Breast cancer histology images classification: Training from scratch or transfer learning?

We demonstrated the ability of transfer learning in comparison with the fully-trained network on the histopathological imaging modality by considering three pre-trained networks: VGG16, VGG19, and ResNet50 and analyzed their behavior for magnification independent breast cancer classification. Concur...

Full description

Saved in:
Bibliographic Details
Published inICT express Vol. 4; no. 4; pp. 247 - 254
Main Authors Shallu, Mehra, Rajesh
Format Journal Article
LanguageEnglish
Published Elsevier 01.12.2018
한국통신학회
Subjects
Online AccessGet full text
ISSN2405-9595
2405-9595
DOI10.1016/j.icte.2018.10.007

Cover

Loading…
Abstract We demonstrated the ability of transfer learning in comparison with the fully-trained network on the histopathological imaging modality by considering three pre-trained networks: VGG16, VGG19, and ResNet50 and analyzed their behavior for magnification independent breast cancer classification. Concurrently, we examined the effect of training–testing data size on the performance of considered networks. A fine-tuned pre-trained VGG16 with logistic regression classifier yielded the best performance with 92.60% accuracy, 95.65% area under ROC curve (AUC), and 95.95% accuracy precision score (APS) for 90%–10% training–testing data splitting. Layer-wise fine-tuning and different weight initialization schemes can be a future aspect of this study. Keywords: Breast cancer, Histopathological images, Convolutional neural network, Full training, Transfer learning
AbstractList We demonstrated the ability of transfer learning in comparison with the fully-trained network on the histopathological imaging modality by considering three pre-trained networks: VGG16, VGG19, and ResNet50 and analyzed their behavior for magnification independent breast cancer classification. Concurrently, we examined the effect of training–testing data size on the performance of considered networks. A fine-tuned pre-trained VGG16 with logistic regression classifier yielded the best performance with 92.60% accuracy, 95.65% area under ROC curve (AUC), and 95.95% accuracy precision score (APS) for 90%–10% training–testing data splitting. Layer-wise fine-tuning and different weight initialization schemes can be a future aspect of this study. KCI Citation Count: 35
We demonstrated the ability of transfer learning in comparison with the fully-trained network on the histopathological imaging modality by considering three pre-trained networks: VGG16, VGG19, and ResNet50 and analyzed their behavior for magnification independent breast cancer classification. Concurrently, we examined the effect of training–testing data size on the performance of considered networks. A fine-tuned pre-trained VGG16 with logistic regression classifier yielded the best performance with 92.60% accuracy, 95.65% area under ROC curve (AUC), and 95.95% accuracy precision score (APS) for 90%–10% training–testing data splitting. Layer-wise fine-tuning and different weight initialization schemes can be a future aspect of this study. Keywords: Breast cancer, Histopathological images, Convolutional neural network, Full training, Transfer learning
Author Shallu
Mehra, Rajesh
Author_xml – sequence: 1
  surname: Shallu
  fullname: Shallu
– sequence: 2
  givenname: Rajesh
  surname: Mehra
  fullname: Mehra, Rajesh
BackLink https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002424232$$DAccess content in National Research Foundation of Korea (NRF)
BookMark eNp9kU9PGzEQxa0KpNKQL8DJ1x4S7N31v14qilqIhFSpChcu1mTWXhyWdWX7wrfHmyCEeuhprOf3ftLM-0JOpjg5Qi44W3PG5eV-HbC4dcO4rsKaMfWJnDUdEysjjDj58P5MljnvGWPcNJwbdUYefiQHuVCECV2ijyGXOMbhhYZnGFymOELOwQeEEuL0jW4ThClMA_UpPtOMCQo-0phoSTBlXxGjgzQ7vp-TUw9jdsu3uSD3v35ur29Xd79vNtdXdytsDS8rYB06NI2XvdKguETsHVNagusQdr7TStZ_qYRzvpUcleuro--NRKV70S7I1yN3St4-YbARwmEO0T4le_Vnu7GtaYTRrHo3R28fYW__prplejkEDkJMg4VUAo7OotSdRL4TToquBb5rUWDP1Y5pbbT3ldUcWZhizsn5dx5ndi7G7u1cjJ2LmbVaTA3pf0IYyuG29YBh_F_0FUZZmMI
CitedBy_id crossref_primary_10_1016_j_sciaf_2023_e01612
crossref_primary_10_1016_j_artmed_2021_102191
crossref_primary_10_3389_frai_2022_733345
crossref_primary_10_1088_2632_2153_ad10cc
crossref_primary_10_1155_2022_8904768
crossref_primary_10_1088_1742_6596_1767_1_012042
crossref_primary_10_1109_TCSVT_2023_3295375
crossref_primary_10_1007_s13755_021_00163_7
crossref_primary_10_1016_j_compbiomed_2022_106476
crossref_primary_10_1049_ipr2_12449
crossref_primary_10_2478_fcds_2019_0016
crossref_primary_10_3390_diagnostics10090662
crossref_primary_10_1016_j_mlwa_2021_100198
crossref_primary_10_1007_s11042_022_14276_y
crossref_primary_10_1016_j_physa_2019_123592
crossref_primary_10_1515_jisys_2022_0198
crossref_primary_10_1016_j_biosystemseng_2020_03_015
crossref_primary_10_1007_s42803_023_00077_8
crossref_primary_10_1016_j_matpr_2023_10_154
crossref_primary_10_1109_ACCESS_2024_3516535
crossref_primary_10_1371_journal_pone_0283121
crossref_primary_10_1142_S0218488523500204
crossref_primary_10_1155_2022_3041811
crossref_primary_10_1016_j_cmpb_2019_07_003
crossref_primary_10_1016_j_cie_2024_110280
crossref_primary_10_1109_ACCESS_2025_3544923
crossref_primary_10_1007_s11831_022_09776_x
crossref_primary_10_1007_s41782_023_00261_4
crossref_primary_10_1055_a_1971_1274
crossref_primary_10_13104_imri_2021_25_4_266
crossref_primary_10_3390_diagnostics13111977
crossref_primary_10_1016_j_jag_2024_104061
crossref_primary_10_1016_j_jksuci_2021_09_003
crossref_primary_10_1145_3492865
crossref_primary_10_3390_cells10040787
crossref_primary_10_1109_ACCESS_2020_2993788
crossref_primary_10_3233_JIFS_189850
crossref_primary_10_1016_j_asoc_2019_105765
crossref_primary_10_1016_j_hmedic_2024_100106
crossref_primary_10_1007_s00500_020_05424_3
crossref_primary_10_1109_ACCESS_2023_3335604
crossref_primary_10_1049_ipr2_12074
crossref_primary_10_1007_s11831_023_09968_z
crossref_primary_10_1007_s12652_023_04600_1
crossref_primary_10_1016_j_icte_2021_04_005
crossref_primary_10_1016_j_yamp_2021_07_005
crossref_primary_10_1093_comjnl_bxad127
crossref_primary_10_1016_j_icte_2020_04_009
crossref_primary_10_1016_j_bspc_2023_104775
crossref_primary_10_1007_s11227_023_05742_x
crossref_primary_10_3390_diagnostics12051152
crossref_primary_10_1002_cam4_6363
crossref_primary_10_1016_j_imed_2022_05_004
crossref_primary_10_1016_j_eswa_2023_121416
crossref_primary_10_3390_cancers15123075
crossref_primary_10_1016_j_bspc_2020_102192
crossref_primary_10_3233_JIFS_231563
crossref_primary_10_7717_peerj_cs_493
crossref_primary_10_1109_TCBB_2020_2980831
crossref_primary_10_1007_s12065_021_00564_3
crossref_primary_10_3390_diagnostics13101793
crossref_primary_10_1016_j_jksuci_2023_01_017
crossref_primary_10_1007_s10489_021_02425_z
crossref_primary_10_1140_epjc_s10052_023_12290_4
crossref_primary_10_1080_14942119_2024_2398943
crossref_primary_10_1007_s11042_021_11409_7
crossref_primary_10_1016_j_compbiomed_2021_104608
crossref_primary_10_1109_ACCESS_2020_3034343
crossref_primary_10_1038_s41598_020_77170_3
crossref_primary_10_1002_ima_22465
crossref_primary_10_1007_s40747_021_00474_y
crossref_primary_10_1016_j_imu_2021_100616
crossref_primary_10_1007_s11831_022_09738_3
crossref_primary_10_1016_j_atech_2023_100275
crossref_primary_10_4018_IJIRR_289655
crossref_primary_10_3390_cancers13112764
crossref_primary_10_1016_j_bbe_2021_05_013
crossref_primary_10_1016_j_bbe_2021_07_004
crossref_primary_10_1088_1742_6596_1755_1_012026
crossref_primary_10_1038_s41598_022_22984_6
crossref_primary_10_1109_ACCESS_2024_3514322
crossref_primary_10_3390_bioengineering9080391
crossref_primary_10_1145_3572033
crossref_primary_10_1016_j_health_2023_100207
crossref_primary_10_1007_s00371_021_02153_y
crossref_primary_10_1038_s41598_022_20012_1
crossref_primary_10_1007_s00521_022_07648_w
crossref_primary_10_16984_saufenbilder_720693
crossref_primary_10_1109_ACCESS_2021_3069937
crossref_primary_10_1155_2021_9025470
crossref_primary_10_1016_j_cviu_2024_104065
crossref_primary_10_1007_s40031_023_00882_3
crossref_primary_10_1186_s13640_024_00658_9
crossref_primary_10_1007_s11042_021_10927_8
crossref_primary_10_2478_acss_2020_0018
crossref_primary_10_3233_JIFS_219254
crossref_primary_10_1007_s11548_022_02826_6
crossref_primary_10_3390_diagnostics11030528
crossref_primary_10_1016_j_jksuci_2021_08_004
crossref_primary_10_1016_j_compbiomed_2024_108910
crossref_primary_10_1007_s10916_020_01689_1
crossref_primary_10_1007_s40846_020_00545_4
crossref_primary_10_1016_j_compbiomed_2020_103954
crossref_primary_10_1007_s10278_019_00307_y
crossref_primary_10_1007_s10916_021_01786_9
crossref_primary_10_1016_j_icte_2022_07_007
crossref_primary_10_4018_IJSSMET_2020040102
crossref_primary_10_3390_electronics12030676
crossref_primary_10_1007_s42484_022_00062_4
crossref_primary_10_1007_s42979_022_01275_x
crossref_primary_10_1016_j_jobe_2021_102537
crossref_primary_10_3390_cancers14112770
crossref_primary_10_1016_j_artmed_2022_102276
crossref_primary_10_1371_journal_pone_0269826
crossref_primary_10_3390_app10103359
crossref_primary_10_1007_s10278_023_00887_w
crossref_primary_10_1016_j_bspc_2023_105382
crossref_primary_10_1109_ACCESS_2021_3056641
crossref_primary_10_1007_s00521_024_10849_0
crossref_primary_10_1016_j_procs_2020_03_340
crossref_primary_10_1002_ima_22399
crossref_primary_10_1007_s00371_019_01768_6
crossref_primary_10_1016_j_ijmedinf_2021_104669
crossref_primary_10_1007_s00521_024_10464_z
crossref_primary_10_1016_j_compbiomed_2021_104879
crossref_primary_10_1007_s11042_024_19313_6
crossref_primary_10_1007_s11517_025_03297_y
crossref_primary_10_3389_frai_2024_1449329
crossref_primary_10_1038_s41598_025_90288_6
crossref_primary_10_1016_j_icte_2021_11_010
crossref_primary_10_1016_j_jksuci_2021_05_015
crossref_primary_10_1007_s00521_023_09156_x
crossref_primary_10_3390_healthcare10010166
crossref_primary_10_1016_j_compbiomed_2022_105636
crossref_primary_10_1016_j_dsp_2022_103400
crossref_primary_10_1016_j_jmir_2019_11_001
crossref_primary_10_3390_diagnostics13172853
crossref_primary_10_1007_s00521_022_07966_z
crossref_primary_10_1016_j_ecoinf_2022_101688
crossref_primary_10_1016_j_eswa_2020_114161
crossref_primary_10_1016_j_reth_2025_01_011
crossref_primary_10_1016_j_mlwa_2022_100422
crossref_primary_10_1109_ACCESS_2020_3029881
crossref_primary_10_3390_biology10121347
crossref_primary_10_1145_3648359
crossref_primary_10_3390_info16030227
Cites_doi 10.1109/CAC.2017.8243510
10.1109/TMI.2016.2528162
10.1109/CVPRW.2014.131
10.1007/978-3-319-24261-3_7
10.1016/j.conbuildmat.2017.09.110
10.1109/TMI.2016.2532122
10.1109/CVPRW.2015.7301382
10.1109/TBME.2015.2496264
10.1038/nature14539
10.1086/301749
10.1109/RBME.2012.2232289
10.1109/TMI.2016.2535865
10.4103/2153-3539.116866
10.1109/TMI.2016.2527619
10.1109/TMI.2016.2535302
10.3322/caac.21395
10.1109/WACV.2017.83
10.1371/journal.pone.0052807
10.1146/annurev-bioeng-071516-044442
10.1109/IJCNN.2016.7727519
10.1109/TMI.2015.2470529
10.3390/a3010044
ContentType Journal Article
DBID AAYXX
CITATION
DOA
ACYCR
DOI 10.1016/j.icte.2018.10.007
DatabaseName CrossRef
DOAJ Directory of Open Access Journals
Korean Citation Index
DatabaseTitle CrossRef
DatabaseTitleList

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2405-9595
EndPage 254
ExternalDocumentID oai_kci_go_kr_ARTI_3925980
oai_doaj_org_article_c6846c1b5e6543a1b3c5cd17b08898ff
10_1016_j_icte_2018_10_007
GroupedDBID 0R~
457
5VS
AAEDW
AALRI
AAXUO
AAYWO
AAYXX
ABMAC
ACGFS
ACVFH
ADBBV
ADCNI
ADEZE
ADVLN
AEUPX
AEXQZ
AFJKZ
AFPUW
AFTJW
AGHFR
AIGII
AITUG
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
APXCP
BCNDV
CITATION
EBS
EJD
FDB
GROUPED_DOAJ
IPNFZ
KQ8
M~E
O9-
OK1
RIG
ROL
SSZ
0SF
6I.
AACTN
AAFTH
ACYCR
NCXOZ
ID FETCH-LOGICAL-c391t-a04cec92f6d78a716ccde0786ae4cabf4876ec9675eef361c7edcdedd96c78d53
IEDL.DBID DOA
ISSN 2405-9595
IngestDate Tue Nov 21 21:41:10 EST 2023
Wed Aug 27 01:20:39 EDT 2025
Tue Jul 01 03:49:11 EDT 2025
Thu Apr 24 23:02:16 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c391t-a04cec92f6d78a716ccde0786ae4cabf4876ec9675eef361c7edcdedd96c78d53
OpenAccessLink https://doaj.org/article/c6846c1b5e6543a1b3c5cd17b08898ff
PageCount 8
ParticipantIDs nrf_kci_oai_kci_go_kr_ARTI_3925980
doaj_primary_oai_doaj_org_article_c6846c1b5e6543a1b3c5cd17b08898ff
crossref_primary_10_1016_j_icte_2018_10_007
crossref_citationtrail_10_1016_j_icte_2018_10_007
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-12-00
2018-12-01
2018-12
PublicationDateYYYYMMDD 2018-12-01
PublicationDate_xml – month: 12
  year: 2018
  text: 2018-12-00
PublicationDecade 2010
PublicationTitle ICT express
PublicationYear 2018
Publisher Elsevier
한국통신학회
Publisher_xml – name: Elsevier
– name: 한국통신학회
References Spanhol (10.1016/j.icte.2018.10.007_b36) 2015; 63
Gopalakrishnan (10.1016/j.icte.2018.10.007_b23) 2017; 157
Loukas (10.1016/j.icte.2018.10.007_b35) 2013
Fleet (10.1016/j.icte.2018.10.007_b7) 2014
10.1016/j.icte.2018.10.007_b14
Azizpour (10.1016/j.icte.2018.10.007_b22) 2014
10.1016/j.icte.2018.10.007_b5
10.1016/j.icte.2018.10.007_b12
He (10.1016/j.icte.2018.10.007_b28) 2015
10.1016/j.icte.2018.10.007_b32
Sellaro (10.1016/j.icte.2018.10.007_b33) 2013; 4
Han (10.1016/j.icte.2018.10.007_b15) 2017
Zheng (10.1016/j.icte.2018.10.007_b6) 2010; 3
10.1016/j.icte.2018.10.007_b18
Shen (10.1016/j.icte.2018.10.007_b9) 2017; 19
Voulodimos (10.1016/j.icte.2018.10.007_b13) 2017; 2018
Peikari (10.1016/j.icte.2018.10.007_b34) 2016; 35
10.1016/j.icte.2018.10.007_b31
10.1016/j.icte.2018.10.007_b30
Hoo-Chang (10.1016/j.icte.2018.10.007_b19) 2016; 35
10.1016/j.icte.2018.10.007_b27
10.1016/j.icte.2018.10.007_b26
10.1016/j.icte.2018.10.007_b24
Anthimopoulos (10.1016/j.icte.2018.10.007_b16) 2016; 35
Keskin (10.1016/j.icte.2018.10.007_b37) 2013; 8
10.1016/j.icte.2018.10.007_b21
Siegel (10.1016/j.icte.2018.10.007_b1) 2017; 67
Kallenberg (10.1016/j.icte.2018.10.007_b3) 2016; 35
Shallu (10.1016/j.icte.2018.10.007_b11) 2017
Aubreville (10.1016/j.icte.2018.10.007_b17) 2017
Tajbakhsh (10.1016/j.icte.2018.10.007_b25) 2016; 35
Ford (10.1016/j.icte.2018.10.007_b2) 1998; 62
10.1016/j.icte.2018.10.007_b29
İrsoy (10.1016/j.icte.2018.10.007_b20) 2018
Tan (10.1016/j.icte.2018.10.007_b8) 2016; 35
LeCun (10.1016/j.icte.2018.10.007_b10) 2015; 521
Ganesan (10.1016/j.icte.2018.10.007_b4) 2012; 6
References_xml – ident: 10.1016/j.icte.2018.10.007_b29
  doi: 10.1109/CAC.2017.8243510
– ident: 10.1016/j.icte.2018.10.007_b5
– volume: 35
  start-page: 1285
  issue: 5
  year: 2016
  ident: 10.1016/j.icte.2018.10.007_b19
  article-title: Deep convolutional neural networks for computer-aided detection: CNN architectures, dataset characterristics and transfer learning
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2016.2528162
– ident: 10.1016/j.icte.2018.10.007_b21
  doi: 10.1109/CVPRW.2014.131
– ident: 10.1016/j.icte.2018.10.007_b12
  doi: 10.1007/978-3-319-24261-3_7
– volume: 157
  start-page: 322
  year: 2017
  ident: 10.1016/j.icte.2018.10.007_b23
  article-title: Deep convolutional neural networks with transfer learning for computer vision-based data-driven pavement distress detection
  publication-title: Constr. Buil. Mater.
  doi: 10.1016/j.conbuildmat.2017.09.110
– ident: 10.1016/j.icte.2018.10.007_b31
– volume: 35
  start-page: 1322
  issue: 5
  year: 2016
  ident: 10.1016/j.icte.2018.10.007_b3
  article-title: Unsupervised deep learning applied to breast density segmentation and mammographic risk scoring
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2016.2532122
– year: 2017
  ident: 10.1016/j.icte.2018.10.007_b11
  article-title: An insight into the convolutional neural network for the analysis of medical images
– ident: 10.1016/j.icte.2018.10.007_b24
  doi: 10.1109/CVPRW.2015.7301382
– volume: 63
  start-page: 1455
  issue: 7
  year: 2015
  ident: 10.1016/j.icte.2018.10.007_b36
  article-title: A dataset for breast cancer histopathological image classification
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2015.2496264
– volume: 521
  start-page: 436
  issue: 7553
  year: 2015
  ident: 10.1016/j.icte.2018.10.007_b10
  article-title: Deep learning
  publication-title: Nature
  doi: 10.1038/nature14539
– start-page: 1
  year: 2017
  ident: 10.1016/j.icte.2018.10.007_b17
  article-title: Automatic classification of cancerous tissue in laser endo-microscopy images of the oral cavity using deep learning
  publication-title: Nature, Sci. Rep.
– volume: 62
  start-page: 676
  year: 1998
  ident: 10.1016/j.icte.2018.10.007_b2
  article-title: Genetic heterogeneity and penetrance analysis of the BRCA1 and BRCA2 genes in breast cancer families
  publication-title: Am. J. Hum. Genet.
  doi: 10.1086/301749
– volume: 6
  start-page: 77
  year: 2012
  ident: 10.1016/j.icte.2018.10.007_b4
  article-title: Computer-aided breast cancer detection using mammograms: A review
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/RBME.2012.2232289
– ident: 10.1016/j.icte.2018.10.007_b18
  doi: 10.1109/TMI.2016.2535865
– volume: 4
  year: 2013
  ident: 10.1016/j.icte.2018.10.007_b33
  article-title: Relationship between magnification and resolution in digital pathology systems
  publication-title: J. Pathol. Inform.
  doi: 10.4103/2153-3539.116866
– start-page: 1
  year: 2017
  ident: 10.1016/j.icte.2018.10.007_b15
  article-title: Breast cancer multi-classification from histopathological images with structured deep learning model
  publication-title: Nature, Sci. Rep.
– year: 2018
  ident: 10.1016/j.icte.2018.10.007_b20
– year: 2014
  ident: 10.1016/j.icte.2018.10.007_b22
– ident: 10.1016/j.icte.2018.10.007_b27
– volume: 35
  start-page: 1719
  issue: 7
  year: 2016
  ident: 10.1016/j.icte.2018.10.007_b8
  article-title: Association between changes in mammographic image features and risk for near-term breast cancer development
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2016.2527619
– year: 2013
  ident: 10.1016/j.icte.2018.10.007_b35
  article-title: Breast cancer characterization based on image classification of tissue sections visualized under low magnification
– ident: 10.1016/j.icte.2018.10.007_b32
– volume: 2018
  start-page: 1
  year: 2017
  ident: 10.1016/j.icte.2018.10.007_b13
  article-title: Deep learning for computer vision: A brief review
  publication-title: Comput. Intel. Neurosc.
– volume: 35
  start-page: 1299
  issue: 5
  year: 2016
  ident: 10.1016/j.icte.2018.10.007_b25
  article-title: Convolutional neural networks for medical image analysis: Full training or fine tuning?
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2016.2535302
– volume: 67
  start-page: 177
  issue: 3
  year: 2017
  ident: 10.1016/j.icte.2018.10.007_b1
  article-title: Colorectal cancer statistics, 2017
  publication-title: CA Cancer J. Clin.
  doi: 10.3322/caac.21395
– ident: 10.1016/j.icte.2018.10.007_b26
– year: 2015
  ident: 10.1016/j.icte.2018.10.007_b28
– ident: 10.1016/j.icte.2018.10.007_b30
  doi: 10.1109/WACV.2017.83
– volume: 8
  issue: 1
  year: 2013
  ident: 10.1016/j.icte.2018.10.007_b37
  article-title: Image classification of human carcinoma cells using complex wavelet based covariance descriptors
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0052807
– volume: 19
  start-page: 221
  year: 2017
  ident: 10.1016/j.icte.2018.10.007_b9
  article-title: Deep learning in medical image analysis
  publication-title: Annu. Rev. Biomed. Eng.
  doi: 10.1146/annurev-bioeng-071516-044442
– ident: 10.1016/j.icte.2018.10.007_b14
  doi: 10.1109/IJCNN.2016.7727519
– volume: 35
  start-page: 1207
  issue: 5
  year: 2016
  ident: 10.1016/j.icte.2018.10.007_b16
  article-title: Lung pattern classification for interstitial lung disease using a deep convolutional neural network
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2016.2535865
– volume: 35
  start-page: 307
  issue: 1
  year: 2016
  ident: 10.1016/j.icte.2018.10.007_b34
  article-title: Triaging diagnostically relevant regions from pathology whole slides of breast cancer: A texture based approach
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2015.2470529
– volume: 3
  start-page: 44
  issue: 1
  year: 2010
  ident: 10.1016/j.icte.2018.10.007_b6
  article-title: Breast cancer detection with Gabor features from digital mammograms
  publication-title: Algorithms
  doi: 10.3390/a3010044
– start-page: 9
  year: 2014
  ident: 10.1016/j.icte.2018.10.007_b7
  article-title: Breast cancer detection using haralick features of images reconstructed from ultra wideband microwave scans
  publication-title: Transl. Res. Med. Imaging
SSID ssj0001921197
Score 2.508629
Snippet We demonstrated the ability of transfer learning in comparison with the fully-trained network on the histopathological imaging modality by considering three...
SourceID nrf
doaj
crossref
SourceType Open Website
Enrichment Source
Index Database
StartPage 247
SubjectTerms 전자/정보통신공학
Title Breast cancer histology images classification: Training from scratch or transfer learning?
URI https://doaj.org/article/c6846c1b5e6543a1b3c5cd17b08898ff
https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002424232
Volume 4
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX ICT Express , 2018, 4(4), , pp.247-254
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA7iSQ_iE9cXQbxJtbFN2ngRVxQfKAgriJeQTlLdXd2VWv-_M2ld1otevLTQJk34Msyj-TLD2B4oj9G_EpEt0jRKrU0i63wcZTr2qZOJglDr8PZOXT6k14_ycarUF3HCmvTADXCHoNBCgiikp1OQVhQJSHAiK4ifk5claV8cbSqYGjR-C-2PUWU59EgiLbVsT8w05K4-hByZIj8I1K7sh1UKyfvR1oyqcsrWXCyyhdZJ5KfN5JbYjB8ts_mp1IEr7KlLbPKaA61axUPaYPpBzvtvqCE-OJBXTDSggPwx77WlIDidJ-GoK1AFv_BxxevgueIn2voRzyer7OHivHd2GbV1EiJItKgjG6fgQR-VymW5xQAIAOHOcmV9CrYoMSZR-B5DA-_LRAnIvMMWzmkFWY4LssZmR-ORX2fcIsZxKWIbtmTjTBdeaYlK0bm8cFp2mPjGyUCbRJxqWbyab7bYwBC2hrClZ4hth-1P-rw3KTR-bd0l-CctKf11eIBCYVqhMH8JRYft4uKZIfRDf7o_j82wMhgkXBl0CaXO443_GGmTzdHkG4LLFputq0-_jW5KXewEicTrzX3-BWM85Uk
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Breast+cancer+histology+images+classification%3A+Training+from+scratch+or+transfer+learning%3F&rft.jtitle=ICT+express&rft.au=Shallu&rft.au=Mehra%2C+Rajesh&rft.date=2018-12-01&rft.issn=2405-9595&rft.eissn=2405-9595&rft.volume=4&rft.issue=4&rft.spage=247&rft.epage=254&rft_id=info:doi/10.1016%2Fj.icte.2018.10.007&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_icte_2018_10_007
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2405-9595&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2405-9595&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2405-9595&client=summon