemble learning-based architecture for security detection in iot infrastructures. In: 2021 17th International Conference on Network and Service Management (CNSM), pp. 180–186 (2021) – reference: Vartouni, A.M., Kashi, S.S., Teshnehlab, M.: An anomaly detection method to detect web attacks using stacked auto-encoder. In: 2018 6th Iranian Joint Congress on Fuzzy and Intelligent Systems (CFIS), pp. 131–134 (2018) – reference: Kayacik, H.G., Zincir-Heywood, A.N., Heywood, M.I.: Selecting features for intrusion detection: a feature relevance analysis on kdd 99. In: PST (2005) – reference: Hsiao, S.-C.., Kao, D.-Y., Liu, Z.-Y., Tso, R.: Malware image classification using one-shot learning with siamese networks. In: Procedia Comput. Sci., 159, 1863–1871 (2019). (Knowledge-Based and Intelligent Information & Engineering Systems: Proceedings of the 23rd International Conference KES2019) – reference: Pytorch.: https://github.com/pytorch/pytorch (2022) – reference: MishraPVaradharajanVTupakulaUPilliESA detailed investigation and analysis of using machine learning techniques for intrusion detectionIEEE Commun. Surv. Tutor.201921168672810.1109/COMST.2018.2847722 – reference: Sommer, R., Paxson, V.: Outside the closed world: On using machine learning for network intrusion detection. In: 2010 IEEE Symposium on Security and Privacy, pp. 305–316 (2010) – reference: Makhzani, A., Shlens, J., Jaitly, N., Goodfellow, I., Frey, B.: Adversarial Autoencoders. ArXiv e-prints (2015) – reference: Pervez, M. S., Farid, D. M.: Feature selection and intrusion classification in nsl-kdd cup 99 dataset employing svms. In: The 8th International Conference on Software, Knowledge, Information Management and Applications (SKIMA 2014), pp. 1–6 (2014) – reference: Aouedi, O., Piamrat, K., Bagadthey, D.: A semi-supervised stacked autoencoder approach for network traffic classification. In: 2020 IEEE 28th International Conference on Network Protocols (ICNP), pp. 1–6 (2020) – reference: Zoppi, T., Gharib, M., Atif, M., Bondavalli, A.: Meta-learning to improve unsupervised intrusion detection in cyber-physical systems. ACM Trans. Cyber-Phys. Syst., 5(4) (2021) – reference: Hindy, H., Tachtatzis, C., Atkinson, R., Bayne, E., Bellekens, X.: Developing a siamese network for intrusion detection systems. In: Proceedings of the 1st Workshop on Machine Learning and Systems, EuroMLSys ’21, pp. 120–126. Association for Computing Machinery, New York, NY (2021) – ident: 9698_CR15 doi: 10.1109/EuroSPW.2019.00038 – ident: 9698_CR24 doi: 10.1109/NETSOFT.2018.8460090 – ident: 9698_CR52 – ident: 9698_CR65 doi: 10.1109/SP.2010.25 – ident: 9698_CR22 doi: 10.3390/s16101701 – volume: 6 start-page: 52843 year: 2018 ident: 9698_CR39 publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2869577 – ident: 9698_CR17 doi: 10.23919/CNSM52442.2021.9615588 – ident: 9698_CR60 doi: 10.1109/CCNC49033.2022.9700632 – ident: 9698_CR9 doi: 10.1109/CISDA.2009.5356528 – ident: 9698_CR20 doi: 10.1007/978-3-030-49161-1_2 – volume: 5 start-page: 21954 year: 2017 ident: 9698_CR25 publication-title: IEEE Access doi: 10.1109/ACCESS.2017.2762418 – ident: 9698_CR21 doi: 10.1109/ICDIS50059.2020.00014 – volume: 6 start-page: 3491 year: 2018 ident: 9698_CR26 publication-title: IEEE Access doi: 10.1109/ACCESS.2017.2782159 – ident: 9698_CR33 doi: 10.1145/1390156.1390294 – volume: 8 start-page: 29575 year: 2020 ident: 9698_CR30 publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2972627 – ident: 9698_CR47 – ident: 9698_CR4 – ident: 9698_CR1 doi: 10.1007/978-1-4471-4866-1_6 – ident: 9698_CR54 doi: 10.1109/CANDARW.2019.00075 – ident: 9698_CR13 doi: 10.1145/3167132.3167180 – ident: 9698_CR31 doi: 10.1145/3190619.3190637 – ident: 9698_CR53 doi: 10.1016/j.procs.2019.09.358 – ident: 9698_CR10 doi: 10.1109/BIBE.2014.73 – ident: 9698_CR55 doi: 10.3390/app10082847 – ident: 9698_CR2 doi: 10.1007/978-3-319-59439-2_1 – ident: 9698_CR68 doi: 10.5220/0006639801080116 – ident: 9698_CR11 – ident: 9698_CR12 doi: 10.1109/SKIMA.2014.7083539 – ident: 9698_CR43 doi: 10.1109/CSCloud.2017.39 – ident: 9698_CR56 doi: 10.1145/3437984.3458842 – ident: 9698_CR58 doi: 10.1145/3416013.3426457 – ident: 9698_CR45 doi: 10.1155/2017/4184196 – ident: 9698_CR63 – volume: 6 start-page: 1792 year: 2018 ident: 9698_CR28 publication-title: IEEE Access doi: 10.1109/ACCESS.2017.2780250 – ident: 9698_CR46 – volume: 7 start-page: 13546 year: 2019 ident: 9698_CR50 publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2893871 – ident: 9698_CR27 doi: 10.1007/978-3-319-70139-4_87 – ident: 9698_CR14 doi: 10.1109/ECACE.2017.7912907 – ident: 9698_CR29 doi: 10.1145/3385003.3410924 – ident: 9698_CR36 doi: 10.1109/CFIS.2018.8336654 – volume: 64 start-page: 2519 issue: 9 year: 2015 ident: 9698_CR16 publication-title: IEEE Trans. Comput. doi: 10.1109/TC.2014.2375218 – ident: 9698_CR70 doi: 10.1016/j.cose.2019.06.005 – ident: 9698_CR6 doi: 10.1109/NOMS47738.2020.9110343 – ident: 9698_CR48 doi: 10.1007/978-3-642-20505-7_26 – ident: 9698_CR35 doi: 10.1109/ICASSP.2014.6854900 – volume: 11 start-page: 3371 year: 2010 ident: 9698_CR42 publication-title: J. Mach. Learn. Res. – ident: 9698_CR41 – ident: 9698_CR19 doi: 10.1145/3467470 – ident: 9698_CR32 doi: 10.1145/3097983.3098052 – ident: 9698_CR64 – volume: 16 start-page: 303 issue: 1 year: 2014 ident: 9698_CR7 publication-title: IEEE Commun. Surv. Tutor. doi: 10.1109/SURV.2013.052213.00046 – volume: 18 start-page: 1153 issue: 2 year: 2016 ident: 9698_CR8 publication-title: IEEE Commun. Surv. Tutor. doi: 10.1109/COMST.2015.2494502 – ident: 9698_CR23 doi: 10.1109/WINCOM.2016.7777224 – volume: 9 start-page: 2579 year: 2008 ident: 9698_CR66 publication-title: J. Mach. Learn. Res. – ident: 9698_CR44 doi: 10.1007/978-3-319-67422-3_13 – ident: 9698_CR61 doi: 10.4018/978-1-59140-561-0.ch071 – ident: 9698_CR49 doi: 10.1145/1273496.1273592 – ident: 9698_CR51 – ident: 9698_CR62 doi: 10.4018/978-1-59140-561-0.ch071 – volume: 2 start-page: 41 issue: 1 year: 2018 ident: 9698_CR37 publication-title: IEEE Trans. Emerg. Topics Comput. Intell. doi: 10.1109/TETCI.2017.2772792 – ident: 9698_CR59 doi: 10.1109/ICNP49622.2020.9259390 – ident: 9698_CR69 doi: 10.1109/ICISSEC.2016.7885840 – ident: 9698_CR67 doi: 10.1145/1978672.1978676 – ident: 9698_CR34 doi: 10.1109/ICASSP.2013.6638284 – volume: 7 start-page: 30373 year: 2019 ident: 9698_CR38 publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2899721 – ident: 9698_CR40 – volume: 21 start-page: 686 issue: 1 year: 2019 ident: 9698_CR3 publication-title: IEEE Commun. Surv. Tutor. doi: 10.1109/COMST.2018.2847722 – ident: 9698_CR18 doi: 10.1145/3098593.3098594 – ident: 9698_CR57 doi: 10.1007/978-3-319-66399-9_19 – ident: 9698_CR5 |
SSID | ssj0008395 |
Score | 2.320406 |
Snippet | Network intrusion detection systems (NIDS) are critical to defending network systems from cyber attacks. Recently, machine learning has been applied to enhance... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 5 |
SubjectTerms | Annotations Coders Communications Engineering Communications traffic Computer Communication Networks Computer Science Computer Systems Organization and Communication Networks Cybercrime Cybersecurity Information Systems and Communication Service Intrusion detection systems Machine learning Multilayer perceptrons Multilayers Networks Operations Research/Decision Theory Semi-supervised learning Training |
SummonAdditionalLinks | – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFA86L3rwYypOp-TgTQNt0jTNcX6MKbqLG-xWkjQBQTpxlf37vvRjm-IED4WWJC3kJXnv9f1-7yF0qZRwsTAh4YbFBDR0RnTkKFFGyVBbpqLEE4Wfh_FgHD1O-KQmhc0atHsTkixP6hWymwTHyaPPweyWCZlvoi3ufXdYxWPaW5y_oPJ5GeOMIyK4CGqqzO_v-K6Oljbmj7BoqW36-2i3NhNxr5LrAdqweRvtNSUYcL0j22hnJZ_gIXodVqBu_JB7LgVMOb6zRQm2ynGVmxzfgNrKMDyrHJfVmGfKr0Hc-yym5D73FPcP7P_O4r6d4yelQS9leFRXksAvyqcTnh2hcf9-dDsgdS0FYpgMC6K0oyxLBNNUx1xlobAZdYFzisVRwkJjJFWcM5sIY6mJggzuY22lcYJyMGqOUSuf5vbEg6HAJwwCrZUJIxdJbTg3UtBYGRgqXAeFzZSmpk407utdvKXLFMleDGngLy-GdN5BV4sx71WajT97dxtJpfWWm6VUUO-bSS7WNAtwBsFZYx103Qh32bz-Y6f_636Gtn1F-gqm1kUtELc9B7ul0BflMv0CQUblKA priority: 102 providerName: Springer Nature |
Title | Network Intrusion Detection System Based on an Adversarial Auto-Encoder with Few Labeled Training Samples |
URI | https://link.springer.com/article/10.1007/s10922-022-09698-w https://www.proquest.com/docview/2722605957 https://www.proquest.com/docview/2771496663 |
Volume | 31 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwELfY-gIPaDAQha3yA2_MIrFjO36autJufKybYJXGU2Q7toSE0kGL-u_vLnFWQNoeYiVxnEh3zn3Yd_cj5K21Oirtcya9UAw0dM1cETmz3prcBWGLEhOFz-fqbFF8upbXacFtlcIqe5nYCup66XGN_D3XGox5MLbF8c0vhqhRuLuaIDR2yABEcAnO1-BkOr_8eieLQf3Ldr9TFUxLnaW0mZQ8Z8ARw2h2MONNyTb_qqatvfnfFmmreWZ75GkyGem44_Ez8ig0z8mTvwoJ7pMf8y6am35sMIkCaE0_hHUbZdXQrig5PQF9VVO4tg1tYZhXFicfHf9ZL9m0wdz23xSXZeksbOgX60Ah1fQqQUjQbxbrCK9ekMVsejU5YwlEgXlh8jWzLnJRl1o47pS0da5DzWMWoxWqKEXuveFWShFK7QP3RVbDuXLB-Ki5BGvmJdltlk14hVFQ4AxmmXPW50UsjPNSeqO5sh6G6jgkeU-_yqcK4wh08bPa1kZGmlcZHkjzajMk7-7G3HT1NR58-qBnS5X-tVXFNUenzEh9T3c_cYbkqOfktvv-j71--G1vyGOEnu_i0Q7ILrA3HIKBsnYjslPOTkdkMD79_nk6SnMS7k7UBNrz_ALaBR_fAoBr5_8 |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwELYQPdAeqkJbdVsePtBTazXxI44PCPFadsuyly4St9R2bAmpytLuohV_qr-xM3mwBQluHCIlcpxIM-N52DPfELJrrY6Z9ilTXmQMLHTJnIycWW9N6oKwMsdC4fNxNriQ3y_V5Qr529XCYFplpxNrRV1OPe6Rf-NagzMPzrbYv_7NsGsUnq52LTQasTgLtwsI2WZ7w2Pg72fO-yeTowFruwowL0w6Z9ZFLspcC8ddpmyZ6lDymMRoRSZzkXpvuFVKhFz7wL1MSrjPXDA-aq5yBF8Clf9CCmFwReX90zvND86Gqk9XM8m00klbpNOW6hkI-zB3HoIGk7PFfUO49G4fHMjWdq7_hrxuHVR60EjUOlkJ1QZ59R9s4VtyNW5yx-mwwpIN4Cw9DvM6p6uiDQQ6PQTrWFJ4thWtmz7PLIo6PbiZT9lJhZX0fyhuAtN-WNCRdWD-SjppG1bQHxZRi2fvyMWzEPc9Wa2mVfiAOVcQeiaJc9anMkrjvFLeaJ5ZD1N17JG0o1_hWzxzbKvxq1giMSPNiwQvpHmx6JEvd3OuGzSPJ9_e7NhStCt7VnDNMQQ0Sj8y3Ilpj3ztOLkcfvxnH5_-2g5ZG0zOR8VoOD77RF5i0_smE26TrAKrwxa4RnO3XcsjJT-fewH8AyQpH1Y |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwELaqIiE48EYsLeADnMBt4mdyQKiwXXVpuyDRSr0F27El1CpbuqlW7U_jr_BnmMmjC5XaWw8cIiXKS7E_e2bib74h5LW1JmrjU6a80AwsdMmcjJxZb_PUBWFlhonCuxO9tS8_H6iDJfKrz4VBWmU_JzYTdTn1-I98nRsDzjw422I9drSIr8PRh-OfDCtI4UprX06jhch2OJtD-DZ7Px5CX7_hfLS592mLdRUGmBd5WjPrIhdlZoTjTitbpiaUPCYxWqFlJlLvc26VEiEzPnAvkxL2tQu5j4arDIWYYPq_ZaTOkE64m365sALgeKhmpVVLZpRJuoSdLm0vhxAQefQQQOQZm_9rFBee7qXF2cbmje6T331rtVSXw7XT2q3580tCkv9ncz4g9zpXnG60Y-chWQrVI3L3L4HGx-THpGXJ03GFySmAYToMdcNeq2gr9k4_gh9QUji2FW3KW88sDmq6cVpP2WaFmgEnFH9301GY0x3rwNCXdK8rzUG_WdRnnj0h-zfyrU_JcjWtwjNkl0GQnSTOWZ_KKHPnlfK54dp6uNXEAUl7dBS-U27HAiJHxUJzGhFVJLghoor5gLy9uOe41S259urVHiVFN4fNCm44Bru5Mlec7hE0IO96nC5OX_2y59c_7RW5DUgsdsaT7RVyh4NP2VL-Vsky9HR4AT5g7V42g42S7zcNxz_dn2ug |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Network+Intrusion+Detection+System+Based+on+an+Adversarial+Auto-Encoder+with+Few+Labeled+Training+Samples&rft.jtitle=Journal+of+network+and+systems+management&rft.au=Shiomoto%2C+Kohei&rft.date=2023-03-01&rft.pub=Springer+Nature+B.V&rft.issn=1064-7570&rft.eissn=1573-7705&rft.volume=31&rft.issue=1&rft.spage=5&rft_id=info:doi/10.1007%2Fs10922-022-09698-w&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1064-7570&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1064-7570&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1064-7570&client=summon |