Vision-Based Human Activity Recognition System Using Depth Silhouettes: A Smart Home System for Monitoring the Residents

The increasing number of elderly people living independently needs especial care in the form of smart home monitoring system that provides monitoring, recording and recognition of daily human activities through video cameras, which offer smart lifecare services at homes. Recent advancements in depth...

Full description

Saved in:
Bibliographic Details
Published inJournal of electrical engineering & technology Vol. 14; no. 6; pp. 2567 - 2573
Main Authors Kim, Kibum, Jalal, Ahmad, Mahmood, Maria
Format Journal Article
LanguageEnglish
Published Singapore Springer Singapore 01.11.2019
대한전기학회
Subjects
Online AccessGet full text
ISSN1975-0102
2093-7423
DOI10.1007/s42835-019-00278-8

Cover

Loading…
Abstract The increasing number of elderly people living independently needs especial care in the form of smart home monitoring system that provides monitoring, recording and recognition of daily human activities through video cameras, which offer smart lifecare services at homes. Recent advancements in depth video technologies have made human activity recognition (HAR) realizable for elderly healthcare applications. This study proposes a depth video-based HAR system to utilize skeleton joints features which recognize daily activities of elderly people in indoor environments. Initially, depth maps are processed to track human silhouettes and produce body joints information in the form of skeleton, resulting in a set of 23 joints per each silhouette. Then, from the joints information, skeleton joints features are computed as a centroid point with magnitude and joints distance features. Finally, using these features, hidden Markov model is trained to recognize various human activities. Experimental results show superior recognition rate, resulting up to the mean recognition rate of 84.33% for nine daily routine activities of the elderly.
AbstractList The increasing number of elderly people living independently needs especial care in the form of smart home monitoring system that provides monitoring, recording and recognition of daily human activities through video cameras, which ofer smart lifecare services at homes. Recent advancements in depth video technologies have made human activity recognition (HAR) realizable for elderly healthcare applications. This study proposes a depth video-based HAR system to utilize skeleton joints features which recognize daily activities of elderly people in indoor environments. Initially, depth maps are processed to track human silhouettes and produce body joints information in the form of skeleton, resulting in a set of 23 joints per each silhouette. Then, from the joints information, skeleton joints features are computed as a centroid point with magnitude and joints distance features. Finally, using these features, hidden Markov model is trained to recognize various human activities. Experimental results show superior recognition rate, resulting up to the mean recognition rate of 84.33% for nine daily routine activities of the elderly. KCI Citation Count: 1
The increasing number of elderly people living independently needs especial care in the form of smart home monitoring system that provides monitoring, recording and recognition of daily human activities through video cameras, which offer smart lifecare services at homes. Recent advancements in depth video technologies have made human activity recognition (HAR) realizable for elderly healthcare applications. This study proposes a depth video-based HAR system to utilize skeleton joints features which recognize daily activities of elderly people in indoor environments. Initially, depth maps are processed to track human silhouettes and produce body joints information in the form of skeleton, resulting in a set of 23 joints per each silhouette. Then, from the joints information, skeleton joints features are computed as a centroid point with magnitude and joints distance features. Finally, using these features, hidden Markov model is trained to recognize various human activities. Experimental results show superior recognition rate, resulting up to the mean recognition rate of 84.33% for nine daily routine activities of the elderly.
Author Kim, Kibum
Jalal, Ahmad
Mahmood, Maria
Author_xml – sequence: 1
  givenname: Kibum
  surname: Kim
  fullname: Kim, Kibum
  organization: Department of Human–Computer Interaction, Hanyang University
– sequence: 2
  givenname: Ahmad
  surname: Jalal
  fullname: Jalal, Ahmad
  email: ahmadjalal@mail.au.edu.pk
  organization: Department of Computer Science and Engineering, Air University
– sequence: 3
  givenname: Maria
  surname: Mahmood
  fullname: Mahmood, Maria
  organization: Department of Computer Science, Bahria University
BackLink https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002520737$$DAccess content in National Research Foundation of Korea (NRF)
BookMark eNp9kM1OAjEYRRuDiYC-gKtuXYz2Z5i27vAXE42JiNum02mhCC1pi5G3d0Z048LVXXz33OQ7A9DzwRsATjE6xwixi1QSTkcFwqJAiDBe8APQJ0jQgpWE9kAfC9adETkCg5SWCFUYjWgffL655IIvrlQyDZxs18rDsc7uw-UdfDE6zL3LbQFOdymbNZwl5-fwxmzyAk7dahG2JmeTLuEYTtcqZjgJa_NbtiHCp9AOhNhReWHayeQa43M6BodWrZI5-ckhmN3dvl5Pisfn-4fr8WOhqcC5EHWjKoO4FVZophRXQmlGObGW0Uo3ojaqrhpBy0rViNYV5ra0FWEjWnKjGjoEZ_tdH618104G5b5zHuR7lOOX1wdZYUEoE22X7Ls6hpSisXITXfvVTmIkO89y71m2nuW3Z8lbiP-BtMuqc5ajcqv_UbpH06YTZKJchm30rY7_qC-c_ZZQ
CitedBy_id crossref_primary_10_1016_j_eswa_2021_114736
crossref_primary_10_3390_smartcities7040062
crossref_primary_10_1016_j_patcog_2020_107561
crossref_primary_10_1109_ACCESS_2023_3316509
crossref_primary_10_3233_AIS_230429
crossref_primary_10_1016_j_iot_2024_101182
crossref_primary_10_1007_s11042_024_19582_1
crossref_primary_10_1155_2021_9923748
crossref_primary_10_54097_hset_v9i_1868
crossref_primary_10_1007_s42835_021_00962_8
crossref_primary_10_3390_s21165371
crossref_primary_10_1109_ACCESS_2022_3197594
crossref_primary_10_1109_ACCESS_2021_3092403
crossref_primary_10_1186_s13677_023_00552_1
crossref_primary_10_3390_s22010174
crossref_primary_10_3390_s22239067
crossref_primary_10_3390_socsci9110207
crossref_primary_10_1109_ACCESS_2023_3329748
crossref_primary_10_3390_app12052550
crossref_primary_10_1007_s13369_022_07092_x
crossref_primary_10_1007_s11042_022_12894_0
crossref_primary_10_4218_etrij_2020_0101
crossref_primary_10_1016_j_eswa_2021_114800
crossref_primary_10_1109_JSEN_2023_3310620
crossref_primary_10_1007_s11042_021_11634_0
crossref_primary_10_1109_ACCESS_2023_3293537
crossref_primary_10_1080_01691864_2021_1928552
crossref_primary_10_1016_j_procs_2020_03_004
crossref_primary_10_20965_jaciii_2021_p0423
crossref_primary_10_1007_s00521_022_07665_9
crossref_primary_10_3390_app112411807
crossref_primary_10_3390_s20205894
crossref_primary_10_3390_app11010010
crossref_primary_10_1016_j_compbiomed_2022_106060
crossref_primary_10_1109_ACCESS_2021_3054575
crossref_primary_10_1016_j_buildenv_2020_107519
crossref_primary_10_1109_ACCESS_2023_3300712
crossref_primary_10_1109_ACCESS_2024_3413848
crossref_primary_10_32604_iasc_2023_027205
crossref_primary_10_3390_s23031390
crossref_primary_10_1109_ACCESS_2020_2964778
crossref_primary_10_1109_JIOT_2024_3424905
crossref_primary_10_1111_exsy_12988
crossref_primary_10_32604_iasc_2022_025421
crossref_primary_10_3390_s24030953
crossref_primary_10_1007_s12243_021_00865_9
crossref_primary_10_1109_JIOT_2023_3344179
crossref_primary_10_1016_j_eswa_2021_115002
crossref_primary_10_3390_s24010268
crossref_primary_10_3390_s25051547
crossref_primary_10_3390_su12187649
crossref_primary_10_1109_ACCESS_2023_3282439
crossref_primary_10_3390_s23115024
crossref_primary_10_1109_ACCESS_2020_3032699
crossref_primary_10_3390_app122110743
crossref_primary_10_1007_s42452_021_04528_1
crossref_primary_10_1016_j_heliyon_2023_e16114
crossref_primary_10_3390_s21072520
crossref_primary_10_1155_2021_9937904
crossref_primary_10_3390_s21030768
crossref_primary_10_3390_app12041825
crossref_primary_10_1109_JIOT_2023_3310204
crossref_primary_10_32604_iasc_2022_025013
crossref_primary_10_1007_s11042_024_19711_w
crossref_primary_10_1109_ACCESS_2023_3302353
crossref_primary_10_1007_s11042_023_16795_8
crossref_primary_10_1016_j_eswa_2021_114587
crossref_primary_10_3390_s23187729
crossref_primary_10_3390_su13105367
crossref_primary_10_1016_j_eswa_2021_115311
crossref_primary_10_1016_j_eswa_2021_115110
crossref_primary_10_3390_s25030918
crossref_primary_10_3390_s20226670
crossref_primary_10_1109_ACCESS_2021_3132559
crossref_primary_10_3390_info11090416
crossref_primary_10_1109_TETC_2021_3072980
crossref_primary_10_1016_j_eswa_2024_124031
crossref_primary_10_1007_s00371_024_03571_4
crossref_primary_10_3390_bdcc5010006
Cites_doi 10.1049/trit.2017.0002
10.1007/s11676-017-0572-7
10.1080/10095020.2017.1413798
10.1080/10095020.2018.1441754
10.1109/TCE.2011.6018870
10.1080/10095020.2017.1420506
10.5370/JEET.2016.11.6.1857
10.1155/2016/8087545
10.1109/MC.2016.14
10.1109/ICIEV.2015.7334030
10.1109/URAI.2015.7358903
10.1109/URAI.2015.7358957
10.1007/978-3-540-39917-9_20
10.1007/978-3-642-21535-3_4
10.1109/ICME.2017.8019313
10.1109/ICSPCC.2015.7338934
ContentType Journal Article
Copyright The Korean Institute of Electrical Engineers 2019
Copyright_xml – notice: The Korean Institute of Electrical Engineers 2019
DBID AAYXX
CITATION
ACYCR
DOI 10.1007/s42835-019-00278-8
DatabaseName CrossRef
Korean Citation Index
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2093-7423
EndPage 2573
ExternalDocumentID oai_kci_go_kr_ARTI_6192379
10_1007_s42835_019_00278_8
GroupedDBID -~X
.UV
0R~
2WC
406
9ZL
AACDK
AAHNG
AAJBT
AASML
AATNV
AAUYE
AAYYP
ABAKF
ABECU
ABFTV
ABJNI
ABKCH
ABMQK
ABTEG
ABTKH
ABTMW
ACAOD
ACDTI
ACHSB
ACOKC
ACPIV
ACZOJ
ADKNI
ADTPH
ADURQ
ADYFF
AEFQL
AEMSY
AENEX
AESKC
AFBBN
AFQWF
AGDGC
AGMZJ
AGQEE
AIGIU
AILAN
AITGF
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMXSW
AMYLF
AXYYD
BGNMA
CSCUP
DBRKI
DPUIP
EBLON
EBS
EJD
FIGPU
FNLPD
FRJ
GGCAI
GW5
IKXTQ
IWAJR
JDI
JZLTJ
KOV
KVFHK
LLZTM
M4Y
NPVJJ
NQJWS
NU0
OK1
PT4
ROL
RSV
SJYHP
SNE
SNPRN
SOHCF
SOJ
SRMVM
SSLCW
TDB
UOJIU
UTJUX
VEKWB
VFIZW
ZMTXR
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
ACYCR
ID FETCH-LOGICAL-c391t-9bda6e08f9f9c7aa8a9ac7382ff736cd9beab6d9346ab03b618f4f6275348ead3
ISSN 1975-0102
IngestDate Sun Mar 09 07:50:57 EDT 2025
Tue Jul 01 00:40:49 EDT 2025
Thu Apr 24 22:55:04 EDT 2025
Fri Feb 21 02:30:43 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords Activity recognition
Feature extraction
Depth silhouettes
Smart home
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c391t-9bda6e08f9f9c7aa8a9ac7382ff736cd9beab6d9346ab03b618f4f6275348ead3
PageCount 7
ParticipantIDs nrf_kci_oai_kci_go_kr_ARTI_6192379
crossref_primary_10_1007_s42835_019_00278_8
crossref_citationtrail_10_1007_s42835_019_00278_8
springer_journals_10_1007_s42835_019_00278_8
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-11-01
PublicationDateYYYYMMDD 2019-11-01
PublicationDate_xml – month: 11
  year: 2019
  text: 2019-11-01
  day: 01
PublicationDecade 2010
PublicationPlace Singapore
PublicationPlace_xml – name: Singapore
PublicationTitle Journal of electrical engineering & technology
PublicationTitleAbbrev J. Electr. Eng. Technol
PublicationYear 2019
Publisher Springer Singapore
대한전기학회
Publisher_xml – name: Springer Singapore
– name: 대한전기학회
References CR2
Kim, Park, Kim (CR18) 2018; 13
Kamal, Jalal, Kim (CR7) 2016; 11
Zhao, Yan, Zhang (CR11) 2018; 21
Rajput, Som, Kar (CR17) 2016; 49
CR6
CR5
CR8
CR19
Chang, Cao, Zhang (CR13) 2018; 29
CR16
CR15
CR14
Kim, Yeom, Joo (CR1) 2011; 57
CR12
Bakli, Sakr, Soliman (CR9) 2018; 21
CR20
Jalal, Kamal, Kim (CR10) 2016; 2016
Ming, Armenakis (CR4) 2018; 21
Lee, Choi, Ahn (CR3) 2017; 2
JL-C Ming (278_CR4) 2018; 21
Y Lee (278_CR3) 2017; 2
278_CR20
278_CR2
278_CR15
A Jalal (278_CR10) 2016; 2016
278_CR14
278_CR12
278_CR6
278_CR5
MS Bakli (278_CR9) 2018; 21
S Kamal (278_CR7) 2016; 11
278_CR8
H Rajput (278_CR17) 2016; 49
JS Kim (278_CR1) 2011; 57
W Zhao (278_CR11) 2018; 21
278_CR19
278_CR16
Y-N Kim (278_CR18) 2018; 13
Z Chang (278_CR13) 2018; 29
References_xml – volume: 2
  start-page: 64
  issue: 2
  year: 2017
  end-page: 67
  ident: CR3
  article-title: Multi-objective evolutionary approach to select security solutions
  publication-title: CAAI Trans Intell Technol
  doi: 10.1049/trit.2017.0002
– ident: CR19
– ident: CR14
– ident: CR15
– ident: CR2
– ident: CR16
– ident: CR12
– volume: 29
  start-page: 1789
  issue: 6
  year: 2018
  end-page: 1795
  ident: CR13
  article-title: A novel image segmentation approach for wood plate surface defect classification through convex optimization
  publication-title: J For Res
  doi: 10.1007/s11676-017-0572-7
– volume: 21
  start-page: 102
  issue: 2
  year: 2018
  end-page: 114
  ident: CR9
  article-title: A spatiotemporal algebra in Hadoop for moving objects
  publication-title: Geo-Spat Inf Sci
  doi: 10.1080/10095020.2017.1413798
– volume: 21
  start-page: 115
  issue: 2
  year: 2018
  end-page: 126
  ident: CR11
  article-title: Geometric-constrained multi-view image matching method based on semi-global optimization
  publication-title: Geo-Spat Inf Sci
  doi: 10.1080/10095020.2018.1441754
– volume: 57
  start-page: 1165
  year: 2011
  end-page: 1170
  ident: CR1
  article-title: Fast and robust algorithm of tracking multiple moving objects for intelligent video surveillance systems
  publication-title: IEEE Trans Consum Electron
  doi: 10.1109/TCE.2011.6018870
– ident: CR6
– ident: CR5
– ident: CR8
– volume: 21
  start-page: 2
  issue: 1
  year: 2018
  end-page: 11
  ident: CR4
  article-title: UAV navigation system using line-based sensor pose estimation
  publication-title: Geo-Spat Inf Sci
  doi: 10.1080/10095020.2017.1420506
– volume: 11
  start-page: 1921
  year: 2016
  end-page: 1926
  ident: CR7
  article-title: “Depth Images-based human detection, tracking and activity recognition using spatiotemporal features and modified HMM
  publication-title: J Electr Eng Technol
  doi: 10.5370/JEET.2016.11.6.1857
– volume: 2016
  start-page: 1
  year: 2016
  end-page: 11
  ident: CR10
  article-title: Human depth sensors-based activity recognition using spatiotemporal features and hidden Markov model for smart environments
  publication-title: J Comput Netw Commun
  doi: 10.1155/2016/8087545
– volume: 49
  start-page: 59
  year: 2016
  end-page: 65
  ident: CR17
  article-title: Using radon transform to recognize skewed images of vehicular license plates
  publication-title: Computer
  doi: 10.1109/MC.2016.14
– volume: 13
  start-page: 961
  issue: 2
  year: 2018
  end-page: 968
  ident: CR18
  article-title: Spatio-temporal analysis of trajectory for pedestrian activity recognition
  publication-title: J Electr Eng Technol
– ident: CR20
– volume: 11
  start-page: 1921
  year: 2016
  ident: 278_CR7
  publication-title: J Electr Eng Technol
  doi: 10.5370/JEET.2016.11.6.1857
– volume: 2016
  start-page: 1
  year: 2016
  ident: 278_CR10
  publication-title: J Comput Netw Commun
  doi: 10.1155/2016/8087545
– volume: 21
  start-page: 115
  issue: 2
  year: 2018
  ident: 278_CR11
  publication-title: Geo-Spat Inf Sci
  doi: 10.1080/10095020.2018.1441754
– ident: 278_CR5
  doi: 10.1109/ICIEV.2015.7334030
– ident: 278_CR14
  doi: 10.1109/URAI.2015.7358903
– ident: 278_CR2
– volume: 2
  start-page: 64
  issue: 2
  year: 2017
  ident: 278_CR3
  publication-title: CAAI Trans Intell Technol
  doi: 10.1049/trit.2017.0002
– ident: 278_CR12
– volume: 21
  start-page: 102
  issue: 2
  year: 2018
  ident: 278_CR9
  publication-title: Geo-Spat Inf Sci
  doi: 10.1080/10095020.2017.1413798
– ident: 278_CR19
  doi: 10.1109/URAI.2015.7358957
– ident: 278_CR6
  doi: 10.1007/978-3-540-39917-9_20
– volume: 29
  start-page: 1789
  issue: 6
  year: 2018
  ident: 278_CR13
  publication-title: J For Res
  doi: 10.1007/s11676-017-0572-7
– volume: 13
  start-page: 961
  issue: 2
  year: 2018
  ident: 278_CR18
  publication-title: J Electr Eng Technol
– ident: 278_CR15
  doi: 10.1007/978-3-642-21535-3_4
– ident: 278_CR8
  doi: 10.1109/ICME.2017.8019313
– ident: 278_CR16
  doi: 10.1109/ICSPCC.2015.7338934
– volume: 49
  start-page: 59
  year: 2016
  ident: 278_CR17
  publication-title: Computer
  doi: 10.1109/MC.2016.14
– ident: 278_CR20
– volume: 57
  start-page: 1165
  year: 2011
  ident: 278_CR1
  publication-title: IEEE Trans Consum Electron
  doi: 10.1109/TCE.2011.6018870
– volume: 21
  start-page: 2
  issue: 1
  year: 2018
  ident: 278_CR4
  publication-title: Geo-Spat Inf Sci
  doi: 10.1080/10095020.2017.1420506
SSID ssj0061053
Score 2.4746463
Snippet The increasing number of elderly people living independently needs especial care in the form of smart home monitoring system that provides monitoring,...
SourceID nrf
crossref
springer
SourceType Open Website
Enrichment Source
Index Database
Publisher
StartPage 2567
SubjectTerms Electrical Engineering
Electrical Machines and Networks
Electronics and Microelectronics
Engineering
Instrumentation
Original Article
Power Electronics
전기공학
Title Vision-Based Human Activity Recognition System Using Depth Silhouettes: A Smart Home System for Monitoring the Residents
URI https://link.springer.com/article/10.1007/s42835-019-00278-8
https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002520737
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX Journal of Electrical Engineering & Technology, 2019, 14(6), , pp.2567-2573
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELa6uxc4IJ6ivGQhbiWoidPE5tYCqwW0e9gH2ptlOzatto9Vm0qIv8SfZPzIo7SsWC5JZbmum_kyM7ZnvkHoTUFjIYi0VQOMsAsUHQFKsigxmSpiWLZQbROcj0-yo4v0y-XgstP51YpaWpfynfq5M6_kf6QKbSBXmyV7C8nWg0IDfAb5whUkDNd_kvE3lxgejcASFWE7fqhCOYjTKjLIKgRH19zz4QEf9XU57p1NpuPF2sb5rHxy-tkMfqBnq6ZX3W0Aon_ll1VO1am21T0D-9MOn9YX1XFy1w3RoYNXubWHHwo5f53IQAfhUv6nwocNjGeiaLbLx7MQGnQsfFx0vVURs5Cz12hXlttIwb5Xv9q1JX1GIntcvKGS0xb0NvTrwBfvCLYa9A3ZaQd86MfKsclFdibuhDWijdWrTvr_MIZ1iGJN5-zG4DAGd2NwuocOEliTgBU4GB6ORieV4QdH1JGe1v8y5Gi5TM2tmWz4QXvzpdk6incezvl9dC-IEQ89zh6gjp4_RHdbhJWP0I824rBDHK4Qh1uIwx5C2CEOO8ThFuLe4yF2eMMWb1VnwBtu8IYBb7jG22N0cfjp_MNRFGp3RIqwuIyYLESm-9Qww1QuBBVMqJzQxJicgBpgUguZFYykmZB9IrOYmtRYymySUtBu5Anany_m-inCotAqNUnC7JnxgEmqc2PA6zaDVBho6qK4epJcBWJ7W19lyv8uwy7q1d-59rQuN_Z-DQLiV2rCLRu7vX9f8KslhzXnZ-62IHLWRW8r-fGgI1Y3jPnsVjN4ju40L9QLtF8u1_oleMOlfBVQ-Bvu17El
linkProvider Library Specific Holdings
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Vision-Based+Human+Activity+Recognition+System+Using+Depth+Silhouettes%3A+A+Smart+Home+System+for+Monitoring+the+Residents&rft.jtitle=Journal+of+electrical+engineering+%26+technology&rft.au=Kim%2C+Kibum&rft.au=Jalal%2C+Ahmad&rft.au=Mahmood%2C+Maria&rft.date=2019-11-01&rft.issn=1975-0102&rft.eissn=2093-7423&rft.volume=14&rft.issue=6&rft.spage=2567&rft.epage=2573&rft_id=info:doi/10.1007%2Fs42835-019-00278-8&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s42835_019_00278_8
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1975-0102&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1975-0102&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1975-0102&client=summon