Intrusion detection for cloud computing using neural networks and artificial bee colony optimization algorithm
This paper proposes a new intrusion detection system (IDS) based on a combination of a multilayer perceptron (MLP) network, and artificial bee colony (ABC) and fuzzy clustering algorithms. Normal and abnormal network traffic packets are identified by the MLP, while the MLP training is done by the AB...
Saved in:
Published in | ICT express Vol. 5; no. 1; pp. 56 - 59 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Elsevier
01.03.2019
한국통신학회 |
Subjects | |
Online Access | Get full text |
ISSN | 2405-9595 2405-9595 |
DOI | 10.1016/j.icte.2018.01.014 |
Cover
Abstract | This paper proposes a new intrusion detection system (IDS) based on a combination of a multilayer perceptron (MLP) network, and artificial bee colony (ABC) and fuzzy clustering algorithms. Normal and abnormal network traffic packets are identified by the MLP, while the MLP training is done by the ABC algorithm through optimizing the values of linkage weights and biases. The CloudSim simulator and NSL-KDD dataset are used to verify the proposed method. Mean absolute error (MAE), root mean square error (RMSE), and the kappa statistic are considered as evaluation criteria. The obtained results have indicated the superiority of the proposed method in comparison with state-of-the-art methods. Keywords: Intrusion detection system, Cloud computing, Neural network, Artificial bee colony, Fuzzy clustering |
---|---|
AbstractList | This paper proposes a new intrusion detection system (IDS) based on a combination of a multilayer perceptron (MLP) network, and artificial bee colony (ABC) and fuzzy clustering algorithms. Normal and abnormal network traffic packets are identified by the MLP, while the MLP training is done by the ABC algorithm through optimizing the values of linkage weights and biases. The CloudSim simulator and NSL-KDD dataset are used to verify the proposed method. Mean absolute error (MAE), root mean square error (RMSE), and the kappa statistic are considered as evaluation criteria. The obtained results have indicated the superiority of the proposed method in comparison with state-of-the-art methods. KCI Citation Count: 31 This paper proposes a new intrusion detection system (IDS) based on a combination of a multilayer perceptron (MLP) network, and artificial bee colony (ABC) and fuzzy clustering algorithms. Normal and abnormal network traffic packets are identified by the MLP, while the MLP training is done by the ABC algorithm through optimizing the values of linkage weights and biases. The CloudSim simulator and NSL-KDD dataset are used to verify the proposed method. Mean absolute error (MAE), root mean square error (RMSE), and the kappa statistic are considered as evaluation criteria. The obtained results have indicated the superiority of the proposed method in comparison with state-of-the-art methods. Keywords: Intrusion detection system, Cloud computing, Neural network, Artificial bee colony, Fuzzy clustering |
Author | Navimipour, Nima Jafari Hajimirzaei, Bahram |
Author_xml | – sequence: 1 givenname: Bahram surname: Hajimirzaei fullname: Hajimirzaei, Bahram – sequence: 2 givenname: Nima Jafari orcidid: 0000-0002-5514-5536 surname: Navimipour fullname: Navimipour, Nima Jafari |
BackLink | https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002448245$$DAccess content in National Research Foundation of Korea (NRF) |
BookMark | eNp9UcFKJDEQDYuCrvoDnvq6h5lN0kknOYqsuwOCIHoOSXUyZqYnGdIZRL_edM-yLB6Eol5RvPdC6n1HJzFFh9A1wUuCSfdzswxQ3JJiIpeY1GLf0DllmC8UV_zkv_kMXY3jBmNMFCVEiXMUV7HkwxhSbHpXHJRp8ik3MKRD30Da7Q8lxHVTObVHd8hmqFBeU96OjYl9Y3IJPkCoe-tclQwpvjVpX8IuvJvZ0AzrlEN52V2iU2-G0V39xQv0fPfr6fbP4v7h9-r25n4BrSJloVRLneEEWEeoEIYyJUgroROMyZZyRTDDLbWuM9ZyL4WQgjtsDQXVeqDtBfpx9I3Z6y0EnUyYcZ30Nuubx6eVZlxwjmXlro7cPpmN3uewM_ltFsyLlNd6-iIMTjthPbOd9aAM87K-3UnRA3S97YnCXfWiRy_IaRyz8__8CNZTWHqjp7D0FJbGpBarIvlJBKHMhyvZhOEr6QcrJp8- |
CitedBy_id | crossref_primary_10_1002_cpe_5441 crossref_primary_10_32604_iasc_2022_026377 crossref_primary_10_20525_ijrbs_v14i1_3582 crossref_primary_10_3390_computers12040082 crossref_primary_10_1016_j_future_2023_09_035 crossref_primary_10_3390_ai4030027 crossref_primary_10_46532_978_81_950008_1_4_008 crossref_primary_10_1007_s11042_023_17216_6 crossref_primary_10_1007_s12652_021_03077_0 crossref_primary_10_1007_s10586_021_03281_9 crossref_primary_10_1007_s11831_021_09573_y crossref_primary_10_1007_s13369_022_07412_1 crossref_primary_10_1016_j_neucom_2022_06_002 crossref_primary_10_1049_iet_com_2019_0345 crossref_primary_10_1080_23335777_2020_1811383 crossref_primary_10_1016_j_datak_2022_102130 crossref_primary_10_1049_wss2_12100 crossref_primary_10_1002_acs_3415 crossref_primary_10_1002_dac_3940 crossref_primary_10_1145_3472753 crossref_primary_10_1007_s11277_022_10063_y crossref_primary_10_4018_IJISP_2020100102 crossref_primary_10_1002_asjc_3164 crossref_primary_10_1111_phn_13334 crossref_primary_10_1007_s00500_023_08671_2 crossref_primary_10_3233_JIFS_189450 crossref_primary_10_1109_ACCESS_2020_3028690 crossref_primary_10_1007_s12243_023_00971_w crossref_primary_10_1109_TCE_2024_3458810 crossref_primary_10_4018_IJEIS_2020010104 crossref_primary_10_2139_ssrn_4047537 crossref_primary_10_1002_jnm_2948 crossref_primary_10_1007_s00521_019_04477_2 crossref_primary_10_3233_WEB_221800 crossref_primary_10_1142_S1793962321500471 crossref_primary_10_3390_s20226578 crossref_primary_10_1002_acs_3386 crossref_primary_10_1016_j_icte_2021_04_006 crossref_primary_10_1016_j_tcs_2022_07_030 crossref_primary_10_1002_cpe_5185 crossref_primary_10_1016_j_engappai_2024_109389 crossref_primary_10_1080_03772063_2024_2355665 crossref_primary_10_3390_electronics10212689 crossref_primary_10_1016_j_comnet_2019_05_014 crossref_primary_10_1080_0952813X_2021_1966841 crossref_primary_10_51173_ijds_v1i1_9 crossref_primary_10_1007_s11069_021_04646_4 crossref_primary_10_1002_cpe_7806 crossref_primary_10_1016_j_cose_2019_06_013 crossref_primary_10_1186_s44147_024_00529_0 crossref_primary_10_1093_comjnl_bxae108 crossref_primary_10_1007_s10586_024_04385_8 crossref_primary_10_1016_j_comnet_2020_107417 crossref_primary_10_1016_j_knosys_2020_106167 crossref_primary_10_1007_s42979_023_01822_0 crossref_primary_10_3233_MGS_220360 crossref_primary_10_1002_cpe_5218 crossref_primary_10_1016_j_comcom_2022_06_016 crossref_primary_10_1016_j_future_2021_06_030 crossref_primary_10_7717_peerj_cs_2333 crossref_primary_10_1002_dac_5592 crossref_primary_10_1007_s00521_020_05500_7 crossref_primary_10_32604_jcs_2024_049658 crossref_primary_10_1007_s11277_024_11505_5 crossref_primary_10_1002_dac_3996 crossref_primary_10_1007_s40860_022_00197_y crossref_primary_10_1007_s10586_024_04706_x crossref_primary_10_1155_2022_3999039 crossref_primary_10_1007_s11277_024_11607_0 crossref_primary_10_1002_cpe_5240 crossref_primary_10_1016_j_future_2020_08_031 crossref_primary_10_3390_sym13081377 crossref_primary_10_3390_bioengineering11050468 crossref_primary_10_1109_ACCESS_2021_3054688 crossref_primary_10_1016_j_jisa_2020_102582 crossref_primary_10_1016_j_compag_2021_106478 crossref_primary_10_1155_2022_5625897 crossref_primary_10_1007_s11063_019_10120_x crossref_primary_10_1111_coin_12408 crossref_primary_10_1080_1206212X_2023_2284443 crossref_primary_10_1109_JIOT_2020_2985912 crossref_primary_10_1016_j_suscom_2022_100746 crossref_primary_10_3233_JIFS_224283 crossref_primary_10_1109_ACCESS_2021_3129775 crossref_primary_10_1007_s13369_019_04178_x crossref_primary_10_3389_fpubh_2021_788376 crossref_primary_10_1080_01969722_2022_2112542 crossref_primary_10_2339_politeknik_972844 crossref_primary_10_1002_ett_4561 crossref_primary_10_1016_j_ijmecsci_2019_105197 crossref_primary_10_1016_j_aej_2024_04_060 crossref_primary_10_1177_09544100231201215 crossref_primary_10_1007_s11042_023_15175_6 crossref_primary_10_1515_jisys_2018_0479 crossref_primary_10_1109_ACCESS_2024_3372859 crossref_primary_10_1016_j_swevo_2021_100841 crossref_primary_10_1016_j_eswa_2022_116545 crossref_primary_10_1016_j_ins_2023_01_050 crossref_primary_10_1080_1206212X_2023_2275084 crossref_primary_10_1007_s10462_021_10015_1 crossref_primary_10_3390_app13042580 crossref_primary_10_1016_j_eswa_2023_122544 crossref_primary_10_1080_08874417_2022_2121782 crossref_primary_10_1007_s11042_023_17677_9 crossref_primary_10_1002_cpe_7552 crossref_primary_10_1007_s40747_021_00498_4 crossref_primary_10_1016_j_knosys_2022_109557 crossref_primary_10_32604_cmc_2022_018708 crossref_primary_10_1007_s10586_022_03621_3 crossref_primary_10_1007_s00500_021_05893_0 crossref_primary_10_4236_jis_2021_124014 crossref_primary_10_1002_dac_3808 crossref_primary_10_1016_j_compeleceng_2024_109129 crossref_primary_10_1016_j_seta_2022_102648 crossref_primary_10_33317_ssurj_561 crossref_primary_10_1109_ACCESS_2023_3240109 crossref_primary_10_32604_cmc_2022_019127 crossref_primary_10_1111_coin_12342 crossref_primary_10_1016_j_cor_2019_05_022 |
Cites_doi | 10.1007/978-3-642-30223-7_87 10.1016/j.chb.2015.01.001 10.1108/K-12-2014-0293 10.7763/IJMO.2015.V5.434 10.1016/j.jnca.2016.02.005 10.1016/j.patcog.2013.11.031 10.1016/j.eswa.2016.09.032 10.1016/j.icte.2016.08.003 10.1016/j.jss.2016.11.016 |
ContentType | Journal Article |
DBID | AAYXX CITATION DOA ACYCR |
DOI | 10.1016/j.icte.2018.01.014 |
DatabaseName | CrossRef DOAJ Directory of Open Access Journals - NZ Korean Citation Index |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2405-9595 |
EndPage | 59 |
ExternalDocumentID | oai_kci_go_kr_ARTI_4575508 oai_doaj_org_article_e7bf4b6bfc9a4f8bb5687dcc6dbd1906 10_1016_j_icte_2018_01_014 |
GroupedDBID | 0R~ 457 5VS AAEDW AALRI AAXUO AAYWO AAYXX ABMAC ACGFS ACVFH ADBBV ADCNI ADEZE ADVLN AEUPX AEXQZ AFJKZ AFPUW AFTJW AGHFR AIGII AITUG AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ APXCP BCNDV CITATION EBS EJD FDB GROUPED_DOAJ IPNFZ KQ8 M~E O9- OK1 RIG ROL SSZ 0SF 6I. AACTN AAFTH ACYCR NCXOZ |
ID | FETCH-LOGICAL-c391t-9932ea51c461277a2497138c674483259104032be6abb5f877875e0ba2c93fc23 |
IEDL.DBID | DOA |
ISSN | 2405-9595 |
IngestDate | Tue Nov 21 21:17:42 EST 2023 Wed Aug 27 01:24:51 EDT 2025 Thu Apr 24 23:06:16 EDT 2025 Tue Jul 01 03:49:10 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c391t-9932ea51c461277a2497138c674483259104032be6abb5f877875e0ba2c93fc23 |
ORCID | 0000-0002-5514-5536 |
OpenAccessLink | https://doaj.org/article/e7bf4b6bfc9a4f8bb5687dcc6dbd1906 |
PageCount | 4 |
ParticipantIDs | nrf_kci_oai_kci_go_kr_ARTI_4575508 doaj_primary_oai_doaj_org_article_e7bf4b6bfc9a4f8bb5687dcc6dbd1906 crossref_primary_10_1016_j_icte_2018_01_014 crossref_citationtrail_10_1016_j_icte_2018_01_014 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-03-00 2019-03-01 2019-03 |
PublicationDateYYYYMMDD | 2019-03-01 |
PublicationDate_xml | – month: 03 year: 2019 text: 2019-03-00 |
PublicationDecade | 2010 |
PublicationTitle | ICT express |
PublicationYear | 2019 |
Publisher | Elsevier 한국통신학회 |
Publisher_xml | – name: Elsevier – name: 한국통신학회 |
References | Navimipour (10.1016/j.icte.2018.01.014_b2) 2015; 5 Lin (10.1016/j.icte.2018.01.014_b10) 2014; 47 Bassiliades (10.1016/j.icte.2018.01.014_b6) 2017; 67 Jyothsna (10.1016/j.icte.2018.01.014_b8) 2016; 2 Tao (10.1016/j.icte.2018.01.014_b5) 2017; 124 Jo (10.1016/j.icte.2018.01.014_b9) 2015; 11 Ashouraie (10.1016/j.icte.2018.01.014_b3) 2015; 44 Navimipour (10.1016/j.icte.2018.01.014_b7) 2015; 46 Milani (10.1016/j.icte.2018.01.014_b1) 2016; 64 Sucahyo (10.1016/j.icte.2018.01.014_b4) 2017; 24 Ghosh (10.1016/j.icte.2018.01.014_b11) 2013; 4 Li (10.1016/j.icte.2018.01.014_b12) 2012 |
References_xml | – volume: 4 start-page: 35 issue: 4 year: 2013 ident: 10.1016/j.icte.2018.01.014_b11 article-title: Comparative analysis of k-means and fuzzy c-means algorithms publication-title: Int. J. Adv. Comput. Sci. Appl. – start-page: 553 year: 2012 ident: 10.1016/j.icte.2018.01.014_b12 article-title: Brief introduction of back propagation (BP) neural network algorithm and its improvement publication-title: Adv. Comput. Sci. Inf. Engg. doi: 10.1007/978-3-642-30223-7_87 – volume: 46 start-page: 57 year: 2015 ident: 10.1016/j.icte.2018.01.014_b7 article-title: Expert Cloud: A Cloud-based framework to share the knowledge and skills of human resources publication-title: Comput. Hum. Behav. doi: 10.1016/j.chb.2015.01.001 – volume: 44 start-page: 1455 issue: 10 year: 2015 ident: 10.1016/j.icte.2018.01.014_b3 article-title: Priority-based task scheduling on heterogeneous resources in the Expert Cloud publication-title: Kybernetes doi: 10.1108/K-12-2014-0293 – volume: 5 start-page: 44 issue: 1 year: 2015 ident: 10.1016/j.icte.2018.01.014_b2 article-title: Task scheduling in the cloud computing based on the cuckoo search algorithm publication-title: Int. J. Model. Optim. doi: 10.7763/IJMO.2015.V5.434 – volume: 64 start-page: 229 year: 2016 ident: 10.1016/j.icte.2018.01.014_b1 article-title: A comprehensive review of the data replication techniques in the cloud environments: Major trends and future directions publication-title: J. Netw. Comput. Appl. doi: 10.1016/j.jnca.2016.02.005 – volume: 47 start-page: 2042 issue: 5 year: 2014 ident: 10.1016/j.icte.2018.01.014_b10 article-title: A size-insensitive integrity-based fuzzy c-means method for data clustering publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2013.11.031 – volume: 67 start-page: 203 year: 2017 ident: 10.1016/j.icte.2018.01.014_b6 article-title: A semantic recommendation algorithm for the PaaSport platform-as-a-service marketplace publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2016.09.032 – volume: 11 start-page: 33 issue: 4 year: 2015 ident: 10.1016/j.icte.2018.01.014_b9 article-title: A comparative study on the performance of intrusion detection using decision tree and artificial neural network models publication-title: J. Korea Soc. Digit. Ind. Inf. Manage. – volume: 2 start-page: 103 issue: 3 year: 2016 ident: 10.1016/j.icte.2018.01.014_b8 article-title: FCAAIS: Anomaly based network intrusion detection through feature correlation analysis and association impact scale publication-title: ICT Express doi: 10.1016/j.icte.2016.08.003 – volume: 24 start-page: 51 issue: 1 year: 2017 ident: 10.1016/j.icte.2018.01.014_b4 article-title: Software as a service quality factors evaluation using analytic hierarchy process publication-title: Int. J. Bus. Inf. Syst. – volume: 124 start-page: 39 year: 2017 ident: 10.1016/j.icte.2018.01.014_b5 article-title: Building a cloud-based mobile testing infrastructure service system publication-title: J. Syst. Softw. doi: 10.1016/j.jss.2016.11.016 |
SSID | ssj0001921197 |
Score | 2.4590728 |
Snippet | This paper proposes a new intrusion detection system (IDS) based on a combination of a multilayer perceptron (MLP) network, and artificial bee colony (ABC) and... |
SourceID | nrf doaj crossref |
SourceType | Open Website Enrichment Source Index Database |
StartPage | 56 |
SubjectTerms | 전자/정보통신공학 |
Title | Intrusion detection for cloud computing using neural networks and artificial bee colony optimization algorithm |
URI | https://doaj.org/article/e7bf4b6bfc9a4f8bb5687dcc6dbd1906 https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002448245 |
Volume | 5 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
ispartofPNX | ICT Express , 2019, 5(1), , pp.56-59 |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA7iSQ_iE9cXQbxJsWnTNDmqKD5AEBS8hUyarqtrKut68N87SaqsF70IpYWSNOnMtPMNmXxDyEHFGmgakBkgFs-4Kk0GuYQsF1bItgKhXGT7vBEX9_zqoXqYKfUVcsISPXAS3JGroeUgoLXK8FYCVELWjbUCx0BnFsm2c5XPBFNPCbeE9bFQWQ4RSaYqVfU7ZlJy18hGjkwmI2cn4z-8UiTvR1_jJ-2MrzlfJks9SKTHaXIrZM75VbI4Qx24RvylD9slUKq0cdOYT-UpAlBqx917Q20s1oAtaUhsH9JAW4lP9Cnp-40a39Dw7ok_goJzNNBX-w_a4T_kpd-cSc142E1G08eXdXJ_fnZ3epH1tRMyWyo2zRB2FM5UzHKEMHVtMMrCcFRaUWM8VmLMg2FYXhbghEGRtrLGD7dyOZjCqrK1RblB5n3n3SahBYJCnltgAb6gSo2yijVcgBASlSsHhH3JTtueWDzUtxjrrwyyJx3krYO8dc7w4ANy-N3nNdFq_Nr6JKjku2WgxI430FB0byj6L0MZkH1UqH62o9g_XIedfp5oDBwuNUfYilh16z9G2iYLOHmVMtV2yDyag9tF6DKFvWileL6-lZ93--2R |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Intrusion+detection+for+cloud+computing+using+neural+networks+and+artificial+bee+colony+optimization+algorithm&rft.jtitle=ICT+express&rft.au=Bahram+Hajimirzaei&rft.au=Nima+Jafari+Navimipour&rft.date=2019-03-01&rft.pub=Elsevier&rft.issn=2405-9595&rft.eissn=2405-9595&rft.volume=5&rft.issue=1&rft.spage=56&rft.epage=59&rft_id=info:doi/10.1016%2Fj.icte.2018.01.014&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_e7bf4b6bfc9a4f8bb5687dcc6dbd1906 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2405-9595&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2405-9595&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2405-9595&client=summon |