Network Intrusion Detection System Based on an Adversarial Auto-Encoder with Few Labeled Training Samples

Network intrusion detection systems (NIDS) are critical to defending network systems from cyber attacks. Recently, machine learning has been applied to enhance NIDS capability. To train a supervised machine-learning model, a large number of labeled training samples are required to achieve practical...

Full description

Saved in:
Bibliographic Details
Published inJournal of network and systems management Vol. 31; no. 1; p. 5
Main Author Shiomoto, Kohei
Format Journal Article
LanguageEnglish
Published New York Springer US 01.03.2023
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Network intrusion detection systems (NIDS) are critical to defending network systems from cyber attacks. Recently, machine learning has been applied to enhance NIDS capability. To train a supervised machine-learning model, a large number of labeled training samples are required to achieve practical performance. However, labeling data samples is a costly task. Additionally, obtaining anomaly data samples is difficult because trends in network traffic that are subject to NIDS change daily, and new attacks continue to be generated. To address this issue, we propose a semi-supervised machine-learning-based NIDS that reduces the required number of labeled training samples by applying an adversarial auto-encoder (AAE) technique. We evaluated the proposed method through a series of experiments and confirmed that the proposed AAE-based NIDS achieves performance comparable to that of multi-layer perceptron-based NIDS with only 0.1% of the labeled training samples. We also confirmed that the selection of data samples for annotation does not affect the performance of the proposed AAE-based NIDS. We also evaluated the relationship between the performance of the proposed method and the dimension of its latent-variable vector. The best performance as measured by recall and F1 score occurred when the dimensionality of the latent variable vector was 10, which suggests that this structure allows for accurate decomposition of attack and normal. This study presents promising results obtained by the proposed semi-supervised learning method with a reduced number of labeled training samples, which reduces the operational costs of a machine-learning-based NIDS.
AbstractList Network intrusion detection systems (NIDS) are critical to defending network systems from cyber attacks. Recently, machine learning has been applied to enhance NIDS capability. To train a supervised machine-learning model, a large number of labeled training samples are required to achieve practical performance. However, labeling data samples is a costly task. Additionally, obtaining anomaly data samples is difficult because trends in network traffic that are subject to NIDS change daily, and new attacks continue to be generated. To address this issue, we propose a semi-supervised machine-learning-based NIDS that reduces the required number of labeled training samples by applying an adversarial auto-encoder (AAE) technique. We evaluated the proposed method through a series of experiments and confirmed that the proposed AAE-based NIDS achieves performance comparable to that of multi-layer perceptron-based NIDS with only 0.1% of the labeled training samples. We also confirmed that the selection of data samples for annotation does not affect the performance of the proposed AAE-based NIDS. We also evaluated the relationship between the performance of the proposed method and the dimension of its latent-variable vector. The best performance as measured by recall and F1 score occurred when the dimensionality of the latent variable vector was 10, which suggests that this structure allows for accurate decomposition of attack and normal. This study presents promising results obtained by the proposed semi-supervised learning method with a reduced number of labeled training samples, which reduces the operational costs of a machine-learning-based NIDS.
ArticleNumber 5
Author Shiomoto, Kohei
Author_xml – sequence: 1
  givenname: Kohei
  orcidid: 0000-0003-2968-2060
  surname: Shiomoto
  fullname: Shiomoto, Kohei
  email: shiomoto@tcu.ac.jp
  organization: Department of Intelligent Systems, Faculty of Information Technology, Tokyo City University
BookMark eNp9kE1LAzEURYMoaKt_wFXA9Wg-mmSyrPUTii5a10Mm86aOTjM1SR36781QQXDRxSM3cE9eOCN07DoHCF1Sck0JUTeBEs1YRobRUudZf4TOqFA8U4qI45SJnGRKKHKKRiF8EEJyrsUZal4g9p3_xM8u-m1oOofvIIKNQ1rsQoQ1vjUBKpzuxuFp9Q0-GN-YFk-3scvune0q8Lhv4jt-gB7PTQlt6i-9aVzjVnhh1psWwjk6qU0b4OL3HKO3h_vl7Cmbvz4-z6bzzHJNY2bKmvEqV7xkpRSmogoqVpO6NlxOck6t1cwIwSFXFpidkCplWYK2tWIi13yMrvbvbnz3tYUQi49u611aWTCl6ERLKfnhFmOSCJ3sjRHbt6zvQvBQFxvfrI3fFZQUg_hiL74gwwziiz5B-T_INtEMQmNS0h5G-R4NaY9bgf_71QHqB2Nkms8
CitedBy_id crossref_primary_10_3390_fi17010025
crossref_primary_10_1007_s10115_024_02068_9
crossref_primary_10_14801_jkiit_2024_22_7_45
crossref_primary_10_3390_math12243909
Cites_doi 10.1109/EuroSPW.2019.00038
10.1109/NETSOFT.2018.8460090
10.1109/SP.2010.25
10.3390/s16101701
10.1109/ACCESS.2018.2869577
10.23919/CNSM52442.2021.9615588
10.1109/CCNC49033.2022.9700632
10.1109/CISDA.2009.5356528
10.1007/978-3-030-49161-1_2
10.1109/ACCESS.2017.2762418
10.1109/ICDIS50059.2020.00014
10.1109/ACCESS.2017.2782159
10.1145/1390156.1390294
10.1109/ACCESS.2020.2972627
10.1007/978-1-4471-4866-1_6
10.1109/CANDARW.2019.00075
10.1145/3167132.3167180
10.1145/3190619.3190637
10.1016/j.procs.2019.09.358
10.1109/BIBE.2014.73
10.3390/app10082847
10.1007/978-3-319-59439-2_1
10.5220/0006639801080116
10.1109/SKIMA.2014.7083539
10.1109/CSCloud.2017.39
10.1145/3437984.3458842
10.1145/3416013.3426457
10.1155/2017/4184196
10.1109/ACCESS.2017.2780250
10.1109/ACCESS.2019.2893871
10.1007/978-3-319-70139-4_87
10.1109/ECACE.2017.7912907
10.1145/3385003.3410924
10.1109/CFIS.2018.8336654
10.1109/TC.2014.2375218
10.1016/j.cose.2019.06.005
10.1109/NOMS47738.2020.9110343
10.1007/978-3-642-20505-7_26
10.1109/ICASSP.2014.6854900
10.1145/3467470
10.1145/3097983.3098052
10.1109/SURV.2013.052213.00046
10.1109/COMST.2015.2494502
10.1109/WINCOM.2016.7777224
10.1007/978-3-319-67422-3_13
10.4018/978-1-59140-561-0.ch071
10.1145/1273496.1273592
10.1109/TETCI.2017.2772792
10.1109/ICNP49622.2020.9259390
10.1109/ICISSEC.2016.7885840
10.1145/1978672.1978676
10.1109/ICASSP.2013.6638284
10.1109/ACCESS.2019.2899721
10.1109/COMST.2018.2847722
10.1145/3098593.3098594
10.1007/978-3-319-66399-9_19
ContentType Journal Article
Copyright The Author(s) 2022
The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2022
– notice: The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
3V.
7SC
7WY
7WZ
7XB
87Z
8AL
8AO
8FD
8FE
8FG
8FK
8FL
ABUWG
AFKRA
ALSLI
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
CNYFK
DWQXO
FRNLG
F~G
GNUQQ
HCIFZ
JQ2
K60
K6~
K7-
L.-
L7M
L~C
L~D
M0C
M0N
M1O
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PRQQA
Q9U
DOI 10.1007/s10922-022-09698-w
DatabaseName Springer Nature OA Free Journals
CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Social Science Premium Collection
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
Technology Collection
ProQuest One
Library & Information Science Collection
ProQuest Central
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ABI/INFORM Professional Advanced
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global
Computing Database
Library Science Database (ProQuest)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Social Sciences
ProQuest Central Basic
DatabaseTitle CrossRef
ProQuest Business Collection (Alumni Edition)
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
ABI/INFORM Complete
ProQuest One Applied & Life Sciences
Library & Information Science Collection
ProQuest Central (New)
Advanced Technologies & Aerospace Collection
Business Premium Collection
Social Science Premium Collection
ABI/INFORM Global
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest Business Collection
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ABI/INFORM Global (Corporate)
ProQuest One Business
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Pharma Collection
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest Library Science
ProQuest Central Korea
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
ProQuest Computing
ProQuest One Social Sciences
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Business (Alumni)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList ProQuest Business Collection (Alumni Edition)
ABI/INFORM Global (Corporate)
CrossRef

Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1573-7705
ExternalDocumentID 10_1007_s10922_022_09698_w
GrantInformation_xml – fundername: Japan Society for the Promotion of Science
  grantid: J19K11950
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
1N0
1SB
2.D
203
28-
29L
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
77K
7WY
8AO
8FE
8FG
8FL
8FW
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALSLI
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
C6C
CAG
CCPQU
CNYFK
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EDO
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GROUPED_ABI_INFORM_RESEARCH
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
KOW
LAK
LLZTM
M0C
M0N
M1O
M4Y
MA-
N2Q
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9O
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7X
Z7Z
Z81
Z83
Z88
Z8R
Z8W
Z92
ZMTXR
~A9
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
7SC
7XB
8AL
8FD
8FK
ABRTQ
JQ2
L.-
L7M
L~C
L~D
PKEHL
PQEST
PQGLB
PQUKI
PRINS
PRQQA
PUEGO
Q9U
ID FETCH-LOGICAL-c391t-abf23d873b2b65ad17ed2f0ffa364831cc92a553e87ce2c40d53e6be9cf725893
IEDL.DBID BENPR
ISSN 1064-7570
IngestDate Sat Aug 23 14:32:48 EDT 2025
Sat Aug 23 13:58:51 EDT 2025
Thu Apr 24 22:54:53 EDT 2025
Tue Jul 01 01:33:52 EDT 2025
Fri Feb 21 02:44:16 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Network intrusion detection system
Semi-supervised learning
Adversarial auto-encoder
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c391t-abf23d873b2b65ad17ed2f0ffa364831cc92a553e87ce2c40d53e6be9cf725893
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-2968-2060
OpenAccessLink https://link.springer.com/10.1007/s10922-022-09698-w
PQID 2722605957
PQPubID 32329
ParticipantIDs proquest_journals_2771496663
proquest_journals_2722605957
crossref_primary_10_1007_s10922_022_09698_w
crossref_citationtrail_10_1007_s10922_022_09698_w
springer_journals_10_1007_s10922_022_09698_w
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-03-01
PublicationDateYYYYMMDD 2023-03-01
PublicationDate_xml – month: 03
  year: 2023
  text: 2023-03-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Journal of network and systems management
PublicationTitleAbbrev J Netw Syst Manage
PublicationYear 2023
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Hara, K., Shiomoto, K.: Intrusion detection system using semi-supervised learning with adversarial auto-encoder. In: NOMS 2020–2020 IEEE/IFIP Network Operations and Management Symposium, pp. 1–8 (2020)
Kayacik, H.G., Zincir-Heywood, A.N., Heywood, M.I.: Selecting features for intrusion detection: a feature relevance analysis on kdd 99. In: PST (2005)
Tavallaee, M., Bagheri, E., Lu, W., Ghorbani, A.A.: A detailed analysis of the kdd cup 99 data set. In: 2009 IEEE Symposium on Computational Intelligence for Security and Defense Applications, pp. 1–6 (2009)
Zhou, C., Paffenroth, R.C.: Anomaly detection with robust deep autoencoders. In: Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’17, pp. 665–674. Association for Computing Machinery, New York, NY (2017)
BuczakALGuvenEA survey of data mining and machine learning methods for cyber security intrusion detectionIEEE Commun. Surv. Tutor.20161821153117610.1109/COMST.2015.2494502
Ahmad, J., Niyaz, Q., Sun, W., Alam, M.: A deep learning approach for network intrusion detection system. In: Proceedings of the 9th EAI International Conference on Bio-Inspired Information and Communications Technologies (Formerly BIONETICS), BICT’15, pp. 21-26. ICST (Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering), Brussels, BEL (2016)
Yu, Y., Long, J., Cai, Z.: Network intrusion detection through stacking dilated convolutional autoencoders. Secur. Commun. Netw. (2017)
Kenaza, T., Bennaceur, K., Labed, A.: An efficient hybrid svdd/clustering approach for anomaly-based intrusion detection. In: Proceedings of the 33rd Annual ACM Symposium on Applied Computing, SAC ’18, pp. 435–443. Association for Computing Machinery, New York, NY (2018)
Lake, B.M., Salakhutdinov, R., Gross, J., Tenenbaum, J.B.: One shot learning of simple visual concepts. Cognit. Sci., 33 (2011)
Li, Z., Qin, Z., Huang, K., Yang, X., Ye, S.: Intrusion detection using convolutional neural networks for representation learning. In: Liu, D., Xie, S., Li, Y., Zhao, D., El-Alfy, E.-S.M. (eds.) Neural Information Processing, pp. 858–866. Springer International Publishing, Cham (2017)
PapamartzivanosDMármolFGKambourakisGIntroducing deep learning self-adaptive misuse network intrusion detection systemsIEEE Access20197135461356010.1109/ACCESS.2019.2893871
Said Elsayed, M., Le-Khac, N.-A., Dev, S., Jurcut, A.D.: Network anomaly detection using lstm based autoencoder. In: Proceedings of the 16th ACM Symposium on QoS and Security for Wireless and Mobile Networks, Q2SWinet ’20, pp. 37–45. Association for Computing Machinery, New York, NY (2020)
Najafabadi, M. M., Khoshgoftaar, T. M., Kemp, C., Seliya, N., Zuech, R.: Machine learning for detecting brute force attacks at the network level. In 2014 IEEE International Conference on Bioinformatics and Bioengineering, pp. 379–385 (2014)
Niyaz, Q., Sun, W., Javaid, A.Y.: A deep learning based ddos detection system in software-defined networking (SDN). CoRR, abs/1611.07400 (2016)
YinCZhuYFeiJHeXA deep learning approach for intrusion detection using recurrent neural networksIEEE Access20175219542196110.1109/ACCESS.2017.2762418
Wang, W., Du, X., Shan, D., Qin, R., Wang, N.: Cloud intrusion detection method based on stacked contractive auto-encoder and support vector machine. IEEE Trans. Cloud Comput., p. 1 (2020)
Makhzani, A., Shlens, J., Jaitly, N., Goodfellow, I., Frey, B.: Adversarial Autoencoders. ArXiv e-prints (2015)
VincentPLarochelleHLajoieIBengioYManzagolP-AStacked denoising autoencoders: learning useful representations in a deep network with a local denoising criterionJ. Mach. Learn. Res.201011337134081242.68256
Vanerio, J., Casas, P.: Ensemble-learning approaches for network security and anomaly detection. In: Proceedings of the Workshop on Big Data Analytics and Machine Learning for Data Communication Networks, Big-DAMA ’17, pp. 1–6. Association for Computing Machinery, New York, NY (2017)
Madani, P., Vlajic, N.: Robustness of deep autoencoder in intrusion detection under adversarial contamination. In: Proceedings of the 5th Annual Symposium and Bootcamp on Hot Topics in the Science of Security, HoTSoS ’18. Association for Computing Machinery, New York, NY (2018)
TanZJamdagniAHeXNandaPLiuRPHuJDetection of denial-of-service attacks based on computer vision techniquesIEEE Trans. Comput.20156492519253310.1109/TC.2014.23752181360.68861
Aouedi, O., Piamrat, K., Bagadthey, D.: A semi-supervised stacked autoencoder approach for network traffic classification. In: 2020 IEEE 28th International Conference on Network Protocols (ICNP), pp. 1–6 (2020)
Rifai, S., Vincent, P., Muller, X., Glorot, X., Bengio, Y.: Contractive auto-encoders: Explicit invariance during feature extraction. In: Proceedings of the 28th International Conference on International Conference on Machine Learning, ICML’11, pp. 833–840. Omnipress, Madison, WI (2011)
Khare, S., Totaro, M.: Ensemble learning for detecting attacks and anomalies in iot smart home. In: 2020 3rd International Conference on Data Intelligence and Security (ICDIS), pp. 56–63 (2020)
Vartouni, A.M., Kashi, S.S., Teshnehlab, M.: An anomaly detection method to detect web attacks using stacked auto-encoder. In: 2018 6th Iranian Joint Congress on Fuzzy and Intelligent Systems (CFIS), pp. 131–134 (2018)
Tran, T.K., Sato, H., Kubo, M.: Image-based unknown malware classification with few-shot learning models. In 2019 Seventh International Symposium on Computing and Networking Workshops (CANDARW), pp. 401–407 (2019)
ShoneNNgocTNPhaiVDShiQA deep learning approach to network intrusion detectionIEEE Trans. Emerg. Topics Comput. Intell.201821415010.1109/TETCI.2017.2772792
Goodfellow, I.J., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., Bengio, Y.: Generative Adversarial Networks. ArXiv e-prints (2014)
Ma, T., Wang, F., Cheng, J., Yu, Y., Chen, X.: A hybrid spectral clustering and deep neural network ensemble algorithm for intrusion detection in sensor networks. Sensors (Basel, Switzerland) 15(10), 1701 (2016)
Song, J., Takakura, H., Okabe, Y., Eto, M., Inoue, D., Nakao, K.: Statistical analysis of honeypot data and building of kyoto 2006+ dataset for nids evaluation. In: Proceedings of the First Workshop on Building Analysis Datasets and Gathering Experience Returns for Security, BADGERS’11, pp. 29–36. Association for Computing Machinery, New York, NY (2011)
Ring, M., Wunderlich, S., Scheuring, D., Landes, D., Hotho, A.: A survey of network-based intrusion detection data sets. CoRR, abs/1903.02460 (2019)
Aygun, R.C., Yavuz, A.G.: Network anomaly detection with stochastically improved autoencoder based models. In: 2017 IEEE 4th International Conference on Cyber Security and Cloud Computing (CSCloud), pp. 193–198 (2017)
Salama, M.A., Eid, H.F., Ramadan, R.A., Darwish, A., Hassanien, A.E.: Hybrid intelligent intrusion detection scheme. In: António, G.-C., Ricardo, T., Gerald, S., Lino, C., (eds.) Soft Computing in Industrial Applications, pp. 293–303. Springer, Berlin, Heidelberg (2011)
MishraPVaradharajanVTupakulaUPilliESA detailed investigation and analysis of using machine learning techniques for intrusion detectionIEEE Commun. Surv. Tutor.201921168672810.1109/COMST.2018.2847722
Hindy, H., Tachtatzis, C., Atkinson, R., Bayne, E., Bellekens, X.: Developing a siamese network for intrusion detection systems. In: Proceedings of the 1st Workshop on Machine Learning and Systems, EuroMLSys ’21, pp. 120–126. Association for Computing Machinery, New York, NY (2021)
Qi, Y., Wang, Y., Zheng, X., Wu, Z.: Robust feature learning by stacked autoencoder with maximum correntropy criterion. In: 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 6716–6720 (2014)
Gehring, J., Miao, Y., Metze, F., Waibel, A.: Extracting deep bottleneck features using stacked auto-encoders. In: 2013 IEEE International Conference on Acoustics, Speech and Signal Processing, pp. 3377–3381 (2013)
Tang, T.A., Mhamdi, L., McLernon, D., Zaidi, S.A.R., Ghogho, M.: Deep learning approach for network intrusion detection in software defined networking. In: 2016 International Conference on Wireless Networks and Mobile Communications (WINCOM), pp. 258–263 (2016)
Hemmer, A., Abderrahim, M., Badonnel, R., Chrisment, I.: An ensemble learning-based architecture for security detection in iot infrastructures. In: 2021 17th International Conference on Network and Service Management (CNSM), pp. 180–186 (2021)
Koch, G.., Zemel, R., Salakhutdinov, R. et al.: Siamese neural networks for one-shot image recognition. In: ICML Deep Learning Workshop, vol. 2. Lille (2015)
Osada, G., Omote, K., Nishide, T.: Network intrusion detection based on semi-supervised variational auto-encoder. In: Simon, N.F., Dieter, G., Einar, S. (eds.) Computer Security—ESORICS 2017, pp. 344–361. Springer International Publishing, Cham (2017)
Kingma, D.P., Ba, J.A.: A method for stochastic optimization. arXiv:1412.6980 (2014)
Gharib, A., Sharafaldin, I., Lashkari, A.H., Ghorbani, A.A.: An evaluation framework for intrusion detection dataset. In: 2016 International Conference on Information Science and Security (ICISS), pp. 1–6 (2016)
Truong-Huu, T., Dheenadhayalan, N., Pratim Kundu, P., Ramnath, V., Liao, J., Teo, S.G., Praveen Kadiyala, S.: An empirical study on unsupervised network anomaly detection using generative adversarial networks. In: Proceedings of the 1st ACM Workshop on Security and Privacy on Artificial Intelligence, SPAI ’20, page 20–29. Association for Computing Machinery, New York, NY (2020)
Yu, Y., Long, J., Cai, Z.: Session-based network intrusion detection using a deep learning architecture. In: Vicenç, T., Yasuo, N., Aoi, H., Sozo, I., (eds.), Modeling Decisions for Artificial Intelligence, pp. 144–155. Springer International Publishing, Cham (2017)
Shyu, M.L., Chen, S.C., Sarinnapakorn, K., Chang, L.: A novel anomaly detection scheme based on principal component classifier. In: Proceedings of the IEEE Foundations
9698_CR70
Z Tan (9698_CR16) 2015; 64
G Loukas (9698_CR26) 2018; 6
C Yin (9698_CR25) 2017; 5
9698_CR32
D Papamartzivanos (9698_CR50) 2019; 7
9698_CR31
9698_CR34
9698_CR33
9698_CR36
9698_CR35
T Su (9698_CR30) 2020; 8
9698_CR61
M Al-Qatf (9698_CR39) 2018; 6
9698_CR60
9698_CR63
9698_CR62
L van der Maaten (9698_CR66) 2008; 9
9698_CR29
9698_CR21
9698_CR65
P Mishra (9698_CR3) 2019; 21
9698_CR20
9698_CR64
9698_CR23
9698_CR67
9698_CR22
9698_CR69
9698_CR24
9698_CR68
9698_CR27
AL Buczak (9698_CR8) 2016; 18
9698_CR52
9698_CR51
W Wang (9698_CR28) 2018; 6
9698_CR18
9698_CR17
MH Bhuyan (9698_CR7) 2014; 16
9698_CR19
9698_CR10
9698_CR54
9698_CR2
N Shone (9698_CR37) 2018; 2
9698_CR53
9698_CR5
9698_CR12
9698_CR56
9698_CR4
9698_CR11
9698_CR55
9698_CR14
9698_CR58
9698_CR6
9698_CR13
9698_CR57
9698_CR9
9698_CR15
9698_CR59
9698_CR1
9698_CR41
9698_CR40
P Vincent (9698_CR42) 2010; 11
9698_CR43
FA Khan (9698_CR38) 2019; 7
9698_CR45
9698_CR44
9698_CR47
9698_CR46
9698_CR49
9698_CR48
References_xml – reference: PapamartzivanosDMármolFGKambourakisGIntroducing deep learning self-adaptive misuse network intrusion detection systemsIEEE Access20197135461356010.1109/ACCESS.2019.2893871
– reference: Truong-Huu, T., Dheenadhayalan, N., Pratim Kundu, P., Ramnath, V., Liao, J., Teo, S.G., Praveen Kadiyala, S.: An empirical study on unsupervised network anomaly detection using generative adversarial networks. In: Proceedings of the 1st ACM Workshop on Security and Privacy on Artificial Intelligence, SPAI ’20, page 20–29. Association for Computing Machinery, New York, NY (2020)
– reference: Kayacik, H.G., Zincir-Heywood, A.N., Heywood, M.I.: Selecting features for intrusion detection: a feature relevance analysis on kdd 99. In: PST (2005). Accessed 13 April 2020
– reference: Ma, T., Wang, F., Cheng, J., Yu, Y., Chen, X.: A hybrid spectral clustering and deep neural network ensemble algorithm for intrusion detection in sensor networks. Sensors (Basel, Switzerland) 15(10), 1701 (2016)
– reference: TanZJamdagniAHeXNandaPLiuRPHuJDetection of denial-of-service attacks based on computer vision techniquesIEEE Trans. Comput.20156492519253310.1109/TC.2014.23752181360.68861
– reference: Hara, K., Shiomoto, K.: Intrusion detection system using semi-supervised learning with adversarial auto-encoder. In: NOMS 2020–2020 IEEE/IFIP Network Operations and Management Symposium, pp. 1–8 (2020)
– reference: Ahmad, J., Niyaz, Q., Sun, W., Alam, M.: A deep learning approach for network intrusion detection system. In: Proceedings of the 9th EAI International Conference on Bio-Inspired Information and Communications Technologies (Formerly BIONETICS), BICT’15, pp. 21-26. ICST (Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering), Brussels, BEL (2016)
– reference: Yu, Y., Long, J., Cai, Z.: Session-based network intrusion detection using a deep learning architecture. In: Vicenç, T., Yasuo, N., Aoi, H., Sozo, I., (eds.), Modeling Decisions for Artificial Intelligence, pp. 144–155. Springer International Publishing, Cham (2017)
– reference: Ring, M., Wunderlich, S., Scheuring, D., Landes, D., Hotho, A.: A survey of network-based intrusion detection data sets. CoRR, abs/1903.02460 (2019)
– reference: Qi, Y., Wang, Y., Zheng, X., Wu, Z.: Robust feature learning by stacked autoencoder with maximum correntropy criterion. In: 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 6716–6720 (2014)
– reference: Kingma, D.P., Ba, J.A.: A method for stochastic optimization. arXiv:1412.6980 (2014)
– reference: Kenaza, T., Bennaceur, K., Labed, A.: An efficient hybrid svdd/clustering approach for anomaly-based intrusion detection. In: Proceedings of the 33rd Annual ACM Symposium on Applied Computing, SAC ’18, pp. 435–443. Association for Computing Machinery, New York, NY (2018)
– reference: Goodfellow, I.J., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., Bengio, Y.: Generative Adversarial Networks. ArXiv e-prints (2014)
– reference: YinCZhuYFeiJHeXA deep learning approach for intrusion detection using recurrent neural networksIEEE Access20175219542196110.1109/ACCESS.2017.2762418
– reference: Tang, Z., Wang, P., Wang, J.: Convprotonet: deep prototype induction towards better class representation for few-shot malware classification. Appl. Sci., 10(8) (2020)
– reference: Andresini, G., Appice, A., Di Mauro, N., Loglisci, C., Malerba, D.: Exploiting the auto-encoder residual error for intrusion detection. In: 2019 IEEE European Symposium on Security and Privacy Workshops (EuroS PW), pp. 281–290 (2019)
– reference: Li, Z., Qin, Z., Huang, K., Yang, X., Ye, S.: Intrusion detection using convolutional neural networks for representation learning. In: Liu, D., Xie, S., Li, Y., Zhao, D., El-Alfy, E.-S.M. (eds.) Neural Information Processing, pp. 858–866. Springer International Publishing, Cham (2017)
– reference: Shyu, M.L., Chen, S.C., Sarinnapakorn, K., Chang, L.: A novel anomaly detection scheme based on principal component classifier. In: Proceedings of the IEEE Foundations and New Directions of Data Mining Workshop, in conjunction with the Third IEEE International Conference on Data Mining (ICDM’03), pp. 172–179 (2003)
– reference: Aygun, R.C., Yavuz, A.G.: Network anomaly detection with stochastically improved autoencoder based models. In: 2017 IEEE 4th International Conference on Cyber Security and Cloud Computing (CSCloud), pp. 193–198 (2017)
– reference: Landes, D., Otto, F., Schumann, S., Schlottke, F.: Identifying Suspicious Activities in Company Networks Through Data Mining and Visualization, pp. 75–90. Springer, London (2013)
– reference: Tavallaee, M., Bagheri, E., Lu, W., Ghorbani, A.A.: A detailed analysis of the kdd cup 99 data set. In: 2009 IEEE Symposium on Computational Intelligence for Security and Defense Applications, pp. 1–6 (2009)
– reference: Shahadat, N., Hossain, I., Rohman, A., Matin, N.: Experimental analysis of data mining application for intrusion detection with feature reduction. In: 2017 International Conference on Electrical, Computer and Communication Engineering (ECCE), pp. 209–216 (2017)
– reference: Koch, G.., Zemel, R., Salakhutdinov, R. et al.: Siamese neural networks for one-shot image recognition. In: ICML Deep Learning Workshop, vol. 2. Lille (2015)
– reference: Zhou, C., Paffenroth, R.C.: Anomaly detection with robust deep autoencoders. In: Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’17, pp. 665–674. Association for Computing Machinery, New York, NY (2017)
– reference: Tang, T.A., Mhamdi, L., McLernon, D., Zaidi, S.A.R., Ghogho, M.: Deep learning approach for network intrusion detection in software defined networking. In: 2016 International Conference on Wireless Networks and Mobile Communications (WINCOM), pp. 258–263 (2016)
– reference: VincentPLarochelleHLajoieIBengioYManzagolP-AStacked denoising autoencoders: learning useful representations in a deep network with a local denoising criterionJ. Mach. Learn. Res.201011337134081242.68256
– reference: Tang, T.A., Mhamdi, L., McLernon, D., Zaidi, S.A.R., Ghogho, M.: Deep recurrent neural network for intrusion detection in sdn-based networks. In: 2018 4th IEEE Conference on Network Softwarization and Workshops (NetSoft), pp. 202–206 (2018)
– reference: ShoneNNgocTNPhaiVDShiQA deep learning approach to network intrusion detectionIEEE Trans. Emerg. Topics Comput. Intell.201821415010.1109/TETCI.2017.2772792
– reference: Salama, M.A., Eid, H.F., Ramadan, R.A., Darwish, A., Hassanien, A.E.: Hybrid intelligent intrusion detection scheme. In: António, G.-C., Ricardo, T., Gerald, S., Lino, C., (eds.) Soft Computing in Industrial Applications, pp. 293–303. Springer, Berlin, Heidelberg (2011)
– reference: Ring, M.., Wunderlich, S.., Grüdl, D., Landes, D., Hotho, A.: A Toolset for Intrusion and Insider Threat Detection, pp. 3–31. Springer International Publishing, Cham (2017)
– reference: Yu, Y., Long, J., Cai, Z.: Network intrusion detection through stacking dilated convolutional autoencoders. Secur. Commun. Netw. (2017)
– reference: KhanFAGumaeiADerhabAHussainAA novel two-stage deep learning model for efficient network intrusion detectionIEEE Access20197303733038510.1109/ACCESS.2019.2899721
– reference: Said Elsayed, M., Le-Khac, N.-A., Dev, S., Jurcut, A.D.: Network anomaly detection using lstm based autoencoder. In: Proceedings of the 16th ACM Symposium on QoS and Security for Wireless and Mobile Networks, Q2SWinet ’20, pp. 37–45. Association for Computing Machinery, New York, NY (2020)
– reference: Khare, S., Totaro, M.: Ensemble learning for detecting attacks and anomalies in iot smart home. In: 2020 3rd International Conference on Data Intelligence and Security (ICDIS), pp. 56–63 (2020)
– reference: WangWShengYWangJZengXYeXHuangYZhuMHast-ids: learning hierarchical spatial-temporal features using deep neural networks to improve intrusion detectionIEEE Access201861792180610.1109/ACCESS.2017.2780250
– reference: Aouedi, O., Piamrat, K., Muller, G., Singh, K.: Fluids: federated learning with semi-supervised approach for intrusion detection system. In: 2022 IEEE 19th Annual Consumer Communications Networking Conference (CCNC), pp. 523–524 (2022)
– reference: Gharib, A., Sharafaldin, I., Lashkari, A.H., Ghorbani, A.A.: An evaluation framework for intrusion detection dataset. In: 2016 International Conference on Information Science and Security (ICISS), pp. 1–6 (2016)
– reference: van der MaatenLHintonGVisualizing data using t-sneJ. Mach. Learn. Res.20089257926051225.68219
– reference: Al-QatfMLashengYAl-HabibMAl-SabahiKDeep learning approach combining sparse autoencoder with svm for network intrusion detectionIEEE Access20186528435285610.1109/ACCESS.2018.2869577
– reference: Tran, T.K., Sato, H., Kubo, M.: Image-based unknown malware classification with few-shot learning models. In 2019 Seventh International Symposium on Computing and Networking Workshops (CANDARW), pp. 401–407 (2019)
– reference: BhuyanMHBhattacharyyaDKKalitaJKNetwork anomaly detection: methods, systems and toolsIEEE Commun. Surv. Tutor.201416130333610.1109/SURV.2013.052213.00046
– reference: BuczakALGuvenEA survey of data mining and machine learning methods for cyber security intrusion detectionIEEE Commun. Surv. Tutor.20161821153117610.1109/COMST.2015.2494502
– reference: Vanerio, J., Casas, P.: Ensemble-learning approaches for network security and anomaly detection. In: Proceedings of the Workshop on Big Data Analytics and Machine Learning for Data Communication Networks, Big-DAMA ’17, pp. 1–6. Association for Computing Machinery, New York, NY (2017)
– reference: Niyaz, Q., Sun, W., Javaid, A.Y.: A deep learning based ddos detection system in software-defined networking (SDN). CoRR, abs/1611.07400 (2016)
– reference: Wang, W., Du, X., Shan, D., Qin, R., Wang, N.: Cloud intrusion detection method based on stacked contractive auto-encoder and support vector machine. IEEE Trans. Cloud Comput., p. 1 (2020)
– reference: Osada, G., Omote, K., Nishide, T.: Network intrusion detection based on semi-supervised variational auto-encoder. In: Simon, N.F., Dieter, G., Einar, S. (eds.) Computer Security—ESORICS 2017, pp. 344–361. Springer International Publishing, Cham (2017)
– reference: SuTSunHZhuJWangSLiYBat: deep learning methods on network intrusion detection using nsl-kdd datasetIEEE Access20208295752958510.1109/ACCESS.2020.2972627
– reference: LoukasGVuongTHeartfieldRSakellariGYoonYGanDCloud-based cyber-physical intrusion detection for vehicles using deep learningIEEE Access201863491350810.1109/ACCESS.2017.2782159
– reference: Sharafaldin, I., Lashkari, A.H., Ghorbani, A.A.: Toward generating a new intrusion detection dataset and intrusion traffic characterization. In Proceedings of the 4th International Conference on Information Systems Security and Privacy—Volume 1: ICISSP, pp. 108–116. INSTICC, SciTePress (2018)
– reference: Song, J., Takakura, H., Okabe, Y., Eto, M., Inoue, D., Nakao, K.: Statistical analysis of honeypot data and building of kyoto 2006+ dataset for nids evaluation. In: Proceedings of the First Workshop on Building Analysis Datasets and Gathering Experience Returns for Security, BADGERS’11, pp. 29–36. Association for Computing Machinery, New York, NY (2011)
– reference: Najafabadi, M. M., Khoshgoftaar, T. M., Kemp, C., Seliya, N., Zuech, R.: Machine learning for detecting brute force attacks at the network level. In 2014 IEEE International Conference on Bioinformatics and Bioengineering, pp. 379–385 (2014)
– reference: Lake, B.M., Salakhutdinov, R., Gross, J., Tenenbaum, J.B.: One shot learning of simple visual concepts. Cognit. Sci., 33 (2011)
– reference: Vincent, P., Larochelle, H., Bengio, Y., Manzagol, P.-A.: Extracting and composing robust features with denoising autoencoders. In: Proceedings of the 25th International Conference on Machine Learning, ICML ’08, pp. 1096–1103. Association for Computing Machinery, New York, NY (2008)
– reference: Gehring, J., Miao, Y., Metze, F., Waibel, A.: Extracting deep bottleneck features using stacked auto-encoders. In: 2013 IEEE International Conference on Acoustics, Speech and Signal Processing, pp. 3377–3381 (2013)
– reference: Raina, R., Battle, A., Lee, H., Packer, B., Ng, A.Y..: Self-taught learning: transfer learning from unlabeled data. In: Proceedings of the 24th International Conference on Machine Learning, ICML ’07, pp. 759–766. Association for Computing Machinery, New York, NY (2007)
– reference: Sundqvist, T., Bhuyan, M.H., Forsman, J., Elmroth, E.: Boosted ensemble learning for anomaly detection in 5g ran. In :Ilias. M., Lazaros, I., Elias P. (eds.) Artificial Intelligence Applications and Innovations, pp. 15–30. Springer International Publishing, Cham (2020)
– reference: Rifai, S., Vincent, P., Muller, X., Glorot, X., Bengio, Y.: Contractive auto-encoders: Explicit invariance during feature extraction. In: Proceedings of the 28th International Conference on International Conference on Machine Learning, ICML’11, pp. 833–840. Omnipress, Madison, WI (2011)
– reference: Madani, P., Vlajic, N.: Robustness of deep autoencoder in intrusion detection under adversarial contamination. In: Proceedings of the 5th Annual Symposium and Bootcamp on Hot Topics in the Science of Security, HoTSoS ’18. Association for Computing Machinery, New York, NY (2018)
– reference: Hemmer, A., Abderrahim, M., Badonnel, R., Chrisment, I.: An ensemble learning-based architecture for security detection in iot infrastructures. In: 2021 17th International Conference on Network and Service Management (CNSM), pp. 180–186 (2021)
– reference: Vartouni, A.M., Kashi, S.S., Teshnehlab, M.: An anomaly detection method to detect web attacks using stacked auto-encoder. In: 2018 6th Iranian Joint Congress on Fuzzy and Intelligent Systems (CFIS), pp. 131–134 (2018)
– reference: Kayacik, H.G., Zincir-Heywood, A.N., Heywood, M.I.: Selecting features for intrusion detection: a feature relevance analysis on kdd 99. In: PST (2005)
– reference: Hsiao, S.-C.., Kao, D.-Y., Liu, Z.-Y., Tso, R.: Malware image classification using one-shot learning with siamese networks. In: Procedia Comput. Sci., 159, 1863–1871 (2019). (Knowledge-Based and Intelligent Information & Engineering Systems: Proceedings of the 23rd International Conference KES2019)
– reference: Pytorch.: https://github.com/pytorch/pytorch (2022)
– reference: MishraPVaradharajanVTupakulaUPilliESA detailed investigation and analysis of using machine learning techniques for intrusion detectionIEEE Commun. Surv. Tutor.201921168672810.1109/COMST.2018.2847722
– reference: Sommer, R., Paxson, V.: Outside the closed world: On using machine learning for network intrusion detection. In: 2010 IEEE Symposium on Security and Privacy, pp. 305–316 (2010)
– reference: Makhzani, A., Shlens, J., Jaitly, N., Goodfellow, I., Frey, B.: Adversarial Autoencoders. ArXiv e-prints (2015)
– reference: Pervez, M. S., Farid, D. M.: Feature selection and intrusion classification in nsl-kdd cup 99 dataset employing svms. In: The 8th International Conference on Software, Knowledge, Information Management and Applications (SKIMA 2014), pp. 1–6 (2014)
– reference: Aouedi, O., Piamrat, K., Bagadthey, D.: A semi-supervised stacked autoencoder approach for network traffic classification. In: 2020 IEEE 28th International Conference on Network Protocols (ICNP), pp. 1–6 (2020)
– reference: Zoppi, T., Gharib, M., Atif, M., Bondavalli, A.: Meta-learning to improve unsupervised intrusion detection in cyber-physical systems. ACM Trans. Cyber-Phys. Syst., 5(4) (2021)
– reference: Hindy, H., Tachtatzis, C., Atkinson, R., Bayne, E., Bellekens, X.: Developing a siamese network for intrusion detection systems. In: Proceedings of the 1st Workshop on Machine Learning and Systems, EuroMLSys ’21, pp. 120–126. Association for Computing Machinery, New York, NY (2021)
– ident: 9698_CR15
  doi: 10.1109/EuroSPW.2019.00038
– ident: 9698_CR24
  doi: 10.1109/NETSOFT.2018.8460090
– ident: 9698_CR52
– ident: 9698_CR65
  doi: 10.1109/SP.2010.25
– ident: 9698_CR22
  doi: 10.3390/s16101701
– volume: 6
  start-page: 52843
  year: 2018
  ident: 9698_CR39
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2869577
– ident: 9698_CR17
  doi: 10.23919/CNSM52442.2021.9615588
– ident: 9698_CR60
  doi: 10.1109/CCNC49033.2022.9700632
– ident: 9698_CR9
  doi: 10.1109/CISDA.2009.5356528
– ident: 9698_CR20
  doi: 10.1007/978-3-030-49161-1_2
– volume: 5
  start-page: 21954
  year: 2017
  ident: 9698_CR25
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2017.2762418
– ident: 9698_CR21
  doi: 10.1109/ICDIS50059.2020.00014
– volume: 6
  start-page: 3491
  year: 2018
  ident: 9698_CR26
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2017.2782159
– ident: 9698_CR33
  doi: 10.1145/1390156.1390294
– volume: 8
  start-page: 29575
  year: 2020
  ident: 9698_CR30
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2972627
– ident: 9698_CR47
– ident: 9698_CR4
– ident: 9698_CR1
  doi: 10.1007/978-1-4471-4866-1_6
– ident: 9698_CR54
  doi: 10.1109/CANDARW.2019.00075
– ident: 9698_CR13
  doi: 10.1145/3167132.3167180
– ident: 9698_CR31
  doi: 10.1145/3190619.3190637
– ident: 9698_CR53
  doi: 10.1016/j.procs.2019.09.358
– ident: 9698_CR10
  doi: 10.1109/BIBE.2014.73
– ident: 9698_CR55
  doi: 10.3390/app10082847
– ident: 9698_CR2
  doi: 10.1007/978-3-319-59439-2_1
– ident: 9698_CR68
  doi: 10.5220/0006639801080116
– ident: 9698_CR11
– ident: 9698_CR12
  doi: 10.1109/SKIMA.2014.7083539
– ident: 9698_CR43
  doi: 10.1109/CSCloud.2017.39
– ident: 9698_CR56
  doi: 10.1145/3437984.3458842
– ident: 9698_CR58
  doi: 10.1145/3416013.3426457
– ident: 9698_CR45
  doi: 10.1155/2017/4184196
– ident: 9698_CR63
– volume: 6
  start-page: 1792
  year: 2018
  ident: 9698_CR28
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2017.2780250
– ident: 9698_CR46
– volume: 7
  start-page: 13546
  year: 2019
  ident: 9698_CR50
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2893871
– ident: 9698_CR27
  doi: 10.1007/978-3-319-70139-4_87
– ident: 9698_CR14
  doi: 10.1109/ECACE.2017.7912907
– ident: 9698_CR29
  doi: 10.1145/3385003.3410924
– ident: 9698_CR36
  doi: 10.1109/CFIS.2018.8336654
– volume: 64
  start-page: 2519
  issue: 9
  year: 2015
  ident: 9698_CR16
  publication-title: IEEE Trans. Comput.
  doi: 10.1109/TC.2014.2375218
– ident: 9698_CR70
  doi: 10.1016/j.cose.2019.06.005
– ident: 9698_CR6
  doi: 10.1109/NOMS47738.2020.9110343
– ident: 9698_CR48
  doi: 10.1007/978-3-642-20505-7_26
– ident: 9698_CR35
  doi: 10.1109/ICASSP.2014.6854900
– volume: 11
  start-page: 3371
  year: 2010
  ident: 9698_CR42
  publication-title: J. Mach. Learn. Res.
– ident: 9698_CR41
– ident: 9698_CR19
  doi: 10.1145/3467470
– ident: 9698_CR32
  doi: 10.1145/3097983.3098052
– ident: 9698_CR64
– volume: 16
  start-page: 303
  issue: 1
  year: 2014
  ident: 9698_CR7
  publication-title: IEEE Commun. Surv. Tutor.
  doi: 10.1109/SURV.2013.052213.00046
– volume: 18
  start-page: 1153
  issue: 2
  year: 2016
  ident: 9698_CR8
  publication-title: IEEE Commun. Surv. Tutor.
  doi: 10.1109/COMST.2015.2494502
– ident: 9698_CR23
  doi: 10.1109/WINCOM.2016.7777224
– volume: 9
  start-page: 2579
  year: 2008
  ident: 9698_CR66
  publication-title: J. Mach. Learn. Res.
– ident: 9698_CR44
  doi: 10.1007/978-3-319-67422-3_13
– ident: 9698_CR61
  doi: 10.4018/978-1-59140-561-0.ch071
– ident: 9698_CR49
  doi: 10.1145/1273496.1273592
– ident: 9698_CR51
– ident: 9698_CR62
  doi: 10.4018/978-1-59140-561-0.ch071
– volume: 2
  start-page: 41
  issue: 1
  year: 2018
  ident: 9698_CR37
  publication-title: IEEE Trans. Emerg. Topics Comput. Intell.
  doi: 10.1109/TETCI.2017.2772792
– ident: 9698_CR59
  doi: 10.1109/ICNP49622.2020.9259390
– ident: 9698_CR69
  doi: 10.1109/ICISSEC.2016.7885840
– ident: 9698_CR67
  doi: 10.1145/1978672.1978676
– ident: 9698_CR34
  doi: 10.1109/ICASSP.2013.6638284
– volume: 7
  start-page: 30373
  year: 2019
  ident: 9698_CR38
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2899721
– ident: 9698_CR40
– volume: 21
  start-page: 686
  issue: 1
  year: 2019
  ident: 9698_CR3
  publication-title: IEEE Commun. Surv. Tutor.
  doi: 10.1109/COMST.2018.2847722
– ident: 9698_CR18
  doi: 10.1145/3098593.3098594
– ident: 9698_CR57
  doi: 10.1007/978-3-319-66399-9_19
– ident: 9698_CR5
SSID ssj0008395
Score 2.320406
Snippet Network intrusion detection systems (NIDS) are critical to defending network systems from cyber attacks. Recently, machine learning has been applied to enhance...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 5
SubjectTerms Annotations
Coders
Communications Engineering
Communications traffic
Computer Communication Networks
Computer Science
Computer Systems Organization and Communication Networks
Cybercrime
Cybersecurity
Information Systems and Communication Service
Intrusion detection systems
Machine learning
Multilayer perceptrons
Multilayers
Networks
Operations Research/Decision Theory
Semi-supervised learning
Training
SummonAdditionalLinks – databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFA86L3rwYypOp-TgTQNt0jTNcX6MKbqLG-xWkjQBQTpxlf37vvRjm-IED4WWJC3kJXnv9f1-7yF0qZRwsTAh4YbFBDR0RnTkKFFGyVBbpqLEE4Wfh_FgHD1O-KQmhc0atHsTkixP6hWymwTHyaPPweyWCZlvoi3ufXdYxWPaW5y_oPJ5GeOMIyK4CGqqzO_v-K6Oljbmj7BoqW36-2i3NhNxr5LrAdqweRvtNSUYcL0j22hnJZ_gIXodVqBu_JB7LgVMOb6zRQm2ynGVmxzfgNrKMDyrHJfVmGfKr0Hc-yym5D73FPcP7P_O4r6d4yelQS9leFRXksAvyqcTnh2hcf9-dDsgdS0FYpgMC6K0oyxLBNNUx1xlobAZdYFzisVRwkJjJFWcM5sIY6mJggzuY22lcYJyMGqOUSuf5vbEg6HAJwwCrZUJIxdJbTg3UtBYGRgqXAeFzZSmpk407utdvKXLFMleDGngLy-GdN5BV4sx71WajT97dxtJpfWWm6VUUO-bSS7WNAtwBsFZYx103Qh32bz-Y6f_636Gtn1F-gqm1kUtELc9B7ul0BflMv0CQUblKA
  priority: 102
  providerName: Springer Nature
Title Network Intrusion Detection System Based on an Adversarial Auto-Encoder with Few Labeled Training Samples
URI https://link.springer.com/article/10.1007/s10922-022-09698-w
https://www.proquest.com/docview/2722605957
https://www.proquest.com/docview/2771496663
Volume 31
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwELfY-gIPaDAQha3yA2_MIrFjO36autJufKybYJXGU2Q7toSE0kGL-u_vLnFWQNoeYiVxnEh3zn3Yd_cj5K21Oirtcya9UAw0dM1cETmz3prcBWGLEhOFz-fqbFF8upbXacFtlcIqe5nYCup66XGN_D3XGox5MLbF8c0vhqhRuLuaIDR2yABEcAnO1-BkOr_8eieLQf3Ldr9TFUxLnaW0mZQ8Z8ARw2h2MONNyTb_qqatvfnfFmmreWZ75GkyGem44_Ez8ig0z8mTvwoJ7pMf8y6am35sMIkCaE0_hHUbZdXQrig5PQF9VVO4tg1tYZhXFicfHf9ZL9m0wdz23xSXZeksbOgX60Ah1fQqQUjQbxbrCK9ekMVsejU5YwlEgXlh8jWzLnJRl1o47pS0da5DzWMWoxWqKEXuveFWShFK7QP3RVbDuXLB-Ki5BGvmJdltlk14hVFQ4AxmmXPW50UsjPNSeqO5sh6G6jgkeU-_yqcK4wh08bPa1kZGmlcZHkjzajMk7-7G3HT1NR58-qBnS5X-tVXFNUenzEh9T3c_cYbkqOfktvv-j71--G1vyGOEnu_i0Q7ILrA3HIKBsnYjslPOTkdkMD79_nk6SnMS7k7UBNrz_ALaBR_fAoBr5_8
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwELYQPdAeqkJbdVsePtBTazXxI44PCPFadsuyly4St9R2bAmpytLuohV_qr-xM3mwBQluHCIlcpxIM-N52DPfELJrrY6Z9ilTXmQMLHTJnIycWW9N6oKwMsdC4fNxNriQ3y_V5Qr529XCYFplpxNrRV1OPe6Rf-NagzMPzrbYv_7NsGsUnq52LTQasTgLtwsI2WZ7w2Pg72fO-yeTowFruwowL0w6Z9ZFLspcC8ddpmyZ6lDymMRoRSZzkXpvuFVKhFz7wL1MSrjPXDA-aq5yBF8Clf9CCmFwReX90zvND86Gqk9XM8m00klbpNOW6hkI-zB3HoIGk7PFfUO49G4fHMjWdq7_hrxuHVR60EjUOlkJ1QZ59R9s4VtyNW5yx-mwwpIN4Cw9DvM6p6uiDQQ6PQTrWFJ4thWtmz7PLIo6PbiZT9lJhZX0fyhuAtN-WNCRdWD-SjppG1bQHxZRi2fvyMWzEPc9Wa2mVfiAOVcQeiaJc9anMkrjvFLeaJ5ZD1N17JG0o1_hWzxzbKvxq1giMSPNiwQvpHmx6JEvd3OuGzSPJ9_e7NhStCt7VnDNMQQ0Sj8y3Ilpj3ztOLkcfvxnH5_-2g5ZG0zOR8VoOD77RF5i0_smE26TrAKrwxa4RnO3XcsjJT-fewH8AyQpH1Y
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwELaqIiE48EYsLeADnMBt4mdyQKiwXXVpuyDRSr0F27El1CpbuqlW7U_jr_BnmMmjC5XaWw8cIiXKS7E_e2bib74h5LW1JmrjU6a80AwsdMmcjJxZb_PUBWFlhonCuxO9tS8_H6iDJfKrz4VBWmU_JzYTdTn1-I98nRsDzjw422I9drSIr8PRh-OfDCtI4UprX06jhch2OJtD-DZ7Px5CX7_hfLS592mLdRUGmBd5WjPrIhdlZoTjTitbpiaUPCYxWqFlJlLvc26VEiEzPnAvkxL2tQu5j4arDIWYYPq_ZaTOkE64m365sALgeKhmpVVLZpRJuoSdLm0vhxAQefQQQOQZm_9rFBee7qXF2cbmje6T331rtVSXw7XT2q3580tCkv9ncz4g9zpXnG60Y-chWQrVI3L3L4HGx-THpGXJ03GFySmAYToMdcNeq2gr9k4_gh9QUji2FW3KW88sDmq6cVpP2WaFmgEnFH9301GY0x3rwNCXdK8rzUG_WdRnnj0h-zfyrU_JcjWtwjNkl0GQnSTOWZ_KKHPnlfK54dp6uNXEAUl7dBS-U27HAiJHxUJzGhFVJLghoor5gLy9uOe41S259urVHiVFN4fNCm44Bru5Mlec7hE0IO96nC5OX_2y59c_7RW5DUgsdsaT7RVyh4NP2VL-Vsky9HR4AT5g7V42g42S7zcNxz_dn2ug
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Network+Intrusion+Detection+System+Based+on+an+Adversarial+Auto-Encoder+with+Few+Labeled+Training+Samples&rft.jtitle=Journal+of+network+and+systems+management&rft.au=Shiomoto%2C+Kohei&rft.date=2023-03-01&rft.pub=Springer+Nature+B.V&rft.issn=1064-7570&rft.eissn=1573-7705&rft.volume=31&rft.issue=1&rft.spage=5&rft_id=info:doi/10.1007%2Fs10922-022-09698-w&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1064-7570&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1064-7570&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1064-7570&client=summon