Intrusion detection for cloud computing using neural networks and artificial bee colony optimization algorithm

This paper proposes a new intrusion detection system (IDS) based on a combination of a multilayer perceptron (MLP) network, and artificial bee colony (ABC) and fuzzy clustering algorithms. Normal and abnormal network traffic packets are identified by the MLP, while the MLP training is done by the AB...

Full description

Saved in:
Bibliographic Details
Published inICT express Vol. 5; no. 1; pp. 56 - 59
Main Authors Hajimirzaei, Bahram, Navimipour, Nima Jafari
Format Journal Article
LanguageEnglish
Published Elsevier 01.03.2019
한국통신학회
Subjects
Online AccessGet full text
ISSN2405-9595
2405-9595
DOI10.1016/j.icte.2018.01.014

Cover

Abstract This paper proposes a new intrusion detection system (IDS) based on a combination of a multilayer perceptron (MLP) network, and artificial bee colony (ABC) and fuzzy clustering algorithms. Normal and abnormal network traffic packets are identified by the MLP, while the MLP training is done by the ABC algorithm through optimizing the values of linkage weights and biases. The CloudSim simulator and NSL-KDD dataset are used to verify the proposed method. Mean absolute error (MAE), root mean square error (RMSE), and the kappa statistic are considered as evaluation criteria. The obtained results have indicated the superiority of the proposed method in comparison with state-of-the-art methods. Keywords: Intrusion detection system, Cloud computing, Neural network, Artificial bee colony, Fuzzy clustering
AbstractList This paper proposes a new intrusion detection system (IDS) based on a combination of a multilayer perceptron (MLP) network, and artificial bee colony (ABC) and fuzzy clustering algorithms. Normal and abnormal network traffic packets are identified by the MLP, while the MLP training is done by the ABC algorithm through optimizing the values of linkage weights and biases. The CloudSim simulator and NSL-KDD dataset are used to verify the proposed method. Mean absolute error (MAE), root mean square error (RMSE), and the kappa statistic are considered as evaluation criteria. The obtained results have indicated the superiority of the proposed method in comparison with state-of-the-art methods. KCI Citation Count: 31
This paper proposes a new intrusion detection system (IDS) based on a combination of a multilayer perceptron (MLP) network, and artificial bee colony (ABC) and fuzzy clustering algorithms. Normal and abnormal network traffic packets are identified by the MLP, while the MLP training is done by the ABC algorithm through optimizing the values of linkage weights and biases. The CloudSim simulator and NSL-KDD dataset are used to verify the proposed method. Mean absolute error (MAE), root mean square error (RMSE), and the kappa statistic are considered as evaluation criteria. The obtained results have indicated the superiority of the proposed method in comparison with state-of-the-art methods. Keywords: Intrusion detection system, Cloud computing, Neural network, Artificial bee colony, Fuzzy clustering
Author Navimipour, Nima Jafari
Hajimirzaei, Bahram
Author_xml – sequence: 1
  givenname: Bahram
  surname: Hajimirzaei
  fullname: Hajimirzaei, Bahram
– sequence: 2
  givenname: Nima Jafari
  orcidid: 0000-0002-5514-5536
  surname: Navimipour
  fullname: Navimipour, Nima Jafari
BackLink https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002448245$$DAccess content in National Research Foundation of Korea (NRF)
BookMark eNp9UcFKJDEQDYuCrvoDnvq6h5lN0kknOYqsuwOCIHoOSXUyZqYnGdIZRL_edM-yLB6Eol5RvPdC6n1HJzFFh9A1wUuCSfdzswxQ3JJiIpeY1GLf0DllmC8UV_zkv_kMXY3jBmNMFCVEiXMUV7HkwxhSbHpXHJRp8ik3MKRD30Da7Q8lxHVTObVHd8hmqFBeU96OjYl9Y3IJPkCoe-tclQwpvjVpX8IuvJvZ0AzrlEN52V2iU2-G0V39xQv0fPfr6fbP4v7h9-r25n4BrSJloVRLneEEWEeoEIYyJUgroROMyZZyRTDDLbWuM9ZyL4WQgjtsDQXVeqDtBfpx9I3Z6y0EnUyYcZ30Nuubx6eVZlxwjmXlro7cPpmN3uewM_ltFsyLlNd6-iIMTjthPbOd9aAM87K-3UnRA3S97YnCXfWiRy_IaRyz8__8CNZTWHqjp7D0FJbGpBarIvlJBKHMhyvZhOEr6QcrJp8-
CitedBy_id crossref_primary_10_1002_cpe_5441
crossref_primary_10_32604_iasc_2022_026377
crossref_primary_10_20525_ijrbs_v14i1_3582
crossref_primary_10_3390_computers12040082
crossref_primary_10_1016_j_future_2023_09_035
crossref_primary_10_3390_ai4030027
crossref_primary_10_46532_978_81_950008_1_4_008
crossref_primary_10_1007_s11042_023_17216_6
crossref_primary_10_1007_s12652_021_03077_0
crossref_primary_10_1007_s10586_021_03281_9
crossref_primary_10_1007_s11831_021_09573_y
crossref_primary_10_1007_s13369_022_07412_1
crossref_primary_10_1016_j_neucom_2022_06_002
crossref_primary_10_1049_iet_com_2019_0345
crossref_primary_10_1080_23335777_2020_1811383
crossref_primary_10_1016_j_datak_2022_102130
crossref_primary_10_1049_wss2_12100
crossref_primary_10_1002_acs_3415
crossref_primary_10_1002_dac_3940
crossref_primary_10_1145_3472753
crossref_primary_10_1007_s11277_022_10063_y
crossref_primary_10_4018_IJISP_2020100102
crossref_primary_10_1002_asjc_3164
crossref_primary_10_1111_phn_13334
crossref_primary_10_1007_s00500_023_08671_2
crossref_primary_10_3233_JIFS_189450
crossref_primary_10_1109_ACCESS_2020_3028690
crossref_primary_10_1007_s12243_023_00971_w
crossref_primary_10_1109_TCE_2024_3458810
crossref_primary_10_4018_IJEIS_2020010104
crossref_primary_10_2139_ssrn_4047537
crossref_primary_10_1002_jnm_2948
crossref_primary_10_1007_s00521_019_04477_2
crossref_primary_10_3233_WEB_221800
crossref_primary_10_1142_S1793962321500471
crossref_primary_10_3390_s20226578
crossref_primary_10_1002_acs_3386
crossref_primary_10_1016_j_icte_2021_04_006
crossref_primary_10_1016_j_tcs_2022_07_030
crossref_primary_10_1002_cpe_5185
crossref_primary_10_1016_j_engappai_2024_109389
crossref_primary_10_1080_03772063_2024_2355665
crossref_primary_10_3390_electronics10212689
crossref_primary_10_1016_j_comnet_2019_05_014
crossref_primary_10_1080_0952813X_2021_1966841
crossref_primary_10_51173_ijds_v1i1_9
crossref_primary_10_1007_s11069_021_04646_4
crossref_primary_10_1002_cpe_7806
crossref_primary_10_1016_j_cose_2019_06_013
crossref_primary_10_1186_s44147_024_00529_0
crossref_primary_10_1093_comjnl_bxae108
crossref_primary_10_1007_s10586_024_04385_8
crossref_primary_10_1016_j_comnet_2020_107417
crossref_primary_10_1016_j_knosys_2020_106167
crossref_primary_10_1007_s42979_023_01822_0
crossref_primary_10_3233_MGS_220360
crossref_primary_10_1002_cpe_5218
crossref_primary_10_1016_j_comcom_2022_06_016
crossref_primary_10_1016_j_future_2021_06_030
crossref_primary_10_7717_peerj_cs_2333
crossref_primary_10_1002_dac_5592
crossref_primary_10_1007_s00521_020_05500_7
crossref_primary_10_32604_jcs_2024_049658
crossref_primary_10_1007_s11277_024_11505_5
crossref_primary_10_1002_dac_3996
crossref_primary_10_1007_s40860_022_00197_y
crossref_primary_10_1007_s10586_024_04706_x
crossref_primary_10_1155_2022_3999039
crossref_primary_10_1007_s11277_024_11607_0
crossref_primary_10_1002_cpe_5240
crossref_primary_10_1016_j_future_2020_08_031
crossref_primary_10_3390_sym13081377
crossref_primary_10_3390_bioengineering11050468
crossref_primary_10_1109_ACCESS_2021_3054688
crossref_primary_10_1016_j_jisa_2020_102582
crossref_primary_10_1016_j_compag_2021_106478
crossref_primary_10_1155_2022_5625897
crossref_primary_10_1007_s11063_019_10120_x
crossref_primary_10_1111_coin_12408
crossref_primary_10_1080_1206212X_2023_2284443
crossref_primary_10_1109_JIOT_2020_2985912
crossref_primary_10_1016_j_suscom_2022_100746
crossref_primary_10_3233_JIFS_224283
crossref_primary_10_1109_ACCESS_2021_3129775
crossref_primary_10_1007_s13369_019_04178_x
crossref_primary_10_3389_fpubh_2021_788376
crossref_primary_10_1080_01969722_2022_2112542
crossref_primary_10_2339_politeknik_972844
crossref_primary_10_1002_ett_4561
crossref_primary_10_1016_j_ijmecsci_2019_105197
crossref_primary_10_1016_j_aej_2024_04_060
crossref_primary_10_1177_09544100231201215
crossref_primary_10_1007_s11042_023_15175_6
crossref_primary_10_1515_jisys_2018_0479
crossref_primary_10_1109_ACCESS_2024_3372859
crossref_primary_10_1016_j_swevo_2021_100841
crossref_primary_10_1016_j_eswa_2022_116545
crossref_primary_10_1016_j_ins_2023_01_050
crossref_primary_10_1080_1206212X_2023_2275084
crossref_primary_10_1007_s10462_021_10015_1
crossref_primary_10_3390_app13042580
crossref_primary_10_1016_j_eswa_2023_122544
crossref_primary_10_1080_08874417_2022_2121782
crossref_primary_10_1007_s11042_023_17677_9
crossref_primary_10_1002_cpe_7552
crossref_primary_10_1007_s40747_021_00498_4
crossref_primary_10_1016_j_knosys_2022_109557
crossref_primary_10_32604_cmc_2022_018708
crossref_primary_10_1007_s10586_022_03621_3
crossref_primary_10_1007_s00500_021_05893_0
crossref_primary_10_4236_jis_2021_124014
crossref_primary_10_1002_dac_3808
crossref_primary_10_1016_j_compeleceng_2024_109129
crossref_primary_10_1016_j_seta_2022_102648
crossref_primary_10_33317_ssurj_561
crossref_primary_10_1109_ACCESS_2023_3240109
crossref_primary_10_32604_cmc_2022_019127
crossref_primary_10_1111_coin_12342
crossref_primary_10_1016_j_cor_2019_05_022
Cites_doi 10.1007/978-3-642-30223-7_87
10.1016/j.chb.2015.01.001
10.1108/K-12-2014-0293
10.7763/IJMO.2015.V5.434
10.1016/j.jnca.2016.02.005
10.1016/j.patcog.2013.11.031
10.1016/j.eswa.2016.09.032
10.1016/j.icte.2016.08.003
10.1016/j.jss.2016.11.016
ContentType Journal Article
DBID AAYXX
CITATION
DOA
ACYCR
DOI 10.1016/j.icte.2018.01.014
DatabaseName CrossRef
DOAJ Directory of Open Access Journals - NZ
Korean Citation Index
DatabaseTitle CrossRef
DatabaseTitleList

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2405-9595
EndPage 59
ExternalDocumentID oai_kci_go_kr_ARTI_4575508
oai_doaj_org_article_e7bf4b6bfc9a4f8bb5687dcc6dbd1906
10_1016_j_icte_2018_01_014
GroupedDBID 0R~
457
5VS
AAEDW
AALRI
AAXUO
AAYWO
AAYXX
ABMAC
ACGFS
ACVFH
ADBBV
ADCNI
ADEZE
ADVLN
AEUPX
AEXQZ
AFJKZ
AFPUW
AFTJW
AGHFR
AIGII
AITUG
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
APXCP
BCNDV
CITATION
EBS
EJD
FDB
GROUPED_DOAJ
IPNFZ
KQ8
M~E
O9-
OK1
RIG
ROL
SSZ
0SF
6I.
AACTN
AAFTH
ACYCR
NCXOZ
ID FETCH-LOGICAL-c391t-9932ea51c461277a2497138c674483259104032be6abb5f877875e0ba2c93fc23
IEDL.DBID DOA
ISSN 2405-9595
IngestDate Tue Nov 21 21:17:42 EST 2023
Wed Aug 27 01:24:51 EDT 2025
Thu Apr 24 23:06:16 EDT 2025
Tue Jul 01 03:49:10 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c391t-9932ea51c461277a2497138c674483259104032be6abb5f877875e0ba2c93fc23
ORCID 0000-0002-5514-5536
OpenAccessLink https://doaj.org/article/e7bf4b6bfc9a4f8bb5687dcc6dbd1906
PageCount 4
ParticipantIDs nrf_kci_oai_kci_go_kr_ARTI_4575508
doaj_primary_oai_doaj_org_article_e7bf4b6bfc9a4f8bb5687dcc6dbd1906
crossref_primary_10_1016_j_icte_2018_01_014
crossref_citationtrail_10_1016_j_icte_2018_01_014
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-03-00
2019-03-01
2019-03
PublicationDateYYYYMMDD 2019-03-01
PublicationDate_xml – month: 03
  year: 2019
  text: 2019-03-00
PublicationDecade 2010
PublicationTitle ICT express
PublicationYear 2019
Publisher Elsevier
한국통신학회
Publisher_xml – name: Elsevier
– name: 한국통신학회
References Navimipour (10.1016/j.icte.2018.01.014_b2) 2015; 5
Lin (10.1016/j.icte.2018.01.014_b10) 2014; 47
Bassiliades (10.1016/j.icte.2018.01.014_b6) 2017; 67
Jyothsna (10.1016/j.icte.2018.01.014_b8) 2016; 2
Tao (10.1016/j.icte.2018.01.014_b5) 2017; 124
Jo (10.1016/j.icte.2018.01.014_b9) 2015; 11
Ashouraie (10.1016/j.icte.2018.01.014_b3) 2015; 44
Navimipour (10.1016/j.icte.2018.01.014_b7) 2015; 46
Milani (10.1016/j.icte.2018.01.014_b1) 2016; 64
Sucahyo (10.1016/j.icte.2018.01.014_b4) 2017; 24
Ghosh (10.1016/j.icte.2018.01.014_b11) 2013; 4
Li (10.1016/j.icte.2018.01.014_b12) 2012
References_xml – volume: 4
  start-page: 35
  issue: 4
  year: 2013
  ident: 10.1016/j.icte.2018.01.014_b11
  article-title: Comparative analysis of k-means and fuzzy c-means algorithms
  publication-title: Int. J. Adv. Comput. Sci. Appl.
– start-page: 553
  year: 2012
  ident: 10.1016/j.icte.2018.01.014_b12
  article-title: Brief introduction of back propagation (BP) neural network algorithm and its improvement
  publication-title: Adv. Comput. Sci. Inf. Engg.
  doi: 10.1007/978-3-642-30223-7_87
– volume: 46
  start-page: 57
  year: 2015
  ident: 10.1016/j.icte.2018.01.014_b7
  article-title: Expert Cloud: A Cloud-based framework to share the knowledge and skills of human resources
  publication-title: Comput. Hum. Behav.
  doi: 10.1016/j.chb.2015.01.001
– volume: 44
  start-page: 1455
  issue: 10
  year: 2015
  ident: 10.1016/j.icte.2018.01.014_b3
  article-title: Priority-based task scheduling on heterogeneous resources in the Expert Cloud
  publication-title: Kybernetes
  doi: 10.1108/K-12-2014-0293
– volume: 5
  start-page: 44
  issue: 1
  year: 2015
  ident: 10.1016/j.icte.2018.01.014_b2
  article-title: Task scheduling in the cloud computing based on the cuckoo search algorithm
  publication-title: Int. J. Model. Optim.
  doi: 10.7763/IJMO.2015.V5.434
– volume: 64
  start-page: 229
  year: 2016
  ident: 10.1016/j.icte.2018.01.014_b1
  article-title: A comprehensive review of the data replication techniques in the cloud environments: Major trends and future directions
  publication-title: J. Netw. Comput. Appl.
  doi: 10.1016/j.jnca.2016.02.005
– volume: 47
  start-page: 2042
  issue: 5
  year: 2014
  ident: 10.1016/j.icte.2018.01.014_b10
  article-title: A size-insensitive integrity-based fuzzy c-means method for data clustering
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2013.11.031
– volume: 67
  start-page: 203
  year: 2017
  ident: 10.1016/j.icte.2018.01.014_b6
  article-title: A semantic recommendation algorithm for the PaaSport platform-as-a-service marketplace
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2016.09.032
– volume: 11
  start-page: 33
  issue: 4
  year: 2015
  ident: 10.1016/j.icte.2018.01.014_b9
  article-title: A comparative study on the performance of intrusion detection using decision tree and artificial neural network models
  publication-title: J. Korea Soc. Digit. Ind. Inf. Manage.
– volume: 2
  start-page: 103
  issue: 3
  year: 2016
  ident: 10.1016/j.icte.2018.01.014_b8
  article-title: FCAAIS: Anomaly based network intrusion detection through feature correlation analysis and association impact scale
  publication-title: ICT Express
  doi: 10.1016/j.icte.2016.08.003
– volume: 24
  start-page: 51
  issue: 1
  year: 2017
  ident: 10.1016/j.icte.2018.01.014_b4
  article-title: Software as a service quality factors evaluation using analytic hierarchy process
  publication-title: Int. J. Bus. Inf. Syst.
– volume: 124
  start-page: 39
  year: 2017
  ident: 10.1016/j.icte.2018.01.014_b5
  article-title: Building a cloud-based mobile testing infrastructure service system
  publication-title: J. Syst. Softw.
  doi: 10.1016/j.jss.2016.11.016
SSID ssj0001921197
Score 2.4590728
Snippet This paper proposes a new intrusion detection system (IDS) based on a combination of a multilayer perceptron (MLP) network, and artificial bee colony (ABC) and...
SourceID nrf
doaj
crossref
SourceType Open Website
Enrichment Source
Index Database
StartPage 56
SubjectTerms 전자/정보통신공학
Title Intrusion detection for cloud computing using neural networks and artificial bee colony optimization algorithm
URI https://doaj.org/article/e7bf4b6bfc9a4f8bb5687dcc6dbd1906
https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002448245
Volume 5
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX ICT Express , 2019, 5(1), , pp.56-59
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA7iSQ_iE9cXQbxJsWnTNDmqKD5AEBS8hUyarqtrKut68N87SaqsF70IpYWSNOnMtPMNmXxDyEHFGmgakBkgFs-4Kk0GuYQsF1bItgKhXGT7vBEX9_zqoXqYKfUVcsISPXAS3JGroeUgoLXK8FYCVELWjbUCx0BnFsm2c5XPBFNPCbeE9bFQWQ4RSaYqVfU7ZlJy18hGjkwmI2cn4z-8UiTvR1_jJ-2MrzlfJks9SKTHaXIrZM75VbI4Qx24RvylD9slUKq0cdOYT-UpAlBqx917Q20s1oAtaUhsH9JAW4lP9Cnp-40a39Dw7ok_goJzNNBX-w_a4T_kpd-cSc142E1G08eXdXJ_fnZ3epH1tRMyWyo2zRB2FM5UzHKEMHVtMMrCcFRaUWM8VmLMg2FYXhbghEGRtrLGD7dyOZjCqrK1RblB5n3n3SahBYJCnltgAb6gSo2yijVcgBASlSsHhH3JTtueWDzUtxjrrwyyJx3krYO8dc7w4ANy-N3nNdFq_Nr6JKjku2WgxI430FB0byj6L0MZkH1UqH62o9g_XIedfp5oDBwuNUfYilh16z9G2iYLOHmVMtV2yDyag9tF6DKFvWileL6-lZ93--2R
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Intrusion+detection+for+cloud+computing+using+neural+networks+and+artificial+bee+colony+optimization+algorithm&rft.jtitle=ICT+express&rft.au=Bahram+Hajimirzaei&rft.au=Nima+Jafari+Navimipour&rft.date=2019-03-01&rft.pub=Elsevier&rft.issn=2405-9595&rft.eissn=2405-9595&rft.volume=5&rft.issue=1&rft.spage=56&rft.epage=59&rft_id=info:doi/10.1016%2Fj.icte.2018.01.014&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_e7bf4b6bfc9a4f8bb5687dcc6dbd1906
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2405-9595&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2405-9595&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2405-9595&client=summon